JP2010147545A - Optical transmission system - Google Patents

Optical transmission system Download PDF

Info

Publication number
JP2010147545A
JP2010147545A JP2008319577A JP2008319577A JP2010147545A JP 2010147545 A JP2010147545 A JP 2010147545A JP 2008319577 A JP2008319577 A JP 2008319577A JP 2008319577 A JP2008319577 A JP 2008319577A JP 2010147545 A JP2010147545 A JP 2010147545A
Authority
JP
Japan
Prior art keywords
wavelength
measurement
chromatic dispersion
optical
dispersion amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008319577A
Other languages
Japanese (ja)
Other versions
JP5305882B2 (en
Inventor
Yoshimasa Baba
義昌 馬場
Shoichiro Senoo
尚一郎 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008319577A priority Critical patent/JP5305882B2/en
Publication of JP2010147545A publication Critical patent/JP2010147545A/en
Application granted granted Critical
Publication of JP5305882B2 publication Critical patent/JP5305882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical transmission system capable of measuring wavelength dispersion amount per optical path unit at low cost. <P>SOLUTION: An edge node 10 transmits a request for setting an optical path including wavelengths for measurement and communication, transmits a request for start of wavelength dispersion amount measurement upon receiving a response of OK, activates two fixed wavelength light sources to transmit a measurement optical signal upon receiving the response of OK, stops the two fixed wavelength light sources upon receiving a notice of completion of wavelength dispersion amount measurement, transmits a request for releasing an optical path including a measurement wavelength, and activates a variable wavelength light source so as to compensate the measured wavelength dispersion amount and starts transmission of a communication optical signal. A reception side edge node 20 confirms that three designated wavelength resources are usable upon receiving the request of setting optical path, transmits the response of OK, transmits the response of OK upon receiving the request for start of wavelength dispersion amount measurement, measures the wavelength dispersion amount upon receiving the measurement optical signal and transmits a notice of completion of wavelength dispersion amount measurement including the measured wavelength dispersion amount. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、光パス単位の波長分散を補償する光伝送システムに関するものである。なお、本明細書では、光通信のEnd−to−End間(送信端と受信端)の波長パスを光パスと呼んでいる。   The present invention relates to an optical transmission system that compensates for chromatic dispersion in units of optical paths. In this specification, an end-to-end wavelength path (transmitting end and receiving end) of optical communication is called an optical path.

現在の光ネットワークでは、光ファイバの分散によって生じる信号の歪みを補償するため、隣接ノード間の波長分散量に応じた分散補償ファイバを、事前の詳細設計(具体的にはノード間の波長分散量の測定結果)に基づき各ノードに搭載している。つまり、すべての隣接ノード間で、波長分散量が零となるように分散補償を行っていることになる。   In current optical networks, in order to compensate for signal distortion caused by optical fiber dispersion, a dispersion compensation fiber according to the amount of chromatic dispersion between adjacent nodes is designed in advance (specifically, the amount of chromatic dispersion between nodes). Mounted on each node based on the measurement results. That is, dispersion compensation is performed so that the chromatic dispersion amount becomes zero between all adjacent nodes.

しかしながら、これは、複数のノードを中継していく一つの光パスに対して、リンク単位(ここでは、隣接するノード間をリンクと呼んでいる)に複数回の分散補償を行っていることとなり、分散補償コストが多大となる。   However, this means that dispersion compensation is performed a plurality of times in units of links (here, adjacent nodes are called links) for one optical path that relays a plurality of nodes. Dispersion compensation cost becomes large.

そのため、各ノード間(リンク単位)の波長分散量を測定し、その情報をノード間で交換したり、波長分散量管理サーバに通知したりして、光パス全体の波長分散量を、リンク単位の波長分散量を累積することにより求める光伝送システムが提案されている(例えば、特許文献1参照)。その結果、複数のノードを中継する一つの光パスに対しては、累積した波長分散量を補償するための分散補償を受信側だけで行えばよいため、リンク単位に分散補償するよりも、分散補償コストが低減できる。   Therefore, the chromatic dispersion amount between each node (link unit) is measured, and the information is exchanged between the nodes, or the chromatic dispersion amount management server is notified. There has been proposed an optical transmission system that is obtained by accumulating the amount of chromatic dispersion (see, for example, Patent Document 1). As a result, for one optical path that relays multiple nodes, dispersion compensation for compensating the accumulated amount of chromatic dispersion only needs to be performed on the receiving side. Compensation cost can be reduced.

また、光パス設定後に、設定した波長により波長分散量を測定し、光パス単位に受信側で波長分散量を補償する光伝送システムが提案されている(例えば、特許文献2参照)。その結果、リンク単位に分散補償するよりも、分散補償コストが低減できる。   In addition, an optical transmission system has been proposed in which, after setting an optical path, the amount of chromatic dispersion is measured using a set wavelength, and the chromatic dispersion amount is compensated on the receiving side for each optical path (see, for example, Patent Document 2). As a result, the dispersion compensation cost can be reduced as compared with dispersion compensation for each link.

特開2003−121303号公報JP 2003-121303 A 特開2006−74698号公報JP 2006-74698 A

今後、ビットレートが高速化(例えば、10Gb/sから、40Gb/sや160Gb/sに高速化)すると、より高精度な分散補償が必要となってくる。   In the future, if the bit rate is increased (for example, from 10 Gb / s to 40 Gb / s or 160 Gb / s), more accurate dispersion compensation is required.

しかしながら、リンク単位に高精度な波長分散量測定ができても、リンク単位の波長分散量を累積する過程で、その誤差が累積されてしまう。また、リンク単位の測定では、中継するノード内の光デバイス等の波長分散量も無視できないため、光パス単位での精度の高い波長分散量結果が得られないという問題点があった。   However, even if the chromatic dispersion amount can be measured with high accuracy for each link, the error is accumulated in the process of accumulating the chromatic dispersion amount for each link. In addition, in the link unit measurement, the chromatic dispersion amount of the optical device or the like in the relay node cannot be ignored, so that there is a problem that a highly accurate chromatic dispersion amount result cannot be obtained in the optical path unit.

また、光パス単位での波長分散量測定では、設定した光パスの波長(つまり実際に通信に使用する波長)を用いて波長分散量を測定するため、送信側、受信側ともに、可変波長に対応した波長分散量測定機能が必要となり、波長分散量測定コストが高くなるという問題点があった。   In addition, in the chromatic dispersion measurement for each optical path, the chromatic dispersion is measured using the set wavelength of the optical path (that is, the wavelength actually used for communication). A corresponding chromatic dispersion measurement function is required, and there is a problem that the chromatic dispersion measurement cost increases.

この発明は、上述のような課題を解決するためになされたもので、その目的は、光パス単位の波長分散量測定を低コストで行うことができ、分散補償された光パスを動的に設定することができる光伝送システムを得るものである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to perform chromatic dispersion measurement in units of optical paths at a low cost, and to dynamically distribute dispersion-compensated optical paths. An optical transmission system that can be set is obtained.

この発明に係る光伝送システムは、システムのエッジ部分に位置する送信側及び受信側エッジノードと、前記送信側及び受信側エッジノード間のシステムのコア部分に位置するコアノードとを設け、各ノードは、光ファイバによってそれぞれ接続され、かつ制御ネットワークによって接続されている光伝送システムであって、前記送信側エッジノードは、測定用の第1及び第2の波長番号の波長光源及び通信用の第3の波長番号の可変波長光源を有するとともに、前記第1及び第2の波長番号と、前記第3の波長番号とを含む光パス設定要求を送信し、光パス設定OK応答を受信すると、波長分散量測定開始要求を送信し、波長分散量測定開始OK応答を受信すると、前記第1及び第2の波長番号の波長光源を起動して、測定用光信号を送信し、波長分散量測定完了通知を受信すると、前記第1及び第2の波長番号の波長光源を停止し、前記第1及び第2の波長番号の波長を解放するための光パス解放要求を送信するとともに、測定した波長分散量を補償するように前記第3の波長番号の可変波長光源を起動して、通信用光信号の送信を開始し、前記受信側エッジノードは、前記光パス設定要求を受信すると、指定された3つの波長リソースが使用可能なことを確認し、前記光パス設定OK応答を送信し、前記波長分散量測定開始要求を受信すると、波長分散量測定開始OK応答を送信し、前記測定用光信号を受信すると、2つの波長の光信号の時間差に基づき波長分散量の測定を行い、測定した波長分散量を含む波長分散量測定完了通知を送信するものである。   An optical transmission system according to the present invention includes a transmitting side and a receiving side edge node located at an edge part of the system, and a core node located at a core part of the system between the transmitting side and the receiving side edge node, , An optical transmission system respectively connected by an optical fiber and connected by a control network, wherein the transmitting side edge node includes a wavelength light source having a first and second wavelength numbers for measurement and a third light source for communication. When the optical path setting request including the first and second wavelength numbers and the third wavelength number is transmitted and the optical path setting OK response is received, wavelength dispersion is performed. When an amount measurement start request is transmitted and a chromatic dispersion amount measurement start OK response is received, the wavelength light sources of the first and second wavelength numbers are activated and a measurement optical signal is transmitted. When the chromatic dispersion amount measurement completion notification is received, the wavelength light sources having the first and second wavelength numbers are stopped, and an optical path release request for releasing the wavelengths having the first and second wavelength numbers is transmitted. At the same time, the variable wavelength light source having the third wavelength number is activated so as to compensate the measured chromatic dispersion amount, and the transmission of the communication optical signal is started. Upon reception, it is confirmed that the specified three wavelength resources are usable, the optical path setting OK response is transmitted, and when the chromatic dispersion amount measurement start request is received, the chromatic dispersion amount measurement start OK response is transmitted. When the measurement optical signal is received, the chromatic dispersion amount is measured based on the time difference between the optical signals of the two wavelengths, and a chromatic dispersion amount measurement completion notification including the measured chromatic dispersion amount is transmitted.

この発明に係る光伝送システムは、光パス単位の波長分散量測定を低コストで行うことができ、分散補償された光パスを動的に設定することができるという効果を奏する。   The optical transmission system according to the present invention can measure the amount of chromatic dispersion in units of optical paths at low cost, and has the effect of being able to dynamically set dispersion-compensated optical paths.

実施の形態1.
この発明の実施の形態1に係る光伝送システムについて図1から図4までを参照しながら説明する。図1は、この発明の実施の形態1に係る光伝送システムの構成を示すブロック図である。なお、以降では、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
An optical transmission system according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 is a block diagram showing a configuration of an optical transmission system according to Embodiment 1 of the present invention. In the following, in each figure, the same reference numerals indicate the same or corresponding parts.

図1において、この発明の実施の形態1に係る光伝送システムは、システムのエッジ部分に位置するエッジノード(送信側エッジノード)10、エッジノード(受信側エッジノード)20と、システムのコア部分に位置するコアノード30、40、50と、システムに接続されるルータやスイッチ等のクライアント装置60、70と、ネットワーク管理サーバ80とが設けられている。   1, an optical transmission system according to Embodiment 1 of the present invention includes an edge node (transmission side edge node) 10, an edge node (reception side edge node) 20 located at an edge portion of the system, and a core portion of the system. Core nodes 30, 40, and 50, client devices 60 and 70 such as routers and switches connected to the system, and a network management server 80 are provided.

なお、各ノード10〜50は、光ファイバ1、2、3、4、5によってそれぞれ接続されている。また、ネットワーク管理サーバ80は、光伝送システムを制御するためのもので、制御ネットワーク81によって各ノード10〜50やクライアント装置60、70に接続されている。   Each of the nodes 10 to 50 is connected by optical fibers 1, 2, 3, 4, and 5, respectively. The network management server 80 is for controlling the optical transmission system, and is connected to the nodes 10 to 50 and the client devices 60 and 70 by the control network 81.

図2は、この発明の実施の形態1に係る光伝送システムのエッジノードの構成を示す図である。   FIG. 2 is a diagram showing the configuration of the edge node of the optical transmission system according to Embodiment 1 of the present invention.

図2において、この実施の形態1に係るエッジノード10は、制御ネットワーク81に接続され、本ノードを制御するためのノード制御部11と、クライアント装置60を収容し、光伝送システムを介して、所望の波長により相手ノードと通信するための複数のクライアント収容部12と、波長分散量を測定するための波長分散量測定部14と、クライアント収容部12や波長分散量測定部14から送信される、異なる波長の光信号を光ファイバ1へ合波したり、逆に光ファイバ1内を伝搬してきた複数波長の光信号を波長ごとにクライアント収容部12や波長分散量測定部14へ分波したりする光合分波器16とが設けられている。なお、エッジノード20も同様である。   In FIG. 2, the edge node 10 according to the first embodiment is connected to the control network 81, accommodates the node control unit 11 for controlling this node, and the client device 60, and passes through the optical transmission system. Transmitted from a plurality of client accommodation units 12 for communicating with a partner node at a desired wavelength, a chromatic dispersion amount measurement unit 14 for measuring a chromatic dispersion amount, and a client accommodation unit 12 or a chromatic dispersion amount measurement unit 14 , Optical signals of different wavelengths are multiplexed into the optical fiber 1, and conversely, optical signals of a plurality of wavelengths propagated in the optical fiber 1 are demultiplexed to the client accommodating unit 12 and the chromatic dispersion measuring unit 14 for each wavelength. The optical multiplexer / demultiplexer 16 is provided. The same applies to the edge node 20.

なお、各クライアント収容部12は、所望の波長を送信するための可変波長光源13(波長番号♯17)を有する。また、波長分散量測定部14は、異なる波長の伝播遅延差を測定するため、2つの固定波長光源15A(波長番号♯1)、15B(波長番号♯100)を有する。   Each client accommodating unit 12 includes a variable wavelength light source 13 (wavelength number # 17) for transmitting a desired wavelength. Further, the chromatic dispersion amount measuring unit 14 has two fixed wavelength light sources 15A (wavelength number # 1) and 15B (wavelength number # 100) in order to measure propagation delay differences of different wavelengths.

図3は、この発明の実施の形態1に係る光伝送システムのコアノードの構成を示す図である。   FIG. 3 is a diagram showing the configuration of the core node of the optical transmission system according to Embodiment 1 of the present invention.

図3において、この実施の形態1に係るコアノード30は、制御ネットワーク81に接続され、本ノードを制御するためのノード制御部31と、光合分波器で分波された光信号を交換するための光スイッチ32と、光ファイバ単位に存在する光合分波器33、34、35とが設けられている。なお、コアノード40、50も同様である。   In FIG. 3, the core node 30 according to the first embodiment is connected to a control network 81, and exchanges an optical signal demultiplexed by an optical multiplexer / demultiplexer with a node control unit 31 for controlling this node. The optical switch 32 and optical multiplexers / demultiplexers 33, 34, and 35 existing in units of optical fibers are provided. The core nodes 40 and 50 are the same.

コアノード30は、クライアント装置60、70とは接続されず、エッジノード10やコアノード40、50と接続するための光ファイバ1、2、3と接続されている。   The core node 30 is not connected to the client devices 60 and 70 but is connected to the optical fibers 1, 2 and 3 for connecting to the edge node 10 and the core nodes 40 and 50.

つぎに、この実施の形態1に係る光伝送システムの動作について図面を参照しながら説明する。図4は、この発明の実施の形態1に係る光伝送システムの動作(シーケンス)を示す図である。   Next, the operation of the optical transmission system according to the first embodiment will be described with reference to the drawings. FIG. 4 is a diagram showing an operation (sequence) of the optical transmission system according to Embodiment 1 of the present invention.

図1に示された光伝送システムでは、波長分散量の測定は、測定用の2つの固定波長として、波長番号♯1と♯100を使用することとし、送信側より2つの固定波長を用いて、同時に同一の信号パターンを送信し、受信側でその信号パターンの時間差を測定することにより実施する。   In the optical transmission system shown in FIG. 1, the wavelength dispersion amount is measured by using wavelength numbers # 1 and # 100 as two fixed wavelengths for measurement, and using two fixed wavelengths from the transmission side. Simultaneously, the same signal pattern is transmitted, and the time difference between the signal patterns is measured on the receiving side.

また、あらかじめ各ノード10〜50には、制御ネットワーク81を介して、隣接ノードと通信するための情報(例えば、IPアドレス等)が設定されているものとする。例えば、コアノード30には、隣接ノードとしてエッジノード10、コアノード40、コアノード50の情報(例えば、IPアドレス等)が設定されている。   In addition, it is assumed that information (for example, an IP address) for communicating with an adjacent node is set in advance in each of the nodes 10 to 50 via the control network 81. For example, information (for example, an IP address) of the edge node 10, the core node 40, and the core node 50 is set as the adjacent node in the core node 30.

また、本光伝送システムは、光伝送ネットワークを統合的に制御、管理するためのGMPLS(Generalized Multi Protocol Label Switching)プロトコルに基づいて動作しているものとする。そのため、本光伝送システムの全ノードは、ネットワーク全体の構成と各リンクで使用可能な波長リソースの情報を保持しているため、光パス設定時に、自ノードから宛先ノードまでの最短パスと、使用可能な波長を導出することが可能である。   Further, it is assumed that the present optical transmission system operates based on a GMPLS (Generalized Multi Protocol Label Switching) protocol for integrated control and management of an optical transmission network. For this reason, all nodes in this optical transmission system have information about the wavelength configuration that can be used in the configuration of the entire network and each link. It is possible to derive possible wavelengths.

クライアント装置60とクライアント装置70を接続する光パスの設定、つまりエッジノード10からエッジノード20までの光パスの設定について、図4のシーケンスを用いて説明する。   The setting of the optical path connecting the client device 60 and the client device 70, that is, the setting of the optical path from the edge node 10 to the edge node 20, will be described with reference to the sequence of FIG.

光パスの設定要求は、クライアント装置60が、制御ネットワーク81を介してエッジノード10に対して光パス設定要求を伝える場合と、ネットワーク管理サーバ80からエッジノード10に対して光パス設定要求を伝える場合があるが、以降で説明する光パスの設定シーケンスは同一である。   The optical path setting request is transmitted when the client apparatus 60 transmits an optical path setting request to the edge node 10 via the control network 81 and from the network management server 80 to the edge node 10. In some cases, the optical path setting sequence described below is the same.

まず、光パス設定要求が伝えられたエッジノード10のノード制御部11は、エッジノード20までの最短パス、および通信用に使用する波長を決定して、測定用に使用する2つの固定波長とともに、エッジノード10からエッジノード20までの光パス設定要求101を送信する。   First, the node control unit 11 of the edge node 10 to which the optical path setting request is transmitted determines the shortest path to the edge node 20 and the wavelength used for communication, along with two fixed wavelengths used for measurement. The optical path setting request 101 from the edge node 10 to the edge node 20 is transmitted.

この光パス設定要求101には、通信用に使用する波長番号の例として♯17、測定用の2つの固定波長番号として♯1と♯100が含まれている。エッジノード10が送信した光パス設定要求101は、制御ネットワーク81を介して、コアノード30、コアノード40と中継され、指定した3つの波長リソースを予約しながら、エッジノード20に到達する。   The optical path setting request 101 includes # 17 as an example of a wavelength number used for communication, and # 1 and # 100 as two fixed wavelength numbers for measurement. The optical path setting request 101 transmitted by the edge node 10 is relayed to the core node 30 and the core node 40 via the control network 81, and reaches the edge node 20 while reserving three designated wavelength resources.

次に、エッジノード20のノード制御部21(図示せず)は、光パス設定要求101を受信すると、指定された3つの波長リソースが使用可能なことを確認し、光パス設定OK応答102をエッジノード10に送信する。エッジノード20が送信した光パス設定OK応答102は、制御ネットワーク81を介して、コアノード40、コアノード30と中継され、各コアノードの光スイッチ32を設定しながら、エッジノード10に到達する。   Next, when the node control unit 21 (not shown) of the edge node 20 receives the optical path setting request 101, it confirms that the specified three wavelength resources are available, and returns an optical path setting OK response 102. Transmit to the edge node 10. The optical path setting OK response 102 transmitted by the edge node 20 is relayed to the core node 40 and the core node 30 via the control network 81, and reaches the edge node 10 while setting the optical switch 32 of each core node.

次に、エッジノード10のノード制御部11は、光パス設定OK応答102を受信すると、エッジノード10とエッジノード20間の光パスが正常に設定されたものと判断し、波長分散量測定開始要求103を、制御ネットワーク81を介して、エッジノード20に送信する。   Next, when the node control unit 11 of the edge node 10 receives the optical path setting OK response 102, the node control unit 11 determines that the optical path between the edge node 10 and the edge node 20 is normally set, and starts chromatic dispersion measurement. The request 103 is transmitted to the edge node 20 via the control network 81.

次に、エッジノード20のノード制御部21は、波長分散量測定開始要求103を受信すると、波長分散量の測定準備を行い、波長分散量測定開始OK応答104を、制御ネットワーク81を介して、返信する。   Next, when receiving the chromatic dispersion amount measurement start request 103, the node control unit 21 of the edge node 20 prepares for measurement of the chromatic dispersion amount, and sends a chromatic dispersion amount measurement start OK response 104 via the control network 81. Send back.

次に、波長分散量測定開始OK応答104を受信したエッジノード10のノード制御部11は、測定用の固定波長光源15Aと15Bを起動して、測定用光信号105を送信する。   Next, the node control unit 11 of the edge node 10 that has received the chromatic dispersion amount measurement start OK response 104 activates the measurement-use fixed wavelength light sources 15A and 15B and transmits the measurement optical signal 105.

次に、測定用光信号105を受信したエッジノード20の波長分散量測定部24(図示せず)、波長分散量の測定を行い、ノード制御部21は、測定した波長分散量を波長分散量測定完了通知106により、エッジノード10に通知する。   Next, the chromatic dispersion measuring unit 24 (not shown) of the edge node 20 that has received the measurement optical signal 105 measures the chromatic dispersion, and the node controller 21 converts the measured chromatic dispersion into the chromatic dispersion. The edge node 10 is notified by the measurement completion notification 106.

次に、エッジノード10のノード制御部11は、波長分散量測定完了通知106を受信すると、波長分散量の測定が完了したものと判断し、測定用の固定波長光源15A、15Bを停止し、測定用の2つの固定波長(♯1と♯100)を解放するための光パス解放要求107を送信するとともに、通知された波長分散量を送信側で事前補償するように通信用の可変波長光源13(♯17)を起動して、通信用光信号108の送信を開始する。   Next, when receiving the chromatic dispersion amount measurement completion notification 106, the node control unit 11 of the edge node 10 determines that the measurement of the chromatic dispersion amount is completed, stops the measurement fixed wavelength light sources 15A and 15B, A variable wavelength light source for communication so that an optical path release request 107 for releasing two fixed wavelengths (# 1 and # 100) for measurement is transmitted and the notified chromatic dispersion amount is pre-compensated on the transmission side 13 (# 17) is started and transmission of the optical signal for communication 108 is started.

なお、波長分散量測定開始要求103、波長分散量測定開始OK応答104、波長分散量測定完了通知106は、制御ネットワーク81を介して、光パスの両端点であるエッジノード10とエッジノード20との間で直接送受信される。   Note that the chromatic dispersion amount measurement start request 103, the chromatic dispersion amount measurement start OK response 104, and the chromatic dispersion amount measurement completion notification 106 are transmitted via the control network 81 to the edge nodes 10 and 20 that are both end points of the optical path. Sent and received directly between.

また、エッジノード10が送信した光パス解放要求107は、制御ネットワーク81を介して、コアノード30、コアノード40と中継され、指定した2つの固定波長リソースを解放、つまり各コアノードの光スイッチ32の設定を解除しながら、エッジノード20に到達する。   The optical path release request 107 transmitted by the edge node 10 is relayed to the core node 30 and the core node 40 via the control network 81 to release the two specified fixed wavelength resources, that is, the setting of the optical switch 32 of each core node. The edge node 20 is reached while canceling.

上記により、エッジノード10とエッジノード20の間に、通信用波長♯17を用いた分散補償された光パスが実現できる。   As described above, a dispersion-compensated optical path using the communication wavelength # 17 can be realized between the edge node 10 and the edge node 20.

なお、複数波長の光パスの設定や、特定波長の光パスの解放は、GMPLSプロトコルのシグナリングメッセージを拡張することにより実現される。   It should be noted that setting of an optical path with a plurality of wavelengths and release of an optical path with a specific wavelength are realized by extending a signaling message of the GMPLS protocol.

なお、上記実施の形態では、測定用の固定波長が使用できる場合について説明したが、測定用の固定波長が使用中である場合は、未使用となるまで一定時間待つことにより実現される。   In the above-described embodiment, the case where the fixed wavelength for measurement can be used has been described. However, when the fixed wavelength for measurement is in use, this is realized by waiting for a certain time until the fixed wavelength for measurement is not used.

以上のように、光パス設定時に、測定用の固定波長を用いて波長分散量の測定を行えるようにしたので、以下のような効果が得られる。
(1)波長分散量の測定を光パス単位に行うため、中継するコアノード内の光デバイス等の波長分散量も含めて正確に測定することが可能である。
(2)測定用の固定波長により波長分散量を測定するため、波長分散量測定機能が低コストに実現可能である。
(3)測定用の固定波長の速度は、波長分散量の測定精度を満足する速度でよいため、測定用の速度は通信用の速度よりも遅くでき、波長分散量測定機能が低コストに実現可能である。
(4)波長分散量を測定する波長分散量測定部14は、エッジノードに1つだけでよいので、測定用のコストを抑えることが可能である。
As described above, since the chromatic dispersion amount can be measured using the fixed wavelength for measurement at the time of setting the optical path, the following effects can be obtained.
(1) Since the amount of chromatic dispersion is measured in units of optical paths, it is possible to accurately measure the amount of chromatic dispersion including the optical devices in the core node to be relayed.
(2) Since the amount of chromatic dispersion is measured with a fixed wavelength for measurement, a chromatic dispersion amount measurement function can be realized at low cost.
(3) Since the speed of the fixed wavelength for measurement may be a speed that satisfies the measurement accuracy of the chromatic dispersion amount, the measurement speed can be slower than the communication speed, and the chromatic dispersion measurement function is realized at low cost. Is possible.
(4) Since only one chromatic dispersion amount measuring unit 14 for measuring the chromatic dispersion amount is required for each edge node, the cost for measurement can be suppressed.

上記実施の形態では、測定用の波長として固定波長を用いたが、可変波長を用いることもできる。具体的には、波長分散量測定部14の固定波長光源15A、15Bの変わりに、可変波長光源を使用する。これにより、空いている波長を用いて波長分散量を測定することができるため、測定用の固定波長が未使用になるまで待つ必要がない。   In the above embodiment, a fixed wavelength is used as a wavelength for measurement, but a variable wavelength can also be used. Specifically, a variable wavelength light source is used instead of the fixed wavelength light sources 15A and 15B of the chromatic dispersion amount measuring unit 14. As a result, the amount of chromatic dispersion can be measured using a free wavelength, so there is no need to wait until the fixed wavelength for measurement becomes unused.

また、上記実施の形態では、受信側ノードから送信側ノードに対して波長分散量の通知を行って送信側で分散補償を行っているが、波長分散量の通知を行わずに、受信側で分散補償を行うことも可能である。   In the above embodiment, the receiving side node notifies the transmitting side node of the chromatic dispersion amount and performs dispersion compensation on the transmitting side. However, the receiving side does not notify the chromatic dispersion amount. It is also possible to perform dispersion compensation.

また、上記実施の形態では、コアノード30、40、50にはクライアント収容部12がなかったが、コアノードとエッジノードが融合したノードにおいても、同様の効果が得られる。   Further, in the above embodiment, the core nodes 30, 40 and 50 do not have the client accommodating unit 12, but the same effect can be obtained also in a node in which the core node and the edge node are merged.

この発明の実施の形態1に係る光伝送システムの構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光伝送システムのエッジノードの構成を示す図である。It is a figure which shows the structure of the edge node of the optical transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光伝送システムのコアノードの構成を示す図である。It is a figure which shows the structure of the core node of the optical transmission system which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る光伝送システムの動作(シーケンス)を示す図である。It is a figure which shows operation | movement (sequence) of the optical transmission system which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1−5 光ファイバ、10、20 エッジノード、11 ノード制御部、12 クライアント収容部、13 可変波長光源、14 波長分散量測定部、15A、15B 固定波長光源、16 光合分波器、20 エッジノード、30、40、50 コアノード、31 ノード制御部、32 光スイッチ、33、34、35 光合分波器、60、70 クライアント装置、80 ネットワーク管理サーバ、81 制御ネットワーク。   1-5 optical fiber, 10, 20 edge node, 11 node control unit, 12 client accommodation unit, 13 variable wavelength light source, 14 chromatic dispersion measurement unit, 15A, 15B fixed wavelength light source, 16 optical multiplexer / demultiplexer, 20 edge node , 30, 40, 50 Core node, 31 Node controller, 32 Optical switch, 33, 34, 35 Optical multiplexer / demultiplexer, 60, 70 Client device, 80 Network management server, 81 Control network.

Claims (3)

システムのエッジ部分に位置する送信側及び受信側エッジノードと、
前記送信側及び受信側エッジノード間のシステムのコア部分に位置するコアノードとを備え、
各ノードは、光ファイバによってそれぞれ接続され、かつ制御ネットワークによって接続されている光伝送システムであって、
前記送信側エッジノードは、測定用の第1及び第2の波長番号の波長光源及び通信用の第3の波長番号の可変波長光源を有するとともに、
前記第1及び第2の波長番号と、前記第3の波長番号とを含む光パス設定要求を送信し、
光パス設定OK応答を受信すると、波長分散量測定開始要求を送信し、
波長分散量測定開始OK応答を受信すると、前記第1及び第2の波長番号の波長光源を起動して、測定用光信号を送信し、
波長分散量測定完了通知を受信すると、前記第1及び第2の波長番号の波長光源を停止し、前記第1及び第2の波長番号の波長を解放するための光パス解放要求を送信するとともに、測定した波長分散量を補償するように前記第3の波長番号の可変波長光源を起動して、通信用光信号の送信を開始し、
前記受信側エッジノードは、
前記光パス設定要求を受信すると、指定された3つの波長リソースが使用可能なことを確認し、前記光パス設定OK応答を送信し、
前記波長分散量測定開始要求を受信すると、波長分散量測定開始OK応答を送信し、
前記測定用光信号を受信すると、2つの波長の光信号の時間差に基づき波長分散量の測定を行い、測定した波長分散量を含む波長分散量測定完了通知を送信する
ことを特徴とする光伝送システム。
Transmitting and receiving edge nodes located at the edge of the system;
A core node located in the core part of the system between the transmitting and receiving edge nodes;
Each node is an optical transmission system connected by an optical fiber and connected by a control network,
The transmission-side edge node includes a wavelength light source having a first and second wavelength numbers for measurement and a variable wavelength light source having a third wavelength number for communication,
Transmitting an optical path setting request including the first and second wavelength numbers and the third wavelength number;
When the optical path setting OK response is received, a chromatic dispersion amount measurement start request is transmitted,
Upon receiving a wavelength dispersion amount measurement start OK response, the wavelength light sources of the first and second wavelength numbers are activated, and a measurement optical signal is transmitted.
Upon receiving the chromatic dispersion amount measurement completion notification, the wavelength light sources having the first and second wavelength numbers are stopped, and an optical path release request for releasing the wavelengths having the first and second wavelength numbers is transmitted. , Activate the variable wavelength light source of the third wavelength number so as to compensate the measured chromatic dispersion amount, and start transmitting a communication optical signal,
The receiving edge node is
Upon receiving the optical path setup request, it confirms that the specified three wavelength resources are available, and transmits the optical path setup OK response,
Upon receiving the chromatic dispersion amount measurement start request, a chromatic dispersion amount measurement start OK response is transmitted,
When the optical signal for measurement is received, the chromatic dispersion is measured based on the time difference between the optical signals of two wavelengths, and a chromatic dispersion measurement completion notification including the measured chromatic dispersion is transmitted. system.
前記測定用の第1及び第2の波長番号の波長光源は、固定波長光源である
ことを特徴とする請求項1記載の光伝送システム。
The optical transmission system according to claim 1, wherein the wavelength light sources having the first and second wavelength numbers for measurement are fixed wavelength light sources.
前記測定用の第1及び第2の波長番号の波長光源は、可変波長光源である
ことを特徴とする請求項1記載の光伝送システム。
The optical transmission system according to claim 1, wherein the wavelength light sources having the first and second wavelength numbers for measurement are variable wavelength light sources.
JP2008319577A 2008-12-16 2008-12-16 Optical transmission system Active JP5305882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008319577A JP5305882B2 (en) 2008-12-16 2008-12-16 Optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008319577A JP5305882B2 (en) 2008-12-16 2008-12-16 Optical transmission system

Publications (2)

Publication Number Publication Date
JP2010147545A true JP2010147545A (en) 2010-07-01
JP5305882B2 JP5305882B2 (en) 2013-10-02

Family

ID=42567564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008319577A Active JP5305882B2 (en) 2008-12-16 2008-12-16 Optical transmission system

Country Status (1)

Country Link
JP (1) JP5305882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199688A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Optical node, optical network system, and polarization mode dispersion measuring method
WO2013076832A1 (en) * 2011-11-24 2013-05-30 富士通株式会社 Wavelength path switching method, optical transmission system, optical transmission devices, optical relay device and network management device
JP2014068169A (en) * 2012-09-26 2014-04-17 Nec Corp Inverse multiplex transmitter and transmission method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172783A (en) * 2002-11-19 2004-06-17 Fujitsu Ltd System for verifying transmission propriety of route in wavelength division multiplex optical transmission network system
JP2007129398A (en) * 2005-11-02 2007-05-24 Mitsubishi Electric Corp Optical transmission system, node, optical transmitting method, and program
JP2007266689A (en) * 2006-03-27 2007-10-11 Mitsubishi Electric Corp Optical transmission system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004172783A (en) * 2002-11-19 2004-06-17 Fujitsu Ltd System for verifying transmission propriety of route in wavelength division multiplex optical transmission network system
JP2007129398A (en) * 2005-11-02 2007-05-24 Mitsubishi Electric Corp Optical transmission system, node, optical transmitting method, and program
JP2007266689A (en) * 2006-03-27 2007-10-11 Mitsubishi Electric Corp Optical transmission system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199688A (en) * 2010-03-19 2011-10-06 Fujitsu Ltd Optical node, optical network system, and polarization mode dispersion measuring method
WO2013076832A1 (en) * 2011-11-24 2013-05-30 富士通株式会社 Wavelength path switching method, optical transmission system, optical transmission devices, optical relay device and network management device
US9185474B2 (en) 2011-11-24 2015-11-10 Fujitsu Limited Wavelength path switching method, optical communication system, optical communication device, optical repeater, and network management device
JP2014068169A (en) * 2012-09-26 2014-04-17 Nec Corp Inverse multiplex transmitter and transmission method

Also Published As

Publication number Publication date
JP5305882B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP4755457B2 (en) Optical network device and optical network
JP2004172783A (en) System for verifying transmission propriety of route in wavelength division multiplex optical transmission network system
JP2008199311A (en) Switch device and path monitoring setting method
US8165467B2 (en) Optical transmission system and optical node
RU2642473C1 (en) Otn system and method of supporting bidirectional transmission of light from optical supervisory channel on one fiber
JP2011082988A (en) Method of testing optical network, and optical node
US7564778B2 (en) Method of and control node for detecting failure
JP5305882B2 (en) Optical transmission system
WO2018094967A1 (en) Optical interconnecting network architecture
Liu et al. Experimental demonstration of highly resilient wavelength-switched optical networks with a multivendor interoperable GMPLS control plane
JP2007243508A (en) Optical signal switching device and optical signal switching method
WO2011018926A1 (en) Network administration device and method for setting wavelength paths
JP4745097B2 (en) Optical transmission system and optical transmission method
JP4757742B2 (en) Ring type optical transmission system
EP1361776B1 (en) Method and apparatus for supporting operations and maintenance functionality in an optical burst switching network
JP4765559B2 (en) Optical transmission system, node, optical transmission method and program
JP4765978B2 (en) Method and apparatus for relaying between optical burst switching networks by wavelength path
JP4935737B2 (en) Fault detection method and fault recovery method in a system in which optical burst switching networks are relayed by a wavelength path
JP2011097146A (en) Method and device for accommodating optical burst signal in roadm network
JP4959533B2 (en) Optical network
JP4765979B2 (en) Method, system and apparatus for relaying between optical burst switching networks by wavelength path
JP6022975B2 (en) Optical network control device, communication device, and control method
JP5429344B1 (en) Network, communication apparatus, and network ranging method
Velasco et al. Introducing OMS protection in GMPLS-based optical ring networks
JP2008252750A (en) Method of measuring transmission distance of optical fiber, and optical transceiver with transmission line length measuring function employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130625

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250