JP2010131611A - Method for applying cylindrical deep-drawing to austenitic stainless steel plate - Google Patents

Method for applying cylindrical deep-drawing to austenitic stainless steel plate Download PDF

Info

Publication number
JP2010131611A
JP2010131611A JP2008308102A JP2008308102A JP2010131611A JP 2010131611 A JP2010131611 A JP 2010131611A JP 2008308102 A JP2008308102 A JP 2008308102A JP 2008308102 A JP2008308102 A JP 2008308102A JP 2010131611 A JP2010131611 A JP 2010131611A
Authority
JP
Japan
Prior art keywords
deep
punch
stainless steel
austenitic stainless
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008308102A
Other languages
Japanese (ja)
Other versions
JP5311386B2 (en
Inventor
Takafumi Nakamura
尚文 中村
Hirokazu Sasaki
宏和 佐々木
Kenta Funamoto
健太 船元
Shigeru Morikawa
茂 森川
Original Assignee
Nisshin Steel Co Ltd
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd, 日新製鋼株式会社 filed Critical Nisshin Steel Co Ltd
Priority to JP2008308102A priority Critical patent/JP5311386B2/en
Publication of JP2010131611A publication Critical patent/JP2010131611A/en
Application granted granted Critical
Publication of JP5311386B2 publication Critical patent/JP5311386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To raise productivity, when applying cylindrical deep-drawing to an austenitic stainless steel plate, by decreasing a forming speed just before a punch is brought into contact with the austenitic stainless steel plate to be drawn and increasing the forming speed at the stage where the forming exceeds a crack generation portion. <P>SOLUTION: When applying cylindrical deep-drawing to the austenitic stainless steel plate 1 to be drawn, which is fixed with a die 3 and a blank holder 4, by pressing a punch 2 into the plate 1, a preliminary deep-drawing, in which drawing is preliminarily conducted to a deep-drawing height where a crack is generated, is carried out. The height from the position, where a crack is generated on the preliminarily drawn product, to the top part of the deep-drawing is measured. When actually conducting the deep-drawing, the forming speed is decreased just before the punch 2 is brought into contact with the austenitic stainless steel plate 1 to be drawn, and increased after the deep-drawing is carried out at least by the height from the position, where a crack is generated on the preliminarily drawn product, to the top part of the deep-drawing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絞り加工初期の成形速度を遅くして深絞り成形性を向上させたオーステナイト系ステンレス鋼板の円筒深絞り加工方法に関する。   The present invention relates to a cylindrical deep drawing method for an austenitic stainless steel sheet in which the forming speed at the initial stage of drawing is slowed to improve deep drawing formability.
板厚の薄い金属板素材から、円筒,角筒,半球状等、継目のない有底形状の容器を製造する方法として、パンチ,ダイス又はこれに代わる冶具を用いて深絞り加工する方法が多用されている。
深絞り加工方法ではプレス装置が用いられ、加工対象の薄板をプレス機械のダイス上にブランクホルダーで固定し、ブランクホルダーにしわ押え力を加えながらパンチを下降,上昇させることにより、被加工薄板をパンチ形状に変形させるものである。
そして、プレス機械のプレス方式としては、従来、油圧プレスとメカプレスの二方式が採用されている。
As a method of manufacturing a seamless bottomed container such as a cylinder, square tube, or hemisphere from a thin metal plate material, a method of deep drawing using a punch, a die, or an alternative tool is often used. Has been.
In the deep drawing method, a press device is used, and the thin plate to be processed is fixed on the die of the press machine with a blank holder, and the punch is lowered and raised while applying a pressing force to the blank holder, so that the thin plate to be processed is It is deformed into a punch shape.
And as a press system of a press machine, conventionally, two systems of a hydraulic press and a mechanical press are adopted.
油圧プレスは低速成形が可能であるため深絞り加工に適しているが、生産性が低い。これに対して、メカプレスは加工速度が速いため生産性に優れるという利点がある。その反面、加工速度が速いと加工対象の材料に割れが生じやすくなるという難点がある。
また最近では、例えば特許文献1に見られるように、駆動源にACサーボモータを用いてスライドモーションを任意に設定可能なサーボプレスも使用されている。
The hydraulic press is suitable for deep drawing because it can be molded at low speed, but its productivity is low. On the other hand, the mechanical press has an advantage of excellent productivity because of its high processing speed. On the other hand, if the processing speed is high, there is a drawback that the material to be processed tends to crack.
In addition, recently, as can be seen, for example, in Patent Document 1, a servo press capable of arbitrarily setting a slide motion using an AC servo motor as a drive source is also used.
使用頻度が高くなっているサーボプレスは、駆動源にACサーボモータを用いているため、スライドモーションを任意に設定することができる。また、加工時の加工速度を遅くすることによる騒音の低減や、型寿命の向上なども期待できる。
これまで、絞り加工では加工中のスライド速度は遅い方が良いとされており、絞り加工が終了するまでスライド速度を遅く、絞り加工が終了してからスライド速度を速くするスライドモーションを採用している。
Since the servo press that is frequently used uses an AC servo motor as a drive source, a slide motion can be arbitrarily set. In addition, it can be expected to reduce noise and improve mold life by slowing down the processing speed during processing.
Up to now, it has been said that it is better to have a low slide speed during drawing, and a slide motion is adopted that slows the slide speed until the drawing process is finished, and increases the slide speed after the drawing process is finished. Yes.
サーボプレスでは、スライドモーションを任意に設定することができるものの、実際にはどのスライド位置が絞り加工性に影響を及ぼすかについて把握できていなかったため、絞り加工に対してサーボプレスの特性を活かしきれていなかった。
ところで、絞り加工では加工中のスライド速度を遅くする理由として、割れ発生の抑制が挙げられている。そして、加工中のスライド速度を遅くしたために生産性が悪化している。
そこで、本発明者等は、金属板に円筒深絞り加工を施す際、パンチが材料に触れる直前に成形速度を遅くし、初期の張出しが完了しフランジ外周が流入し始めた段階で成形速度を上げることにより、生産性を高めた金属板の円筒深絞り加工方法を提案した(特許文献2)。
特開2002−263742号公報 特開2007−98428号公報
In the servo press, although the slide motion can be set arbitrarily, it has not been able to grasp which slide position actually affects the drawing processability, so the characteristics of the servo press can be fully utilized for the drawing process. It wasn't.
By the way, in drawing processing, suppression of cracking is cited as a reason for slowing down the slide speed during processing. And productivity has deteriorated because the slide speed during processing is slowed down.
Therefore, the present inventors reduced the forming speed immediately before the punch touches the material when performing cylindrical deep drawing on the metal plate, and increased the forming speed when the initial overhang was completed and the outer periphery of the flange started to flow. A cylindrical deep drawing method for a metal plate with improved productivity was proposed (Patent Document 2).
JP 2002-263742 A JP 2007-98428 A
特許文献2で提案した金属板の円筒深絞り加工方法は、ダイスとブランクホルダーにより固定された被加工材料にパンチを押し込んで深絞り加工する際に、パンチが材料に触れる直前に成形速度を遅くし、少なくともパンチ径×0.25の高さ分成形した後に成形速度を速くしようとするものである。
割れが発生する部位が、パンチ径×0.25高さ位置よりも低い位置であることを確認し、その部位までの成形速度を遅くし、その部位を過ぎた後、成形速度を早くして生産性を高めようとするものである。
The cylindrical deep drawing method for a metal plate proposed in Patent Document 2 is such that when a punch is pressed into a work material fixed by a die and a blank holder and deep drawing is performed, the forming speed is reduced immediately before the punch touches the material. However, it is intended to increase the molding speed after molding at least the height of the punch diameter × 0.25.
Confirm that the part where the crack occurs is a position lower than the punch diameter x 0.25 height position, slow down the molding speed to that part, and after that part, increase the molding speed. It aims to increase productivity.
特許文献2で紹介した方法は、一般的な素材を深絞り加工する際、割れ発生を抑制しつつ生産性を向上させる観点からは、有用な技術である。
しかしながら、近年では、耐食性に優れたオーステナイト系ステンレス鋼板を素材とし、高機能化、高意匠化した深絞り製品が求められている。また、深絞り加工により円筒容器を製造する際には、底部コーナRを小さくして容量を大きくした深絞り製品が求められている。
The method introduced in Patent Document 2 is a useful technique from the viewpoint of improving productivity while suppressing the occurrence of cracking when deep drawing a general material.
However, in recent years, there has been a demand for deep drawing products that are made of an austenitic stainless steel plate having excellent corrosion resistance and have high functionality and high design. Further, when a cylindrical container is manufactured by deep drawing, a deep drawing product in which the bottom corner R is reduced to increase the capacity is demanded.
本発明は、このような問題を解消すべく案出されたものであり、オーステナイト系ステンレス鋼板に円筒深絞り加工を施す際、パンチが被加工オーステナイト系ステンレス鋼板に触れる直前に成形速度を遅くし、割れ発生部位を過ぎた段階で成形速度を上げることにより、生産性を高めた円筒深絞り加工方法を提供することを目的とする。   The present invention has been devised to solve such problems, and when performing a cylindrical deep drawing on an austenitic stainless steel plate, the forming speed is reduced immediately before the punch touches the austenitic stainless steel plate to be processed. An object of the present invention is to provide a cylindrical deep drawing method with increased productivity by increasing the molding speed after the crack generation site.
本発明のオーステナイト系ステンレス鋼板の円筒深絞り加工方法は、その目的を達成するため、ダイスとブランクホルダーにより固定された被加工オーステナイト系ステンレス鋼板にパンチを押し込んで円筒深絞り加工する際に、ダイス及びパンチの材質・形状、被加工ステンレス鋼板の材質・形状、しわ押え力並びに潤滑条件なる条件を実際の深絞り加工条件と同じ条件にして予め割れが発生する深絞り高さまで成形する予備深絞り加工を施し、予備深絞り加工品に発生した割れの位置から深絞り頂部までの高さを測定した後、実際の深絞り加工時に、パンチが被加工オーステナイト系ステンレス鋼板に触れる直前に成形速度を遅くし、少なくとも予備深絞り加工品に発生した割れの位置から深絞り頂部までの高さ分成形した後に成形速度を速くすることを特徴とする。
なお、本発明方法における「成形速度」は金型のスライド速度を意味している。
The cylindrical deep drawing method of the austenitic stainless steel sheet according to the present invention achieves the purpose, and when the cylinder is deep drawn by pressing a punch into the austenitic stainless steel sheet to be processed fixed by a die and a blank holder. And pre-drawing that forms to the deep drawing height where cracks occur in advance by setting the material and shape of the punch, the material and shape of the stainless steel plate to be processed, the wrinkle holding force and the lubrication conditions to the same conditions as the actual deep drawing conditions After processing and measuring the height from the position of the crack that occurred in the preliminary deep drawing product to the top of the deep drawing, the forming speed was increased just before the punch touched the austenitic stainless steel plate to be processed during actual deep drawing. Molding speed after slowing down and forming at least the height from the position of the crack that occurred in the preliminary deep drawing product to the top of the deep drawing Characterized in that it faster.
The “molding speed” in the method of the present invention means the slide speed of the mold.
本発明のオーステナイト系ステンレス鋼板の円筒深絞り加工方法により、通常割れが発生しやすいパンチ肩部が変形する段階の成形速度を遅く、割れ発生部位を過ぎた段階で成形速度を上げることにより、結果として成形性、生産性を高めることができる。
サーボプレスの採用により、成形途中における成形速度が可能となるため、本発明は実用上極めて有用なものとなる。
According to the cylindrical deep drawing method of the austenitic stainless steel sheet of the present invention, the result is that the forming speed at the stage where the punch shoulder portion, which is likely to generate cracks, is deformed is slow and the forming speed is increased at the stage where cracks are generated is obtained. As a result, moldability and productivity can be improved.
By adopting the servo press, the molding speed in the middle of molding becomes possible, so that the present invention is extremely useful in practice.
本発明者等は、オーステナイト系ステンレス鋼板に円筒深絞り加工を施す際に生産性を高めることができ、かつ成形精度の優れた製品を得ることができるプレス法について検討した。その過程でサーボプレスの使用も検討した。
一般に絞り加工時の成形速度が速くなると、歪みが周囲に伝播するよりも先に変形が進行するため、局部的に歪みが発生して割れに到る場合が多い。単に絞り加工中の成形速度を遅くするだけでは、油圧プレスと同様、生産性が悪くなる。
The inventors of the present invention have studied a pressing method that can increase productivity when a cylindrical deep-drawing process is performed on an austenitic stainless steel sheet and that can provide a product with excellent forming accuracy. In the process, we also considered using a servo press.
Generally, when the forming speed at the time of drawing is increased, the deformation progresses before the distortion propagates to the surroundings, and therefore, the distortion is locally generated and often leads to a crack. Simply reducing the molding speed during drawing will reduce the productivity as with a hydraulic press.
殊に、オーステナイト系ステンレス鋼板にプレス加工を施そうとするとき、成形速度が速くなると材料温度が上昇しやすく、引張強さや伸びの低下が起こって、割れが発生しやすくなる。このように成形速度が速くなって材料特性が変化するのは、成形速度が速くなると塑性変形に伴って材料温度が上昇し、TRIP現象(変態誘起塑性:Transformation-induced Plasticity)が抑制されるためである。
そこで、サーボプレスを用い、絞り成形性に影響を及ぼさない領域で、成形速度を速くすることを検討した。
検討の結果、パンチが材料に触れる直前に成形速度を遅くし、割れが発生しやすい部位を成形中は遅い成形速度を維持し、割れ発生部位を過ぎた段階で成形速度を上げることにより、生産性を低下させずに深絞り成形性が向上することがわかった。
以下に、その詳細を説明する。
In particular, when press working is performed on an austenitic stainless steel sheet, if the forming speed is increased, the material temperature is likely to rise, and the tensile strength and elongation are reduced, and cracking is likely to occur. The material speed changes as the molding speed increases in this way because the material temperature rises with plastic deformation as the molding speed increases, and the TRIP phenomenon (Transformation-induced Plasticity) is suppressed. It is.
Therefore, we investigated using a servo press to increase the molding speed in an area that does not affect the drawability.
As a result of the study, production speed is reduced by reducing the molding speed immediately before the punch touches the material, maintaining the slow molding speed during molding where cracks are likely to occur, and increasing the molding speed after the crack has occurred. It has been found that the deep drawability is improved without reducing the properties.
The details will be described below.
パンチ2とダイス3を備えたプレス装置で被加工材料1に円筒深絞り加工を行う際には、図1に示すように、パンチ2とダイス3の間に、材料の厚さ+αの隙間、いわゆるクリアランスcが設けられている。通常、このαは板厚の20%程度とされている。
肩半径Rpを有するパンチ2とダイス3で加工が進行するとき、被加工材料1の材料全てがパンチ2と接触しているわけではなく、図2に示すように、前記Rpを僅かに過ぎた辺り(図2中A点)からパンチ2と材料が離れている。
そして、図2中、被加工材料1の先端からA点までの長さは、前記使用パンチの肩半径Rpが小さいほど短くなる。
When performing cylindrical deep drawing on the work material 1 with a press device equipped with a punch 2 and a die 3, as shown in FIG. 1, a gap of the material thickness + α between the punch 2 and the die 3, A so-called clearance c is provided. Normally, α is about 20% of the plate thickness.
When the processing proceeds with the punch 2 and the die 3 having the shoulder radius Rp, not all the material of the material 1 to be processed is in contact with the punch 2 and, as shown in FIG. The punch 2 and the material are separated from the vicinity (point A in FIG. 2).
In FIG. 2, the length from the tip of the workpiece 1 to the point A becomes shorter as the shoulder radius Rp of the used punch is smaller.
パンチ2と材料が接触している領域、すなわち図2中のパンチ頭部からA点までの範囲(図中のB領域)ではパンチ2との間に摩擦が存在するため、加工中は当該部位においては、材料は伸び難くなる。したがって、パンチ2と材料が接触している領域では、板厚減少は起こり難くなる。
ところで、絞り加工中、成形力が材料に作用しているが、前述したようにパンチと接触している領域では摩擦が存在するため材料は変形し難く、パンチから離れている領域(図中のC領域)で材料の伸び変形が進行する。伸び変形が進行する過程で、歪みが集中する部位がパンチと離れる起点である図2中のA点となる。
In the region where the material is in contact with the punch 2, that is, in the range from the punch head in FIG. 2 to the point A (B region in the figure), friction exists between the punch 2 and the part during machining. In, the material becomes difficult to stretch. Accordingly, in the region where the punch 2 and the material are in contact with each other, it is difficult for the plate thickness to decrease.
By the way, the forming force is applied to the material during drawing, but the friction is present in the region in contact with the punch as described above, so that the material is not easily deformed and the region away from the punch (in the drawing) In the (C region), the material undergoes elongation deformation. In the process of elongating deformation, a portion where strain concentrates becomes a point A in FIG.
なお、金型と接しておらず、離れているという意味では、ダイス3側にも起点は存在するが、ダイス側の起点はフランジの流入とともに位置がずれるため、歪みの集中は起こらない。一方、パンチ2側では起点Aは絞り加工中ほとんど移動しないことから、歪みの集中が起こりやすくなる。
そして、絞り加工中、材料に掛かる成形力が、材料の最も弱い、すなわち歪み集中部位の材料自身の引張強さを上回った時点で、その部位において割れが発生することになる。通常、この割れをα破断と称している(前記+αとは意味合いを異にするものである)。
前記した通り、被加工材料1の先端から、歪み集中により割れやすいA点までの長さは、使用パンチの肩半径Rpが小さいほど短くなる。したがって、肩半径Rpが小さいパンチを用いてプレス加工するほど、比較的加工初期の段階で、すなわち浅い部位で割れが発生しやすくなることになる。径が比較的大きいパンチを用いてプレス加工する際、当該パンチの肩半径Rpを小さくすると、前記特許文献2で提案した技術であるパンチ径Dp×0.25よりも低い成形高さから速い速度での成形が可能となって、生産性がさらに向上することになる。
In addition, in the sense that it is not in contact with the mold and is away from the mold, there is a starting point on the die 3 side, but the starting point on the die side is displaced with the inflow of the flange, so that the concentration of distortion does not occur. On the other hand, since the starting point A hardly moves during the drawing process on the punch 2 side, the concentration of distortion is likely to occur.
During the drawing process, when the molding force applied to the material exceeds the tensile strength of the material itself, that is, the strain concentration portion, the crack is generated at that portion. Usually, this crack is referred to as α fracture (meaning is different from + α).
As described above, the length from the tip of the workpiece 1 to the point A that is easily broken due to strain concentration becomes shorter as the shoulder radius Rp of the punch used is smaller. Therefore, the more the press working is performed using a punch with a small shoulder radius Rp, the more likely the cracks are to occur at a relatively early stage, that is, at a shallow portion. When press working using a punch having a relatively large diameter, if the shoulder radius Rp of the punch is reduced, the forming speed lower than the punch diameter Dp × 0.25, which is the technique proposed in Patent Document 2, is fast. Therefore, productivity can be further improved.
前記した通り、オーステナイト系ステンレス鋼板を素材としたときのα破断は、成形速度に依存する。
そこで、本発明では、オーステナイト系ステンレス鋼板に円筒深絞り加工を施す際、予め割れ発生部位を検知する予備加工試験を行って、図3に見られるように、割れ高さHを知る。そして、この結果に基づいて、図4(a)に示すように、成形高さhが割れ発生高さ(H)分まで遅い成形速度で加工し、割れ発生高さ分の成形(高さh)が過ぎた時点からは図4(b)に示すように速い成形速度で加工して、結果的に生産性を高めたものである。
なお、プレス油を用いた絞り加工では、成形速度を上げることによって、プレス油の持ち込み効果により潤滑性が向上し、成形性が向上して成形精度がよくなるとともに、生産性もさらに向上する。
As described above, α fracture when an austenitic stainless steel plate is used as a material depends on the forming speed.
Therefore, in the present invention, when cylindrical deep drawing is performed on an austenitic stainless steel sheet, a preliminary processing test for detecting a crack occurrence site is performed in advance, and the crack height H is known as seen in FIG. Then, based on this result, as shown in FIG. 4A, the molding height h is processed at a slow molding speed up to the crack generation height (H), and molding corresponding to the crack generation height (height h From the point of time), as shown in FIG. 4B, processing is performed at a high molding speed, and as a result, productivity is increased.
In the drawing process using the press oil, by increasing the molding speed, the lubricity is improved by the effect of bringing the press oil, the moldability is improved and the molding accuracy is improved, and the productivity is further improved.
前記した通り、オーステナイト系ステンレス鋼板にプレス加工を施そうとするとき、成形速度を速くすると割れが発生しやすくなる。遅くすると割れを発生させることなく加工することができる。本発明では、予め割れ発生限界の速度を確認しておき、本成形時の割れ発生高さ分までの成形には、その割れ発生限界速度を下回る遅い速度で成形することになる。   As described above, when an austenitic stainless steel plate is to be pressed, cracking is likely to occur if the forming speed is increased. If it is slow, it can be processed without causing cracks. In the present invention, the crack generation limit speed is confirmed in advance, and the molding up to the crack generation height at the time of the main molding is performed at a slow speed lower than the crack generation limit speed.
ところで、前記割れ高さHは加工条件によって変化するため、予備加工試験を、ダイス及びパンチの材質・形状、被加工ステンレス鋼板の材質・形状、しわ押え力並びに潤滑条件なる条件を実際の深絞り加工条件と同じ条件で行う必要があることは言及するまでもない。
このような、成形途中での成形速度の変更は、サーボプレスの使用で可能となる。サーボプレスを用いて成形モーションを最適化すると、従来のメカニカルプレスを用いた場合と比較して、成形性、生産性が大きく向上する。
By the way, since the crack height H varies depending on the processing conditions, the preliminary processing test was performed by actually drawing the conditions such as the material and shape of the die and punch, the material and shape of the stainless steel plate to be processed, the wrinkle pressing force, and the lubrication conditions. It goes without saying that it is necessary to carry out under the same conditions as the processing conditions.
Such a change in molding speed during molding can be performed by using a servo press. When the molding motion is optimized using the servo press, the moldability and productivity are greatly improved as compared with the case where the conventional mechanical press is used.
次に、SUS304系のステンレス鋼板に絞り加工を施した事例を紹介する。
供試材として、表1に示す機械的特性を有する板厚0.8mmのSUS304冷延焼鈍板を用いた。
パンチとして、φ50mm、φ100mm、φ200mmの三種について、それぞれ肩半径Rpを種々変化させたものを用いた。各種のパンチに応じて、片側0.16mmのクリアランスをとったダイスを用いた。なお、ダイスの肩半径Rdは2mmに統一した。パンチとダイスの材質は共にSKD11(ダイス鋼)とした。
なお、プレス油としてαソープ((株)フドー製)を用い、ブランクホルダーによるしわ押え力をそれぞれφ50mm:20kN、φ100mm:100kN、φ200mm:180kNとして、成形速度250mm/secでプレス加工した。
Next, an example of drawing a SUS304 stainless steel sheet will be introduced.
As a test material, a SUS304 cold-rolled annealed plate having a mechanical thickness shown in Table 1 and having a thickness of 0.8 mm was used.
As punches, three types of φ50 mm, φ100 mm, and φ200 mm, each having a different shoulder radius Rp, were used. A die having a clearance of 0.16 mm on one side was used according to various punches. The shoulder radius Rd of the die was unified to 2 mm. Both the punch and the die were made of SKD11 (die steel).
Note that α soap (manufactured by Fudou Co., Ltd.) was used as the press oil, and the pressing force by the blank holder was φ50 mm: 20 kN, φ100 mm: 100 kN, and φ200 mm: 180 kN, respectively, and was pressed at a molding speed of 250 mm / sec.
φ50mm、φ100mmおよびφ200mmなる三種のパンチ径に応じて、それぞれのRpにおいてぎりぎり割れが発生する条件である限界絞り比より少し大きいサイズの前記供試材からなる円形のブランクに、パンチを押込み速度250mm/secでブランクに割れが発生するまで押込む予備試験を行った。
試験終了後、深絞り予備試験体の割れ発生高さHを測定した。
各深絞り予備試験体における割れ発生高さHと、用いた各パンチの径Dp,肩半径Rpの関係を整理すると、表2,3,4に示す通りとなる。
According to three types of punch diameters of φ50 mm, φ100 mm, and φ200 mm, the punch is pushed into a circular blank made of the above-mentioned test material having a size slightly larger than the limit drawing ratio, which is a condition for generating a crack at each Rp. A preliminary test was performed in which a blank was cracked at / sec until cracking occurred.
After the test, the crack occurrence height H of the deep drawn preliminary test specimen was measured.
Tables 2, 3, and 4 show the relationship between the crack generation height H in each deep-drawn preliminary test body, the diameter Dp of each punch used, and the shoulder radius Rp.
成形速度以外は上記条件と同じにして、成形速度の切換えによる割れ発生状況の違いを見た。なお、成形速度は初期を12.5mm/secとし、予備成形で求めた割れ高さHとなった後に成形速度を250mm/secへ変更したところ、それぞれ絞り抜けるまで成形可能であった。一方、割れ発生高さHに達する前に速度を速くしたものについては、全ての条件において割れが発生し成形不可能であった。   Except for the molding speed, the same conditions as described above were used, and the difference in cracking occurrence due to switching of the molding speed was observed. The initial molding speed was 12.5 mm / sec. After the cracking height H obtained in the preliminary molding was reached, the molding speed was changed to 250 mm / sec. On the other hand, with respect to those in which the speed was increased before reaching the crack generation height H, cracks occurred under all conditions, and molding was impossible.
深絞り加工方法を概略的に説明する図The figure which explains the deep drawing processing method roughly 深絞り加工時におけるパンチと被加工材料との接触関係を説明する図Diagram for explaining the contact relationship between the punch and the material to be processed during deep drawing 円筒深絞り加工品に発生する割れの位置を説明する図Diagram explaining the position of cracks occurring in cylindrical deep drawn products 本発明方法における成形速度の変更のタイミングを説明する図The figure explaining the timing of the change of the molding speed in the method of the present invention
符号の説明Explanation of symbols
1:被加工材料 2:パンチ 3:ダイス 4:ブランクホルダー 1: Work material 2: Punch 3: Die 4: Blank holder

Claims (1)

  1. ダイスとブランクホルダーにより固定された被加工オーステナイト系ステンレス鋼板にパンチを押し込んで円筒深絞り加工する際に、ダイス及びパンチの材質・形状、被加工ステンレス鋼板の材質・形状、しわ押え力並びに潤滑条件なる条件を実際の深絞り加工条件と同じ条件にして予め割れが発生する深絞り高さまで成形する予備深絞り加工を施し、予備深絞り加工品に発生した割れの位置から深絞り頂部までの高さを測定した後、実際の深絞り加工時に、パンチが被加工オーステナイト系ステンレス鋼板に触れる直前に成形速度を遅くし、少なくとも予備深絞り加工品に発生した割れの位置から深絞り頂部までの高さ分成形した後に成形速度を速くすることを特徴とするオーステナイト系ステンレス鋼板の円筒深絞り加工方法。   Die and punch material and shape, material and shape of processed stainless steel plate, wrinkle holding force and lubrication conditions when punch is pressed into a processed austenitic stainless steel plate fixed by a die and a blank holder To the same conditions as the actual deep drawing conditions, pre-drawing is performed in advance to the deep drawing height at which cracks are generated, and the height from the position of the cracks generated in the preliminary deep drawing products to the top of the deep drawing After measuring the depth, at the time of actual deep drawing, the forming speed is reduced just before the punch touches the austenitic stainless steel plate to be processed. A cylindrical deep drawing method for an austenitic stainless steel sheet, characterized in that the forming speed is increased after partial forming.
JP2008308102A 2008-12-03 2008-12-03 Cylindrical deep drawing of austenitic stainless steel sheet Active JP5311386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308102A JP5311386B2 (en) 2008-12-03 2008-12-03 Cylindrical deep drawing of austenitic stainless steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308102A JP5311386B2 (en) 2008-12-03 2008-12-03 Cylindrical deep drawing of austenitic stainless steel sheet

Publications (2)

Publication Number Publication Date
JP2010131611A true JP2010131611A (en) 2010-06-17
JP5311386B2 JP5311386B2 (en) 2013-10-09

Family

ID=42343480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308102A Active JP5311386B2 (en) 2008-12-03 2008-12-03 Cylindrical deep drawing of austenitic stainless steel sheet

Country Status (1)

Country Link
JP (1) JP5311386B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941272A (en) * 2012-10-24 2013-02-27 郑州飞机装备有限责任公司 Method for molding 1Cr18Ni9Ti complicated stainless steel sheet-metal part
CN103084483A (en) * 2012-12-20 2013-05-08 西安交通大学 Several-time drawing formation device for deep-cylinder-shaped piece
JP2014039959A (en) * 2013-12-06 2014-03-06 Nippon Steel & Sumitomo Metal Manufacturing method and manufacturing device for drawn product made of galvannealed steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098428A (en) * 2005-10-04 2007-04-19 Nisshin Steel Co Ltd Cylindrical deep drawing method of metallic sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098428A (en) * 2005-10-04 2007-04-19 Nisshin Steel Co Ltd Cylindrical deep drawing method of metallic sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941272A (en) * 2012-10-24 2013-02-27 郑州飞机装备有限责任公司 Method for molding 1Cr18Ni9Ti complicated stainless steel sheet-metal part
CN103084483A (en) * 2012-12-20 2013-05-08 西安交通大学 Several-time drawing formation device for deep-cylinder-shaped piece
JP2014039959A (en) * 2013-12-06 2014-03-06 Nippon Steel & Sumitomo Metal Manufacturing method and manufacturing device for drawn product made of galvannealed steel sheet

Also Published As

Publication number Publication date
JP5311386B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
JP5695381B2 (en) Manufacturing method of press-molded products
Sheng Formability of tailor-welded strips and progressive forming test
Özek et al. The effect of die/blank holder and punch radiuses on limit drawing ratio in angular deep-drawing dies
MX2015004693A (en) Press molding method and bottomed container.
JP5311386B2 (en) Cylindrical deep drawing of austenitic stainless steel sheet
JP2005199318A (en) Press-forming method for metal plate
JP4822790B2 (en) Cylindrical deep drawing method of metal plate
Xin et al. Hydro-forming of aluminum alloy complex-shaped components
JP6206620B2 (en) Manufacturing method of panel-shaped molded product
JP4959605B2 (en) Press molding method and base plate for press molding
JP5234621B2 (en) Drawing method of metal plate
JP2008023535A (en) Press-forming method for metal plate
Shirazi et al. Hydroironing: a novel ironing method with a higher thickness reduction
JP2010247172A (en) Method of deep-drawing metal sheet cylindrically
Yagita et al. Deformation behaviour in shearing of ultra-high strength steel sheets under insufficient blankholding force
JP2010194587A (en) Method for press drawing aluminum plate material
JP2014172089A (en) Bar ring processing punch and bar ring processing method
KR102001328B1 (en) Press forming method and tool of press forming
JP2006061980A (en) Method for press-forming metallic sheet
JP2010064128A (en) Press drawing method for aluminum alloy sheet
JP2008023534A (en) Press-forming method for metal plate
JPH05161925A (en) Press forming
JP5493812B2 (en) Method and apparatus for producing drawn products made of galvannealed steel sheet
JP2005095909A (en) Press forming method
JP2009279591A (en) Method of press-forming aluminum alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R150 Certificate of patent or registration of utility model

Ref document number: 5311386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350