JP2010125483A - Method for detecting solidified structure of steel - Google Patents

Method for detecting solidified structure of steel Download PDF

Info

Publication number
JP2010125483A
JP2010125483A JP2008302566A JP2008302566A JP2010125483A JP 2010125483 A JP2010125483 A JP 2010125483A JP 2008302566 A JP2008302566 A JP 2008302566A JP 2008302566 A JP2008302566 A JP 2008302566A JP 2010125483 A JP2010125483 A JP 2010125483A
Authority
JP
Japan
Prior art keywords
sample
temperature
corrosive liquid
steel
solidified structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008302566A
Other languages
Japanese (ja)
Other versions
JP5634673B2 (en
Inventor
Akifumi Seze
昌文 瀬々
Shinichi Fukunaga
新一 福永
Junya Iwasaki
潤哉 岩崎
Ikuo Sakura
生男 櫻
Keigo Yoshioka
恵吾 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Astec Irie Co Ltd
Nippon Steel Corp
Original Assignee
Astec Irie Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec Irie Co Ltd, Nippon Steel Corp filed Critical Astec Irie Co Ltd
Priority to JP2008302566A priority Critical patent/JP5634673B2/en
Priority to CN200980147455.3A priority patent/CN102227633B/en
Priority to PCT/JP2009/070354 priority patent/WO2010061968A1/en
Priority to BRPI0921171-3A priority patent/BRPI0921171B1/en
Publication of JP2010125483A publication Critical patent/JP2010125483A/en
Application granted granted Critical
Publication of JP5634673B2 publication Critical patent/JP5634673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/28Acidic compositions for etching iron group metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/55Hardenability tests, e.g. end-quench tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Thermal Sciences (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Sampling And Sample Adjustment (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting a solidified structure of steel, even of low carbon steel in which a solute element concentration in the steel is low, and especially a carbon concentration is ≤0.01 mass%, by identifying the solidified structure by corrosion. <P>SOLUTION: In the method for detecting the solidified structure of steel, a cross-section of a sample of a steel cast piece is polished, and the sample is heated at 40-90°C; then the polished surface of the sample is contacted to corrosive liquid, and the polished surface is corroded. Additionally, the corrosive liquid is heated at 40-90°C, and then the polished surface of the sample is contacted to the corrosive liquid. Even after the sample is contacted to the corrosive liquid, the corrosive liquid is not decreased in temperature, corrosion performance when using hot corrosive liquid is maintained in high level, electrochemical corrosion using potential difference by a difference in solute concentration is developed in a short period of time, and a clear solidified structure is identified. The temperature of the corrosive liquid is preferably -10 to -5°C, or +5°C or more to the temperature of the sample. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋼の凝固組織検出方法に関するものであり、特に炭素含有量が0.01質量%以下の低炭素鋼においても凝固組織を顕出することのできる鋼の凝固組織検出方法に関するものである。   The present invention relates to a method for detecting a solidified structure of steel, and more particularly to a method for detecting a solidified structure of steel capable of revealing a solidified structure even in a low carbon steel having a carbon content of 0.01% by mass or less. is there.

鋼の製造工程において、鋳造後の鋼材である鋳片の凝固組織を検出することは、鋳片の割れ発生状況や中心偏析などのマクロ偏析等の内部欠陥を評価し後工程への品質保証を行う上で重要である。また、鋳片におけるこれらの内部欠陥の発生状況から、鋳造工程及び鋳造装置の異常の有無を判断し、適正な状態に修正、整備し、内部欠陥の発生を未然に防止する上でも重要である。さらに、デンドライトと呼ばれている樹枝状組織の傾きや間隔から凝固中の内部溶鋼の流動状況や鋳片の冷却速度を推定することは、操業条件の適正化を行う上で重要である。   In the steel manufacturing process, detecting the solidification structure of the cast slab, which is a steel material after casting, evaluates internal defects such as macro segregation such as crack occurrence and center segregation of the slab, and guarantees quality in the subsequent process. Important to do. In addition, it is important to judge the presence or absence of abnormalities in the casting process and casting equipment from the occurrence of these internal defects in the slab, and to correct and maintain it in an appropriate state to prevent internal defects from occurring. . Furthermore, it is important to estimate the flow state of the internal molten steel during solidification and the cooling rate of the slab from the inclination and interval of the dendritic structure called dendrites in order to optimize the operating conditions.

鋳片の凝固組織は、鋳片の試料断面を研磨した上で、研磨面を腐食液に接触させ、凝固組織を顕出させることによって観察可能となる。腐食による鋼材組織の顕在化は、原理上二つに大別される。第1は、試料中の各位置による溶質濃度差に起因する電位差を利用した電気化学的腐食法である。第2は、化学ポテンシャルの異なる相や表面の結晶方位による結晶粒の化学ポテンシャル差を利用した化学的腐食方法である。第1の電気化学的腐食方法は、例えば、凝固中の溶質元素の偏析による濃度差を利用して樹枝状組織や内部割れ、中心偏析の検出に用いられている。第2の化学的腐食方法には、Fe3Cとフェライトとの化学的ポテンシャル差を利用したパーライト組織の観察や粗大フェライト粒の表面方位による化学ポテンシャル差を利用したマクロ腐食等がある。従って、鋳片の凝固組織を腐食によって顕在化し検出するためには、上記第2の化学的腐食を抑制し、第1の電気化学的腐食を生じさせる必要がある。 The solidified structure of the slab can be observed by polishing the sample cross section of the slab, bringing the polished surface into contact with a corrosive liquid, and revealing the solidified structure. The manifestation of steel structure due to corrosion is roughly divided into two in principle. The first is an electrochemical corrosion method using a potential difference caused by a solute concentration difference at each position in a sample. The second is a chemical corrosion method utilizing a chemical potential difference of crystal grains depending on phases having different chemical potentials or crystal orientations on the surface. The first electrochemical corrosion method is used, for example, to detect dendritic structures, internal cracks, and center segregation using concentration differences due to segregation of solute elements during solidification. Examples of the second chemical corrosion method include observation of a pearlite structure using a chemical potential difference between Fe 3 C and ferrite, and macro corrosion using a chemical potential difference depending on the surface orientation of coarse ferrite grains. Therefore, in order to reveal and detect the solidified structure of the slab by corrosion, it is necessary to suppress the second chemical corrosion and cause the first electrochemical corrosion.

鋳片の凝固組織を顕出する方法として、ピクリン酸を主成分とする腐食液等を用いて、試料表面を腐食する方法が一般に実施されている(非特許文献1)。また、顕出された凝固組織を記録する方法として、エッチプリント法が提案されている(特許文献1〜4)。エッチプリント法とは、試料の研磨面を腐食液に接触させて研磨面を腐食した後、試料を洗浄、乾燥し、腐食した研磨面表面の腐食孔に研磨粉を埋め込み、研磨面表面に透明粘着テープを貼り、透明粘着テープに腐食孔中の研磨粉を粘着せしめた後、テープをはがし、次いでテープを白色の台紙上に貼りつける方法である。腐食孔中に埋め込まれた研磨粉がテープに転写され、テープを台紙上に貼りつけることによって凝固組織が台紙上に顕出される。   As a method for revealing the solidified structure of a slab, a method of corroding the surface of a sample using a corrosive liquid containing picric acid as a main component is generally implemented (Non-patent Document 1). In addition, an etch print method has been proposed as a method for recording the revealed solidified structure (Patent Documents 1 to 4). The etch print method is a method in which the polished surface of the sample is brought into contact with a corrosive solution to corrode the polished surface, and then the sample is washed and dried, and abrasive powder is embedded in the corrosive holes on the corroded polished surface, and the surface is transparent. In this method, an adhesive tape is applied, and the abrasive powder in the corrosion holes is adhered to the transparent adhesive tape, then the tape is peeled off, and then the tape is attached to a white mount. The abrasive powder embedded in the corrosion holes is transferred to the tape, and the tape is affixed on the mount, whereby a solidified structure is revealed on the mount.

特公昭64−2212号公報Japanese Patent Publication No. 64-2212 特開昭61−170581号公報JP 61-170581 A 特開平1−227943号公報Japanese Patent Laid-Open No. 1-227943 特開平7−198565号公報JP-A-7-198565 日本鉄鋼協会編、第3版鉄鋼便覧I基礎編、第205頁Japan Iron and Steel Institute, 3rd edition Steel Handbook I Basics, page 205

非特許文献1に記載の、ピクリン酸を主成分とする腐食液を用いて鋳片の凝固組織を顕出する方法については、鋼中の溶質元素濃度がさほど低くない品種であれば、凝固中の溶質元素の偏析による濃度差が小さくないので、明瞭な凝固組織を顕出することができる。それに対し、鋼中の溶質元素濃度が低く、特に炭素濃度が0.01質量%以下の低炭素鋼においては、凝固中の溶質元素の偏析による濃度差も小さくなるので、明瞭に凝固組織を顕出させることが困難であることがわかった。   Regarding the method for revealing the solidification structure of the slab using the corrosive liquid mainly composed of picric acid described in Non-Patent Document 1, if the solute element concentration in the steel is not so low, solidification is in progress. Since the concentration difference due to segregation of solute elements is not small, a clear solidified structure can be revealed. On the other hand, the low solute element concentration in the steel, especially in the low carbon steel with a carbon concentration of 0.01% by mass or less, the concentration difference due to segregation of the solute element during solidification is small, so that the solidified structure is clearly revealed. It turned out to be difficult.

本発明は、鋼中の溶質元素濃度が低く、従来であれば明瞭な凝固組織を検出することが困難であった品種、特に炭素濃度が0.01質量%以下の低炭素鋼についても、腐食で凝固組織を顕出し、それによって鋼の凝固組織を検出する方法を提供することを目的とする。   The present invention has a low solute element concentration in steel, and it has been difficult to detect a solidified structure with a conventional structure, particularly low carbon steel having a carbon concentration of 0.01% by mass or less. It is an object of the present invention to provide a method of revealing a solidified structure by means of this and thereby detecting the solidified structure of steel.

一般的に、試料中の各位置による溶質濃度差による電位差を利用した電気化学的腐食法においては、腐食液の温度が高いほど電気化学的腐食が進み、短時間で明瞭な凝固組織を顕出することができる。非特許文献1においても、腐食液の温度を予め高温で保持した後、鋼試料を腐食液に接触させる方法が開示されている。ところが、試料の温度が常温のような低温であると、腐食液に試料を浸漬した際に腐食液の顕熱が試料に奪われ、腐食液の温度が低下し、腐食液の能力が落ちるため明瞭な凝固組織を得ることが難しかった。とくに試料が大きい場合、例えば連続鋳造鋳片の横断面切断試料をそのまま研磨して腐食する場合等において、この傾向は顕著であった。   In general, in the electrochemical corrosion method using the potential difference due to the difference in solute concentration at each position in the sample, the electrochemical corrosion proceeds as the temperature of the corrosive liquid increases, and a clear solidified structure is revealed in a short time. can do. Non-Patent Document 1 also discloses a method in which a steel sample is brought into contact with a corrosive liquid after the temperature of the corrosive liquid is maintained at a high temperature in advance. However, if the temperature of the sample is low, such as room temperature, when the sample is immersed in the corrosive liquid, the sensible heat of the corrosive liquid is taken away by the sample, the temperature of the corrosive liquid decreases, and the capacity of the corrosive liquid decreases. It was difficult to obtain a clear coagulated tissue. In particular, when the sample is large, for example, when the cross-sectional cut sample of the continuous cast slab is polished and corroded as it is, this tendency is remarkable.

それに対し、鋼鋳片の試料の断面を研磨した後、試料温度を40〜90℃の温度に加熱し、その後試料の研磨面を腐食液に接触させて研磨面を腐食することとすると、接触後も腐食液の温度が低下することがなく、高温の腐食液を用いた場合の腐食能力が高位に維持され、溶質濃度差による電位差を利用した電気化学的腐食が短時間に進行し明瞭な凝固組織を顕出できることがわかった。   On the other hand, after polishing the cross section of the steel slab sample, if the sample temperature is heated to a temperature of 40 to 90 ° C., and then the polished surface of the sample is contacted with a corrosive liquid, the polished surface is corroded. After that, the temperature of the corrosive liquid does not decrease, the corrosive ability when using a high temperature corrosive liquid is maintained at a high level, and the electrochemical corrosion utilizing the potential difference due to the difference in solute concentration proceeds in a short time and is clear It was found that the solidified tissue could be revealed.

即ち、本発明の要旨とするところは以下のとおりである。
(1)鋼鋳片の試料の断面を研磨し、試料温度を40〜90℃に加熱し、その後試料の研磨面を腐食液に接触させて研磨面を腐食することを特徴とする鋼の凝固組織検出方法。
(2)腐食液の温度を40〜90℃に加熱し、その後試料の研磨面を腐食液に接触させることを特徴とする上記(1)に記載の鋼の凝固組織検出方法。
(3)試料の研磨面を腐食液に接触させる際において、腐食液の温度を試料の温度に対して−10〜−5℃とすることを特徴とする上記(1)又は(2)に記載の鋼の凝固組織検出方法。
(4)試料の研磨面を上向きにして腐食液に浸漬することを特徴とする上記(3)に記載の鋼の凝固組織検出方法。
(5)試料の研磨面を腐食液に接触させる際において、腐食液の温度を試料の温度に対して+5℃以上とすることを特徴とする上記(2)に記載の鋼の凝固組織検出方法。
(6)試料の研磨面を下向きにして腐食液に浸漬することを特徴とする上記(5)に記載の鋼の凝固組織検出方法。
(7)試料の研磨面を含む一部分のみを腐食液に浸漬することを特徴とする上記(6)に記載の鋼の凝固組織検出方法。
(8)試料の研磨面を腐食液に接触させて研磨面を腐食した後、試料を洗浄、乾燥し、腐食した研磨面表面の腐食孔に研磨粉を埋め込み、研磨面表面に透明粘着テープを貼り、透明粘着テープに腐食孔中の研磨粉を粘着せしめた後、テープをはがし、次いでテープを台紙上に貼りつけることを特徴とする上記(1)乃至(7)のいずれかに記載の鋼の凝固組織検出方法。
(9)鋼鋳片の炭素含有量が0.01質量%以下であることを特徴とする上記(1)乃至(8)のいずれかに記載の鋼の凝固組織検出方法。
That is, the gist of the present invention is as follows.
(1) Solidification of steel characterized by polishing a cross section of a sample of a steel slab, heating the sample temperature to 40 to 90 ° C., and then contacting the polished surface of the sample with a corrosive liquid to corrode the polished surface Tissue detection method.
(2) The method for detecting a solidified structure of steel according to (1) above, wherein the temperature of the corrosive liquid is heated to 40 to 90 ° C., and then the polished surface of the sample is brought into contact with the corrosive liquid.
(3) When the polished surface of the sample is brought into contact with the corrosive liquid, the temperature of the corrosive liquid is −10 to −5 ° C. with respect to the temperature of the sample. Of solidification structure of steel.
(4) The method for detecting a solidified structure of steel according to (3) above, wherein the specimen is immersed in a corrosive solution with the polished surface facing upward.
(5) The method for detecting a solidified structure of steel as described in (2) above, wherein when the polished surface of the sample is brought into contact with the corrosive liquid, the temperature of the corrosive liquid is set to + 5 ° C. or higher with respect to the temperature of the sample. .
(6) The method for detecting a solidified structure of steel according to (5) above, wherein the specimen is immersed in a corrosive solution with the polished surface facing downward.
(7) The method for detecting a solidified structure of steel as described in (6) above, wherein only a part including the polished surface of the sample is immersed in a corrosive liquid.
(8) After the polished surface of the sample is brought into contact with a corrosive liquid to corrode the polished surface, the sample is washed and dried, and polishing powder is embedded in the corroded holes on the corroded polished surface, and a transparent adhesive tape is applied to the polished surface. The steel according to any one of the above (1) to (7), wherein the steel powder is adhered and the abrasive powder in the corrosion holes is adhered to the transparent adhesive tape, then the tape is peeled off, and then the tape is attached to the mount. Coagulation tissue detection method.
(9) The method for detecting a solidified structure of steel according to any one of (1) to (8) above, wherein the steel slab has a carbon content of 0.01% by mass or less.

本発明は、試料温度を40〜90℃に加熱してから試料の研磨面を腐食液に接触させるので、従来であれば明瞭な凝固組織を検出することが困難であった品種、特に炭素濃度が0.01質量%以下の低炭素鋼についても、腐食で凝固組織を顕出し、それによって鋼の凝固組織を検出する方法を提供することができる。   In the present invention, since the sample temperature is heated to 40 to 90 ° C. and the polished surface of the sample is brought into contact with the corrosive liquid, it is difficult to detect a clear solidified structure in the past, particularly the carbon concentration. Even for a low carbon steel having a mass of 0.01% by mass or less, it is possible to provide a method of revealing a solidified structure by corrosion and thereby detecting the solidified structure of the steel.

鋼の凝固組織を顕出する腐食液として、例えばピクリン酸を20g/リットル、塩化第II銅を5g/リットル、界面活性剤を20g/リットル含有する水溶液を用いることができる。界面活性剤としては、例えば商品名ライポンFの市販品を用いることができる。   For example, an aqueous solution containing 20 g / liter of picric acid, 5 g / liter of cupric chloride, and 20 g / liter of a surfactant can be used as a corrosive liquid that reveals a solidified structure of steel. As the surfactant, for example, a commercially available product under the trade name Rypon F can be used.

凝固組織を検出しようとする鋳片から試料を切り出す。次いで、試料のうち凝固組織を検出したい断面について研磨を行う。研磨条件は、研磨する断面を平削、粗研磨した後、♯240〜♯1000程度の仕上げ面とするとよい。試料の大きさは、研磨して腐食させる面(腐食面)を高さ200〜500mm、幅300〜2100mm程度とし、厚みを50〜200mmの範囲とすると良い。このような大きさとすることにより、試料の取り扱いが容易な範囲内であって、なおかつ広い面を腐食面として凝固組織を顕出することが可能となる。   A sample is cut out from the slab to detect the solidified structure. Next, polishing is performed on the cross section of the sample where the solidified structure is to be detected. The polishing condition is preferably a finished surface of about # 240 to # 1000 after the cross section to be polished is planed and rough polished. The size of the sample is preferably such that the surface to be polished and corroded (corrosion surface) has a height of 200 to 500 mm, a width of 300 to 2100 mm, and a thickness of 50 to 200 mm. By setting it as such a size, it is possible to reveal the solidified structure within a range in which the sample can be easily handled and using a wide surface as a corroded surface.

本発明において、研磨を完了した試料を加熱し、試料の温度を40〜90℃とする。その後、加熱した試料の研磨面を腐食液に接触させて研磨面を腐食する。試料を加熱しているので、腐食液が試料に接触した後も腐食液の温度が低下することがなく、高温の腐食液を用いた場合の腐食能力が高位に維持され、溶質濃度差による電位差を利用した電気化学的腐食が短時間に進行し明瞭な凝固組織を顕出できる。試料の加熱温度が低すぎると、試料を常温としていた従来の腐食方法による凝固組織との差が明瞭ではないが、試料の加熱温度を40℃以上とすれば、従来行われていた常温の試料を用いた場合の凝固組織との差が明瞭となる。試料温度を70℃以上とするとより好ましい結果を得ることができる。一方、試料温度が高すぎて100℃以上の高温となると、腐食液が沸騰して腐食面で気泡が発生し凝固組織がまだらとなる。試料加熱温度を90℃以下とすることにより、このような問題が発生することがなく、また高温で試料を取り扱う際の安全性確保の点からも好ましい。試料の加熱方法としては、試料を恒温水槽に浸漬する方法、試料を低温加熱炉に装入する方法、試料を布状の電気ヒーターで包む方法、試料を通電加熱する方法などから選択することができる。   In the present invention, the sample that has been polished is heated to a temperature of 40 to 90 ° C. Thereafter, the polished surface of the heated sample is brought into contact with a corrosive liquid to corrode the polished surface. Since the sample is heated, the temperature of the corrosive liquid does not decrease even after the corrosive liquid comes into contact with the sample, the corrosive ability when the high temperature corrosive liquid is used is maintained at a high level, and the potential difference due to the difference in solute concentration Electrochemical corrosion using can proceed in a short time and reveal a clear solidified structure. If the heating temperature of the sample is too low, the difference from the solidified structure by the conventional corrosion method in which the sample is at room temperature is not clear, but if the heating temperature of the sample is 40 ° C. or higher, the sample at normal temperature that has been conventionally performed The difference from the solidification structure when using is clear. When the sample temperature is 70 ° C. or higher, more preferable results can be obtained. On the other hand, if the sample temperature is too high and the temperature is higher than 100 ° C., the corrosive liquid boils, bubbles are generated on the corroded surface, and the solidified structure becomes mottled. By setting the sample heating temperature to 90 ° C. or less, such a problem does not occur, and it is preferable from the viewpoint of ensuring safety when handling the sample at a high temperature. The method for heating the sample may be selected from a method in which the sample is immersed in a constant temperature water bath, a method in which the sample is placed in a low-temperature heating furnace, a method in which the sample is wrapped with a cloth-like electric heater, a method in which the sample is energized and heated, etc. it can.

本発明においては、上記のとおり腐食前の試料を加熱すると同時に、腐食液の温度も高温に保持した上で腐食を行うと好ましい。腐食液の温度を40〜90℃に加熱し、その後試料の研磨面を腐食液に接触させることにより、好適に凝固組織を顕出することができる。腐食液の温度を40℃以上とすることにより、試料の温度を40℃以上とした本発明の効果を十分に享受することができる。腐食液温度を70℃以上とするとより好ましい結果を得ることができる。また、腐食液の温度を90℃以下とすることにより、腐食液の沸騰を防止することができる。   In the present invention, as described above, it is preferable to heat the sample before corrosion and simultaneously perform the corrosion while maintaining the temperature of the corrosive liquid at a high temperature. By heating the temperature of the corrosive liquid to 40 to 90 ° C. and then bringing the polished surface of the sample into contact with the corrosive liquid, a solidified structure can be suitably revealed. By setting the temperature of the corrosive liquid to 40 ° C. or higher, the effect of the present invention in which the temperature of the sample is set to 40 ° C. or higher can be fully enjoyed. More preferable results can be obtained when the temperature of the corrosive liquid is 70 ° C. or higher. Moreover, the boiling of a corrosive liquid can be prevented by making the temperature of a corrosive liquid into 90 degrees C or less.

試料の研磨面を腐食液に接触させる際における試料と腐食液それぞれの温度は、同じ温度としても本発明の効果を発揮することができるが、両者の温度を5℃以上異なった温度とすることによってさらに良好な効果を発揮することができる。試料温度と腐食液の温度の差が5℃以上であると、この温度差を駆動力とする大きな熱対流が腐食液中で生じ、腐食液の攪拌が自然に促進されることで、腐食能力の高い腐食液が常に腐食面に供給され、より効率よく腐食を行い明瞭な凝固組織を得ることができるからである。   The effect of the present invention can be exhibited even when the temperature of the sample and the etchant when the polished surface of the sample is brought into contact with the etchant is the same temperature, but the temperature of both must be different by 5 ° C. or more. A better effect can be exhibited. If the difference between the sample temperature and the temperature of the corrosive liquid is 5 ° C or more, a large thermal convection that is driven by this temperature difference is generated in the corrosive liquid, and the agitation of the corrosive liquid is naturally promoted. This is because a highly corrosive liquid is always supplied to the corroded surface, and corrosion can be performed more efficiently and a clear solidified structure can be obtained.

腐食液温度が試料温度よりも低い場合には、温度差が大きすぎると腐食液温度が低くなって腐食能力を十分に発揮できなくなるので、腐食液の温度を試料の温度に対して−10〜−5℃の範囲とする。腐食液温度が試料温度よりも高い場合には、温度差が大きくても腐食能力が不足することにはならないので、腐食液の温度を試料の温度に対して+5℃以上として、温度差の上限は設けない。試料温度を40〜90℃の範囲とし、また腐食液温度を好適範囲である40〜90℃の範囲内から選択し、加えて試料と腐食液の温度差を上記好適範囲内とすることにより、優れた効果を得ることができる。   When the temperature of the corrosive liquid is lower than the sample temperature, if the temperature difference is too large, the corrosive liquid temperature becomes low and the corrosive ability cannot be fully exhibited. The range is −5 ° C. If the temperature of the corrosive liquid is higher than the sample temperature, the corrosive capacity will not be insufficient even if the temperature difference is large. Therefore, the temperature of the corrosive liquid should be + 5 ° C or higher with respect to the sample temperature, and the upper limit of the temperature difference Is not provided. By setting the sample temperature in the range of 40 to 90 ° C. and selecting the temperature of the corrosive liquid from the range of 40 to 90 ° C. which is a preferable range, and additionally setting the temperature difference between the sample and the corrosive liquid within the above preferable range, An excellent effect can be obtained.

腐食液温度と試料温度に差を設ける場合、試料の凝固組織を検出させる面(腐食面)を腐食液に接触させる際、腐食面を上向きにするか下向きにするかで好適な組み合わせがある。即ち、腐食液中に熱対流を生じさせることが重要であるので、試料温度が腐食液温度よりも高い場合は、試料の腐食面を上向きにして試料を腐食液中に浸漬させることが望ましい。また逆に、試料温度が腐食液温度よりも低い場合は、試料の腐食面を下向きにして試料を腐食液中に浸漬させることが望ましい。   When the difference between the corrosion liquid temperature and the sample temperature is set, there is a suitable combination depending on whether the corrosion surface is directed upward or downward when the surface (corrosion surface) for detecting the solidified structure of the sample is brought into contact with the corrosion liquid. That is, since it is important to generate thermal convection in the corrosive liquid, when the sample temperature is higher than the corrosive liquid temperature, it is desirable to immerse the sample in the corrosive liquid with the corrosive surface of the sample facing upward. Conversely, when the sample temperature is lower than the corrosive liquid temperature, it is desirable to immerse the sample in the corrosive liquid with the corroded surface of the sample facing downward.

本発明において、試料の全体を腐食液中に浸漬することとしても良いが、試料の研磨面(腐食面)を含む試料の一部のみを腐食液中に浸漬して腐食を行うとより好ましい結果を得ることができる。この場合、腐食面を下にして腐食液に浸漬することとなる。腐食面を下にして試料の一部のみを腐食液に浸漬することにより、腐食面に優先して電流ループが形成され、さらに腐食によって腐食面に生成した老廃物が除去されやすくなり腐食能の高い腐食液が腐食面に供給され、凝固組織の明領度が向上するものと考えられる。腐食面の腐食液への浸漬深さを10mm以下とすると好ましい。   In the present invention, the entire sample may be immersed in the corrosive liquid, but it is more preferable to perform corrosion by immersing only a part of the sample including the polished surface (corrosive surface) of the sample in the corrosive liquid. Can be obtained. In this case, it will be immersed in a corrosive liquid with the corroded surface down. By immersing only a part of the sample in the corrosive solution with the corroded surface facing down, a current loop is formed in preference to the corroded surface, and the waste generated on the corroded surface due to corrosion is easily removed and corrosive ability is improved. It is considered that high corrosive liquid is supplied to the corroded surface and the clarity of the solidified structure is improved. The immersion depth of the corroded surface in the corrosive liquid is preferably 10 mm or less.

腐食面に凝固組織を顕出させた後、凝固組織を記録する。腐食によって凝固組織を顕出させた腐食面を直接写真撮影することとしても良い。より好ましくは、エッチプリント法を用いることができる。この方法は、試料の研磨面を腐食液に接触させて研磨面を腐食した後、試料を洗浄、乾燥し、腐食した研磨面表面の腐食孔に研磨粉を埋め込み、研磨面表面に透明粘着テープを貼り、透明粘着テープに腐食孔中の研磨粉を粘着せしめた後、テープをはがし、次いでテープを白色の台紙上に貼りつける方法である。腐食孔中に埋め込まれた研磨粉がテープに転写され、テープを台紙上に貼りつけることによって、テープに転写された研磨粉の濃淡が凝固組織に対応することとなり、その結果凝固組織が台紙上に顕出される。   After exposing the solidified structure to the corroded surface, record the solidified structure. It is good also as taking a direct photograph of the corroded surface which revealed the solidification structure | tissue by corrosion. More preferably, an etch print method can be used. In this method, the polished surface of the sample is brought into contact with a corrosive liquid to corrode the polished surface, then the sample is washed and dried, and abrasive powder is embedded in the corroded holes on the corroded polished surface, and the transparent adhesive tape is applied to the polished surface. Is applied, and the abrasive powder in the corrosion holes is adhered to the transparent adhesive tape, and then the tape is peeled off, and then the tape is attached to a white mount. The abrasive powder embedded in the corrosion holes is transferred to the tape, and the tape is affixed on the mount, so that the density of the abrasive powder transferred to the tape corresponds to the solidified structure. It is revealed in

本発明の鋼の凝固組織の検出方法は、広い範囲の鋼成分について適用し、凝固組織を顕出させることができる。特に、従来の方法では凝固組織を顕出させることが困難であった成分系、即ち炭素含有量が0.01質量%以下の低炭素鋼についても、本発明を用いて凝固組織の検出を行うことができるので好ましい。   The method for detecting a solidified structure of steel according to the present invention can be applied to a wide range of steel components to reveal a solidified structure. In particular, it is also possible to detect a solidified structure by using the present invention for a component system in which it is difficult to reveal a solidified structure by a conventional method, that is, a low carbon steel having a carbon content of 0.01% by mass or less. This is preferable.

炭素濃度が0.001質量%の自動車用極低炭素鋼、0.01質量%の冷延用低炭素鋼板および0.1質量%の厚板用中炭素鋼板を用い、本発明を適用した。鋳片から切り出す試料の大きさは、鋳片の高さ方向全高さと、幅方向は半幅とし、厚さを50mm、または100mmとした。その結果、腐食面が高さ250mm、幅500〜700mmの範囲となった。本発明例については、腐食液に浸漬する前に試料を加熱し、試料温度を40℃、70℃、90℃とし、その後に腐食液に浸漬した。試料の加熱は、試料を予め所定の温度に調整した恒温水槽に浸漬して行った。比較例については、試料温度を25℃として腐食液に浸漬した。   The present invention was applied using an ultra-low carbon steel for automobiles having a carbon concentration of 0.001 mass%, a low-carbon steel sheet for cold rolling of 0.01 mass%, and a medium carbon steel sheet for thick plates of 0.1 mass%. The size of the sample cut out from the slab was the full height in the slab, the half width in the width direction, and the thickness was 50 mm or 100 mm. As a result, the corroded surface has a height of 250 mm and a width of 500 to 700 mm. For the example of the present invention, the sample was heated before being immersed in the corrosive liquid, the sample temperatures were 40 ° C., 70 ° C., and 90 ° C., and then immersed in the corrosive liquid. The sample was heated by immersing the sample in a constant temperature water bath adjusted to a predetermined temperature in advance. About the comparative example, sample temperature was 25 degreeC and it immersed in the corrosive liquid.

腐食液として、ピクリン酸を20g/リットル、塩化第II銅を5g/リットル、界面活性剤を20g/リットル含有する水溶液を用いた。界面活性剤としては、商品名ライポンFの市販品を用いた。腐食液の温度は25〜90℃の範囲で変化させ、腐食時間は60分とした。   An aqueous solution containing 20 g / liter of picric acid, 5 g / liter of cupric chloride and 20 g / liter of surfactant was used as the corrosive liquid. As the surfactant, a commercial product under the trade name Raipon F was used. The temperature of the corrosive liquid was changed in the range of 25 to 90 ° C., and the corrosion time was 60 minutes.

腐食後の凝固組織の記録方法として、表1に示す実施例においては、エッチプリント法を用いた。この方法は、試料の研磨面を腐食液に接触させて研磨面を腐食した後、試料を洗浄、乾燥し、腐食した研磨面表面の腐食孔に研磨粉を埋め込み、研磨面表面に透明粘着テープを貼り、透明粘着テープに腐食孔中の研磨粉を粘着せしめた後、テープをはがし、次いでテープを白色の台紙上に貼りつける方法である。   In the examples shown in Table 1, an etch print method was used as a method for recording the solidified structure after corrosion. In this method, the polished surface of the sample is brought into contact with a corrosive liquid to corrode the polished surface, then the sample is washed and dried, and abrasive powder is embedded in the corroded holes on the corroded polished surface, and the transparent adhesive tape is applied to the polished surface. Is applied, and the abrasive powder in the corrosion holes is adhered to the transparent adhesive tape, and then the tape is peeled off, and then the tape is attached to a white mount.

試験条件、評価結果を表1に示す。   Test conditions and evaluation results are shown in Table 1.

Figure 2010125483
Figure 2010125483
Figure 2010125483
Figure 2010125483

試料の研磨面を腐食液に接触させるに際し、実施例の大部分の水準については、試料全体を腐食液の中に完全に浸漬させることとした。腐食液温度が試料温度と同等又はそれより高い場合には、腐食面を下向きとし、腐食液温度が試料温度より低い場合には腐食面を上向きとして接触させた。これにより、腐食液温度と試料温度の温度差に起因する熱対流を有効に活用することができる。さらに、腐食液温度が試料温度と同等又はそれより高い場合には、一部の試験水準で、試料の研磨面を含む一部分のみを下向きにして腐食液に浸漬し、試料の他の部分は腐食液に浸漬させない条件にて腐食を行った。表1の「浸漬深さ」の欄に「全体」と記入している水準は試料の全体を腐食液に浸漬していることを示し、「浸漬深さ」の欄に数値を記入している水準は、試料の研磨面を含む一部分のみを浸漬させた場合であり、数値はその際の浸漬深さを示している。   When the polished surface of the sample was brought into contact with the corrosive liquid, for the most part of the examples, the entire sample was completely immersed in the corrosive liquid. When the corrosive liquid temperature was equal to or higher than the sample temperature, the corroded surface was directed downward, and when the corrosive liquid temperature was lower than the sample temperature, the corroded surface was directed upward. Thereby, the thermal convection resulting from the temperature difference between the corrosive liquid temperature and the sample temperature can be effectively utilized. In addition, when the temperature of the corrosive liquid is equal to or higher than the sample temperature, at some test levels, only the part including the polished surface of the sample is immersed downward in the corrosive liquid and the other part of the sample is corroded. Corrosion was performed under the condition that the liquid was not immersed. The level written as “whole” in the “immersion depth” column of Table 1 indicates that the entire sample is immersed in the corrosive solution, and a numerical value is entered in the “immersion depth” column. The level is a case where only a part including the polished surface of the sample is immersed, and the numerical value indicates the immersion depth at that time.

凝固組織を検出するに際し、中心偏析、内部割れ、樹枝状組織について検出を行った。各々、◎:極めて明瞭、○:明瞭、△:存在は確認できるが不明瞭、×:存在自体識別不可として評価した。凝固組織の検出程度は、中心偏析→内部割れ→樹枝状組織の順に難しくなる。   When detecting the solidified structure, the center segregation, internal cracking, and dendritic structure were detected. ◎: Extremely clear, ◯: Clear, Δ: Existence could be confirmed but unclear, x: Existence itself could not be identified. The degree of detection of the solidified structure becomes difficult in the order of center segregation → internal crack → dendritic structure.

まず、表1に示す本発明例、比較例のうち、試料の全体を腐食液中に浸漬した場合について説明する。   First, the case where the whole sample is immersed in a corrosive liquid among the present invention examples and comparative examples shown in Table 1 will be described.

比較例1〜12は、試料温度が25℃の状態で、腐食液温度が25℃、40℃、70℃、90℃の上記組成の腐食液で腐食した結果である。元々、凝固中の溶質元素の偏析による濃度差が比較的大きな0.1質量%C鋼では腐食液の温度を高めることで、ある程度明瞭な凝固組織を検出できるようになり、比較例12に示すように腐食液の温度を90℃とすると、樹枝状組織の傾きや間隔、内部割れや中心偏析の程度のいずれも明瞭に判別できた。一方、0.01質量%C鋼や0.001質量%C鋼では、凝固中の溶質元素の偏析による濃度差が比較的小さいため、腐食液の温度を高めることで凝固組織が明瞭になる傾向は同様であるが、比較例4,8に示すように腐食液温度を90℃としても、内部割れ、中心偏析の存在は確認はできるが不明瞭であり、樹枝状組織についてはほとんど検出できなかった。比較例1,5に示す腐食液温度を25℃の場合は、樹枝状組織、内部割れ、中心偏析とも検出不可であった。試料温度が25℃(常温)の場合、腐食液の温度を事前に高めていても、試料の顕熱で腐食液の温度が急激に下がり、腐食能自体が低下すること、および、腐食液の温度低下に伴いピクリン酸の溶解度が急激に減少し試料表面で過剰なピクリン酸が析出することも腐食を妨げたものと推定される。   Comparative Examples 1 to 12 are the results of corrosion with a corrosive liquid having the above composition having a sample temperature of 25 ° C. and a corrosive liquid temperature of 25 ° C., 40 ° C., 70 ° C., and 90 ° C. Originally, in 0.1 mass% C steel, in which the concentration difference due to segregation of solute elements during solidification is relatively large, the solidified structure can be detected to some extent by increasing the temperature of the corrosive solution. Thus, when the temperature of the corrosive liquid was 90 ° C., it was possible to clearly discriminate all of the inclination and interval of the dendritic structure, the degree of internal cracking and central segregation. On the other hand, in 0.01 mass% C steel and 0.001 mass% C steel, since the concentration difference due to segregation of solute elements during solidification is relatively small, the solidification structure tends to become clear by increasing the temperature of the corrosion solution. However, as shown in Comparative Examples 4 and 8, even when the temperature of the corrosive solution is 90 ° C., the presence of internal cracks and center segregation can be confirmed, but it is unclear and almost no dendritic structure can be detected. It was. When the temperature of the corrosive solution shown in Comparative Examples 1 and 5 was 25 ° C., the dendritic structure, internal cracks, and center segregation could not be detected. When the sample temperature is 25 ° C. (normal temperature), even if the temperature of the corrosive liquid is increased in advance, the temperature of the corrosive liquid rapidly decreases due to the sensible heat of the sample, and the corrosive capacity itself decreases. It is presumed that the solubility of picric acid drastically decreased as the temperature decreased, and excessive picric acid precipitated on the sample surface, which also prevented corrosion.

一方、試料温度を事前に40〜90℃に加熱した後に腐食を行った本発明例1〜57は、比較例1〜12と比較すると、腐食能が高位に維持されるためいずれも凝固組織の明瞭度が格段と向上することが判明した。例えば、元々、凝固中の溶質元素の偏析による濃度差が比較的大きな0.1質量%C鋼では、試料温度を事前に40〜90℃に加熱した後に腐食することで、腐食液の温度が25℃(常温)の場合でも、本発明例39,47,54に示すように、樹枝状組織の傾きや間隔、内部割れや中心偏析の程度のいずれも明瞭に判別できた。腐食液の温度をさらに高めると、本発明例45,46,49,50,51,52,53,55,56,57に示すように、樹枝状組織の傾きや間隔、内部割れや中心偏析の程度のいずれも極めて明瞭に判別でき、これらを極めて明瞭に判別できるようになる腐食液温度も試料温度が高くなるほど低くなり作業性も向上した。すなわち、試料温度が40℃の場合は腐食液温度が70℃以上、試料温度が70℃の場合は腐食液温度が60℃以上、試料温度が90℃の場合は腐食液温度が40℃以上であれば、前記凝固組織を極めて明瞭に判別できた。一方、凝固中の溶質元素の偏析による濃度差が比較的小さな0.01質量%C鋼や0.001質量%C鋼の場合でも、試料温度を事前に40〜90℃に加熱した後に腐食することで凝固組織が明瞭になる傾向は同様であった。ただし、樹枝状組織の傾きや間隔、内部割れや中心偏析の明瞭度は0.1質量%C鋼よりも低下し、これらを極めて明瞭に判別できるようになる腐食液温度も高温側に移行した。   On the other hand, in Examples 1 to 57 of the present invention in which corrosion was performed after heating the sample temperature to 40 to 90 ° C. in advance, the corrosive ability was maintained at a high level as compared with Comparative Examples 1 to 12, and thus all of the solidified structures. It has been found that the intelligibility is remarkably improved. For example, in the case of 0.1 mass% C steel that has a relatively large concentration difference due to segregation of solute elements during solidification, the temperature of the corrosive liquid is reduced by corrosion after heating the sample temperature to 40 to 90 ° C. in advance. Even at 25 ° C. (normal temperature), as shown in Invention Examples 39, 47, and 54, the inclination and interval of the dendritic structure, the degree of internal cracking, and the center segregation could be clearly distinguished. When the temperature of the corrosive liquid is further increased, as shown in Invention Examples 45, 46, 49, 50, 51, 52, 53, 55, 56, and 57, the inclination and interval of the dendritic structure, internal cracks and center segregation The degree of corrosion can be distinguished very clearly, and the corrosive solution temperature at which these can be distinguished very clearly becomes lower as the sample temperature becomes higher and the workability is improved. That is, when the sample temperature is 40 ° C, the corrosive liquid temperature is 70 ° C or higher, when the sample temperature is 70 ° C, the corrosive liquid temperature is 60 ° C or higher, and when the sample temperature is 90 ° C, the corrosive liquid temperature is 40 ° C or higher. If present, the solidified tissue could be distinguished very clearly. On the other hand, even in the case of 0.01 mass% C steel or 0.001 mass% C steel having a relatively small concentration difference due to segregation of solute elements during solidification, corrosion occurs after the sample temperature is heated to 40 to 90 ° C. in advance. The tendency for the solidified structure to become clear was similar. However, the inclination and interval of the dendritic structure, the clarity of internal cracks and center segregation are lower than those of 0.1 mass% C steel, and the temperature of the corrosive solution that makes it possible to distinguish these clearly is shifted to the high temperature side. .

本発明例4が0.001%C鋼を試料温度が40℃の状態で40℃の腐食液で腐食した結果であるのに対して、本発明例1,2,3は0.001%C鋼を試料温度が40℃の状態で各々25,30,35℃の腐食液で腐食した結果である。本発明2,3は本発明例4よりも中心偏析が明瞭に判別でき、試料温度と腐食液の温度差に起因する熱対流の効果が腐食液温度の低下による腐食能の低下を補った以上の効果が認められる。ただし、本発明例1のように前記温度差が15℃の場合、本発明例4とほぼ同等の明瞭度の凝固組織が得られており、腐食液温度低下に伴う腐食能低下の影響が温度差による熱対流の効果よりも支配的になったものと思われる。このように、腐食液温度が試料温度よりも低く、試料温度と腐食液温度の差を5〜10℃程度つけると、同一温度の場合と比較して腐食が促進される。腐食液温度が試料温度よりも高い場合には、試料温度と腐食液温度の差が5℃以上であれば、腐食液温度が90℃以下である範囲において、良好な結果を得ることができた。   Inventive Example 4 is the result of corroding 0.001% C steel with a 40 ° C. corrosive solution at a sample temperature of 40 ° C., whereas Inventive Examples 1, 2, and 3 are 0.001% C This is the result of corroding steel with a corrosive solution of 25, 30, and 35 ° C. at a sample temperature of 40 ° C., respectively. In the present inventions 2 and 3, the center segregation can be clearly distinguished from the present invention example 4, and the effect of thermal convection due to the temperature difference between the sample temperature and the corrosive liquid compensates for the decrease in the corrosive ability due to the decrease in the corrosive liquid temperature. The effect of is recognized. However, when the temperature difference is 15 ° C. as in Example 1 of the present invention, a solidified structure having almost the same clarity as Example 4 of the present invention is obtained. It seems that it became more dominant than the effect of thermal convection due to the difference. Thus, when the temperature of the corrosive liquid is lower than the sample temperature and the difference between the sample temperature and the corrosive liquid temperature is set to about 5 to 10 ° C., the corrosion is promoted as compared with the case of the same temperature. When the temperature of the corrosive liquid is higher than the sample temperature, if the difference between the sample temperature and the corrosive liquid temperature is 5 ° C or higher, good results can be obtained in the range where the temperature of the corrosive liquid is 90 ° C or lower. .

試料温度と腐食液温度に差をつけることによる上記効果は、0.01質量%C鋼や0.1質量%C鋼の場合でも、また、試料温度を高めた場合でも同様に観察されることが表1からわかる。ただし、試料温度が90℃の場合や0.1%C鋼のような元々腐食が進み易く凝固組織が明瞭に検出される条件では相対的に効果は小さくなるが、試料温度と腐食液温度の差による熱対流で腐食が促進される効果が得られることは原理的にも間違いない。   The above-mentioned effect due to the difference between the sample temperature and the corrosive solution temperature should be observed in the same way even in the case of 0.01 mass% C steel or 0.1 mass% C steel, or when the sample temperature is increased. Can be seen from Table 1. However, when the sample temperature is 90 ° C or when the solidified structure is clearly detected, such as 0.1% C steel, the effect is relatively small. In principle, there is no doubt that the effect of promoting corrosion by thermal convection due to the difference is obtained.

次に、表1に示す本発明例、比較例において、試料のうち研磨面を含む一部のみを腐食液に浸漬した場合について説明する。   Next, in the present invention example and comparative example shown in Table 1, the case where only a part of the sample including the polished surface is immersed in the corrosive liquid will be described.

本発明例4、4−1、4−2については、試料の浸漬方法以外の条件を同等としている。本発明例4が試料の全体を腐食液に浸漬させているのに対し、本発明例4−1は試料の研磨面を腐食液の10mm深さまで浸漬させ、本発明例4−2は試料の研磨面を腐食液の5mm深さまで浸漬させており、試料のその他の部分は腐食液から露出している。本発明例4、4−1、4−2の比較から明らかなように、試料の浸漬深さを浅くするほど、凝固組織がより顕著に顕出するようになり、凝固組織判別状況が良好になっていることがわかる。本発明例7、7−1、7−2、本発明例13、13−1、13−2、本発明例23、23−1、23−2、本発明例26、26−1、26−2、本発明例32、32−1、32−2、本発明例42、42−1、42−2についても同様である。   About Example 4, 4-1, and 4-2 of this invention, conditions other than the immersion method of a sample are made equivalent. Inventive Example 4 immerses the entire sample in the corrosive liquid, while Inventive Example 4-1 immerses the polished surface of the sample to a depth of 10 mm of the corrosive liquid, and Inventive Example 4-2 The polished surface is immersed to a depth of 5 mm of the corrosive liquid, and the other part of the sample is exposed from the corrosive liquid. As is clear from the comparison between Examples 4, 4-1, and 4-2 of the present invention, as the immersion depth of the sample is decreased, the solidified tissue appears more prominently, and the solidified tissue discrimination status is better. You can see that Invention Example 7, 7-1, 7-2, Invention Example 13, 13-1, 13-2, Invention Example 23, 23-1, 23-2, Invention Example 26, 26-1, 26- 2. The same applies to Invention Examples 32, 32-1, 32-2, and Invention Examples 42, 42-1, 42-2.

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明の鋼の凝固組織の検出方法を構成する場合も本発明の権利範囲に含まれる。   The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. The method of detecting the solidification structure of steel of the present invention by combining the above is also included in the scope of the right of the present invention.

Claims (9)

鋼鋳片の試料の断面を研磨し、試料温度を40〜90℃に加熱し、その後試料の研磨面を腐食液に接触させて研磨面を腐食することを特徴とする鋼の凝固組織検出方法。   A method for detecting a solidified structure of steel, comprising: polishing a cross-section of a sample of a steel slab, heating the sample temperature to 40 to 90 ° C., and then contacting the polished surface of the sample with a corrosive liquid to corrode the polished surface . 腐食液の温度を40〜90℃に加熱し、その後試料の研磨面を腐食液に接触させることを特徴とする請求項1に記載の鋼の凝固組織検出方法。   The method for detecting a solidified structure of steel according to claim 1, wherein the temperature of the corrosive liquid is heated to 40 to 90 ° C, and then the polished surface of the sample is brought into contact with the corrosive liquid. 試料の研磨面を腐食液に接触させる際において、腐食液の温度を試料の温度に対して−10〜−5℃とすることを特徴とする請求項1又は2に記載の鋼の凝固組織検出方法。   3. The solidification structure detection of steel according to claim 1, wherein when the polished surface of the sample is brought into contact with the corrosive liquid, the temperature of the corrosive liquid is −10 to −5 ° C. with respect to the temperature of the sample. Method. 試料の研磨面を上向きにして腐食液に浸漬することを特徴とする請求項3に記載の鋼の凝固組織検出方法。   The method for detecting a solidified structure of steel according to claim 3, wherein the sample is immersed in a corrosive solution with the polished surface facing upward. 試料の研磨面を腐食液に接触させる際において、腐食液の温度を試料の温度に対して+5℃以上とすることを特徴とする請求項2に記載の鋼の凝固組織検出方法。   The method for detecting a solidified structure of steel according to claim 2, wherein when the polished surface of the sample is brought into contact with the corrosive liquid, the temperature of the corrosive liquid is set to + 5 ° C or higher with respect to the temperature of the sample. 試料の研磨面を下向きにして腐食液に浸漬することを特徴とする請求項5に記載の鋼の凝固組織検出方法。   6. The method for detecting a solidified structure of steel according to claim 5, wherein the sample is immersed in a corrosive solution with the polished surface facing downward. 試料の研磨面を含む一部分のみを腐食液に浸漬することを特徴とする請求項6に記載の鋼の凝固組織検出方法。   The method for detecting a solidified structure of steel according to claim 6, wherein only a part including the polished surface of the sample is immersed in a corrosive liquid. 試料の研磨面を腐食液に接触させて研磨面を腐食した後、試料を洗浄、乾燥し、腐食した研磨面表面の腐食孔に研磨粉を埋め込み、研磨面表面に透明粘着テープを貼り、透明粘着テープに腐食孔中の研磨粉を粘着せしめた後、テープをはがし、次いでテープを台紙上に貼りつけることを特徴とする請求項1乃至7のいずれかに記載の鋼の凝固組織検出方法。   After contacting the polishing surface of the sample with a corrosive liquid to corrode the polishing surface, the sample is washed and dried, and then the polishing powder is embedded in the corrosion holes on the corroded polishing surface, and a transparent adhesive tape is applied to the surface of the polishing surface. The method for detecting a solidified structure of steel according to any one of claims 1 to 7, wherein after the abrasive powder in the corrosion holes is adhered to the adhesive tape, the tape is peeled off, and then the tape is attached to the mount. 鋼鋳片の炭素含有量が0.01質量%以下であることを特徴とする請求項1乃至8のいずれかに記載の鋼の凝固組織検出方法。   The method for detecting a solidified structure of steel according to any one of claims 1 to 8, wherein the carbon content of the steel slab is 0.01 mass% or less.
JP2008302566A 2008-11-27 2008-11-27 Method for detecting solidification structure of steel Active JP5634673B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008302566A JP5634673B2 (en) 2008-11-27 2008-11-27 Method for detecting solidification structure of steel
CN200980147455.3A CN102227633B (en) 2008-11-27 2009-11-27 Method for detecting steel hardened texture
PCT/JP2009/070354 WO2010061968A1 (en) 2008-11-27 2009-11-27 Method for detecting steel hardened texture
BRPI0921171-3A BRPI0921171B1 (en) 2008-11-27 2009-11-27 STEEL SOLIDIFICATION MICROSTRUCTURE DETECTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008302566A JP5634673B2 (en) 2008-11-27 2008-11-27 Method for detecting solidification structure of steel

Publications (2)

Publication Number Publication Date
JP2010125483A true JP2010125483A (en) 2010-06-10
JP5634673B2 JP5634673B2 (en) 2014-12-03

Family

ID=42225829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008302566A Active JP5634673B2 (en) 2008-11-27 2008-11-27 Method for detecting solidification structure of steel

Country Status (4)

Country Link
JP (1) JP5634673B2 (en)
CN (1) CN102227633B (en)
BR (1) BRPI0921171B1 (en)
WO (1) WO2010061968A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197858B (en) * 2014-09-10 2017-05-03 重庆大学 Method for quantitatively describing topographic characteristics of solidification structures of variety steel continuous casting billet
CN109406238B (en) * 2018-12-07 2023-10-17 郑州机械研究所有限公司 Multifunctional clamp for preparing metallographic specimen and metallographic specimen preparation method
CN114018920A (en) * 2021-10-29 2022-02-08 河南中原特钢装备制造有限公司 Method for displaying delta ferrite in P91 and P92 steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943230A (en) * 1995-07-31 1997-02-14 Kawasaki Steel Corp Corrosion liquid for old austenite grain boundary appearance of steel and exhibition method with the use of it
JP2006198649A (en) * 2005-01-19 2006-08-03 Kobe Steel Ltd Method for determining whether or not hot charge rolling (hcr) is applicable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186796A (en) * 1989-06-05 1993-02-16 Stelco Inc. Method and apparatus for electrolytic etching of metals
KR960000597B1 (en) * 1993-08-09 1996-01-09 포항종합제철주식회사 Etching solution for viewing a structure of a very low carbon steel and etching method thereby
JP2005164340A (en) * 2003-12-01 2005-06-23 Sanyo Special Steel Co Ltd Corrosion method due to corrosive liquid for microscopically detecting metal texture of martensite stainless steel or alloy tool steel
JP4604737B2 (en) * 2004-01-30 2011-01-05 Jfeスチール株式会社 Corrosion solution for the appearance of old austenite grain boundaries in steel materials and the method of appearance of old austenite grain boundaries in steel materials
CN101144762B (en) * 2006-09-13 2010-05-12 鞍钢股份有限公司 Corrosive agent for displaying silicon steel solidification structure and preparation method thereof
CN100554926C (en) * 2007-03-13 2009-10-28 北京科技大学 A kind of method for preparing super-low carbon steel gold-phase sample and display organization

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0943230A (en) * 1995-07-31 1997-02-14 Kawasaki Steel Corp Corrosion liquid for old austenite grain boundary appearance of steel and exhibition method with the use of it
JP2006198649A (en) * 2005-01-19 2006-08-03 Kobe Steel Ltd Method for determining whether or not hot charge rolling (hcr) is applicable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7014002343; 鉄と鋼 第6号, 19750630, 884

Also Published As

Publication number Publication date
WO2010061968A1 (en) 2010-06-03
CN102227633B (en) 2014-06-25
BRPI0921171A2 (en) 2016-02-23
CN102227633A (en) 2011-10-26
JP5634673B2 (en) 2014-12-03
BRPI0921171B1 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP4604737B2 (en) Corrosion solution for the appearance of old austenite grain boundaries in steel materials and the method of appearance of old austenite grain boundaries in steel materials
US8535552B2 (en) Method of evaluating center segregation of continuous cast slab
JP5634673B2 (en) Method for detecting solidification structure of steel
JP5033112B2 (en) Method for detecting solidification structure of steel
Tierce et al. Corrosion behaviour of brazed multilayer material AA4343/AA3003/AA4343: Influence of coolant parameters
Li et al. Corrosion performance and mechanical properties of friction stir welded AA2024‐T3 joints under different corrosion solution exposure
JPH0613756B2 (en) Ferrite grain boundary developing solution and etching method
Pojtanabuntoeng et al. Influence of the Co-Condensation of Water and n-Heptane on Top of the Line Corrosion
JP2005030846A (en) Creep void detecting method
JP5448432B2 (en) Method for detecting solidification structure of steel
Klein et al. Microstructure‐based characterization of the corrosion behavior of the creep resistant Mg–Al–Ba–Ca alloy DieMag422
JP2001289839A (en) Corrosion liquid for exposing dendrite of carbon steel or low-alloy steel cast piece
KR102264345B1 (en) Composition for enhancing surface property of aluminium sheet and method of enhancing using the same
JP2005156425A (en) Method for evaluating corrosiveness of water
Hu et al. The effect of surface treatment on the corrosion behavior of a pure Ta sheet in an equimolar NaCl–KCl melt at 850° C in air. Part 1: Laser surface melting
Imboden et al. Anodic Polishing of Plain Carbon Steels
Yang et al. Electrochemical behavior of AISI 302 austenitic stainless steel in coal chemical high‐salt wastewater
JP2003266154A (en) Scum weir and method for producing thin cast slab with twin-drum type continuous casting machine having scum weir
MAGNABOSCO et al. RELATION BETWEEN MICROSTRUTURE AND SELECTIVE CORROSION OF DUPLEX STAINLESS STEEL SUBMMITED TO HEATED HYDROCHLORIC ACID.
JP2003121341A (en) Pitting corrosion test piece for boiler and life prediction method for boiler using the same
JPH0826445B2 (en) Carburizing Degree Inspection Method for Cast Steel Pipe
JPH07120457A (en) Detection method for solidified structure of extra-low carbon steel
Rakoch et al. Electrochemical and corrosion behavior of AK12M2 alloy in a model solution used in heating systems
JPH05507142A (en) Electrolytic etching of metal to reveal internal quality
JP2002181807A (en) Solution and method for detecting nitride layer in ferritic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131211

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140109

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5634673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250