JP2010111533A - Method of producing glass plate - Google Patents

Method of producing glass plate Download PDF

Info

Publication number
JP2010111533A
JP2010111533A JP2008284509A JP2008284509A JP2010111533A JP 2010111533 A JP2010111533 A JP 2010111533A JP 2008284509 A JP2008284509 A JP 2008284509A JP 2008284509 A JP2008284509 A JP 2008284509A JP 2010111533 A JP2010111533 A JP 2010111533A
Authority
JP
Japan
Prior art keywords
glass
molten glass
temperature
carbonate
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008284509A
Other languages
Japanese (ja)
Other versions
JP4790783B2 (en
Inventor
Kohei Yamamoto
耕平 山本
Makoto Kitano
誠 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Original Assignee
Avanstrate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avanstrate Inc filed Critical Avanstrate Inc
Priority to JP2008284509A priority Critical patent/JP4790783B2/en
Publication of JP2010111533A publication Critical patent/JP2010111533A/en
Application granted granted Critical
Publication of JP4790783B2 publication Critical patent/JP4790783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method which can suppress generation of bubbles containing SO<SB>2</SB>when producing a glass plate containing a low component ratio of an alkali metal oxide and a relatively high component ratio of SiO<SB>2</SB>using a carbonate. <P>SOLUTION: The production method includes: a melting step of obtaining a molten glass by melting a glass material containing carbonate which has been adjusted in order to obtain a glass containing 57-65 mass% of SiO<SB>2</SB>and at most 2 mass% of an alkali metal oxide; a clearing step of clearing by raising the temperature of the molten glass further; and a molding step of molding the cleared molten glass to a plate. In the melting step, an oxidative gas is bubbled into the molten glass. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、SiO2の含有率が比較的高く、アルカリ金属酸化物の含有率が低いガラス板の製造方法に関する。 The present invention relates to a method for producing a glass plate having a relatively high SiO 2 content and a low alkali metal oxide content.

従来より、ガラス板を製造する際には、MgO、CaO、SrO等の2族金属の酸化物の供給源として、硝酸塩、炭酸塩等が用いられている。例えば、液晶ディスプレイ用のガラス基板を製造する際には、溶融ガラスの酸化性を高めるために、硝酸塩が選択されている。溶融ガラスの酸化性が低くなると、溶融ガラス中に溶解していたSO3がSO2となって新たに気泡を生じさせたり、既に存在している泡中へ拡散し気泡を成長させるためである。特に、液晶ディスプレイ用ガラス基板のように、SiO2の含有率が比較的高くアルカリ金属酸化物の含有率が低い組成を有するガラスは、溶融状態における粘度が高いため、気泡が残存しやすい。 Conventionally, when manufacturing a glass plate, nitrates, carbonates, and the like have been used as sources of Group 2 metal oxides such as MgO, CaO, and SrO. For example, when manufacturing a glass substrate for a liquid crystal display, nitrate is selected in order to increase the oxidizability of molten glass. This is because when the oxidizability of the molten glass is lowered, SO 3 dissolved in the molten glass becomes SO 2 to generate new bubbles or diffuse into the existing bubbles to grow the bubbles. . In particular, a glass having a composition having a relatively high SiO 2 content and a low alkali metal oxide content, such as a glass substrate for a liquid crystal display, has a high viscosity in a molten state, and thus bubbles tend to remain.

しかしながら、硝酸塩がガラス原料に多量に含まれていると、ガラス原料を溶解させる際に多くの窒素酸化物(NOx)が放出されることになる。NOxは大気汚染の原因となるため、これを極力排出しないことが求められる。このような観点からは、硝酸塩に代えて、炭酸塩を用いることが有効である。 However, if a large amount of nitrate is contained in the glass raw material, a large amount of nitrogen oxide (NO x ) is released when the glass raw material is dissolved. Since NO x causes air pollution, it is required not to exhaust it as much as possible. From such a viewpoint, it is effective to use carbonate instead of nitrate.

ところが、工業的に使用できる炭酸塩は、硝酸塩よりも不純物として硫化物が多く含まれるため、炭酸塩を用いると溶融ガラス中のSO3の量が多くなる。しかも、炭酸塩は硝酸塩よりも酸化力が弱いため、炭酸塩を用いた場合は硝酸塩を用いた場合よりも溶融ガラスの酸化性が低下する。このため、炭酸塩を用いた場合には、硝酸塩を用いた場合よりも溶融ガラス中にSO2を含有する気泡ができやすくなる。このSO2を含有する気泡は、製品歩留まりを著しく低下させる。 However, carbonates that can be used industrially contain more sulfides as impurities than nitrates, so when carbonates are used, the amount of SO 3 in the molten glass increases. Moreover, since carbonate has a weaker oxidizing power than nitrate, the oxidizability of molten glass is lower when carbonate is used than when nitrate is used. For this reason, when carbonate is used, bubbles containing SO 2 are more easily formed in the molten glass than when nitrate is used. The bubbles containing SO 2 significantly reduce the product yield.

ガラス板中の気泡を取り除くためには、清澄剤の添加が有効であることが知られている。しかし、As23に代表される清澄効果の高い清澄剤は環境負荷が高いものが多く、これを多量に使用した気泡の除去は環境の面から望ましくないとされる場合がある。 It is known that the addition of a clarifying agent is effective for removing bubbles in the glass plate. However, many refining agents having a high refining effect typified by As 2 O 3 have a high environmental load, and removal of bubbles using a large amount thereof may be undesirable from an environmental standpoint.

なお、特許文献1には、ガラス板からの気泡の除去を目的とするものではなく酸化ビスマスが還元されて透過率が悪化することを防止するためであるが、酸化ビスマスを含む光学ガラスを製造する際に、溶融ガラス中に酸素をバブリングすることが記載されている。しかしながら、この光学ガラスは、SiO2の含有率が60モル%以下(換算すると多くても20質量%程度)であって溶融および清澄が容易なものである。
特開2005−502574号公報
In addition, Patent Document 1 is not intended to remove bubbles from a glass plate, but to prevent deterioration of transmittance due to reduction of bismuth oxide, but an optical glass containing bismuth oxide is manufactured. In doing so, it is described that oxygen is bubbled into the molten glass. However, this optical glass has a SiO 2 content of 60 mol% or less (at most, about 20 mass% in terms of conversion), and is easy to melt and clarify.
JP 2005-502574 A

本発明は、このような事情に鑑み、炭酸塩を用いてSiO2の含有率が比較的高くかつアルカリ金属酸化物の含有率が低いガラス板を製造する際のSO2を含有する気泡の発生を抑制することができる製造方法を提供することを目的とする。 In view of such circumstances, the present invention generates SO 2 -containing bubbles when producing a glass plate having a relatively high SiO 2 content and a low alkali metal oxide content using carbonate. It aims at providing the manufacturing method which can suppress this.

前記目的を達成するために、本発明は、SiO2の含有率が57〜65質量%でアルカリ金属酸化物の含有率が2質量%以下であるガラスが得られるように調製された、炭酸塩を含むガラス原料を溶解させて溶融ガラスを得る溶解工程と、前記溶融ガラスをさらに昇温させて清澄する清澄工程と、清澄された前記溶融ガラスを板状に成形する成形工程と、を含み、前記溶解工程では、前記溶融ガラスに酸化性ガスをバブリングする、ガラス板の製造方法を提供する。 To achieve the above object, the present invention provides a carbonate prepared so as to obtain a glass having a SiO 2 content of 57 to 65 mass% and an alkali metal oxide content of 2 mass% or less. A melting step of obtaining a molten glass by melting a glass raw material, a clarification step of further raising the temperature of the molten glass and clarifying, and a molding step of forming the clarified molten glass into a plate shape, In the melting step, a glass plate manufacturing method is provided, in which an oxidizing gas is bubbled through the molten glass.

上記の構成によれば、溶解工程で溶融ガラスに酸化性ガスをバブリングすることにより、炭酸塩を用いたときの溶融ガラスの酸化性を向上させることができる。従って、本発明によれば、SO2を含有する気泡の発生を抑えることができる。 According to said structure, the oxidizing property of molten glass when carbonate is used can be improved by bubbling oxidizing gas to molten glass at a melt | dissolution process. Therefore, according to the present invention, the generation of bubbles containing SO 2 can be suppressed.

以下、本発明を実施するための形態について詳細に説明する。本発明の一実施形態に係るガラス板の製造方法は、溶解工程、清澄工程、冷却工程、および成形工程からなる。以下、各工程ごとに説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail. The manufacturing method of the glass plate which concerns on one Embodiment of this invention consists of a melt | dissolution process, a clarification process, a cooling process, and a formation process. Hereinafter, each step will be described.

(溶解工程)
溶解工程では、ガラス原料を溶解させて溶融ガラスを得る。
(Dissolution process)
In the melting step, molten glass is obtained by melting glass raw materials.

ガラス原料は、SiO2の含有率が57〜65質量%でアルカリ金属酸化物の含有率が2質量%以下であるガラスが得られるように調製された、炭酸塩を含むものであれば特に限定されるものではない。ただし、ガラス原料は、質量%で表示して、実質的に以下の組成からなるガラスが得られるように調製されたものであることが好ましい。
SiO2 57〜65%
Al23 15〜19%
23 8〜13%
MgO 1〜3%
CaO 4〜7%
SrO 1〜4%
BaO 0〜2%
Na2O 0〜1%
2O 0〜1%
As23 0〜1%
Sb23 0〜1%
SnO2 0〜1%
Fe23 0〜1%
ZrO2 0〜1%
The glass raw material is particularly limited as long as it contains carbonate prepared so as to obtain a glass having a SiO 2 content of 57 to 65% by mass and an alkali metal oxide content of 2% by mass or less. Is not to be done. However, it is preferable that the glass raw material is prepared so as to obtain a glass having substantially the following composition, expressed in mass%.
SiO 2 57~65%
Al 2 O 3 15-19%
B 2 O 3 8-13%
MgO 1-3%
CaO 4-7%
SrO 1-4%
BaO 0-2%
Na 2 O 0-1%
K 2 O 0-1%
As 2 O 3 0 to 1%
Sb 2 O 3 0 to 1%
SnO 2 0-1%
Fe 2 O 3 0 to 1%
ZrO 2 0 to 1%

SiO2の含有率については、58〜65質量%であることがより好ましい。ここで、「実質的に」とは、0.1質量%未満の範囲で微量成分の存在を許容する趣旨である。従って、上記の組成を有するガラスは、0.1質量%未満の範囲でその他微量成分の混入を許容する。また、上記の組成中のFe23、As23、Sb23およびSnO2の各含有率は、複数の価数を有するFe、As、SbまたはSnの成分を全てFe23、As23、Sb23またはSnO2として扱って換算した値である。 The content of SiO 2, and more preferably 58 to 65 wt%. Here, “substantially” means to allow the presence of a trace component in a range of less than 0.1% by mass. Therefore, the glass having the above composition allows mixing of other trace components in the range of less than 0.1% by mass. Each content of Fe 2 O 3 , As 2 O 3 , Sb 2 O 3, and SnO 2 in the above composition is such that Fe, As, Sb, or Sn components having a plurality of valences are all Fe 2 O. 3 , a value converted by treating as As 2 O 3 , Sb 2 O 3 or SnO 2 .

炭酸塩は、上記ガラス組成中のMgO、CaO、SrO、BaOとなるものであり、例えば塩基性炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム等を用いることができる。すなわち、炭酸塩は、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウムおよび炭酸バリウムから選ばれる少なくとも一種であってもよい。   The carbonate is MgO, CaO, SrO, BaO in the glass composition, and for example, basic magnesium carbonate, calcium carbonate, strontium carbonate, barium carbonate, or the like can be used. That is, the carbonate may be at least one selected from basic magnesium carbonate, calcium carbonate, strontium carbonate, and barium carbonate.

ガラス組成中のAs23、Sb23、SnO2、Fe23は、清澄作用を有する成分であり、これらは清澄剤としてガラス原料に添加してもよい。 As 2 O 3 , Sb 2 O 3 , SnO 2 , and Fe 2 O 3 in the glass composition are components having a fining action, and these may be added to the glass raw material as a fining agent.

本溶解工程では、上記のように調製されたガラス原料を、その組成等に応じた設定温度で溶解させて、最終的に1540℃以上の溶融ガラスを得ることが好ましい。より好ましくは、溶解工程で得る最終的な溶融ガラスの温度は1545℃以上である。   In the main melting step, it is preferable that the glass raw material prepared as described above is melted at a set temperature corresponding to the composition and the like to finally obtain a molten glass of 1540 ° C. or higher. More preferably, the temperature of the final molten glass obtained in the melting step is 1545 ° C. or higher.

さらに、溶解工程では、ガラス原料が溶解して溶融ガラスが生成された後に、この溶融ガラスに酸化性ガスをバブリングする。このように酸化性ガスをバブリングすることにより、溶融ガラスの酸化性を向上させて、SO2を含有する気泡の発生を抑制することができる。酸化性ガスとしては、酸素、二酸化酸素、水蒸気等を挙げることができるが、その中でも酸素を用いることが最も効果的である。これは、本発明の発明者が行った実験により確認された。 Further, in the melting step, after the glass raw material is melted and a molten glass is generated, an oxidizing gas is bubbled into the molten glass. By bubbling the oxidizing gas in this manner, the oxidizability of the molten glass can be improved and the generation of bubbles containing SO 2 can be suppressed. Examples of the oxidizing gas include oxygen, oxygen dioxide, water vapor, etc. Among them, it is most effective to use oxygen. This was confirmed by experiments conducted by the inventors of the present invention.

バブリングは、溶融ガラスの生成後であれば溶解工程のどの段階で行ってもSO2を含有する気泡の発生を抑える効果が得られるが、ガラス原料が溶解し始めてから溶解し終わるまでの間の初期の段階、すなわちガラス原料の一部が溶融ガラスになった直後に行うことが最も効果的である。この理由は、溶解の初期の段階でガラスの性質が決まるために、その段階でバブリングを行えば溶融ガラスの酸化性を高く維持できることにあると考えられる。これを実現するには、少なくとも溶融ガラスの温度が1480℃から1520℃まで推移する間バブリングを行うことが好ましい。 Although bubbling can be performed at any stage of the melting process after the production of molten glass, the effect of suppressing the generation of bubbles containing SO 2 can be obtained. It is most effective at an initial stage, that is, immediately after a part of the glass raw material becomes molten glass. The reason for this is considered to be that, since the properties of the glass are determined at the initial stage of melting, if the bubbling is performed at that stage, the oxidizability of the molten glass can be maintained high. In order to realize this, it is preferable to perform bubbling while the temperature of the molten glass changes from 1480 ° C. to 1520 ° C. at least.

具体的には、バブリングは、溶融ガラスの温度が1400℃程度になった時から開始することが好ましい。溶融ガラスの温度が1400℃程度になれば溶融ガラスの粘度が102.5Pa・s程度になってバブリングが実施できるようになり、しかも、溶融ガラスに酸素を吸収させるには、溶融ガラスの温度が低い方が効果的だからである。 Specifically, the bubbling is preferably started when the temperature of the molten glass reaches about 1400 ° C. If the temperature of the molten glass is about 1400 ° C., the viscosity of the molten glass becomes about 10 2.5 Pa · s, and bubbling can be performed. Moreover, in order for the molten glass to absorb oxygen, the temperature of the molten glass is This is because the lower one is more effective.

一方、バブリングは、溶融ガラスの温度が1550℃程度になった時に終了するようにしてもよい。なお、溶融ガラスの温度が1550℃程度になれば、溶融ガラスの粘度が101.5Pa・s程度になる。好ましくは、バブリングを終了するタイミングは、溶融ガラスの温度が溶解工程における最終的な温度よりも3℃(特に好ましくは4℃)低い温度となる前である。 On the other hand, the bubbling may be terminated when the temperature of the molten glass reaches about 1550 ° C. If the temperature of the molten glass is about 1550 ° C., the viscosity of the molten glass is about 10 1.5 Pa · s. Preferably, the bubbling is finished before the temperature of the molten glass becomes 3 ° C. (particularly preferably 4 ° C.) lower than the final temperature in the melting step.

バブリングを上述した期間行うには、連続溶解工程内において溶融ガラスの温度や粘度などの状態を適宜判断して、バブリングを開始したり終了したりしてもよい。   In order to perform the bubbling for the period described above, the bubbling may be started or ended by appropriately determining the state of the molten glass such as the temperature and viscosity in the continuous melting step.

(清澄工程)
清澄工程では、溶融ガラスをさらに昇温させて清澄する。この清澄は、溶融ガラスの温度を1600℃以上に上昇させて行うことが好ましく、1610℃以上に上昇させて行うことがより好ましい。
(Clarification process)
In the clarification step, the molten glass is further heated to clarify. This clarification is preferably performed by raising the temperature of the molten glass to 1600 ° C. or higher, more preferably 1610 ° C. or higher.

(冷却工程)
冷却工程では、清澄された溶融ガラスを成形に適した温度(例えば、1200℃)まで冷却する。この冷却は、例えば、白金で構成された導管で溶融ガラスを導きながら行う。
(Cooling process)
In the cooling step, the clarified molten glass is cooled to a temperature suitable for molding (for example, 1200 ° C.). This cooling is performed, for example, while guiding molten glass through a conduit made of platinum.

(成形工程)
成形工程では、清澄後に冷却された溶融ガラスを板状に成形する。溶融ガラスの板状に成形する工法としては、例えばフロート法等があるが、本発明は、特にダウンドロー法により溶融ガラスを板状に成形する工法に適している。
(Molding process)
In the forming step, the molten glass cooled after clarification is formed into a plate shape. Examples of a method for forming a molten glass into a plate shape include a float method, but the present invention is particularly suitable for a method for forming a molten glass into a plate shape by a downdraw method.

以下、実施例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not restrict | limited to these Examples at all.

(実施例1)
まず、炭酸塩を含むガラス原料を、質量%で表示して、以下の組成からなるガラスが得られるように調製した。
SiO2 60.9%
Al23 16.9%
23 11.6%
MgO 1.7%
CaO 5.1%
SrO 2.6%
BaO 0.7%
2O 0.25%
SnO2 0.13%
Fe23 0.15%
Example 1
First, the glass raw material containing carbonate was displayed by mass%, and it prepared so that the glass which consists of the following compositions could be obtained.
SiO 2 60.9%
Al 2 O 3 16.9%
B 2 O 3 11.6%
MgO 1.7%
CaO 5.1%
SrO 2.6%
BaO 0.7%
K 2 O 0.25%
SnO 2 0.13%
Fe 2 O 3 0.15%

炭酸塩としては、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウムおよび炭酸バリウムを用い、上記の組成のうちのMgO、CaO、SrOおよびBaOの全量を炭酸塩として供給した。   As the carbonate, basic magnesium carbonate, calcium carbonate, strontium carbonate and barium carbonate were used, and the whole amount of MgO, CaO, SrO and BaO in the above composition was supplied as carbonate.

調製したガラス原料100gを白金ルツボに入れ、これを蓋付きの磁製容器内に収納した。その後、磁製容器の蓋に、白金ルツボ内のガラス原料中に酸素を供給可能となるようにバブリングチューブ(白金)を取り付けるとともに、ガラス原料または溶融ガラスの温度を測定するための熱電対(白金合金)を取り付け、磁製容器を電気炉内に投入した。バブリングチューブと熱電対の先端は、電気炉外に導出させ、それらの先端に酸素ボンベと温度計(大倉電気社製EC5500)をそれぞれ取り付けた。   100 g of the prepared glass raw material was put in a platinum crucible and stored in a magnetic container with a lid. After that, a bubbling tube (platinum) is attached to the lid of the porcelain container so that oxygen can be supplied into the glass raw material in the platinum crucible, and a thermocouple for measuring the temperature of the glass raw material or molten glass (platinum) Alloy) was attached and the magnetic container was put into an electric furnace. The bubbling tube and the tip of the thermocouple were led out of the electric furnace, and an oxygen cylinder and a thermometer (EC5500 manufactured by Okura Electric Co., Ltd.) were attached to the tip of each.

その状態で、まず溶解工程として、電気炉の設定温度を1550℃にして2時間の加熱を行った。さらに溶解工程の間に、溶融ガラス中に酸素をバブリングした。バブリングは、加熱開始から30分後に開始し、30分継続して加熱開始から1時間後に終了した。バブリングの流量は、0.75L/min(1気圧、20℃)とした。   In that state, first, as a melting step, the electric furnace was set at 1550 ° C. and heated for 2 hours. Further, oxygen was bubbled into the molten glass during the melting process. Bubbling started 30 minutes after the start of heating, continued for 30 minutes, and ended after 1 hour from the start of heating. The flow rate of bubbling was 0.75 L / min (1 atm, 20 ° C.).

加熱開始から2時間後(溶解工程終了後)、清澄工程として、電気炉の設定温度を1620℃に変更し、溶融ガラスの温度をさらに上昇させて2時間の清澄を行った。   Two hours after the start of heating (after the completion of the melting step), as the clarification step, the temperature setting of the electric furnace was changed to 1620 ° C., and the temperature of the molten glass was further increased to perform clarification for 2 hours.

加熱開始から4時間後(清澄工程終了後)、冷却工程として、電気炉の設定温度を3時間かけて1200℃まで一定の割合で下降させ、溶融ガラスを冷却した。   After 4 hours from the start of heating (after the clarification process), as the cooling process, the set temperature of the electric furnace was lowered to 1200 ° C. at a constant rate over 3 hours to cool the molten glass.

ここで、溶解工程から冷却工程までの電気炉の設定温度をグラフに示すと、図1中の実線のようになる。これらの工程においては、上述した温度計でガラス原料または溶融ガラスの温度を適時測定した。その結果は表1の通りであった。これをグラフに示すと、図1中の一点鎖線のようになる。   Here, when the set temperature of the electric furnace from the melting step to the cooling step is shown in a graph, it becomes like a solid line in FIG. In these steps, the temperature of the glass raw material or molten glass was measured in a timely manner with the thermometer described above. The results are shown in Table 1. When this is shown in the graph, it becomes like the one-dot chain line in FIG.

Figure 2010111533
Figure 2010111533

表1から、バブリング開始時の溶融ガラスの温度は1463℃、バブリング終了時の溶融ガラスの温度が1542℃であったことが分かる。また、溶解工程において得られる最終的な溶融ガラスの温度は1548℃であり、バブリングを終了した時点では、溶融ガラスの温度は最終的な温度である1548℃よりも6℃低かったことが分かる。   From Table 1, it can be seen that the temperature of the molten glass at the start of bubbling was 1463 ° C., and the temperature of the molten glass at the end of bubbling was 1542 ° C. In addition, the temperature of the final molten glass obtained in the melting step is 1548 ° C., and it can be seen that the temperature of the molten glass was 6 ° C. lower than the final temperature of 1548 ° C. when the bubbling was completed.

加熱開始から7時間後(冷却工程後)、成形工程として、白金ルツボを720℃に設定した別の電気炉に移し替え、1時間静置した。   After 7 hours from the start of heating (after the cooling step), as a forming step, the platinum crucible was transferred to another electric furnace set at 720 ° C. and allowed to stand for 1 hour.

加熱開始から8時間後に電気炉の電源を切り、ガラスを室温まで冷却したのち電気炉から白金ルツボを取り出して、ガラス試料を得た。   After 8 hours from the start of heating, the electric furnace was turned off, the glass was cooled to room temperature, and then a platinum crucible was taken out of the electric furnace to obtain a glass sample.

(実施例2)
酸素のバブリングを、加熱開始から1.5時間後に開始し、2時間後に終了した以外は、実施例1と同様にしてガラス試料を得た。
(Example 2)
A glass sample was obtained in the same manner as in Example 1 except that oxygen bubbling started 1.5 hours after the start of heating and ended after 2 hours.

(比較例)
酸素のバブリングを行わなかった以外は、実施例1と同様にしてガラス試料を得た。
(Comparative example)
A glass sample was obtained in the same manner as in Example 1 except that oxygen was not bubbled.

(試験)
実施例1,2および比較例のガラス試料について、ガラス試料中に発生した気泡の数を測定し、1gあたりの気泡数を算出した。また、その気泡の成分を質量分析計(In Process Instruments社製GIA522type)を用いて測定し、気泡中に含まれるSO2の比率をモル%で算出した。これらの結果を表2に示す。
(test)
For the glass samples of Examples 1 and 2 and the comparative example, the number of bubbles generated in the glass sample was measured, and the number of bubbles per 1 g was calculated. Further, measured using a mass spectrometer (an In Process Instruments Inc. GIA522type) component of the bubbles was calculated the ratio of SO 2 contained in the bubbles mol%. These results are shown in Table 2.

Figure 2010111533
Figure 2010111533

表2から、バブリングを実施した実施例1,2では、バブリングを実施しなかった比較例に比べ、気泡の数が格段に少ないことが分かる。また、溶解の初期にバブリングを実施した実施例1では、溶解工程の終期にバブリングを実施した実施例2に比べ、気泡中のSO2の比率が小さくなっていることが分かる。これは、溶融ガラス中でSO3→SO2の反応が抑制された結果だと推測される。 From Table 2, it can be seen that in Examples 1 and 2 in which bubbling was performed, the number of bubbles was much smaller than in the comparative example in which bubbling was not performed. Further, it can be seen that in Example 1 in which bubbling was performed at the initial stage of dissolution, the ratio of SO 2 in the bubbles was smaller than in Example 2 in which bubbling was performed at the end of the dissolution process. This is presumed to be a result of suppressing the reaction of SO 3 → SO 2 in the molten glass.

さらに、各ガラス試料について、波長が200〜500nmの電磁波の透過率を測定した。その結果は、図2に示すとおりであった。このグラフから、比較例よりも実施例1,2の方が270nmから400nmにかけて透過率が大きく減少していることが分かる。この理由は、FeOとFe23の共存状態におけるFe23の割合が、比較例よりも実施例1,2の方が大きくなっているためであると考えられる。このことから、実施例1,2の方が比較例よりも溶融ガラスの酸化性が高まったことが分かる。なお、図2では、実施例1と実施例2が同一線上にあるように見えるが、実際は実施例1の方が実施例2よりも透過率が僅かに減少していた。このことから、実施例1の方が実施例2よりも溶融ガラスの酸化性が高まったことが分かる。 Furthermore, the transmittance | permeability of the electromagnetic waves with a wavelength of 200-500 nm was measured about each glass sample. The result was as shown in FIG. From this graph, it can be seen that the transmittance in Examples 1 and 2 is greatly reduced from 270 nm to 400 nm than in the comparative example. The reason for this is considered to be that the proportion of Fe 2 O 3 in the coexistence state of FeO and Fe 2 O 3 is larger in Examples 1 and 2 than in the comparative example. From this, it can be seen that in Examples 1 and 2, the oxidizability of the molten glass was higher than in the comparative example. In FIG. 2, although Example 1 and Example 2 seem to be on the same line, the transmittance of Example 1 was actually slightly smaller than that of Example 2. From this, it can be seen that the oxidizability of the molten glass was higher in Example 1 than in Example 2.

(ガラス板の実施例)
実施例1で示した組成となるように調製した、炭酸塩を含むガラス原料を、耐火煉瓦製の溶解槽と白金製の調整槽(清澄工程を実行する槽)を備えた連続溶解装置を用いて、1550℃の設定温度で溶解させて1550℃程度の溶融ガラスを得、この溶融ガラスを1620℃で清澄した後に1550℃で攪拌し、さらにダウンドロー法により厚さ0.7mmの薄板状に成形し、ガラス板を得た。溶解槽では、溶融ガラスの温度が1460〜1540℃程度となっている位置で酸素をバブリングした。
(Example of glass plate)
A glass raw material containing a carbonate prepared so as to have the composition shown in Example 1 is used with a continuous melting apparatus equipped with a melting tank made of refractory bricks and an adjustment tank made of platinum (a tank for performing a clarification process). The molten glass is melted at a set temperature of 1550 ° C. to obtain a molten glass of about 1550 ° C., this molten glass is clarified at 1620 ° C. and stirred at 1550 ° C. Molded to obtain a glass plate. In the melting tank, oxygen was bubbled at a position where the temperature of the molten glass was about 1460 to 1540 ° C.

このようにして得たガラス板に対し、実施例1,2および比較例と同様の方法で気泡数を測定したところ、その気泡数は22×10-6個/cm3と非常に少なかった。このように、本発明を適用してガラス板を製造した場合には高品質のガラス板が得られ、このようなガラス板は、第7世代と呼ばれる1870×2200mmサイズもしくはそれ以上の大型のフラットパネルディスプレイのガラス基板に用いるのに好適である。 When the number of bubbles was measured for the glass plate thus obtained by the same method as in Examples 1 and 2 and the comparative example, the number of bubbles was as very small as 22 × 10 −6 / cm 3 . Thus, when a glass plate is manufactured by applying the present invention, a high-quality glass plate is obtained, and such a glass plate is a large flat plate of 1870 × 2200 mm size or more called the seventh generation. It is suitable for use in a glass substrate of a panel display.

本発明は、特に、液晶ディスプレイやプラズマディスプレイなどのフラットパネルディスプレイのガラス基板に用いられる、SiO2の含有率が比較的高くかつアルカリ金属酸化物の含有率が低いガラス板を製造する方法として有用である。 The present invention is particularly useful as a method for producing a glass plate having a relatively high SiO 2 content and a low alkali metal oxide content, which is used for glass substrates of flat panel displays such as liquid crystal displays and plasma displays. It is.

加熱開始からの経過時間と電気炉の設定温度および溶融ガラスの温度との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time from a heating start, the preset temperature of an electric furnace, and the temperature of a molten glass. 実施例1,2および比較例のガラス試料に対する電磁波透過率測定結果を示すグラフである。It is a graph which shows the electromagnetic wave transmittance measurement result with respect to the glass sample of Examples 1, 2 and a comparative example.

Claims (10)

SiO2の含有率が57〜65質量%でアルカリ金属酸化物の含有率が2質量%以下であるガラスが得られるように調製された、炭酸塩を含むガラス原料を溶解させて溶融ガラスを得る溶解工程と、
前記溶融ガラスをさらに昇温させて清澄する清澄工程と、
清澄された前記溶融ガラスを板状に成形する成形工程と、を含み、
前記溶解工程では、前記溶融ガラスに酸化性ガスをバブリングする、ガラス板の製造方法。
A molten glass is obtained by melting a glass raw material containing carbonate prepared so as to obtain a glass having a SiO 2 content of 57 to 65% by mass and an alkali metal oxide content of 2% by mass or less. A dissolution process;
A clarification step of further raising the temperature of the molten glass to clarify,
Forming the clarified molten glass into a plate shape, and
In the melting step, an oxidizing gas is bubbled through the molten glass.
前記溶解工程では、前記ガラス原料を溶解させて最終的に1540℃以上の溶融ガラスを得る、請求項1に記載のガラス板の製造方法。   The method for producing a glass plate according to claim 1, wherein in the melting step, the glass raw material is melted to finally obtain a molten glass of 1540 ° C. or higher. 前記バブリングを、少なくとも前記溶融ガラスの温度が1480℃から1520℃まで推移する間行う、請求項2に記載のガラス板の製造方法。   The manufacturing method of the glass plate of Claim 2 which performs the said bubbling while the temperature of the said molten glass changes from 1480 degreeC to 1520 degreeC at least. 前記バブリングを、前記溶融ガラスの温度が前記溶解工程における最終的な温度よりも3℃低い温度となる前に終了する、請求項3に記載のガラス板の製造方法。   The manufacturing method of the glass plate of Claim 3 which complete | finishes the said bubbling before the temperature of the said molten glass becomes temperature lower 3 degreeC than the final temperature in the said melt | dissolution process. 前記ガラス原料は、質量%で表示して、実質的に以下の組成からなるガラスが得られるように調製されたものである、請求項1〜4のいずれか一項に記載のガラス板の製造方法。
SiO2 57〜65%
Al23 15〜19%
23 8〜13%
MgO 1〜3%
CaO 4〜7%
SrO 1〜4%
BaO 0〜2%
Na2O 0〜1%
2O 0〜1%
As23 0〜1%
Sb23 0〜1%
SnO2 0〜1%
Fe23 0〜1%
ZrO2 0〜1%
The said glass raw material is represented by the mass%, and the glass plate manufacture as described in any one of Claims 1-4 prepared so that the glass which consists of the following compositions substantially may be obtained. Method.
SiO 2 57~65%
Al 2 O 3 15-19%
B 2 O 3 8-13%
MgO 1-3%
CaO 4-7%
SrO 1-4%
BaO 0-2%
Na 2 O 0-1%
K 2 O 0-1%
As 2 O 3 0 to 1%
Sb 2 O 3 0 to 1%
SnO 2 0-1%
Fe 2 O 3 0 to 1%
ZrO 2 0 to 1%
前記炭酸塩は、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウムおよび炭酸バリウムから選ばれる少なくとも一種である、請求項5に記載のガラス板の製造方法。   The said carbonate is a manufacturing method of the glass plate of Claim 5 which is at least 1 type chosen from basic magnesium carbonate, calcium carbonate, strontium carbonate, and barium carbonate. 前記酸化性ガスは、酸素である、請求項1〜6のいずれか一項に記載のガラス板の製造方法。   The said oxidizing gas is a manufacturing method of the glass plate as described in any one of Claims 1-6 which is oxygen. 前記成形工程では、ダウンドロー法により前記溶融ガラスが板状に成形される、請求項1〜7のいずれか一項に記載のガラス板の製造方法。   In the said formation process, the said molten glass is shape | molded in plate shape by the down draw method, The manufacturing method of the glass plate as described in any one of Claims 1-7. 前記清澄工程では、前記溶融ガラスの温度を1600℃以上に上昇させて清澄を行う、請求項1〜8のいずれか一項に記載のガラス板の製造方法。   In the said clarification process, the temperature of the said molten glass is raised to 1600 degreeC or more, and the manufacturing method of the glass plate as described in any one of Claims 1-8 which performs clarification. 前記ガラス板は、フラットパネルディスプレイのガラス基板用のものである、請求項1〜9のいずれか一項に記載のガラス板の製造方法。   The said glass plate is a manufacturing method of the glass plate as described in any one of Claims 1-9 for the glass substrate of a flat panel display.
JP2008284509A 2008-11-05 2008-11-05 Manufacturing method of glass plate Expired - Fee Related JP4790783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284509A JP4790783B2 (en) 2008-11-05 2008-11-05 Manufacturing method of glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284509A JP4790783B2 (en) 2008-11-05 2008-11-05 Manufacturing method of glass plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011158698A Division JP5308487B2 (en) 2011-07-20 2011-07-20 Manufacturing method of glass substrate for liquid crystal display

Publications (2)

Publication Number Publication Date
JP2010111533A true JP2010111533A (en) 2010-05-20
JP4790783B2 JP4790783B2 (en) 2011-10-12

Family

ID=42300408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284509A Expired - Fee Related JP4790783B2 (en) 2008-11-05 2008-11-05 Manufacturing method of glass plate

Country Status (1)

Country Link
JP (1) JP4790783B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133467A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
WO2012132472A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
WO2013054532A1 (en) * 2011-10-11 2013-04-18 AvanStrate株式会社 Method for manufacturing glass plate
WO2013054531A1 (en) * 2011-10-11 2013-04-18 AvanStrate株式会社 Method for manufacturing glass plate
JP2013212942A (en) * 2012-03-30 2013-10-17 Avanstrate Inc Method for producing glass plate and apparatus for producing glass plate
JP2013216531A (en) * 2012-04-06 2013-10-24 Avanstrate Inc Manufacturing method of glass plate and manufacturing apparatus of glass plate
JP2014055100A (en) * 2011-03-31 2014-03-27 Avanstrate Inc Glass plate manufacturing method
JP2014070001A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Method and apparatus for production of glass substrate
CN104310751A (en) * 2014-09-24 2015-01-28 德清华宝玻璃有限公司 Glass kiln bubbling pipe holder
KR20150113887A (en) 2014-03-31 2015-10-08 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
KR20160023631A (en) 2014-06-30 2016-03-03 아반스트레이트 가부시키가이샤 Method of making glass substrate, glass substrate and bundle of glass substrates
KR20160093536A (en) 2013-12-26 2016-08-08 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
KR20160093537A (en) 2013-12-26 2016-08-08 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
JP2017007945A (en) * 2010-10-06 2017-01-12 コーニング インコーポレイテッド Alkali-free glass composition having high thermal and chemical stability
CN107445450A (en) * 2013-03-27 2017-12-08 安瀚视特控股株式会社 The manufacture method and glass substrate manufacture device of glass substrate
KR20180008755A (en) 2015-06-30 2018-01-24 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
JP2018528922A (en) * 2015-08-26 2018-10-04 コーニング インコーポレイテッド Glass melting system and method for enhancing homogeneity
KR20190079527A (en) 2017-12-27 2019-07-05 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate and glass substrate manufacturing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026632A (en) * 2002-03-30 2004-01-29 Carl-Zeiss-Stiftung Method for manufacturing non-alkali aluminosilicate glass
JP2005093422A (en) * 2003-08-08 2005-04-07 Nippon Electric Glass Co Ltd Outer envelope for external electrode fluorescent lamp
JP2005132713A (en) * 2003-10-10 2005-05-26 Nippon Electric Glass Co Ltd Method for producing alkali-free glass and alkali-free glass
JP2005306719A (en) * 2004-03-22 2005-11-04 Nippon Electric Glass Co Ltd Glass for display substrate
JP2006076871A (en) * 2003-12-26 2006-03-23 Nippon Electric Glass Co Ltd Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026632A (en) * 2002-03-30 2004-01-29 Carl-Zeiss-Stiftung Method for manufacturing non-alkali aluminosilicate glass
JP2005093422A (en) * 2003-08-08 2005-04-07 Nippon Electric Glass Co Ltd Outer envelope for external electrode fluorescent lamp
JP2005132713A (en) * 2003-10-10 2005-05-26 Nippon Electric Glass Co Ltd Method for producing alkali-free glass and alkali-free glass
JP2006076871A (en) * 2003-12-26 2006-03-23 Nippon Electric Glass Co Ltd Production apparatus for borosilicate sheet glass article, production process therefor and borosilicate sheet glass article
JP2005306719A (en) * 2004-03-22 2005-11-04 Nippon Electric Glass Co Ltd Glass for display substrate

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017007945A (en) * 2010-10-06 2017-01-12 コーニング インコーポレイテッド Alkali-free glass composition having high thermal and chemical stability
JP2014055100A (en) * 2011-03-31 2014-03-27 Avanstrate Inc Glass plate manufacturing method
WO2012132472A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
CN102892719A (en) * 2011-03-31 2013-01-23 安瀚视特控股株式会社 Method for producing glass plate
CN103080026B (en) * 2011-03-31 2016-04-27 安瀚视特控股株式会社 The manufacture method of sheet glass
CN103080026A (en) * 2011-03-31 2013-05-01 安瀚视特控股株式会社 Method for producing glass plate
CN102892719B (en) * 2011-03-31 2015-11-25 安瀚视特控股株式会社 The manufacture method of sheet glass
WO2012133467A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass plate
JP5616450B2 (en) * 2011-03-31 2014-10-29 AvanStrate株式会社 Manufacturing method of glass plate
JPWO2012133467A1 (en) * 2011-03-31 2014-07-28 AvanStrate株式会社 Manufacturing method of glass plate
JPWO2012132472A1 (en) * 2011-03-31 2014-07-24 AvanStrate株式会社 Manufacturing method of glass plate
KR101411139B1 (en) 2011-03-31 2014-06-23 아반스트레이트코리아 주식회사 Method for producing glass sheet
KR101538242B1 (en) * 2011-10-11 2015-07-20 아반스트레이트 가부시키가이샤 Method of making glass sheet
WO2013054532A1 (en) * 2011-10-11 2013-04-18 AvanStrate株式会社 Method for manufacturing glass plate
TWI417256B (en) * 2011-10-11 2013-12-01 Avanstrate Inc Manufacture of glass plates
CN103382077A (en) * 2011-10-11 2013-11-06 安瀚视特控股株式会社 Method for manufacturing glass plate
CN105130164B (en) * 2011-10-11 2018-06-22 安瀚视特控股株式会社 The manufacturing method of glass plate
JP5329725B1 (en) * 2011-10-11 2013-10-30 AvanStrate株式会社 Manufacturing method of glass plate
KR101328333B1 (en) 2011-10-11 2013-11-11 아반스트레이트 가부시키가이샤 Method of making glass sheet
JP2013212991A (en) * 2011-10-11 2013-10-17 Avanstrate Inc Method for manufacturing glass plate
KR20140107645A (en) * 2011-10-11 2014-09-04 아반스트레이트 가부시키가이샤 Method of making glass sheet
TWI564258B (en) * 2011-10-11 2017-01-01 Avanstrate Inc Manufacture of glass plates
KR101663921B1 (en) 2011-10-11 2016-10-07 아반스트레이트 가부시키가이샤 Method of making glass sheet
JPWO2013054532A1 (en) * 2011-10-11 2015-03-30 AvanStrate株式会社 Glass plate manufacturing method and glass plate manufacturing apparatus
CN103168010A (en) * 2011-10-11 2013-06-19 安瀚视特控股株式会社 Method for manufacturing glass plate
KR101541623B1 (en) 2011-10-11 2015-08-03 아반스트레이트 가부시키가이샤 Method of making glass sheet
CN103168009B (en) * 2011-10-11 2015-09-02 安瀚视特控股株式会社 The manufacture method of sheet glass
WO2013054531A1 (en) * 2011-10-11 2013-04-18 AvanStrate株式会社 Method for manufacturing glass plate
JP2015187081A (en) * 2011-10-11 2015-10-29 AvanStrate株式会社 Manufacturing method of glass plate
CN103168009A (en) * 2011-10-11 2013-06-19 安瀚视特控股株式会社 Method for manufacturing glass plate
CN105130164A (en) * 2011-10-11 2015-12-09 安瀚视特控股株式会社 Method for manufacturing glass plate
CN103168010B (en) * 2011-10-11 2015-12-23 安瀚视特控股株式会社 The manufacture method of sheet glass
KR101580070B1 (en) 2011-10-11 2015-12-29 아반스트레이트 가부시키가이샤 Method of making glass sheet
KR20160005372A (en) * 2011-10-11 2016-01-14 아반스트레이트 가부시키가이샤 Method of making glass sheet
JP2013212942A (en) * 2012-03-30 2013-10-17 Avanstrate Inc Method for producing glass plate and apparatus for producing glass plate
JP2013216531A (en) * 2012-04-06 2013-10-24 Avanstrate Inc Manufacturing method of glass plate and manufacturing apparatus of glass plate
JP2014070001A (en) * 2012-09-28 2014-04-21 Avanstrate Inc Method and apparatus for production of glass substrate
CN107445450B (en) * 2013-03-27 2020-09-11 安瀚视特控股株式会社 Method for manufacturing glass substrate and glass substrate manufacturing apparatus
CN107445450A (en) * 2013-03-27 2017-12-08 安瀚视特控股株式会社 The manufacture method and glass substrate manufacture device of glass substrate
KR20160093537A (en) 2013-12-26 2016-08-08 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
KR20160093536A (en) 2013-12-26 2016-08-08 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
KR20150113887A (en) 2014-03-31 2015-10-08 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet
KR20170128624A (en) 2014-06-30 2017-11-22 아반스트레이트 가부시키가이샤 Method of making glass substrate, glass substrate and bundle of glass substrates
KR20160023631A (en) 2014-06-30 2016-03-03 아반스트레이트 가부시키가이샤 Method of making glass substrate, glass substrate and bundle of glass substrates
CN104310751A (en) * 2014-09-24 2015-01-28 德清华宝玻璃有限公司 Glass kiln bubbling pipe holder
KR20180008755A (en) 2015-06-30 2018-01-24 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate and apparatus for manufacturing glass substrate
KR102016240B1 (en) 2015-06-30 2019-08-29 아반스트레이트 가부시키가이샤 Glass substrate manufacturing method and glass substrate manufacturing apparatus
JP2018528922A (en) * 2015-08-26 2018-10-04 コーニング インコーポレイテッド Glass melting system and method for enhancing homogeneity
KR20190079527A (en) 2017-12-27 2019-07-05 아반스트레이트 가부시키가이샤 Method for manufacturing glass substrate and glass substrate manufacturing apparatus

Also Published As

Publication number Publication date
JP4790783B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP4790783B2 (en) Manufacturing method of glass plate
JP6791851B2 (en) Dimensionally stable, fast-etched glass
JP6342338B2 (en) Methods for producing glass, glass-ceramics and their use
JP6247229B2 (en) High strain point aluminosilicate glass
JP6009709B1 (en) Optical glass and manufacturing method thereof
JP5537144B2 (en) Glass composition and glass substrate for flat panel display using the same
TWI391356B (en) Glass substrate for display and display
KR101409534B1 (en) Glass substrate for flat panel display and manufacturing method thereof
JP5267464B2 (en) Method for producing alkali-free glass
JP5829436B2 (en) Production method of transparent glass or transparent glass by special clarification method
JP2008105860A (en) Process for producing glass
JP2015512849A5 (en)
KR101409707B1 (en) Glass substrate for flat panel display and manufacturing method thereof
JPWO2009028570A1 (en) Glass plate, method for producing the same, and method for producing TFT panel
CN107406303A (en) Glass
JP2021512843A (en) Composition for glass, glass with low inclusion content, its manufacturing method and use
JP2007126296A (en) Method and apparatus for manufacturing optical glass
JPWO2016017558A1 (en) High transmission glass
JP2021063010A (en) Glass
JP2007126298A (en) Optical glass
JP4305025B2 (en) Alkali-free glass
JP5308487B2 (en) Manufacturing method of glass substrate for liquid crystal display
JP5882840B2 (en) Glass composition and glass substrate for display using the same
JP5757209B2 (en) Method for producing borosilicate glass
WO2021117360A1 (en) Method for producing alkaline earth aluminoborosilicate glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees