JP2010109285A - Adhesive composition for heat sink - Google Patents

Adhesive composition for heat sink Download PDF

Info

Publication number
JP2010109285A
JP2010109285A JP2008282147A JP2008282147A JP2010109285A JP 2010109285 A JP2010109285 A JP 2010109285A JP 2008282147 A JP2008282147 A JP 2008282147A JP 2008282147 A JP2008282147 A JP 2008282147A JP 2010109285 A JP2010109285 A JP 2010109285A
Authority
JP
Japan
Prior art keywords
group
epoxy resin
adhesive composition
mass
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008282147A
Other languages
Japanese (ja)
Inventor
Kazumasa Sumida
和昌 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008282147A priority Critical patent/JP2010109285A/en
Publication of JP2010109285A publication Critical patent/JP2010109285A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive for heat sinks which properly spreads on a substrate and is superior in thermal conductivity. <P>SOLUTION: An adhesive composition for semiconductor chip heat sinks contains (A) 100 mass parts of epoxy resin, (B) 1 to 50 mass parts of a curing agent, (C) 30 to 1,000 mass parts of an inorganic filler having an average particle size of 0.1 to 10 μm and a maximum particle size of ≤75 μm, and (D) 1 to 20 mass parts of silica having an average particle size of 0.005 to <0.1 μm and has a surface silylated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体チップのヒートシンク、例えば放熱フィン、金属板等、を基板に接着するための組成物に関し、詳細には所定の充填剤を含むことによって、基板上での広がりが良く、熱抵抗値が小さい硬化物を形成する組成物に関する。 The present invention relates to a composition for adhering a heat sink of a semiconductor chip, such as a heat radiating fin, a metal plate, etc., to a substrate, and in particular, by containing a predetermined filler, it spreads on the substrate and has a good thermal resistance. The present invention relates to a composition that forms a cured product having a small value.

近年、半導体素子や電子部品の高速作動化により、従来に比べ大量の熱が発生して半導体素子や電子部品の誤動作を招くことが問題となっている。熱を除去するため、図1に示すように、基板2上にアンダーフィル剤2を介して載置された半導体チップ3、特にCPU、に金属板等のヒートシンク1を取り付けることが行なわれている。該ヒートシンクは、通常金属製であり、半導体チップ3と密着させても微細な隙間が生じる。そのため、熱伝導性シリコーンゲル、ゴム、グリースなどの放熱材料4をその隙間に挟み込むことにより、熱伝導性を向上させている。 In recent years, due to the high-speed operation of semiconductor elements and electronic components, a large amount of heat is generated compared to the conventional case, causing malfunction of the semiconductor elements and electronic components. In order to remove heat, as shown in FIG. 1, a heat sink 1 such as a metal plate is attached to a semiconductor chip 3, particularly a CPU, placed on a substrate 2 via an underfill agent 2. . The heat sink is usually made of metal, and a fine gap is generated even when it is in close contact with the semiconductor chip 3. For this reason, the heat conductivity is improved by sandwiching a heat radiation material 4 such as a heat conductive silicone gel, rubber, or grease in the gap.

該ヒートシンクを、半導体チップ3または基板2に接着するために主としてエポキシ樹脂系の接着剤(特許文献1)、シリコーンゴム系の接着剤(特許文献2)が使用されている。しかし、これらの接着剤は基板への濡れ性が悪く団子状の硬化物が形成される傾向がある。そのため、熱伝導性が悪く、ヒートシンクの放熱性を低下してしまう問題がある。一方、濡れ性が良くとも、接着剤が基板2上で広がりすぎて、近傍の半導体素子7を汚染してしまう場合がある。
特開2006−222406号公報 特開平7−254668号公報
In order to bond the heat sink to the semiconductor chip 3 or the substrate 2, an epoxy resin adhesive (Patent Document 1) and a silicone rubber adhesive (Patent Document 2) are mainly used. However, these adhesives have poor wettability to the substrate and tend to form dumpling-like cured products. Therefore, there is a problem that heat conductivity is bad and heat dissipation of the heat sink is lowered. On the other hand, even if the wettability is good, the adhesive spreads too much on the substrate 2 and may contaminate the nearby semiconductor element 7.
JP 2006-222406 A JP-A-7-254668

そこで、本発明は、基板上で適度に広がり、熱伝導性に優れたヒートシンク用接着剤を提供することを目的とする。 Then, an object of this invention is to provide the adhesive agent for heat sinks which spreads moderately on a board | substrate and was excellent in thermal conductivity.

即ち、本発明は、下記(A)〜(D)を含む半導体チップヒートシンク用の接着剤組成物である。
(A)エポキシ樹脂 100質量部
(B)硬化剤 1〜50質量部
(C)平均粒径が0.1〜10μm且つ最大粒径が75μm以下の無機充填剤
30〜1,000質量部
(D)平均粒径が0.005μm以上0.1μm未満の表面がトリメチルシリル化されたシリカ 1〜20質量部
That is, this invention is the adhesive composition for semiconductor chip heat sinks containing the following (A)-(D).
(A) Epoxy resin 100 parts by mass (B) Curing agent 1-50 parts by mass (C) Inorganic filler having an average particle size of 0.1 to 10 μm and a maximum particle size of 75 μm or less
30 to 1,000 parts by mass (D) Silica having an average particle size of 0.005 μm or more and less than 0.1 μm and trimethylsilylated on its surface 1 to 20 parts by mass

上記本発明の接着剤は、基板上で団子状になることがなく、又、熱伝導性に優れた硬化物を与える。 The adhesive of the present invention does not form a dumpling on the substrate, and gives a cured product having excellent thermal conductivity.

以下、成分順に説明する。
(A)エポキシ樹脂
本発明に用いられる(A)エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂等、及びこれらの混合物が挙げられる。これらのうち、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が好ましい。
Hereinafter, it demonstrates in order of a component.
(A) Epoxy Resin As (A) epoxy resin used in the present invention, bisphenol A type epoxy resin, bisphenol F type epoxy resin such as bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin novolak Type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, cyclopentadiene type epoxy resin and the like, and mixtures thereof. Of these, bisphenol A type epoxy resins and bisphenol F type epoxy resins are preferred.

下記エポキシ樹脂も好ましく使用される。

Figure 2010109285

Figure 2010109285

ここで、Rは炭素数1〜20、好ましくは1〜10、更に好ましくは1〜3の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基等のアルキル基、ビニル基、アリル基等のアルケニル基等が挙げられる。また、nは1〜4の整数、特に1又は2である。なお、該エポキシ樹脂を使用する場合には、その含有量は、全エポキシ樹脂中25〜100重量%、より好ましくは50〜100重量%、更に好ましくは75〜100重量%である。25重量%未満であると組成物の粘度が上昇したり、硬化物の耐熱性が低下したりする恐れがある。該エポキシ樹脂の例としては、日本化薬社製MRGE等が挙げられる。 The following epoxy resins are also preferably used.
Figure 2010109285

Figure 2010109285

Here, R is a monovalent hydrocarbon group having 1 to 20, preferably 1 to 10, more preferably 1 to 3 carbon atoms, such as an alkyl group such as a methyl group, an ethyl group or a propyl group, a vinyl group, Examples include alkenyl groups such as allyl groups. N is an integer of 1 to 4, particularly 1 or 2. In addition, when using this epoxy resin, the content is 25-100 weight% in all the epoxy resins, More preferably, it is 50-100 weight%, More preferably, it is 75-100 weight%. If it is less than 25% by weight, the viscosity of the composition may increase or the heat resistance of the cured product may decrease. Examples of the epoxy resin include MRGE manufactured by Nippon Kayaku Co., Ltd.

好ましくは、(A)エポキシ樹脂がシリコーン変性エポキシ樹脂を含む。該シリコーン変性エポキシ樹脂としては、アルケニル基含有エポキシ樹脂又はアルケニル基含有フェノール樹脂のアルケニル基と、下記平均組成式

a bSiO(4-a-b)

(但し、式中Rは置換又は非置換の一価の炭化水素基、aは0.01〜0.1、bは1.8〜2.2、1.81≦a+b≦2.3である。)
で示される1分子中の珪素原子の数が20〜400であり、かつ珪素原子に直接結合した水素原子(SiH基)の数が1〜5、好ましくは2〜4、特には2個であるオルガノポリシロキサンのSiH基との付加反応により得られる共重合体からなるシリコーン変性エポキシ樹脂が好ましい。
Preferably, (A) the epoxy resin contains a silicone-modified epoxy resin. Examples of the silicone-modified epoxy resin include an alkenyl group-containing epoxy resin or an alkenyl group-containing phenol resin, and the following average composition formula:

H a R 7 b SiO (4-ab)

(In the formula, R 7 is a substituted or unsubstituted monovalent hydrocarbon group, a is 0.01 to 0.1, b is 1.8 to 2.2, and 1.81 ≦ a + b ≦ 2.3. is there.)
The number of silicon atoms in one molecule represented by is from 20 to 400, and the number of hydrogen atoms (SiH groups) directly bonded to the silicon atom is from 1 to 5, preferably from 2 to 4, particularly two. A silicone-modified epoxy resin comprising a copolymer obtained by addition reaction with an SiH group of an organopolysiloxane is preferred.

上記一価炭化水素基としては、炭素数1〜10、特に1〜8のものが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、オクチル基、デシル基等のアルキル基、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、キシリル基、トリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基等や、これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したクロロメチル基、ブロモエチル基、トリフルオロプロピル基等のハロゲン置換一価炭化水素基を挙げることができる。   As the monovalent hydrocarbon group, those having 1 to 10 carbon atoms, particularly 1 to 8 carbon atoms are preferable, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, hexyl group, Alkyl groups such as octyl and decyl groups, vinyl groups, allyl groups, propenyl groups, butenyl groups, alkenyl groups such as hexenyl groups, phenyl groups, xylyl groups, aryl groups such as tolyl groups, benzyl groups, phenylethyl groups, phenylpropoxy groups Halogen substitution such as chloromethyl group, bromoethyl group, trifluoropropyl group, etc. in which part or all of hydrogen atoms of these hydrocarbon groups are substituted with halogen atoms such as chlorine, fluorine, bromine, etc. Mention may be made of monovalent hydrocarbon groups.

該シリコーン変性エポキシ樹脂としては、下記式(11)で示される構造のものが望ましい。

Figure 2010109285
The silicone-modified epoxy resin preferably has a structure represented by the following formula (11).
Figure 2010109285

上記式中、Rは上で述べたとおりであり、R10は−CH2CH2CH2−、−OCH2−CH(OH)−CH2−O−CH2CH2CH2−又は−O−CH2CH2CH2−であり、R11は、夫々独立に、水素原子又は炭素数1〜4のアルキル基である。nは4〜199、好ましくは19〜109の整数、pは1〜10の整数、qは1〜10の整数である。 In the above formula, R 9 is as described above, and R 10 is —CH 2 CH 2 CH 2 —, —OCH 2 —CH (OH) —CH 2 —O—CH 2 CH 2 CH 2 — or — O—CH 2 CH 2 CH 2 —, and each R 11 is independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. n is an integer of 4 to 199, preferably 19 to 109, p is an integer of 1 to 10, and q is an integer of 1 to 10.

該シリコーン変性エポキシ樹脂を配合する場合には、(A)エポキシ樹脂100重量部に対して、ジオルガノシロキサン単位が1〜20質量部、特に2〜15質量部含まれるように配合することが好ましく、これにより、硬化物の応力を低下し及び基板への密着性も向上することができる。ここで、ジオルガノポリシロキサン量は、下記式で示される。
ジオルガノポリシロキサン量=(ジオルガノポリシロキサン部分の分子量/シリコーン変性エポキシ樹脂の分子量)×シリコーン変性エポキシ樹脂の配合量
When blending the silicone-modified epoxy resin, it is preferable to blend the diorganosiloxane unit in an amount of 1 to 20 parts by weight, particularly 2 to 15 parts by weight, based on 100 parts by weight of the epoxy resin (A). Thereby, the stress of hardened | cured material can be reduced and the adhesiveness to a board | substrate can also be improved. Here, the amount of diorganopolysiloxane is represented by the following formula.
Diorganopolysiloxane amount = (molecular weight of diorganopolysiloxane portion / molecular weight of silicone-modified epoxy resin) × blending amount of silicone-modified epoxy resin

(B)硬化剤
エポキシ樹脂の硬化剤としては、アミン系、ポリメルカプタン系、イミダゾール系、及びジシアンジアミド等を使用することができ、好ましくは、アミン硬化剤及びイミダゾール系硬化剤が使用される。なお、酸無水物系硬化剤は、揮発し易い物が多く、本用途には適さない。アミン硬化剤としては、下記一般式(1)〜(4)で表される少なくとも1種類の芳香族アミン化合物が好ましい。
(B) Curing agent As the curing agent for the epoxy resin, amine-based, polymercaptan-based, imidazole-based, dicyandiamide, and the like can be used, and preferably, an amine curing agent and an imidazole-based curing agent are used. In addition, many acid anhydride type hardening | curing agents are easy to volatilize, and are not suitable for this use. As the amine curing agent, at least one aromatic amine compound represented by the following general formulas (1) to (4) is preferable.

Figure 2010109285
Figure 2010109285

Figure 2010109285

式中、R1〜Rは独立に炭素数1〜6の一価炭化水素基、CH3S−及びC25S−から選ばれる基である。
Figure 2010109285

In the formula, R 1 to R 4 are groups independently selected from a monovalent hydrocarbon group having 1 to 6 carbon atoms, CH 3 S—, and C 2 H 5 S—.

上記一価炭化水素基としては、炭素数1〜6、特に1〜3のものが好ましく、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基等のアルキル基、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基などや、これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したフロロメチル基、ブロモエチル基、トリフルオロプロピル基等のハロゲン置換一価炭化水素基を挙げることができる。   The monovalent hydrocarbon group is preferably a group having 1 to 6 carbon atoms, particularly 1 to 3 carbon atoms, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, and hexyl group. Alkyl groups, vinyl groups, allyl groups, propenyl groups, butenyl groups, hexenyl groups and other alkenyl groups, phenyl groups, etc., and some or all of the hydrogen atoms of these hydrocarbon groups are halogens such as chlorine, fluorine, bromine, etc. Mention may be made of halogen-substituted monovalent hydrocarbon groups such as a fluoromethyl group, a bromoethyl group, a trifluoropropyl group substituted by an atom.

上記芳香族アミン系硬化剤は、通常、常温で固体であり、そのまま配合すると樹脂粘度が上昇し、作業性が著しく悪くなるため、エポキシ樹脂と反応しない温度で、溶融混合することが好ましい。即ち、後述する配合量で、70〜150℃の温度範囲で1〜2時間、エポキシ樹脂と溶融混合することが望ましい。混合温度が70℃未満であると芳香族アミン系硬化剤が十分に相溶しにくくなるおそれがあり、150℃を超える温度であるとエポキシ樹脂と反応して粘度上昇するおそれがある。また、混合時間が1時間未満であると芳香族アミン系硬化剤が十分に相溶せず、粘度上昇を招くおそれがあり、2時間を超えるとエポキシ樹脂と反応し、粘度上昇するおそれがある。   The aromatic amine-based curing agent is usually solid at normal temperature, and if blended as it is, the resin viscosity increases and the workability is remarkably deteriorated. Therefore, it is preferable to melt and mix at a temperature that does not react with the epoxy resin. That is, it is desirable to melt and mix with the epoxy resin in a temperature range of 70 to 150 ° C. for 1 to 2 hours in a blending amount described later. If the mixing temperature is less than 70 ° C, the aromatic amine curing agent may not be sufficiently compatible, and if the temperature exceeds 150 ° C, it may react with the epoxy resin and increase the viscosity. Also, if the mixing time is less than 1 hour, the aromatic amine curing agent is not sufficiently compatible and may increase the viscosity, and if it exceeds 2 hours, it may react with the epoxy resin and increase the viscosity. .

イミダゾール系硬化剤としては、下記式(5)のイミダゾール化合物が好ましい。

Figure 2010109285

(式中、R5及びR6は水素原子、メチル基、エチル基、ヒドロキシメチル基又はフェニル基を示し、R7はメチル基、エチル基、フェニル基又はアリル基を示し、R8は水素原子又は下記式(6)で示される基である。)

Figure 2010109285
As the imidazole curing agent, an imidazole compound represented by the following formula (5) is preferable.
Figure 2010109285

(Wherein R 5 and R 6 represent a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group or a phenyl group, R 7 represents a methyl group, an ethyl group, a phenyl group or an allyl group, and R 8 represents a hydrogen atom. Or a group represented by the following formula (6).)

Figure 2010109285

該イミダゾール系硬化剤としては、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1)’]−エチル−S−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1)’]−エチル−S−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1)’]−エチル−S−トリアジンイソシアヌール酸付加物、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4,5−ジフェニルイミダゾール、2,4,5−トリフェニルイミダゾールなどが挙げられる。   Examples of the imidazole curing agent include 2,4-diamino-6- [2′-methylimidazolyl- (1) ′]-ethyl-S-triazine and 2,4-diamino-6- [2′-ethyl-4. '-Methylimidazolyl- (1)']-ethyl-S-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1) ']-ethyl-S-triazine isocyanuric acid adduct, 2, -Phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4,5-diphenylimidazole, 2,4,5-triphenylimidazole and the like.

好ましくは、エポキシ樹脂に対する溶解度が1質量%以下のイミダゾール系硬化剤、例えば2−フェニル−4,5−ジヒドロキシメチルイミダゾール、が使用される。また、融点が170℃以上であることが好ましく、平均粒径が1〜5μm、最大粒径が20μm以下の粉体状であることが好ましい。より好ましくは平均粒径2〜5μmかつ最大粒径が15μm以下のものである。平均粒径が前記下限値より小さいと、比表面積が大きくなり、樹脂に混合した時の粘度が高くなるおそれがある。平均粒径が前記上限値を超えると、エポキシ樹脂との分散が不均一になり、信頼性の低下を引き起こす場合がある。 Preferably, an imidazole curing agent having a solubility in an epoxy resin of 1% by mass or less, such as 2-phenyl-4,5-dihydroxymethylimidazole, is used. Moreover, it is preferable that melting | fusing point is 170 degreeC or more, and it is preferable that it is a powder form whose average particle diameter is 1-5 micrometers and a maximum particle diameter is 20 micrometers or less. More preferably, the average particle size is 2 to 5 μm and the maximum particle size is 15 μm or less. When the average particle size is smaller than the lower limit, the specific surface area is increased and the viscosity when mixed with the resin may be increased. When the average particle size exceeds the upper limit, dispersion with the epoxy resin becomes non-uniform, which may cause a decrease in reliability.

更に、この硬化剤の粒度及び比表面積は、無機質充填剤の粒度、比表面積に比べて大きいことが好ましい。小さいと、混合、混練時に粉体同士が凝集して硬化剤が不均一に分散される結果、硬化性が悪くなり、信頼性に悪影響を及ぼすおそれがある。また、純度は、90%以上、好ましくは93%以上である。純度90%未満では反応性にばらつきが生じ、硬化性にばらつきが生じるおそれがある。なお、本発明において、粒径はレーザー光回折法により求めることができ、平均粒径は、重量平均値(又はメディアン径d50)を意味する。 Furthermore, the particle size and specific surface area of the curing agent are preferably larger than the particle size and specific surface area of the inorganic filler. If it is small, the powder aggregates during mixing and kneading and the curing agent is dispersed non-uniformly. As a result, the curability deteriorates and the reliability may be adversely affected. The purity is 90% or more, preferably 93% or more. If the purity is less than 90%, the reactivity may vary and the curability may vary. In the present invention, the particle diameter can be determined by a laser light diffraction method, and the average particle diameter means a weight average value (or median diameter d 50 ).

上記硬化剤の配合量は、(A)液状エポキシ樹脂100質量部に対して1〜50質量部であり、アミン系硬化剤の場合には10〜50質量部が、イミダゾール系硬化剤の場合には1〜10質量部が、夫々、より好ましい。配合量が前記下限値未満であると硬化性が低下し、前記上限値を超えると保存性が低下するおそれがある。   The compounding quantity of the said hardening | curing agent is 1-50 mass parts with respect to 100 mass parts of (A) liquid epoxy resins, and in the case of an amine hardening agent, 10-50 mass parts is in the case of an imidazole hardening agent. Is more preferably 1 to 10 parts by mass. If the blending amount is less than the lower limit, the curability is lowered, and if it exceeds the upper limit, the storage stability may be lowered.

(C)平均粒径が0.1〜10μm且つ最大粒径が75μm以下の無機充填剤
無機充填剤(C)としては、公知各種の無機充填剤を使用することができる。例えば、溶融シリカ、結晶シリカ、アルミナ、ボロンナイトライド、チッカアルミ、チッカ珪素、マグネシア、マグネシウムシリケート、アルミニウムなどが挙げられる。中でも真球状の溶融シリカが、組成物の粘度が低くなるので好ましい。
(C) As an inorganic filler (C) having an average particle diameter of 0.1 to 10 μm and a maximum particle diameter of 75 μm or less , various known inorganic fillers can be used. Examples thereof include fused silica, crystalline silica, alumina, boron nitride, ticker aluminum, ticker silicon, magnesia, magnesium silicate, aluminum and the like. Among them, spherical fused silica is preferable because the viscosity of the composition is lowered.

無機充填剤は、樹脂との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で予め表面処理したものを配合することが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシランなどのシランカップリング剤を用いることができる。ここで表面処理に用いるカップリング剤の配合量及び表面処理方法については、後述する(D)成分の処理と同様の方法を用いることができる。   The inorganic filler is preferably blended in advance with a surface treatment with a coupling agent such as a silane coupling agent or a titanate coupling agent in order to increase the bond strength with the resin. As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N Silane coupling agents such as aminosilanes such as -β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, and N-phenyl-γ-aminopropyltrimethoxysilane can be used. About the compounding quantity of the coupling agent used for surface treatment here, and the surface treatment method, the method similar to the process of (D) component mentioned later can be used.

無機充填剤は、平均粒径が2〜20μmであり、最大粒径が75μm以下、特に50μm以下のものが望ましい。平均粒径が上記下限値未満では組成物の粘度が高くなり、多量に充填できない場合がある。一方、上記上限値を超えると、硬化物中にボイドが生じるおそれがある。なお、この平均粒径(重量平均値又はメジアン径d50)、最大粒径は、レーザー光回折法による粒度分布測定装置等によって求めることができる。 The inorganic filler preferably has an average particle diameter of 2 to 20 μm and a maximum particle diameter of 75 μm or less, particularly 50 μm or less. If the average particle size is less than the above lower limit, the composition has a high viscosity and may not be filled in a large amount. On the other hand, if the above upper limit is exceeded, voids may occur in the cured product. The average particle diameter (weight average value or median diameter d 50 ) and the maximum particle diameter can be obtained by a particle size distribution measuring apparatus using a laser light diffraction method.

(C)無機質充填剤の配合量としては、(A)成分100質量部に対して30〜1,000質量部、好ましくは40〜400、より好ましくは50〜300質量部である。前記下限値未満では、硬化物の膨張係数が大きく、クラックの発生を誘発し得る。上記上限値を超えると、組成物の粘度が高くなりすぎる。   (C) As a compounding quantity of an inorganic filler, it is 30-1,000 mass parts with respect to 100 mass parts of (A) component, Preferably it is 40-400, More preferably, it is 50-300 mass parts. If it is less than the said lower limit, the expansion coefficient of hardened | cured material is large and can generate | occur | produce a crack. When the above upper limit is exceeded, the viscosity of the composition becomes too high.

(D)表面シリル化シリカ
本発明の組成物は、(D)成分を用いることによって、硬化物の膨張係数が小さく、弾性率が高くなる。(D)無機質充填材の平均粒径は0.005μm以上、0.1μm未満、好ましくは0.008μm〜0.08μmである。平均粒径が前記下限値未満であると組成物の粘度が高くなり、作業性が著しく悪くなるおそれがある。また、前記上限値を超えると、組成物が基板上の素子に接触し、もしくはヒートシンクの端部からはみ出す場合がある。なお、上記平均粒径は動的光散乱法/レーザートラップ法により測定することができる。
(D) Surface Silylated Silica By using the component (D) in the composition of the present invention, the cured product has a small expansion coefficient and a high elastic modulus. (D) The average particle diameter of the inorganic filler is 0.005 μm or more and less than 0.1 μm, preferably 0.008 μm to 0.08 μm. When the average particle size is less than the lower limit, the viscosity of the composition increases, and workability may be significantly deteriorated. When the upper limit is exceeded, the composition may come into contact with the element on the substrate or protrude from the end of the heat sink. The average particle diameter can be measured by a dynamic light scattering method / laser trap method.

(D)成分としては、例えば、アエロジル130、アエロジル200、アエロジル300(商品名、日本アエロジル社製)等のフュームドシリカ、ニプシルVN−3−LP(商品名、日本シリカ工業社製)等の湿式シリカ等が好適に用いられる。   Examples of the component (D) include fumed silica such as Aerosil 130, Aerosil 200, Aerosil 300 (trade name, manufactured by Nippon Aerosil Co., Ltd.), Nipsil VN-3-LP (trade name, manufactured by Nippon Silica Kogyo Co., Ltd.), and the like. Wet silica or the like is preferably used.

(D)成分は、例えば、CH3Si(OCH33、(CH33SiOCH3、PhSi(OCH33、PhSiCH3(OCH32、{(CH33Si}2NH、CH3CH2Si(OCH33等(なお、前記「Ph」はフェニル基を意味する)で表面処理されている。 The component (D) is, for example, CH 3 Si (OCH 3 ) 3 , (CH 3 ) 3 SiOCH 3 , PhSi (OCH 3 ) 3 , PhSiCH 3 (OCH 3 ) 2 , {(CH 3 ) 3 Si} 2 NH , CH 3 CH 2 Si (OCH 3 ) 3 and the like (wherein “Ph” means a phenyl group).

該表面処理は、シリカを予め前記シリル化剤により処理しておいてもよく、また、本発明の組成物の調製時に前記シリル化剤を添加・配合するインテグラルブレンド法によっておこなうことができる。前記シリル化剤の使用量を抑制する点から、前者の方法が好ましい。   The surface treatment may be performed by treating the silica with the silylating agent in advance, or by an integral blend method in which the silylating agent is added and blended when preparing the composition of the present invention. The former method is preferable from the viewpoint of suppressing the amount of the silylating agent used.

(D)成分の使用量は、(A)成分100質量部に対し、通常、1〜20質量部、好ましくは3〜15質量部である。使用量が前記下限値未満では、組成物のヒートシンクの端部からのはみ出しを抑制することが困難となり、また、逆に、多すぎると粘度が高くなり過ぎるため、エポキシ樹脂組成物の流動性が低下し、実質上液状のエポキシ樹脂組成物を得ることが困難となるおそれがある。   (D) The usage-amount of a component is 1-20 mass parts normally with respect to 100 mass parts of (A) component, Preferably it is 3-15 mass parts. If the amount used is less than the lower limit value, it becomes difficult to suppress the protrusion of the composition from the end of the heat sink, and conversely, if too much, the viscosity becomes too high, so that the flowability of the epoxy resin composition is low. It may fall and it may become difficult to obtain a substantially liquid epoxy resin composition.

その他の成分
本発明の組成物には、硬化物の応力を低減する目的で、シリコーンゴム、シリコーンオイル、液状のポリブタジエンゴム、メタクリル酸メチル−ブタジエン−スチレン等の可撓性樹脂、硬化促進剤、シランカップリング剤、カーボンブラック等の顔料、染料、酸化防止剤等を、本発明の目的を阻害しない量で、配合することができる。
Other components In the composition of the present invention, for the purpose of reducing the stress of the cured product, silicone rubber, silicone oil, liquid polybutadiene rubber, flexible resin such as methyl methacrylate-butadiene-styrene, curing accelerator, Silane coupling agents, pigments such as carbon black, dyes, antioxidants and the like can be blended in amounts that do not impair the object of the present invention.

接着剤組成物の調製法
本発明の組成物は、上記(A)〜(D)成分、及び、所望により上記その他の成分、を同時あるいは別々に、必要により加熱処理を加えながら攪拌、溶解、混合、分散させる。これらの操作に用いる装置は特に限定されないが、攪拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。また、これら装置を適宜組み合わせてもよい。
Preparation of Adhesive Composition The composition of the present invention comprises the above components (A) to (D) and, if desired, the above and other components simultaneously or separately, with stirring and dissolution, if necessary, with heat treatment. Mix and disperse. Although the apparatus used for these operations is not particularly limited, a lykai machine equipped with a stirring and heating apparatus, a three roll, a ball mill, a planetary mixer, and the like can be used. Moreover, you may combine these apparatuses suitably.

上記調製法で得られる接着剤組成物は、25℃において1〜500Pa・s、特に1〜150Pa・sの粘度を有することが好ましい。該接着剤組成物の硬化条件は、好ましくは、最初に100〜120℃、0.5時間以上、次いで、150〜175℃、2時間以上、オーブンキュアを行う。100〜120℃での加熱が0.5時間未満では、硬化後にボイドが発生する場合がある。また150〜175℃での加熱が0.5時間未満では、十分な硬化物特性が得られない場合がある。   The adhesive composition obtained by the above preparation method preferably has a viscosity of 1 to 500 Pa · s, particularly 1 to 150 Pa · s at 25 ° C. As for the curing conditions of the adhesive composition, it is preferable to first perform an oven cure at 100 to 120 ° C. for 0.5 hour or more, and then 150 to 175 ° C. for 2 hours or more. When heating at 100 to 120 ° C. is less than 0.5 hour, voids may occur after curing. Further, if the heating at 150 to 175 ° C. is less than 0.5 hours, sufficient cured product characteristics may not be obtained.

実施例
以下、実施例及び比較例により本発明をより詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.

組成物の調製
表1に示す各質量部の各成分を、3本ロールで均一に混練りすることにより組成物(実施例1〜6、比較例1〜3)を得た。表1において、各成分は以下のとおりである。
Preparation of Composition Compositions (Examples 1 to 6, Comparative Examples 1 to 3) were obtained by uniformly kneading each component of each part by mass shown in Table 1 with three rolls. In Table 1, each component is as follows.

(A)エポキシ樹脂
エポキシ樹脂A1:ビスフェノールF型エポキシ樹脂(RE303S−L、日本化薬株式会社製)
エポキシ樹脂A2:下記式で示される3官能型エポキシ樹脂(エピコート630H、ジャパンエポキシレジン株式会社製)

Figure 2010109285
(A) Epoxy resin Epoxy resin A1: Bisphenol F type epoxy resin (RE303S-L, manufactured by Nippon Kayaku Co., Ltd.)
Epoxy resin A2: Trifunctional epoxy resin represented by the following formula (Epicoat 630H, manufactured by Japan Epoxy Resin Co., Ltd.)
Figure 2010109285

(B)硬化剤
硬化剤B1:3,3’−ジエチル−4,4’−ジアミノジフェニルメタン(カヤハードAA、日本化薬社製)
硬化剤B2:3,3’,5,5’−テトラエチル−4,4’−ジアミノジフェニルメタン(C−300S、日本化薬社製)
硬化剤B3:平均粒径4.2μm、最大粒径15μm以下の2−フェニル−4,5−ジヒドロキシメチルイミダゾール粉末(イミダゾール2PHZ−PW、四国化成(株)製)
(B) Curing agent Curing agent B1: 3,3'-diethyl-4,4'-diaminodiphenylmethane (Kayahard AA, manufactured by Nippon Kayaku Co., Ltd.)
Curing agent B2: 3,3 ′, 5,5′-tetraethyl-4,4′-diaminodiphenylmethane (C-300S, manufactured by Nippon Kayaku Co., Ltd.)
Curing agent B3: 2-phenyl-4,5-dihydroxymethylimidazole powder having an average particle size of 4.2 μm and a maximum particle size of 15 μm or less (imidazole 2PHZ-PW, manufactured by Shikoku Kasei Co., Ltd.)

(C)平均粒径が0.1〜10μm且つ最大粒径が75μm以下の無機充填剤
シリカC:最大粒径53μm以下で、平均粒径7μmの球状シリカ((株)龍森製、シランカップリング剤(KBM403、信越化学工業社製)で表面処理されたもの)
(C) Inorganic filler having an average particle size of 0.1 to 10 µm and a maximum particle size of 75 µm or less Silica C: Spherical silica having a maximum particle size of 53 µm or less and an average particle size of 7 µm (Tatsumori Co., Ltd.) Manufactured and surface-treated with a silane coupling agent (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.)

(D)表面シリル化シリカ
シリカD1:{(CH33Si}2NH及びCH3CH2Si(OCH33で処理された平均粒径(d50)0.008μmの処理シリカ
シリカD2:{(CH33Si}2NH及びCH3CH2Si(OCH33で処理された平均粒径(d50)0.01μmの処理シリカ
シリカD3:{(CH33Si}2NH及びCH3CH2Si(OCH33で処理された平均粒径(d50)0.08μmの処理シリカ
比較例で使用のシリカ:{(CH33Si}2NH、CH3CH2Si(OCH33で処理された平均粒径(d50)0.12μmの処理シリカ
(D) the surface silylated silica <br/> Silica D1: {(CH 3) 3 Si} 2 NH and CH 3 CH 2 Si (OCH 3 ) average particle size (d 50) treated with 3 0.008 .mu.m of Treated silica silica D2: treated silica silica D3 with an average particle size (d 50 ) of 0.01 μm treated with {(CH 3 ) 3 Si} 2 NH and CH 3 CH 2 Si (OCH 3 ) 3 : {(CH 3 ) 3 Silica used in Comparative Silica Examples Treated with Si} 2 NH and CH 3 CH 2 Si (OCH 3 ) 3 Average Particle Size (d 50 ) 0.08 μm: {(CH 3 ) 3 Si} 2 NH, Treated silica treated with CH 3 CH 2 Si (OCH 3 ) 3 and having an average particle size (d 50 ) of 0.12 μm

その他の成分
シランカップリング剤:γ−グリシドキシプロピルトリメトキシシラン(KBM403、信越化学工業株式会社製)
反応性希釈剤:フェニルグリシジルエーテル(PGE)

Figure 2010109285
Other components Silane coupling agent: γ-glycidoxypropyltrimethoxysilane (KBM403, manufactured by Shin-Etsu Chemical Co., Ltd.)
Reactive diluent: Phenyl glycidyl ether (PGE)
Figure 2010109285

比較例4及び5
これらの比較例で用いた硬化性シリコーンゴムの以下の方法で調製した。
γ−グリシドキシプロピルトリメトキシシラン2質量部を、メタノール50質量部に溶解した溶液に、水100質量部、次いで60重量%酢酸水溶液20質量部を順次混合した。この混合液に1時間超音波振動を施してシラン溶液を調製した。該溶液に、下記式で表される分子鎖両末端がジメチルビニルシリル基で封鎖された直鎖状ジメチルポリシロキサン100質量部と、

Figure 2010109285
(式中、nは、該シロキサンの25℃における粘度が400 cStとなるような数である)
上記シリカC200質量部(比較例4)、400質量部(比較例5)を、夫々、プラネタリーミキサーで1時間混合後、さらに3本ロールで混練した。次に、この混練物に、メチルハイドロジェンシロキサン(ケイ素原子に結合する水素原子の含有量:0.8モル/100g)5.1質量部及び塩化白金酸のオクチルアルコール変性溶液(白金含有量2重量%)0.02質量部を加えて攪拌し組成物を得た。 Comparative Examples 4 and 5
The curable silicone rubber used in these comparative examples was prepared by the following method.
100 parts by mass of water and then 20 parts by mass of a 60% by weight aqueous acetic acid solution were sequentially mixed with a solution in which 2 parts by mass of γ-glycidoxypropyltrimethoxysilane was dissolved in 50 parts by mass of methanol. This mixed solution was subjected to ultrasonic vibration for 1 hour to prepare a silane solution. In the solution, 100 parts by mass of a linear dimethylpolysiloxane in which both ends of a molecular chain represented by the following formula are blocked with a dimethylvinylsilyl group,
Figure 2010109285
(Where n is a number such that the viscosity of the siloxane at 25 ° C. is 400 cSt)
200 parts by mass of the silica C (Comparative Example 4) and 400 parts by mass (Comparative Example 5) were mixed with a planetary mixer for 1 hour and then kneaded with three rolls. Next, 5.1 parts by mass of methylhydrogensiloxane (content of hydrogen atoms bonded to silicon atoms: 0.8 mol / 100 g) and an octyl alcohol-modified solution of chloroplatinic acid (platinum content 2) were added to this kneaded product. % By weight) was added and stirred to obtain a composition.

各組成物を以下の方法で評価した。
硬化物のアスペクト比
硬化物の高さと直径の比である(h/d)を、組成物の形状維持性能の指標とした。
該アスペクト比の測定方法は、図1に示すようにガラス板11(1mm厚み)に0.1gの組成物を置き、5分後に、事前に120℃に設定されたホットプレート上に、前記板を設置した。組成物を硬化後、冷却し、硬化物12の高さ(h)と直径(d)を測定し、硬化物の高さと直径の比である(h/d)を求めた。
Each composition was evaluated by the following methods.
The aspect ratio of the cured product (h / d), which is the ratio of the height and diameter of the cured product, was used as an index of the shape maintenance performance of the composition.
The aspect ratio is measured by placing 0.1 g of a composition on a glass plate 11 (1 mm thickness) as shown in FIG. 1 and placing the plate on a hot plate set at 120 ° C. in advance after 5 minutes. Was installed. The composition was cured and then cooled, and the height (h) and diameter (d) of the cured product 12 were measured to determine (h / d), which is the ratio of the height and diameter of the cured product.

引張り弾性率
組成物を150℃、3時間加熱して硬化し、JIS−K−7161に準じて引張り弾性率を測定した。
The tensile elastic modulus composition was cured by heating at 150 ° C. for 3 hours, and the tensile elastic modulus was measured according to JIS-K-7161.

ガラス転移温度[Tg]、Tg以下の膨張係数[CTE−1]、Tg以上の膨張係数[CTE−2]
組成物を150℃、3時間加熱して硬化し、該硬化物を、常温まで冷却して、5mm×5mm×15mmの試験片を切り出して、TMA(熱機械分析装置)により5℃/分の速度で昇温した際の値を測定した。上記ガラス転移温度の測定において、20〜50℃の温度範囲でCTE−1を、200〜230℃の温度範囲でCTE−2を求めた。
Glass transition temperature [Tg], Tg or less expansion coefficient [CTE-1], Tg or more expansion coefficient [CTE-2]
The composition is cured by heating at 150 ° C. for 3 hours, the cured product is cooled to room temperature, a test piece of 5 mm × 5 mm × 15 mm is cut out, and 5 ° C./min by TMA (thermomechanical analyzer). The value when the temperature was raised at a speed was measured. In the measurement of the glass transition temperature, CTE-1 was determined in the temperature range of 20 to 50 ° C, and CTE-2 was determined in the temperature range of 200 to 230 ° C.

熱抵抗値
図2に示す装置を作成した。CPU基板2(38mm×38mm×2mm)上にシリコンチップCPU3(Celeron 300A、15mm×15mm×0.75mm)をフリップチップ接続してアンダーフィル剤5(SMC−377S、信越化学社製)で封止した後、シリコンチップ3上に放熱材料(TIM 7772-4、信越化学社製)を、基板2上に各接着剤組成物約1.0gをディスペンスした後、38mm×38mm×2mmのヒートシンク1(Niコート銅版、1W/℃)を載置し、150℃、3時間加熱して硬化した。図2のa,bで示す箇所に熱電対を置き、チップ3を450MHz/消費電力25.6Wで作動させ、稼働率100%にしたときの熱抵抗値を下記式により求めた。

放熱材熱抵抗Rja(℃/W)=(シリコンチップ温度−ヒートシンク温度)/25.6
Thermal resistance value The apparatus shown in Fig. 2 was prepared. A silicon chip CPU3 (Celeron 300A, 15 mm × 15 mm × 0.75 mm) is flip-chip connected onto the CPU substrate 2 (38 mm × 38 mm × 2 mm) and sealed with an underfill agent 5 (SMC-377S, manufactured by Shin-Etsu Chemical Co., Ltd.). After that, a heat dissipation material (TIM 7772-4, manufactured by Shin-Etsu Chemical Co., Ltd.) was dispensed on the silicon chip 3, and about 1.0 g of each adhesive composition was dispensed on the substrate 2, and then a heat sink 1 (Ni of 38 mm × 38 mm × 2 mm) Coated copper plate, 1 W / ° C.) was placed and cured by heating at 150 ° C. for 3 hours. Thermocouples were placed at the locations indicated by a and b in FIG. 2, the chip 3 was operated at 450 MHz / power consumption 25.6 W, and the thermal resistance value when the operating rate was 100% was determined by the following formula.

Heat dissipation material thermal resistance Rja (° C./W)=(silicon chip temperature−heat sink temperature) /25.6

冷熱サイクル後の熱抵抗値
熱抵抗値を測定した後の装置を、−45℃、15分→125℃、15分を1サイクルとして500サイクル試験に供した後、上記と同様にして熱抵抗値を求めた。
Thermal resistance value after cooling cycle After the thermal resistance value was measured, the device was subjected to a 500 cycle test with -45 ° C, 15 minutes → 125 ° C, 15 minutes as one cycle, and then the thermal resistance value was the same as above. Asked.

Figure 2010109285
Figure 2010109285

表1に示すように、実施例の組成物から得られる硬化物は、アスペクト比が小さく団子状になることがなく、且つ、熱伝導性が良い。なお、比較例3は、粘度が高すぎて、成型することができなかった。また、比較例4,5は、ゴムであるのでガラス転移は無い。   As shown in Table 1, the cured products obtained from the compositions of the examples have a small aspect ratio, do not form dumplings, and have good thermal conductivity. In Comparative Example 3, the viscosity was too high to be molded. Moreover, since Comparative Examples 4 and 5 are rubber, there is no glass transition.

本発明の接着剤は、ヒートシンクを基板に接着するのに好適である。   The adhesive of the present invention is suitable for bonding a heat sink to a substrate.

組成物の濡れ性を説明する図である。It is a figure explaining the wettability of a composition. 実施例で作成した装置の断面図である。It is sectional drawing of the apparatus created in the Example.

符号の説明Explanation of symbols

1:ヒートシンク
2:基板
3:半導体チップ
4:放熱材料
5:アンダーフィル剤
6:接着剤
7:半導体素子
1: Heat sink 2: Substrate 3: Semiconductor chip 4: Heat dissipation material 5: Underfill agent 6: Adhesive 7: Semiconductor element

Claims (6)

下記(A)〜(D)を含む半導体チップヒートシンク用の接着剤組成物。
(A)エポキシ樹脂 100質量部
(B)硬化剤 1〜50質量部
(C)平均粒径が0.1〜10μm且つ最大粒径が75μm以下の無機充填剤
30〜1,000質量部
(D)平均粒径が0.005μm以上0.1μm未満の表面がシリル化されたシリカ
1〜20質量部
The adhesive composition for semiconductor chip heat sinks containing the following (A)-(D).
(A) Epoxy resin 100 parts by mass (B) Curing agent 1-50 parts by mass (C) Inorganic filler having an average particle size of 0.1 to 10 μm and a maximum particle size of 75 μm or less
Silica whose surface has an average particle diameter of 30 to 1,000 parts by mass (D) of 0.005 μm or more and less than 0.1 μm.
1-20 parts by mass
(C)無機充填剤が真球状シリカである、請求項1記載の接着剤組成物。 (C) Adhesive composition of Claim 1 whose inorganic filler is a spherical silica. (A)成分が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、及び下記エポキシ樹脂から選ばれる少なくとも1種である、請求項1または2記載の接着剤組成物。

Figure 2010109285

Figure 2010109285

(Rは炭素数1〜20の一価炭化水素基であり、nは1〜4の整数である)
The adhesive composition according to claim 1 or 2, wherein the component (A) is at least one selected from a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and the following epoxy resin.

Figure 2010109285

Figure 2010109285

(R is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and n is an integer of 1 to 4)
(A)成分が、シリコーン変性エポキシ樹脂を含む、請求項1〜3のいずれか1項記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, wherein the component (A) comprises a silicone-modified epoxy resin. (B)硬化剤が、下記式(1)、(2)、(3)及び(4)で表される硬化剤から選ばれる少なくとも1種である、請求項1〜4のいずれか1項記載の接着剤組成物。

Figure 2010109285

Figure 2010109285

(式中、R1〜Rは、互いに独立に、炭素数1〜6の一価炭化水素基、CH3S−及びC25S−から選ばれる基である)
(B) The hardener is at least 1 sort (s) chosen from the hardener represented by following formula (1), (2), (3) and (4), The any one of Claims 1-4. Adhesive composition.

Figure 2010109285

Figure 2010109285

(Wherein R 1 to R 4 are each independently a group selected from a monovalent hydrocarbon group having 1 to 6 carbon atoms, CH 3 S— and C 2 H 5 S—).
(B)硬化剤が、下記式(5)で表わされることを特徴とする請求項1〜4のいずれか1項記載の接着剤組成物。


Figure 2010109285
(式中、R5及びR6は水素原子、メチル基、エチル基、ヒドロキシメチル基又はフェニル基を示し、R7はメチル基、エチル基、フェニル基又はアリル基を示し、R8は水素原子又は下記式(6)で示される基である。)

Figure 2010109285
(B) Curing agent is represented by following formula (5), The adhesive composition of any one of Claims 1-4 characterized by the above-mentioned.


Figure 2010109285
(Wherein R 5 and R 6 represent a hydrogen atom, a methyl group, an ethyl group, a hydroxymethyl group or a phenyl group, R 7 represents a methyl group, an ethyl group, a phenyl group or an allyl group, and R 8 represents a hydrogen atom. Or a group represented by the following formula (6).)

Figure 2010109285
JP2008282147A 2008-10-31 2008-10-31 Adhesive composition for heat sink Pending JP2010109285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282147A JP2010109285A (en) 2008-10-31 2008-10-31 Adhesive composition for heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282147A JP2010109285A (en) 2008-10-31 2008-10-31 Adhesive composition for heat sink

Publications (1)

Publication Number Publication Date
JP2010109285A true JP2010109285A (en) 2010-05-13

Family

ID=42298402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282147A Pending JP2010109285A (en) 2008-10-31 2008-10-31 Adhesive composition for heat sink

Country Status (1)

Country Link
JP (1) JP2010109285A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304536A1 (en) * 2009-06-01 2010-12-02 Kazuaki Sumita Dam composition for use with multilayer semiconductor package underfill material, and fabrication of multilayer semiconductor package using the same
JP2012004352A (en) * 2010-06-17 2012-01-05 Fuji Electric Co Ltd Insulation material, metal base substrate and semiconductor module, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100304536A1 (en) * 2009-06-01 2010-12-02 Kazuaki Sumita Dam composition for use with multilayer semiconductor package underfill material, and fabrication of multilayer semiconductor package using the same
US8828806B2 (en) * 2009-06-01 2014-09-09 Shin-Etsu Chemical Co., Ltd. Dam composition for use with multilayer semiconductor package underfill material, and fabrication of multilayer semiconductor package using the same
TWI492339B (en) * 2009-06-01 2015-07-11 Shinetsu Chemical Co A dam material composition for a bottom layer filler material for a multilayer semiconductor device, and a manufacturing method of a multilayer semiconductor device using the dam material composition
JP2012004352A (en) * 2010-06-17 2012-01-05 Fuji Electric Co Ltd Insulation material, metal base substrate and semiconductor module, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2011014885A (en) Dam material composition of underfill material for multilayer semiconductor device, and method of manufacturing multilayer semiconductor device using the same dam material composition
JP5502268B2 (en) Resin composition set for system-in-package semiconductor devices
JP5277537B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP5116152B2 (en) Resin composition for manufacturing semiconductor devices
JP2009097014A (en) Liquid resin composition for sealing, electronic component device and wafer level chip size package
JP4905668B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
US20160040048A1 (en) Liquid epoxy resin composition and adhesive agent for heatsink and stiffener
JP5692212B2 (en) Liquid resin composition for electronic components and electronic component device using the same
JP2007302771A (en) Epoxy resin composition for sealing
JP3912515B2 (en) Liquid epoxy resin composition and semiconductor device
JP2008297373A (en) Underfill material comprising liquid epoxy resin composition, and flip chip type semiconductor device
JP2009173744A (en) Underfill agent composition
JP2010111747A (en) Underfill agent composition
JP5278386B2 (en) Mounting sealing material and semiconductor device sealed using the same
JP5013536B2 (en) Underfill agent composition
JP2003128875A (en) Liquid epoxy resin composition and semiconductor device
JP2012082281A (en) Liquid epoxy resin composition and semiconductor device
JP5354721B2 (en) Underfill agent composition
JP2010109285A (en) Adhesive composition for heat sink
JP3862001B2 (en) Liquid epoxy resin composition for wafer mold and semiconductor device using the same
JP4221585B2 (en) Liquid epoxy resin composition and semiconductor device
JP5099850B2 (en) Semiconductor element sealing composition
JP4009853B2 (en) Liquid epoxy resin composition and flip chip type semiconductor device
JP2005146104A (en) Liquid epoxy resin composition and semiconductor device
JP2010144144A (en) Liquid epoxy resin composition for underfill, and semiconductor device