JP2010091679A - 顕微鏡装置とこれに用いられる蛍光キューブ - Google Patents

顕微鏡装置とこれに用いられる蛍光キューブ Download PDF

Info

Publication number
JP2010091679A
JP2010091679A JP2008259816A JP2008259816A JP2010091679A JP 2010091679 A JP2010091679 A JP 2010091679A JP 2008259816 A JP2008259816 A JP 2008259816A JP 2008259816 A JP2008259816 A JP 2008259816A JP 2010091679 A JP2010091679 A JP 2010091679A
Authority
JP
Japan
Prior art keywords
optical
microscope
objective lens
optical axis
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008259816A
Other languages
English (en)
Inventor
Sadahiro Tomioka
貞祐 冨岡
Yumiko Ouchi
由美子 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008259816A priority Critical patent/JP2010091679A/ja
Publication of JP2010091679A publication Critical patent/JP2010091679A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

【課題】蛍光顕微鏡に使用されている蛍光キューブを切換えることで、共焦点顕微鏡から全反射蛍光顕微鏡に切換え可能な顕微鏡装置を提供すること。
【解決手段】レーザ光源からのレーザ光束を標本12に照射する照明光学系と、標本12からの蛍光を検出する蛍光検出光学系と、照明光学系内に配設され、レーザ光束を標本12へ導く複数の蛍光キューブと、対物レンズ16とを備えた顕微鏡装置1において、蛍光キューブの少なくとも1つ61は、レーザ光束の主光線を照明光学系の光軸に対して略平行になるようにし、かつレーザ光束を対物レンズ16の瞳位置Pの光軸から離れた所定の領域内に集光するための光学手段60を有し、光学手段60は、少なくとも2つの楔プリズム62、63と集光レンズ64とを有する顕微鏡装置1。
【選択図】図3

Description

本発明は、蛍光観察可能な顕微鏡装置と、これに用いられる蛍光キューブに関する。
共焦点顕微鏡や全反射蛍光顕微鏡は、生体細胞等の観察方法として広く利用されている。両者は共にレーザ光源を使用する点で共通しており、共焦点顕微鏡と全反射蛍光顕微鏡に使用できる顕微鏡が提案されている(例えば、特許文献1参照)。
特開2005−121796号公報
従来の顕微鏡では、共焦点顕微鏡から全反射蛍光顕微鏡に切換える際に、対物レンズの瞳位置の全反射条件領域にレーザ光を集光させるための光学部材を照明光学系内に挿入する必要があり、切換えの為に大掛かりな切換え機構が必要となり、顕微鏡の大型化やコストが高くなるという問題がある。
上記課題を解決するため、本発明は、レーザ光源からのレーザ光束を標本に照射する照明光学系と、前記標本からの蛍光を検出する蛍光検出光学系と、前記照明光学系内に配設され、前記レーザ光束を前記標本へ導く複数の蛍光キューブと、対物レンズとを備えた顕微鏡装置において、前記蛍光キューブの少なくとも1つは、前記レーザ光束の主光線を前記照明光学系の光軸に対して略平行になるようにし、かつ前記レーザ光束を前記対物レンズの瞳位置の前記光軸から離れた所定の領域内に集光するための光学手段を有し、当該光学手段は、少なくとも2つの楔プリズムと集光レンズとを有し、当該光学手段を有する前記蛍光キューブを光路に挿入した際、前記レーザ光束の主光線を前記光軸に対して所定量移動するように前記少なくとも2つの楔プリズムの透過光路長を制御する制御手段と、前記少なくとも2つの楔プリズムから射出される光束を前記対物レンズの瞳面内の、前記光軸から離れた所定の領域内に集光するために、前記集光レンズを移動する移動手段とを備えることを特徴とする顕微鏡装置を提供する。
また、本発明は、蛍光顕微鏡の照明光学系の光路中に交換可能に配置される蛍光キューブにおいて、当該蛍光キューブが前記蛍光顕微鏡の光路中に配置されたときに、対物レンズを介して標本に照射されるレーザ光束の主光線を前記照明光学系の光軸に対して略平行になるようにし、かつ前記レーザ光束を前記対物レンズの瞳位置の前記光軸から離れた所定の領域内に集光するための光学手段を有し、当該光学手段は、前記レーザ光束の主光線を前記光軸に対して所定量移動するように制御手段により透過光路長が制御される少なくとも2つの楔プリズムと、当該少なくとも2つの楔プリズムから射出される光束を前記対物レンズの瞳面内の前記光軸から離れた所定の領域内に集光するための集光レンズと、前記光軸方向および/または前記光軸と垂直な方向に前記集光レンズを移動させる移動手段とを有することを特徴とする蛍光キューブを提供する。
本発明によれば、蛍光顕微鏡に使用されている蛍光キューブを切換えることで、共焦点顕微鏡から全反射蛍光顕微鏡に切換え可能な顕微鏡装置を提供することができる。また、共焦点顕微鏡から全反射蛍光顕微鏡に切換え可能な蛍光キューブを提供することができる。
以下、発明の実施の形態にかかる顕微鏡装置について図面を参照しつつ説明する。
(第1実施の形態)
図1は第1実施の形態にかかる顕微鏡装置の概略構成図である。図2は第1実施の形態にかかる顕微鏡装置の光学系を示す。図3は全反射顕微鏡に切換えた際の顕微鏡装置の光学系を示す。図4は光学手段の作用を説明する図であり、全反射照明状態における一組の楔プリズムからなる光学部材の作用を説明する図である。なお、図2、図3では、後述する透過照明光学系を省略している。
図1から図4において、顕微鏡装置1は、倒立型蛍光顕微鏡本体2(以後、単に顕微鏡と記す)と顕微鏡2に搭載されている各種装置を制御するパーソナルコンピュータ等からなる制御装置3(以後、PCと記す)とから構成されている。
顕微鏡2は、ステージ11に載置された標本12を、透過照明光源13からの光で透過照明光学系14を介して照明し、標本12を透過した光をリボルバ15に搭載された対物レンズ16で集光する。
対物レンズ16で集光された光は、図2に示すように、結像光学系17の結像レンズ18とミラーM1を介して一次像面17aに結像される。一次像面17aに結像された標本12の像は、リレーレンズ17b、ミラーM2、リレーレンズ17c、および接眼鏡筒19のレンズ19aとミラーM3を介して二次像面18bに結像され、不図示の接眼レンズを介して観察者に観察される。この際、図1に示す蛍光キューブホルダ20中の蛍光キューブ21は光路中から外されている。また、プリズム22は光路中に交換可能に配置されており、標本12の透過像を観察するときには光路から外されている。このように、顕微鏡装置1は透過型顕微鏡として使用することができる。
また、図2に示すように顕微鏡2には、共焦点走査観察系31と落射照明系41とが共通の照明光学系51を介して配置されている。
以下、顕微鏡装置1を走査型顕微鏡(走査型蛍光顕微鏡、共焦点走査型顕微鏡)として使用する場合について図2を参照しつつ説明する。
走査型顕微鏡として使用する場合、共焦点走査観察系31は、不図示のレーザ光源からのレーザ光を光ファイバ32で導き、コレクタレンズ33で光ファイバ32の端面から射出された発散光束をほぼ平行な光束にし、標本12上で二次元に走査する二次元スキャナ34に入射する。二次元スキャナ34から射出されたレーザ光は、瞳リレーレンズ35で像面IP1に結像される。像面IP1を射出したレーザ光は、照明光学系51の結像レンズ52で光軸に略平行なレーザ光にされ光路中に交換可能に配置された蛍光キューブ21に入射する。なお、共焦点走査観察系31を使用する場合、後述する落射照明系41で使用する照明光学系51の光路に挿脱可能に配置されているダイクロイックミラー44は、照明光学系51の光路から外されている。
蛍光キューブ21には、波長選択フィルタ21a、ダイクロイックミラー21b及びエミッションフィルタ21cが内蔵されている。
蛍光キューブ21に入射したレーザ光は、波長選択フィルタ21aとダイクロイックミラー21bで所定の励起波長のレーザ光が選択され、対物レンズ16方向に反射され、対物レンズ16に入射して標本12に集光される。
レーザ光で励起され標本12で発現した蛍光は、対物レンズ16で集光され蛍光キューブ21に入射し、蛍光キューブ21のエミッションフィルタ21cで所定の蛍光が選択透過され、結像レンズ18と結像光学系17に挿脱可能に配置されたプリズム22を介して撮像素子23に結像され、撮像素子23で蛍光像が撮像される。撮像素子23で撮像された画像は、図1に示すPC3で画像処理されモニター3aに表示される。このように、顕微鏡装置1は走査型蛍光顕微鏡として使用することができる。
一方、標本12で反射したレーザ光は、対物レンズ16で集光され、蛍光キューブ21のダイクロイックミラー21bで反射され照明光学系51を逆行し二次元スキャナ34に入射してデスキャンされ、ビームスプリッタ36で反射されて結像レンズ37とピンホール38を介してPMT等の受光素子39に入射し、受光素子39で受光された各点の強度を基にPC3で二次元像に生成しモニター3a等で表示する。このように、顕微鏡装置1は共焦点走査型顕微鏡として使用することができる。
また、顕微鏡装置1では、撮像素子23で撮像された蛍光画像と、受光素子39で受光された共焦点画像をモニター3aに重ねて表示させるなどして観察することが可能である。
次に、顕微鏡装置1を落射蛍光顕微鏡として使用する場合について図2を参照しつつ説明する。
図2において、落射照明系41の不図示の光源からの光は、光ファイバ42で導かれ、コレクタレンズ43で光ファイバ42の端面から射出された光がほぼ平行な光にされ、視野絞り45を介して照明光学系51に挿脱可能に配置されたダイクロイックミラー44に入射して反射され、照明光学系51の結像レンズ52で集光され、光軸に略平行な光として光路中に交換可能に配置された蛍光キューブ21に入射する。なお、不図示の光源は、レーザ光源、高圧水銀ランプ、あるいはキセノンランプ等が使用可能である。
蛍光キューブ21に入射したレーザ光は、波長選択フィルタ21aとダイクロイックミラー21bで所定の励起波長のレーザ光が選択され、対物レンズ16方向に反射され、対物レンズ16に入射して標本12に集光される。
この光で励起され標本12で発現した蛍光は、対物レンズ16で集光され蛍光キューブ21に入射し、蛍光キューブ21のエミッションフィルタ21cで所定の蛍光が選択透過され、結像レンズ18と結像光学系17に挿脱可能に配置されたプリズム22を介して撮像素子23に結像され蛍光像が撮像される。撮像素子23で撮像された画像は、図1に示すPC3で画像処理されモニター3aに表示される。このようにして、顕微鏡装置1は落射蛍光顕微鏡として使用することができる。
次に、顕微鏡装置1を全反射顕微鏡として使用する場合について図3、図4を参照しつつ説明する。
全反射顕微鏡として使用する際の照明は、上述の共焦点走査観察系31のレーザ光を使用する。また、全反射照明を達成するための後述する光学部材(光学手段)60を内蔵する蛍光キューブ61を光路に交換挿入することで全反射顕微鏡を達成している。
図3に示すように、共焦点走査観察系31は、不図示のレーザ光源からのレーザ光を光ファイバ32で導き、コレクタレンズ33で光ファイバ32の端面から射出されたレーザ光をほぼ平行なレーザ光束にして二次元スキャナ34に入射する。このレーザ光束の主光線を共焦点走査観察系31の光軸に一致させるために二次元スキャナ34のXY各ミラーの角度が図1に示すPC3の制御部により制御される。二次元スキャナ34から射出されたレーザ光は、瞳リレーレンズ35で像面IP1に結像され、照明光学系51の結像レンズ52で光軸に略平行なレーザ光束にされ光路中に交換可能に配置された蛍光キューブ61に入射する。
蛍光キューブ61は、光学部材(光学手段)60と、ダイクロイックミラー21b及びエミッションフィルタ21c(これらは蛍光キューブ21が備える同様の部材と同じ符号で表す)とから構成され、図1に示す蛍光キューブホルダ20に内蔵され、光路中に交換可能に構成されている。光学部材(光学手段)60は、光軸に対して所定の角度傾斜して配置された楔プリズム62と楔プリズム63により構成される光学部材と、凸レンズなどの集光レンズ64とから構成されている。結像レンズ52から射出したレーザ光束は、光軸に対して傾斜した楔プリズム62と楔プリズム63により構成される光学部材で、光軸から距離「d」だけずらされた平行光束に変換される。この距離「d」は、標本面12において全反射照明を達成するための照明光NAiに対応したずれ量に相当する。
蛍光キューブ61の楔プリズム62と楔プリズム63により構成される光学部材で光軸からdだけ移動されたレーザ光束は、連動してdだけ移動される集光レンズ64と、ダイクロイックミラー21bとを介して、対物レンズ16の瞳位置Pの全反射条件領域に集光される。この全反射条件領域に集光されたレーザ光は、標本12と標本12を支持するガラス基板との境界面で全反射される入射角(臨界角以上の入射角)で対物レンズ16から標本12に入射する。
全反射角で標本12に入射したレーザ光は、境界面にエバネッセント波を発生し、標本12の境界面近傍でこのエバネッセント波により励起させる蛍光を発生させる。なお、レーザ光の波長は、不図示のレーザ光源で選択されているため、このとき図2に示す波長選択フィルタ21aは不要である。
エバネッセント波で励起され標本12で発現した蛍光は、対物レンズ16で集光され蛍光キューブ61に入射し、蛍光キューブ61のエミッションフィルタ21cで所定の蛍光が選択透過され、結像レンズ18と結像光学系17の光路に挿脱可能に配置されたプリズム22を介して撮像素子23に結像され、撮像素子23で蛍光像が撮像される。撮像素子23で撮像された画像は、図1に示すPC3で画像処理されモニター3aに表示される。
このように、顕微鏡装置1は、前述の蛍光キューブ21を蛍光キューブ61に交換し、レーザ光束の主光線を共焦点観察系31の光軸に一致するように二次元スキャナ34を制御することによって全反射蛍光顕微鏡として使用することができる。
図3、図4を参照して、全反射照明状態における光学手段の作用を詳説する。なお、図4においては、ダイクロイックミラー21bと、それによって反射した光が進む光路は図示を省略している。
図3、図4に示すように、結像レンズ52から射出したレーザ光束は、光軸に対して所定の角度傾斜された楔プリズム62と楔プリズム63で構成される光学部材により光軸から距離「d」だけずらされた平行光束に変換される。この距離「d」は、対物レンズ16の全反射条件となる対物レンズ16の瞳上のNAの位置に対応している。このとき、全反射照明光の入射角をγとすれば、ずれ量dと対物レンズ16の開口数NAとの関係は次式で表すことができる。ただし、fは第一対物レンズ16の焦点距離である。
(1) NA=n・sinγ=d/f
また、全反射照明光の入射角γがγ>γ=sin−1(n/n)(臨界角γ)であるとき、標本面12からエバネッセント波強度が1/eとなる境界面までの距離z、つまりエバネッセント波の沁み出し量zは光軸からのずれ量dを用いると次式で表すことができる。ここでは、全反射照明光の波長をλ、イマージョンオイルの屈折率をn、標本内部の屈折率をnとした。
(2) z=λ/{4π(n ・sinγ−n 1/2}=λ/{4π(d/f −n 1/2
一方、図4に示すように、楔プリズム62と楔プリズム63の屈折率をn、楔プリズムの頂角をδとすると、屈折角α=(n−1)δであることから、楔プリズム62と楔プリズム63からなる光学部材の透過光路長lと光軸からのずれ量dとの関係は次式で表すことができる。なお、ここでは楔プリズム62と楔プリズム63との向き合う平行面に対し、垂直に光線が通る場合を考えている。
(3) d=l・sin(n−1)δ
(1)、(3)式より、全反射照明光のNAiと、楔プリズム62と楔プリズム63からなる光学部材の透過光路長lとの関係は次式で表すことができる。
(4) NAi=(l/f)・sin(n−1)δ
以上をまとめると、(2)、(3)式より、エバネッセント波の沁み出し量zと、楔プリズム62と楔プリズム63からなる平行平面板の透過光路長lとの関係は次式で表すことができる。
(5) z=λ/〔4π[{(l/f)・sin(n−1)δ}−n 1/2
ここで(5)式を、楔プリズム62と楔プリズム63からなる光学部材の透過光路長lについて解くと次式を得る。
(6) l={f/sin(n−1)δ}・{(λ/4πz)+n 1/2
よって(6)式より、高開口数対物レンズを用いた場合、楔プリズム62と楔プリズム63との相対位置を制御し、適切な透過光路長lを有する光学部材を得ることにより、目的の全反射照明光のNAiを得、目的のエバネッセント波の沁み出し量zを達成することが可能となる。
具体的には、第1実施の形態にかかる顕微鏡装置1は、図4に破線と実線で図示しているように、図示しない制御手段により、光学部材を構成する楔プリズム62と楔プリズム63とをスライド移動させてこれらの合成厚みを変え、透過光路長l、ずれ量dを変えることができる。さらに、ずれ量(楔プリズム62、63から射出される主光線の光軸からの距離)dに応じて集光レンズ64を光軸と垂直方向に移動する図示しない移動手段を備えている。このような構成により、例えば対物レンズ16を交換した場合でも、交換した対物レンズに合わせて透過光路長lを調整し、全反射照明を達成することができる。なお、上記制御手段、移動手段の形態は特に限定されない。例えば、モータや人工筋肉を使用することが考えられる。
また、上記移動手段は、集光レンズ64を光軸方向に移動することで、集光レンズ64による集光位置を光軸方向に制御できる。一方、集光レンズ64を光軸と垂直な方向に移動することで、当該少なくとも2つのプリズムから射出される主光線と集光レンズ64の光軸とが一致するように光軸と垂直な方向に制御できる。
例えば、100倍でNA1.49の対物レンズと、60倍でNA1.49の対物レンズをそれぞれ用いた場合で、エバネッセント波の沁み出し量zを両者等しくするために、100倍のときの透過光路長から更にどれだけ透過光路長を変化させればよいかを考える。
ここでは、カーギル社のタイプDF(蛍光顕微鏡用イマージョンオイル:nd=1.515(at23℃))を例に用いてイマージョンオイルの屈折率nを1.515、標本を生体細胞として標本内部の屈折率nを1.35、楔プリズム62及び楔プリズム63の屈折率n(d)=1.5168、頂角δ=30°、全反射照明光の波長λを588nmとして計算する。
最初に、(1)式を用いると100倍でNAi1.49を達成するためのdは2.98[mm]。また、(2)式を用いると100倍でNAi1.49の全反射照明を達成したときのエバネッセント波の沁み出し量は74.2[nm]。最後に、(3)式を用いると100倍でNAi1.49を達成するための楔プリズム62と楔プリズム63からなる平行平面板の透過光路長は11.1[mm]と求めることができる。
次に(6)式を用いると、60倍でNA1.49の対物レンズに交換した場合、上記で求めた100倍でNAi1.49の全反射照明を達成したときのエバネッセント波の沁み出し量74.2[nm]と等しい沁み出し量を達成するために必要な透過光路長は18.6[mm]と求めることができる。
上記の計算結果より、100倍でNA1.49の対物レンズと、60倍でNA1.49の対物レンズで、エバネッセント波の沁み出し量zを両者等しくするために必要な透過光路長変化量Δlは、7.5[mm]と求まる。つまり、100倍の対物レンズの全反射条件位置に相当する透過光路長から更に7.5[mm]だけ延ばせばよいことがわかる。なお、この制御に伴うずれの変化Δdは2.0[mm]となる。
なお、上記の例は、楔プリズム62と楔プリズム63との向き合う互いに平行な面に対し、垂直に光線が通る場合を考えているが、必ずしも垂直でなくてもよい。
以上述べたように、第1実施の形態にかかる顕微鏡装置1によれば、共焦点走査観察系31の二次元スキャナ34をレーザ光が光軸に一致するように制御し、複数の蛍光キューブを光路中に交換可能に構成した蛍光キューブホルダ20に配置された光学部材(光学手段)60を内蔵する蛍光キューブ61を光路中に交換挿入することによって、全反射蛍光観察を可能にすることができる。また、共焦点走査型観察、走査型蛍光観察、落射蛍光観察、透過観察等の顕微鏡としても使用可能な顕微鏡装置1を提供することができる。
また、第1実施の形態にかかる顕微鏡装置1によれば、対物レンズ16を交換した場合でも、同一の蛍光キューブ61を使用して、全反射照明を達成することができる。また、楔プリズムをずらして透過光路長lを変えることによりずれ量dを変える構成のため、微調整が可能であり、高性能な全反射蛍光顕微鏡を提供することができる。なお、図4では楔プリズム63をずらしているが、透過光路長lを適切な値にするには楔プリズム62、63の相対的な位置を調整すればよいので、どちらを動かしてもよい。
また、ずれ量dの制御部が蛍光キューブ61位置にあり、対物レンズ16の瞳位置Pに対し近傍にあることから、対物レンズ16の瞳位置Pに対し遠方に設置されている二次元スキャナ34を用いて偏心量dを制御する場合よりも、精度の高い制御が期待できる。
また、リボルバ15に保持された複数の対物レンズ16の瞳径に応じた、光束ずらしのための楔プリズム62および楔プリズム63と焦点距離fの集光レンズ64とからなる光学部材60を有する蛍光キューブ61を図1に示す。蛍光キューブホルダ20内に、このような蛍光キューブを少なくとも1つ配設しておけば、対物レンズ16を交換した場合でも容易に全反射照明を達成することが可能となる。
(第2実施の形態)
次に、第2実施の形態にかかる顕微鏡装置について図面を参照しつつ説明する。なお、顕微鏡装置の概略構成は第1実施の形態と同様であり図面ならびに説明を省略する。
図5は第2実施の形態にかかる顕微鏡装置の光学系を示す。図6は全反射顕微鏡に切換えた際の顕微鏡装置の光学系を示す。なお、第1実施の形態と同様の構成には同じ符号を付して説明する。また、図5、図6では、第1実施の形態と同様に透過照明光学系は省略している。
図5において、顕微鏡装置101を透過型顕微鏡として使用する場合の使用法は第1実施の形態と同様であり説明を省略する。
次に、顕微鏡装置101を走査型顕微鏡(走査型蛍光顕微鏡、共焦点走査型顕微鏡)として使用する場合について図5を参照しつつ説明する。
走査型顕微鏡として使用する場合、共焦点走査観察系31は、不図示のレーザ光源からのレーザ光を光ファイバ32で導き、コレクタレンズ33で光ファイバ32の端面から射出されたレーザ光をほぼ平行なレーザ光束にし、標本12上で二次元に走査する二次元スキャナ34に入射する。二次元スキャナ34から射出されたレーザ光は、瞳リレーレンズ35で像面IP1に結像される。像面IP1を射出したレーザ光は、光路に挿脱可能なダイクロイックミラー71で反射され、結像レンズ18で集光され略平行なレーザ光として対物レンズ16に入射して標本12に集光される。このとき光路中に交換可能に配置された蛍光キューブ21は光路外に外されている。
レーザ光で励起され標本12で発現した蛍光は、対物レンズ16で集光されダイクロイックミラー72とエミッションフィルタ73で所定の蛍光が選択透過され、結像レンズ74で撮像素子23に結像され、撮像素子23で蛍光像が撮像される。撮像素子23で撮像された画像は、図1に示すPC3で画像処理されモニター3aに表示される。このように、顕微鏡装置101は走査型蛍光顕微鏡として使用することができる。
一方、標本12で反射したレーザ光は、対物レンズ16で集光され、光路を逆行して結像レンズ18とダイクロイックミラー71を介して二次元スキャナ34に入射してデスキャンされ、ビームスプリッタ36で反射されて結像レンズ37とピンホール38を介してPMT等の受光素子39に入射し、受光素子39で受光された各点の強度を基にPC3で二次元像に生成しモニター3a等で表示する。このように、顕微鏡装置101は共焦点走査型顕微鏡として使用することができる。なお、前述した透過照明で標本像を接眼鏡筒19を介して観察するときには、ダイクロイックミラー71、72、および蛍光キューブ21あるいは後述する蛍光キューブ91は光路から外されている。
また、顕微鏡装置101では、撮像素子23で撮像された蛍光画像と、受光素子39で受光された共焦点画像を図1に示すモニター3aに重ねて表示させるなどして観察することが可能である。
次に、顕微鏡装置101を落射蛍光顕微鏡として使用する場合について図5を参照しつつ説明する。第2実施の形態では、共焦点走査観察系31と落射照明系41の照明光学系は一部を除き独立して配置されている。
図5において、落射照明系41の不図示の光源からの光は光ファイバ42で導かれ、コレクタレンズ43で光ファイバ42の端面から射出された光がほぼ平行な光束にされ、視野絞り45を介して結像レンズ52で集光されて光路中に交換可能に配置された蛍光キューブ21に入射する。
蛍光キューブ21には、波長選択フィルタ21a、ダイクロイックミラー21b及びエミッションフィルタ21cが内蔵されている。
蛍光キューブ21に入射したレーザ光は、波長選択フィルタ21aとダイクロイックミラー21bで所定の励起波長のレーザ光が選択され、対物レンズ16方向に反射され、対物レンズ16に入射して標本12に集光される。
この光で励起され標本12で発現した蛍光は、対物レンズ16で集光されダイクロイックミラー72とエミッションフィルタ73で所定の蛍光が選択透過され、結像レンズ74で撮像素子23に結像され、撮像素子23で蛍光像が撮像される。撮像素子23で撮像された画像は、図1に示すPC3で画像処理されモニター3aに表示される。このようにして、顕微鏡装置101は落射蛍光顕微鏡として使用することができる。なお、不図示の光源は、レーザ光源、高圧水銀ランプ、あるいはキセノンランプ等が使用可能である。
次に、顕微鏡装置101を全反射顕微鏡として使用する場合について図6を参照しつつ説明する。
全反射顕微鏡として使用する際の照明は、上述の共焦点走査観察系31のレーザ光を使用する。また、全反射照明を達成するための後述する光学部材(光学手段)90を内蔵する蛍光キューブ91を光路に交換挿入することで全反射顕微鏡を達成している。
図6に示すように、共焦点走査観察系31は、不図示のレーザ光源からのレーザ光を光ファイバ32で導き、コレクタレンズ33で光ファイバ32の端面から射出されたレーザ光をほぼ平行なレーザ光束にして二次元スキャナ34に入射する。このレーザ光束の主光線を共焦点走査観察系31の光軸に一致させるために二次元スキャナ34のXY各ミラーの角度が図1に示すPC3の制御部により制御される。二次元スキャナ34から射出されたレーザ光は、瞳リレーレンズ35で像面IP1に結像される。像面IP1を射出したレーザ光は、ダイクロイックミラー71で反射され、結像レンズ18で光軸に略平行なレーザ光束にされ光路中に交換可能に配置された蛍光キューブ91に入射する。
蛍光キューブ91は、光軸に対して所定の角度傾斜して配置された楔プリズム92と楔プリズム93により構成される光学部材と、凸レンズなどの集光レンズ94とからなる光学部材(光学手段)90から構成され、図1に示す蛍光キューブホルダ20に内蔵され、光路中に交換可能に構成されている。結像レンズ18から射出したレーザ光は、光軸に対して傾斜した楔プリズム92と楔プリズム93により構成される光学部材で、光軸から距離「d」だけずらされた主光線I1を有する光束に変換される。この距離「d」は、標本面12において全反射照明を達成するための照明光NAiに対応したずれ量に相当する。
蛍光キューブ91の楔プリズム92と楔プリズム93により構成される光学部材で光軸からdだけ移動されたレーザ光束は、連動してdだけ移動される集光レンズ94で対物レンズ16の瞳位置Pの全反射条件領域に集光される。この全反射条件領域に集光されたレーザ光は、標本12と標本12を支持するガラス基板との境界面で全反射される入射角(臨界角以上の入射角)で対物レンズ16から標本12に入射する。
全反射角で標本12に入射したレーザ光は、境界面にエバネッセント波を発生し、標本12の境界面近傍でこのエバネッセント波により励起される蛍光を発生させる。なお、レーザ光の波長は、不図示のレーザ光源で選択されているため、このとき図5に示す波長選択フィルタ21aは不要である。
エバネッセント波で励起され標本12で発現した蛍光は、対物レンズ16で集光されダイクロイックミラー72とエミッションフィルタ73で所定の蛍光が選択透過され、結像レンズ74で撮像素子23に結像され、撮像素子23で蛍光像が撮像される。撮像素子23で撮像された画像は、図1に示すPC3で画像処理されモニター3aに表示される。このように、顕微鏡装置101は、前述の蛍光キューブ21を蛍光キューブ91に交換し、レーザ光束の主光線を共焦点観察系31の光軸に一致するように二次元スキャナ34を制御することによって全反射蛍光顕微鏡として使用することができる。なお、全反射照明状態における光学手段の作用は第1実施の形態(図4を参照)と同様であり説明を省略する。
第2実施の形態にかかる顕微鏡装置101においても、第1実施の形態と同様の効果を得ることができる。特に第2実施の形態によれば、全反射蛍光観察用の蛍光キューブ91内にダイクロイックミラーやエミッションフィルタがないため、蛍光キューブ91を蛍光キューブホルダ20に配置して光路中に交換可能に構成する際、第1実施の形態に比べてスペースの制約を受けないという利点がある。
なお、上述の実施の形態は例に過ぎず、上述の構成や形状に限定されるものではなく、本発明の範囲内において適宜修正、変更が可能である。
第1実施の形態にかかる顕微鏡装置の概略構成図である。 第1実施の形態にかかる顕微鏡装置の光学系を示す。 第1実施の形態にかかる顕微鏡装置の光学系を全反射顕微鏡に切換えた際の顕微鏡装置の光学系を示す。 第1実施の形態にかかる顕微鏡装置における光学手段の作用を説明する図であり、全反射照明状態における一組の楔プリズムからなる光学部材の作用を説明する図である。 第2実施の形態にかかる顕微鏡装置の光学系を示す。 第2実施の形態にかかる顕微鏡装置の光学系を全反射顕微鏡に切換えた際の顕微鏡装置の光学系を示す。
符号の説明
1、101 顕微鏡装置
2 倒立型蛍光顕微鏡(顕微鏡)
3 制御装置(PC)
11 ステージ
12 標本
13 透過照明光源
14 透過照明光学系
15 リボルバ
16 対物レンズ
17 結像光学系
18 結像レンズ
19 接眼鏡筒
20 蛍光キューブホルダ
21 蛍光キューブ
22 プリズム
23 撮像素子
31 共焦点走査観察系
32 光ファイバ
33 コレクタレンズ
34 二次元スキャナ
35 瞳リレーレンズ
41 落射照明系
42 光ファイバ
43 コレクタレンズ
44 ダイクロイックミラー
51 照明光学系
52 結像レンズ
60、90 光学部材(光学手段)
61、91 蛍光キューブ
62、92 楔プリズム
63、93 楔プリズム
64、94 集光レンズ

Claims (4)

  1. レーザ光源からのレーザ光束を標本に照射する照明光学系と、
    前記標本からの蛍光を検出する蛍光検出光学系と、
    前記照明光学系内に配設され、前記レーザ光束を前記標本へ導く複数の蛍光キューブと、対物レンズとを備えた顕微鏡装置において、
    前記蛍光キューブの少なくとも1つは、前記レーザ光束の主光線を前記照明光学系の光軸に対して略平行になるようにし、かつ前記レーザ光束を前記対物レンズの瞳位置の前記光軸から離れた所定の領域内に集光するための光学手段を有し、
    当該光学手段は、少なくとも2つの楔プリズムと集光レンズとを有し、
    当該光学手段を有する前記蛍光キューブを光路に挿入した際、前記レーザ光束の主光線を前記光軸に対して所定量移動するように前記少なくとも2つの楔プリズムの透過光路長を制御する制御手段と、前記少なくとも2つの楔プリズムから射出される光束を前記対物レンズの瞳面内の、前記光軸から離れた所定の領域内に集光するために、前記集光レンズを移動する移動手段とを備えることを特徴とする顕微鏡装置。
  2. 前記所定の領域内に集光された前記レーザ光束は、前記標本に対する入射角が全反射臨界角以上で前記対物レンズから射出することを特徴とする請求項1に記載の顕微鏡装置。
  3. 前記照明光学系は、落射照明光学系を更に有することを特徴とする請求項1又は2に記載の顕微鏡装置。
  4. 蛍光顕微鏡の照明光学系の光路中に交換可能に配置される蛍光キューブにおいて、
    当該蛍光キューブが前記蛍光顕微鏡の光路中に配置されたときに、対物レンズを介して標本に照射されるレーザ光束の主光線を前記照明光学系の光軸に対して略平行になるようにし、かつ前記レーザ光束を前記対物レンズの瞳位置の前記光軸から離れた所定の領域内に集光するための光学手段を有し、
    当該光学手段は、前記レーザ光束の主光線を前記光軸に対して所定量移動するように制御手段により透過光路長が制御される少なくとも2つの楔プリズムと、当該少なくとも2つの楔プリズムから射出される光束を前記対物レンズの瞳面内の前記光軸から離れた所定の領域内に集光するための集光レンズと、前記光軸方向および/または前記光軸と垂直な方向に前記集光レンズを移動させる移動手段とを有することを特徴とする蛍光キューブ。
JP2008259816A 2008-10-06 2008-10-06 顕微鏡装置とこれに用いられる蛍光キューブ Withdrawn JP2010091679A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259816A JP2010091679A (ja) 2008-10-06 2008-10-06 顕微鏡装置とこれに用いられる蛍光キューブ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259816A JP2010091679A (ja) 2008-10-06 2008-10-06 顕微鏡装置とこれに用いられる蛍光キューブ

Publications (1)

Publication Number Publication Date
JP2010091679A true JP2010091679A (ja) 2010-04-22

Family

ID=42254481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259816A Withdrawn JP2010091679A (ja) 2008-10-06 2008-10-06 顕微鏡装置とこれに用いられる蛍光キューブ

Country Status (1)

Country Link
JP (1) JP2010091679A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015523577A (ja) * 2012-07-25 2015-08-13 セラノス, インコーポレイテッド 生物学的サンプルの画像分析および測定
JP2016513255A (ja) * 2013-02-18 2016-05-12 セラノス, インコーポレイテッド 生物学的サンプルの画像分析および測定
US9784670B1 (en) 2014-01-22 2017-10-10 Theranos, Inc. Unified detection system for fluorometry, luminometry and spectrometry
US9989470B1 (en) 2013-06-19 2018-06-05 Theranos Ip Company, Llc Methods and devices for sample analysis
US10768105B1 (en) 2016-07-29 2020-09-08 Labrador Diagnostics Llc Image analysis and measurement of biological samples

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10823731B2 (en) 2012-07-25 2020-11-03 Labrador Diagnostics Llc Image analysis and measurement of biological samples
US10345303B2 (en) 2012-07-25 2019-07-09 Theranos Ip Company, Llc Image analysis and measurement of biological samples
JP2020020805A (ja) * 2012-07-25 2020-02-06 セラノス アイピー カンパニー エルエルシー 生物学的サンプルの画像分析および測定
JP2015523577A (ja) * 2012-07-25 2015-08-13 セラノス, インコーポレイテッド 生物学的サンプルの画像分析および測定
JP2018031798A (ja) * 2012-07-25 2018-03-01 セラノス, インコーポレイテッドTheranos, Inc. 生物学的サンプルの画像分析および測定
US11300564B2 (en) 2012-07-25 2022-04-12 Labrador Diagnostics Llc Image analysis and measurement of biological samples
US10302643B2 (en) 2012-07-25 2019-05-28 Theranos Ip Company, Llc Image analysis and measurement of biological samples
JP2021167840A (ja) * 2012-07-25 2021-10-21 ラブラドール ダイアグノスティクス エルエルシー 生物学的サンプルの画像分析および測定
US12066440B2 (en) 2012-07-25 2024-08-20 Labrador Diagnostics Llc Image analysis and measurement of biological samples
JP2016513255A (ja) * 2013-02-18 2016-05-12 セラノス, インコーポレイテッド 生物学的サンプルの画像分析および測定
US9989470B1 (en) 2013-06-19 2018-06-05 Theranos Ip Company, Llc Methods and devices for sample analysis
US10816475B2 (en) 2013-06-19 2020-10-27 Labrador Diagnostics Llc Methods and devices for sample analysis
US10466178B2 (en) 2013-06-19 2019-11-05 Theranos Ip Company, Llc Methods and devices for sample analysis
US11262308B2 (en) 2013-06-19 2022-03-01 Labrador Diagnostics Llc Methods and devices for sample analysis
US9784670B1 (en) 2014-01-22 2017-10-10 Theranos, Inc. Unified detection system for fluorometry, luminometry and spectrometry
US10845299B2 (en) 2014-01-22 2020-11-24 Labrador Diagnostics Llc Unified detection system for fluorometry, luminometry and spectrometry
US9835548B1 (en) 2014-01-22 2017-12-05 Theranos, Inc. Unified detection system for fluorometry, luminometry and spectrometry
US10768105B1 (en) 2016-07-29 2020-09-08 Labrador Diagnostics Llc Image analysis and measurement of biological samples

Similar Documents

Publication Publication Date Title
JP5286774B2 (ja) 顕微鏡装置と、これに用いられる蛍光キューブ
JP4671463B2 (ja) 照明光学系及び照明光学系を備えた顕微鏡
EP2510395B1 (en) Imaging distal end of multimode fiber
JP5006694B2 (ja) 照明装置
JP2001166214A (ja) 光学装置
JP2011118264A (ja) 顕微鏡装置
JP2006201465A (ja) 焦点検出装置とそれを用いた蛍光観察装置
JP2010091809A (ja) 顕微鏡装置
JP2017215546A (ja) 共焦点顕微鏡
US7170676B2 (en) Illumination switching apparatus and method
JP2010091679A (ja) 顕微鏡装置とこれに用いられる蛍光キューブ
JPWO2009142312A1 (ja) 顕微鏡装置
JP2011520144A (ja) 試料をエバネッセント照明する装置および方法
JP2011118265A (ja) 顕微鏡装置
JP2007310264A (ja) ズーム顕微鏡
EP4075181A1 (en) Microscope system with oblique illumination
JP2004318133A (ja) 全反射蛍光顕微鏡
JP2016537674A (ja) エバネッセント照明及び点状ラスタスキャン照明のための顕微鏡
JP2009145102A (ja) エバネッセント波発生装置及びそれを用いた観察装置
JP2005031589A (ja) 顕微鏡の撮像光学系
JP2002031762A (ja) 顕微鏡用照明装置
JP4563699B2 (ja) 照明切換装置
JP5307868B2 (ja) 全反射型顕微鏡
JP5726656B2 (ja) ディスク走査型共焦点観察装置
JP2005337729A (ja) 顕微鏡観察方法、光刺激装置および顕微鏡観察装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206