JP2010090473A - Apparatus for generating oxyhydrogen gas - Google Patents

Apparatus for generating oxyhydrogen gas Download PDF

Info

Publication number
JP2010090473A
JP2010090473A JP2008280468A JP2008280468A JP2010090473A JP 2010090473 A JP2010090473 A JP 2010090473A JP 2008280468 A JP2008280468 A JP 2008280468A JP 2008280468 A JP2008280468 A JP 2008280468A JP 2010090473 A JP2010090473 A JP 2010090473A
Authority
JP
Japan
Prior art keywords
stainless steel
gas
oxyhydrogen
water
stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280468A
Other languages
Japanese (ja)
Inventor
Satoshi Suzuki
智 鈴木
Shoji Sakamoto
正二 坂本
Emiko Watanabe
恵美子 渡辺
Noriaki Hatanishi
徳昭 畑西
Seitaro Matsuo
誠太郎 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIIKOSU KK
Original Assignee
JIIKOSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIIKOSU KK filed Critical JIIKOSU KK
Priority to JP2008280468A priority Critical patent/JP2010090473A/en
Publication of JP2010090473A publication Critical patent/JP2010090473A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for generating an oxyhydrogen gas, which electrolyzes water by using an aqueous alkali solution to generate oxygen gas and hydrogen gas and takes out the gases in a mixed state and which has high efficiency and reliability. <P>SOLUTION: In the apparatus for generating the oxyhydrogen gas, an electrolytic cell for electrolyzing water has such a structure that both ends of a stainless cylinder 1 with flanges are each sealed with a stainless disk cap 4 through a rubber gasket 3. The inside of the stainless cylinder 1 is partitioned into a plurality of chambers by a plurality of stainless electrode disks 5, and the stainless cylinder 1 is electrically insulated from the periphery of the plurality of chambers by an alkali-resistant plastic 6. Further, each stainless electrode disk 5 is held by a ring-shaped, belt-shaped alkali-resistant plastic 7 so as to be fixed and electrically insulated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、水を電気分解して酸素ガスと水素ガスを発生させ、それらを混合状態で取り出すようにした酸水素混合ガス発生装置の構成と構造に関するものである。そのガスを燃焼させて、溶接や溶断、溶射加工などを行なうことができる。  The present invention relates to a structure and a structure of an oxyhydrogen mixed gas generating apparatus in which water is electrolyzed to generate oxygen gas and hydrogen gas and take them out in a mixed state. The gas can be burned to perform welding, fusing, thermal spraying, or the like.

水を電気分解して水素と酸素を発生させる方法としては、それぞれのガスを分離した状態で発生させる方法と、それぞれのガスを混合した形態で発生させる方法がある。本発明は、後者の水素と酸素を混合した形態で発生させる酸水素ガス発生装置に関する。  As a method of generating hydrogen and oxygen by electrolyzing water, there are a method of generating each gas in a separated state and a method of generating each gas in a mixed form. The present invention relates to an oxyhydrogen gas generator that generates hydrogen and oxygen in a mixed form.

水素と酸素との混合ガス発生装置としては、従来から、電解槽内部に複数の電極板を積層し、その間にゴム質の絶縁部材を挿入介在させて、それぞれの電極板の間を隔離絶縁した構造のものが広く使用されている。ところが、この電極板相互間の絶縁材料としてゴム質のものを使用することによって、時間の経過とともに、電解液と熱により、ゴム質が劣化し変形して電解液の漏れを生じたり、絶縁不良が発生する等の問題が生じる。また、電解槽の構造上、電極板相互間の間隔が3mm程度と狭く、ゴム質の劣化によって電解液の電気分解効率が落ちるだけでなく、発熱が激しく、また、電力損失が大きくなり、長時間稼動が不可能となる問題もある。  Conventionally, a mixed gas generator of hydrogen and oxygen has a structure in which a plurality of electrode plates are stacked inside an electrolytic cell, and a rubber insulating member is interposed between the electrode plates so that each electrode plate is isolated and insulated. Things are widely used. However, by using a rubber material as the insulation material between the electrode plates, over time, the electrolyte and heat will cause the rubber to deteriorate and deform, causing electrolyte leakage or poor insulation. This causes problems such as In addition, due to the structure of the electrolytic cell, the distance between the electrode plates is as narrow as about 3 mm. Not only does the electrolysis efficiency of the electrolyte decrease due to the deterioration of the rubbery material, but the heat generation is intense and the power loss increases. There is also a problem that time operation is impossible.

また、角型電解槽を用いる場合も多く見られるが、その製作において溶接部が多くなり、信頼性や製作費の点で不利な上、発生させるガス圧力に対して変形しやすいという欠点がある。また電解室内部の寸法精度が悪くなりやく、電極板絶縁支持枠部分の絶縁性に問題が生じやすく、発熱の原因となり、水の電気分解の効率低下を招きやすくなる。また、エポキシ樹脂製の電極板絶縁支持枠を用いる場合もあるが、加工性が悪く、複数部品を組み合わせて作ると、接続部分に隙間を生じやすくなり、漏れ電流が発生しやすく、電気絶縁性に問題を生じ、性能を確保しようとすると電極板絶縁支持枠の加工精度を高くする必要があり、複雑かつ高価となる欠点がある。
特開2005−146302号公報 特開平11−001790号公報 特開平06−192868号公報
In addition, there are many cases where a square electrolytic cell is used, but there are many disadvantages in that the number of welded parts increases in production, which is disadvantageous in terms of reliability and production cost, and easily deforms against the generated gas pressure. . In addition, the dimensional accuracy inside the electrolytic chamber is likely to deteriorate, and there is a problem in the insulation of the electrode plate insulating support frame portion, which causes heat generation and easily reduces the efficiency of water electrolysis. In some cases, an epoxy resin electrode plate insulating support frame is used, but the workability is poor, and when multiple parts are combined, gaps are likely to occur in the connection area, leakage current is likely to occur, and electrical insulation In order to secure the performance, it is necessary to increase the processing accuracy of the electrode plate insulating support frame, which is disadvantageous in that it is complicated and expensive.
JP 2005-146302 A JP-A-11-001790 Japanese Patent Laid-Open No. 06-192868

本発明は、従来の水素と酸素との混合ガス発生装置におけるこのような問題を解消して、水素・酸素混合ガスを安定的で効率的に発生できる酸水素ガス発生装置を提供するものである。  The present invention provides an oxyhydrogen gas generator capable of solving such a problem in a conventional mixed gas generator of hydrogen and oxygen and generating a hydrogen / oxygen mixed gas stably and efficiently. .

従来では、角型電解槽を用い、電解槽内部に複数の電極板を積層し、その間にゴム質の絶縁部材を挿入介在させて、それぞれの電極板の間を隔離絶縁した構造のものが使用されている。エポキシ樹脂製の電極板絶縁支持枠を用いる場合もあるが、加工性が悪く、複数部品を組み合わせて作ると、電気絶縁性に問題を生じやすく、性能を確保しようとすると高価となる欠点がある。  Conventionally, a prismatic electrolytic cell is used, and a plurality of electrode plates are stacked inside the electrolytic cell, and a rubber-like insulating member is interposed between the electrode plates so that each electrode plate is isolated and insulated. Yes. In some cases, an epoxy resin electrode plate insulating support frame may be used, but the processability is poor, and when it is made by combining multiple parts, there is a problem that it tends to cause problems in electrical insulation, and it is expensive to ensure performance. .

本発明では、アルカリ水溶液を電気分解して酸素ガスと水素ガスを発生させ、それらを混合状態で取り出すようにした酸水素混合ガス発生装置において、水の電気分解を行なう電解槽の構造が、両端がゴム製パッキングを介してステンレス電極円板で封じられたフランジ付き円筒ステンレスであり、その内部がステンレス電極円板で複数室に区切られ、その周囲とステンレス円筒内面とは円筒状耐アルカリ性プラスチックにて電気的に絶縁されており、さらに各ステンレス電極円板はリング状の帯状耐アルカリ性プラスチックに挟まれて密着性よく固定され、電気的に絶縁されていることを特徴とし、これにより効率および信頼性の高い酸水素ガス発生装置を提供するものである。  In the present invention, in an oxyhydrogen mixed gas generator that electrolyzes an alkaline aqueous solution to generate oxygen gas and hydrogen gas and take them out in a mixed state, the structure of the electrolytic cell for electrolyzing water is Is a cylindrical stainless steel with a flange sealed with a stainless steel electrode disc through a rubber packing, the inside of which is divided into a plurality of chambers with a stainless steel electrode disc, and the circumference and the inner surface of the stainless steel cylinder are made of a cylindrical alkali-resistant plastic In addition, each stainless steel electrode disk is sandwiched between ring-shaped strips of alkali-resistant plastic, fixed with good adhesion, and electrically insulated, which makes it efficient and reliable. A highly oxyhydrogen gas generator is provided.

酸水素ガス発生装置は水を電気分解し、水素ガスと酸素ガスの混合ガスを発生させる装置である。水の電気分解は電解液(電解質水溶液・KOH、NaOH、等)に電気を流すことにより起きる電気化学反応である。陽極(+)では水酸イオンOH−が反応、電子を電極に放出して酸素分子O2と水分子が発生する。陰極(−)では水分子が電子を受け取って水酸イオンOH−と水素分子H2が発生する。この様に水が電気によって水素と酸素に分解され、気体(ガス)として取り出される。本装置での酸水素ガス発生装置は、酸素ガスと水素ガスを分離しないで混合ガス状態として燃料ガスとして取り出される。電解液の電解質は電気を流し易くし、水の電気分解を促進する役割をしている。全体としては水(H2O)だけが電気分解によりガスとなって消費され、電解質は分解されることなく残るので、水のみを補給すればよい。商用電源で水を電気分解し酸素と水素を連続的に発生させる装置であるので、わずらわしいガスボンベ等一切不要となり、電源投入ですぐに燃料などに利用できる。酸水素ガス発生装置は水を電気分解し、完全燃焼に必要な酸素自体を含む水素ガス2:酸素ガス1の混合ガスを発生させる装置であり、ガス貯蔵部を設けず、発生させたガスを直ちに利用するので、環境への影響なく、また爆発の危険性なく、安心して使用することができる。  The oxyhydrogen gas generator is an apparatus that electrolyzes water to generate a mixed gas of hydrogen gas and oxygen gas. Electrolysis of water is an electrochemical reaction that occurs when electricity is passed through an electrolytic solution (aqueous electrolyte solution / KOH, NaOH, etc.). At the anode (+), hydroxide ions OH− react to emit electrons to the electrode to generate oxygen molecules O2 and water molecules. At the cathode (-), water molecules receive electrons and generate hydroxide ions OH- and hydrogen molecules H2. In this way, water is decomposed into hydrogen and oxygen by electricity and taken out as a gas. The oxyhydrogen gas generator in this apparatus is taken out as fuel gas in a mixed gas state without separating oxygen gas and hydrogen gas. The electrolyte of the electrolyte serves to facilitate the flow of electricity and promote the electrolysis of water. As a whole, only water (H 2 O) is consumed as gas by electrolysis, and the electrolyte remains without being decomposed, so that only water needs to be replenished. Since it is a device that electrolyzes water with a commercial power source and continuously generates oxygen and hydrogen, there is no need for cumbersome gas cylinders and it can be used as fuel immediately after the power is turned on. The oxyhydrogen gas generator is an apparatus that electrolyzes water and generates a mixed gas of hydrogen gas 2: oxygen gas 1 containing oxygen itself necessary for complete combustion. Since it is used immediately, it can be used safely without any environmental impact or risk of explosion.

本発明の実施例として、電解槽の構造を図1に示す。電解液として水酸化カリウム水溶液(20−30wt%程度)を用いている。図1Aはその断面図であり、1はステンレス製円筒管(SUS304)であり、本実施例では、内径498mm、管の厚さ5mmであり、両端にフランジ2が溶接で取り付けられている。両端部において、3はゴムパッキング(ネオプレンゴム)、4はステンレス円板蓋(SUS304、厚さ15mm)であり、絶縁円筒スリーブを有するボルト、ナットでゴムパッキングを介して電気的に絶縁されて取り付けられている。5はステンレス円板電極(SUS316、厚さ1mm)であり、図では4枚のみ描かれ他は省略されているが、この例では19枚あり、電解槽が20室に分けられている。6はステンレス円筒内部の電解液とステンレスとを絶縁するためのプラスチック絶縁円筒であり、この例ではポリプロピレンを採用した。7は各ステンレス電極円板の位置を固定し、かつ各ステンレス電極円板を電気的に絶縁するための電極板絶縁支持枠であり、幅15mm、厚さ5mmの帯状のポリプロピレンをリング状にして用いている。その斜視図を図1Bに示している。ポリプロピレンは耐アルカリ性に優れ、耐熱性も実用上十分である。ポリプロピレンの代わりにテフロン(フッ化炭素樹脂)を用いることもできる。このような構成を採用することにより、電極板絶縁支持枠部において隙間なく、容易に絶縁性の良い電解槽を実現できる。電解液は上部5分の1を残す程度に満たされている。この図には明示されていないが、各ステンレス電極円板の上部には径15mm程度の穴、下部の斜め下には各ステンレス円板には隣同士左右互い違いに径15mm程度の穴が設けられている。上部の穴は発生したガスの取り出し用であり、下部の穴は電解液の導入用である。各ステンレス電極円板の下部の穴が隣同士互い違いであるのは、電解液中を流れる電流がバイパスしないようにするためである。  As an embodiment of the present invention, the structure of an electrolytic cell is shown in FIG. A potassium hydroxide aqueous solution (about 20-30 wt%) is used as the electrolytic solution. FIG. 1A is a cross-sectional view thereof, and reference numeral 1 denotes a stainless steel cylindrical tube (SUS304). In this embodiment, the inner diameter is 498 mm, the tube thickness is 5 mm, and flanges 2 are attached to both ends by welding. At both ends, 3 is a rubber packing (neoprene rubber), 4 is a stainless steel disc lid (SUS304, thickness 15 mm), and is electrically insulated and attached via a rubber packing with bolts and nuts having an insulating cylindrical sleeve. It has been. Reference numeral 5 denotes a stainless steel disc electrode (SUS316, thickness 1 mm). In the figure, only four sheets are drawn and others are omitted, but in this example, there are 19 sheets, and the electrolytic cell is divided into 20 chambers. 6 is a plastic insulating cylinder for insulating the electrolytic solution inside the stainless steel cylinder from the stainless steel. In this example, polypropylene was used. Reference numeral 7 denotes an electrode plate insulating support frame for fixing the position of each stainless steel electrode disk and electrically insulating each stainless steel electrode disk, and a belt-like polypropylene having a width of 15 mm and a thickness of 5 mm is formed into a ring shape. Used. A perspective view thereof is shown in FIG. 1B. Polypropylene is excellent in alkali resistance and heat resistance is practically sufficient. Teflon (fluorocarbon resin) can also be used instead of polypropylene. By adopting such a configuration, it is possible to easily realize an electrolytic cell with good insulation without a gap in the electrode plate insulating support frame portion. The electrolyte is filled enough to leave the upper fifth. Although not clearly shown in this figure, a hole with a diameter of about 15 mm is provided at the top of each stainless steel electrode disk, and a hole with a diameter of about 15 mm is provided on each stainless steel disk in a staggered manner below each other. ing. The upper hole is for taking out the generated gas, and the lower hole is for introducing the electrolyte. The reason why the holes at the bottom of each stainless steel electrode disk are staggered is to prevent the current flowing in the electrolyte from bypassing.

直流電源が左右のステンレス円板蓋に接続される。左右のステンレス円板蓋が陽極、陰極の役割を果たす。このようにすると各ステンレス電極円板で区切られた電解室が直列接続され、各ステンレス電極円板の表裏が各電解室の陽極と陰極として作用することになる。水の電気分解では各電解室に必要な電圧は2V程度なので、本実施例の20室構成では、40V−50V程度の電圧が必要である。このとき200A程度の電流が流れ、2400リットル毎時程度の酸水素ガスが発生する。  A DC power supply is connected to the left and right stainless steel disc lids. The left and right stainless steel disc lids act as anodes and cathodes. If it does in this way, the electrolytic chamber divided by each stainless steel electrode disk will be connected in series, and the front and back of each stainless steel electrode disk will act as the anode and cathode of each electrolytic chamber. In the electrolysis of water, the voltage required for each electrolysis chamber is about 2V, so the voltage of about 40V-50V is required in the 20-room configuration of this embodiment. At this time, a current of about 200 A flows and oxyhydrogen gas of about 2400 liters per hour is generated.

図1Cは一方のステンレス円板蓋の正面図であって、酸水素ガスの取り出し口11、電解液の液面計12、水の補給口13、電解液の排出口14、直流電源の接続端子15が設けられている。他方のステンレス円板蓋には直流電源の接続端子が設けられている。  FIG. 1C is a front view of one of the stainless steel disc lids, which is an oxyhydrogen gas outlet 11, an electrolyte level gauge 12, a water replenishment port 13, an electrolyte outlet 14, and a DC power supply connection terminal. 15 is provided. The other stainless steel disc lid is provided with a connection terminal for a DC power source.

電極板の表面積を増せば、同一電圧ならば、電流がそれに比例して増加し、発生する酸水素ガスが増加する。また、電流を一定に保てば、電圧が減少し、水電気分解の効率が向上する。電極表面積の増加方法として、表面に凹凸をつける、網目状のものを付加するなどが考えられるが、簡単構造で信頼性を確保できる方法として、図2に示すように、5mm程度の穴を10mm程度の間隔で多数設けた構造の穴あきステンレス円板5Aを、2−3mmの間隙を設けて、溶接などの方法で電極板の両面に固定することが有効である。最両端の電極(ステンレス円板蓋)はもちろん片側のみに付加する。このようにすることにより、約3倍の電極表面積を実現できる。各電極板に複数枚の穴あきステンレス板を付加すれば、電極表面積をさらに増加させることができる。  If the surface area of the electrode plate is increased, the current increases in proportion to the same voltage, and the generated oxyhydrogen gas increases. Further, if the current is kept constant, the voltage is reduced and the efficiency of water electrolysis is improved. As a method for increasing the surface area of the electrode, it is conceivable to add unevenness to the surface or to add a mesh-like one. However, as a method that can ensure reliability with a simple structure, as shown in FIG. It is effective to provide a plurality of perforated stainless steel discs 5A having a structure provided at a certain interval with a gap of 2-3 mm and fix them to both surfaces of the electrode plate by a method such as welding. Of course, the electrodes at the extreme ends (stainless steel disc lids) are added only on one side. By doing so, an electrode surface area of about 3 times can be realized. If a plurality of perforated stainless steel plates are added to each electrode plate, the electrode surface area can be further increased.

図3は、酸水素ガス発生装置の全体を示す。図3Aは平面図、図3Bは正面図である。図3Aの31は電解槽であり、発生した酸水素ガスは、ガスホース配管により、水式の逆火防止器32および水滴フィルター兼乾式逆火防止器33を経て、ガス出力34となる。35は消費した水を補給するための水タンクであり、圧力ポンプ36により電解槽31に水が補給される。電解槽31の液面モニターを用いることのより、自動給水とすることもできる。37は電解槽や直流電源の発熱に対する冷却ファンである。38は商用電源200V,3相、50Aへの接続端子である。 図3Bの39は直流電源であり、スイッチング電源方式のものを採用しており、容量50V,200Aのものを用いている。スイッチング電源方式のものは、小型、軽量で大容量という長所がある。この電源は定電圧定電流制御方式であり、一定ガス発生条件に対しては定電流動作モードを適用でき、使いやすい。40は制御盤であり、電源のON,OFFの操作および電解槽31内のガス圧力をモニターして、設定ガス圧力を維持するように直流電源39を制御する。圧力0−0.5MPaで制御できるようにした。また、電解槽には安全弁を設け、さらに電解槽の温度を監視し、安全動作を確保するようにしている。  FIG. 3 shows the entire oxyhydrogen gas generator. 3A is a plan view and FIG. 3B is a front view. 3A is an electrolytic cell, and the generated oxyhydrogen gas becomes a gas output 34 through a water-type backfire preventer 32 and a water droplet filter / dry backfire preventer 33 by a gas hose pipe. Reference numeral 35 denotes a water tank for replenishing consumed water, and water is replenished to the electrolytic cell 31 by the pressure pump 36. By using the liquid level monitor of the electrolytic cell 31, automatic water supply can be achieved. Reference numeral 37 denotes a cooling fan for the heat generated by the electrolytic cell or the DC power source. Reference numeral 38 denotes a connection terminal to a commercial power supply 200V, 3 phase, 50A. Reference numeral 39 in FIG. 3B denotes a DC power supply, which employs a switching power supply system, and has a capacity of 50 V and 200 A. The switching power supply type has the advantages of small size, light weight and large capacity. This power source is a constant voltage and constant current control system, and can be applied to a constant gas generation condition and is easy to use. Reference numeral 40 denotes a control panel that controls the DC power supply 39 so as to maintain the set gas pressure by monitoring the ON / OFF operation of the power supply and the gas pressure in the electrolytic cell 31. The pressure was controlled at 0-0.5 MPa. In addition, a safety valve is provided in the electrolytic cell, and the temperature of the electrolytic cell is monitored to ensure a safe operation.

以上説明したように、本発明では、アルカリ水溶液を電気分解して酸素ガスと水素ガスを発生させ、それらを混合状態で取り出すようにした酸水素ガス発生装置において、水の電気分解を行なう電解槽の構造が、両端がゴム製パッキングを介してステンレス円板蓋で封じられたフランジ付き円筒ステンレスであり、その内部がステンレス電極円板で複数室に区切られ、その周囲とステンレス円筒とは耐アルカリ性プラスチックにて電気的に絶縁され、さらに各ステンレス電極円板はリング状の帯状耐アルカリ性プラスチックに挟まれて固定されて電気的に絶縁されていることを特徴し、これらにより、効率および信頼性の高い酸水素ガス発生装置を実現するものである。  As described above, in the present invention, an electrolytic cell for electrolyzing water in an oxyhydrogen gas generator that electrolyzes an alkaline aqueous solution to generate oxygen gas and hydrogen gas, and takes them out in a mixed state. The structure is a cylindrical stainless steel with a flange sealed at both ends with a stainless steel disc lid through rubber packing, and the inside is divided into multiple chambers with a stainless steel electrode disc, and the circumference and the stainless steel cylinder are alkali resistant It is electrically insulated with plastic, and each stainless steel electrode disk is sandwiched between ring-shaped and alkali-resistant plastics, and is fixed and electrically insulated. A high oxyhydrogen gas generator is realized.

本発明酸水素ガス発生装置の一実施例を示す電解槽の断面図および正面図である。It is sectional drawing and the front view of an electrolytic cell which show one Example of this invention oxyhydrogen gas generator. 本発明酸水素ガス発生装置における電解槽の電極構成一実施例の断面図である。It is sectional drawing of one Example of electrode structure of the electrolytic cell in this invention oxyhydrogen gas generator. 本発明酸水素ガス発生装置の一実施例の平面図および正面図である。It is the top view and front view of one Example of this invention oxyhydrogen gas generator.

符号の説明Explanation of symbols

1 ステンレス円筒
2 ステンレス円筒フランジ
3 ゴムパッキング
4 ステンレス円板蓋
5 ステンレス電極円板
5A 穴あきステンレス円板
6 プラスチック絶縁円筒
7 電極板絶縁支持枠
11 酸水素ガスの取り出し口
12 電解液の液面計
13 水の補給口
14 電解液の排出口
15 直流電源の接続端子
31 電解槽
32 水式の逆火防止器
33 水滴フィルター兼乾式逆火防止器
34 ガス出力
35 水タンク
36 圧力ポンプ
37 冷却ファン
38 電源200V,3相への接続端子
39 直流電源
40 制御盤
DESCRIPTION OF SYMBOLS 1 Stainless steel cylinder 2 Stainless steel cylindrical flange 3 Rubber packing 4 Stainless steel disk lid 5 Stainless steel electrode disk 5A Perforated stainless steel disk 6 Plastic insulating cylinder 7 Electrode plate insulating support frame 11 Oxyhydrogen gas outlet 12 Electrolyte level gauge 13 Water Supply Port 14 Electrolyte Discharge Port 15 DC Power Supply Connection Terminal 31 Electrolyzer 32 Water Type Backfire Prevention Device 33 Water Drop Filter / Dry Type Backfire Prevention Device 34 Gas Output 35 Water Tank 36 Pressure Pump 37 Cooling Fan 38 Power supply terminal 200V, three-phase connection terminal 39 DC power supply 40 Control panel

Claims (3)

アルカリ水溶液を用いて水を電気分解して、酸素ガスと水素ガスを発生させ、それらを混合状態で取り出すようにした酸水素混合ガス発生装置において、水の電気分解を行なう電解槽の構造が、両端がゴム製パッキングを介して電気的に絶縁されてステンレス円板蓋で封じられたフランジ付き円筒ステンレスであり、その内部が複数のステンレス電極円板で複数室に区切られ、それらの周囲とステンレス円筒内面とは円筒状耐アルカリ性プラスチックにて電気的に絶縁されており、さらに各ステンレス電極円板はリング状の帯状耐アルカリ性プラスチックに挟まれて固定され、電気的に絶縁されていることを特徴とする酸水素ガス発生装置。In the oxyhydrogen mixed gas generator in which water is electrolyzed using an alkaline aqueous solution to generate oxygen gas and hydrogen gas, which are taken out in a mixed state, the structure of the electrolytic cell for electrolyzing water is: Both ends are cylindrical stainless steel with flanges that are electrically insulated through rubber packing and sealed with a stainless steel disc lid, and the inside is divided into multiple chambers by a plurality of stainless steel electrode discs. The cylindrical inner surface is electrically insulated by a cylindrical alkali-resistant plastic, and each stainless steel electrode disk is sandwiched and fixed between ring-shaped strips of an alkali-resistant plastic and is electrically insulated. An oxyhydrogen gas generator. 請求項1における電解槽の電極構成において、耐アルカリ性プラスチックとして、ポリプロピレンもしくはテフロンを用いたことを特徴とする酸水素ガス発生装置。2. The oxyhydrogen gas generator according to claim 1, wherein polypropylene or Teflon is used as the alkali resistant plastic. 請求項1における電解槽の電極構成において、ステンレス電極円板の両側表面に穴あきステンレス円板を、間隙を設けて接続し、両端ステンレス円板蓋には穴あきステンレス円板を内側のみに接続していることを特徴とする酸水素ガス発生装置。2. The electrode configuration of an electrolytic cell according to claim 1, wherein a stainless steel disc with holes is connected to both surfaces of the stainless steel disc with a gap, and a stainless steel disc with holes is connected to both ends of the stainless disc lid only on the inside. An oxyhydrogen gas generator characterized by the above.
JP2008280468A 2008-10-06 2008-10-06 Apparatus for generating oxyhydrogen gas Pending JP2010090473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280468A JP2010090473A (en) 2008-10-06 2008-10-06 Apparatus for generating oxyhydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280468A JP2010090473A (en) 2008-10-06 2008-10-06 Apparatus for generating oxyhydrogen gas

Publications (1)

Publication Number Publication Date
JP2010090473A true JP2010090473A (en) 2010-04-22

Family

ID=42253458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280468A Pending JP2010090473A (en) 2008-10-06 2008-10-06 Apparatus for generating oxyhydrogen gas

Country Status (1)

Country Link
JP (1) JP2010090473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234355A (en) * 2012-05-09 2013-11-21 Suzuki Sangyo Kk Hydrogen gas generation device
JP2016511794A (en) * 2013-02-01 2016-04-21 ブイ. モンロス,サージ Hydrogen-on-demand fuel system for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507828A (en) * 1993-03-15 1996-08-20 ライディングズ ピーティーワイ リミテッド Electrolytic manufacturing equipment
JPH1112773A (en) * 1997-06-24 1999-01-19 Abe Takuma Method for generating hydrogen and oxygen and device therefor
JP2005535783A (en) * 2002-08-12 2005-11-24 インターナンティウム ヴェンチャーズ リミテッド Electrolysis method and apparatus
JP2008013830A (en) * 2006-07-07 2008-01-24 Oyo Denki Kk Electrode structure of electrolysis tank, and electrolysis tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507828A (en) * 1993-03-15 1996-08-20 ライディングズ ピーティーワイ リミテッド Electrolytic manufacturing equipment
JPH1112773A (en) * 1997-06-24 1999-01-19 Abe Takuma Method for generating hydrogen and oxygen and device therefor
JP2005535783A (en) * 2002-08-12 2005-11-24 インターナンティウム ヴェンチャーズ リミテッド Electrolysis method and apparatus
JP2008013830A (en) * 2006-07-07 2008-01-24 Oyo Denki Kk Electrode structure of electrolysis tank, and electrolysis tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234355A (en) * 2012-05-09 2013-11-21 Suzuki Sangyo Kk Hydrogen gas generation device
JP2016511794A (en) * 2013-02-01 2016-04-21 ブイ. モンロス,サージ Hydrogen-on-demand fuel system for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4074322B2 (en) Combustion gas generator using electrolysis and in-vehicle combustion gas generator
EP3460100B1 (en) Alkaline water electrolysis device and operation method thereof
JP2006518812A (en) Electrolytic cell apparatus and method for producing hydrogen
JP6013448B2 (en) Electrochemical cell and use of electrochemical cell
JP2013194296A (en) Protective member of electrolytic cell and electrolytic cell using the same
KR890002061B1 (en) A monopolar electrochemical cell,cell unit and process for conducting electrolysis in monopolar cell series
EP2762613A1 (en) A fuel system
JP2009215578A (en) Fluorine electrolysis apparatus
JP2010090473A (en) Apparatus for generating oxyhydrogen gas
US5766427A (en) Electrolyzer with reduced parasitic currents
JP3836833B2 (en) Hydrogen and oxygen mixed gas generator and its electrolyzer
CN211199421U (en) Intelligent split type hydrogen and oxygen generator
CN100447306C (en) Automatic hydro-electrolytic hydroxide generator
JP2004143481A (en) Electrode for electrolysis, and electrolytic device
JP4599487B2 (en) Water-cooled vertical electrolytic cell
CN103484890A (en) Hydrogen-oxygen generator
KR20050047697A (en) A mixed gas generator of oxygen and hydrogen and an electrolyzer therein
KR101360353B1 (en) Brown gas generator
JP7082002B2 (en) Electrolytic cell and how to use it
US20100276278A1 (en) Modular electrolysis device
KR100660176B1 (en) Hydrogen Generaton by electroysis of water
JP2010202968A (en) Apparatus for generating oxyhydrogen gas
KR100424665B1 (en) great volume oxygen and hydrogen mixture gas generation equipment of variable an electrolytic cell
RU174582U1 (en) HIGH PRESSURE ELECTROLYZER
JP2005097746A (en) Hydrogen-feeding device using solid polymer type water electrolysis tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022