JP2010083395A - 路面摩擦係数推定装置 - Google Patents

路面摩擦係数推定装置 Download PDF

Info

Publication number
JP2010083395A
JP2010083395A JP2008256540A JP2008256540A JP2010083395A JP 2010083395 A JP2010083395 A JP 2010083395A JP 2008256540 A JP2008256540 A JP 2008256540A JP 2008256540 A JP2008256540 A JP 2008256540A JP 2010083395 A JP2010083395 A JP 2010083395A
Authority
JP
Japan
Prior art keywords
road surface
friction coefficient
surface friction
rack thrust
sampling time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256540A
Other languages
English (en)
Other versions
JP5231923B2 (ja
Inventor
Masaru Kogure
勝 小暮
Takeshi Yoneda
毅 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2008256540A priority Critical patent/JP5231923B2/ja
Publication of JP2010083395A publication Critical patent/JP2010083395A/ja
Application granted granted Critical
Publication of JP5231923B2 publication Critical patent/JP5231923B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】幅広い運転領域で、レスポンス良く、精度の良い路面μを推定する。
【解決手段】路面μ推定装置10は、サンプリング時間が異なる複数のラック推力をラック推力推定値Fmsveとして検出し、このラック推力推定値Fmsveと同じタイミングで、基準とするラック推力(基準ラック推力)Fmdveを少なくとも路面μをパラメータとして含むタイヤモデルにより推定し、少なくともラック推力推定値Fmsveと基準ラック推力Fmdveとの偏差を最小とする路面μの値を最適化計算により求める。
【選択図】図3

Description

本発明は、ラック推力を用いて路面摩擦係数を推定する、電動パワーステアリングを有する車両の路面摩擦係数推定装置に関する。
近年、車両においてはトラクション制御、制動力制御、トルク配分制御等について様々な制御技術が提案され、実用化されている。これらの技術では、必要な制御量の演算、或いは、補正に路面摩擦係数(以下、路面μと略称)を用いるものも多く、その制御を確実に実行するためには、正確な路面μを推定する必要がある。このような路面μの推定を行うものとして、比較的少ないパラメータでレスポンス良く路面μを推定できることから、ラック推力を推定して路面μを推定する装置が提案されている。
例えば、特許文献1では、ある車速、ある操舵角における路面反力が路面μにより変化することを利用し、基準となる路面μにおけるある車速、ある操舵角に対する路面反力を予め記憶しておき、演算で算出した路面反力と比較することにより路面μを推定する技術が開示されている。この技術では、路面反力はラック推力と等しいと考え、電動パワーステアリングモータがアシストする推力とハンドル操舵による推力の和をラック推力として、導出される評価関数を基に路面μを推定するようになっている。
特開2001−341658号公報
しかしながら、図10に示すように、特にステアリング保舵時(図10中、taで示す)、切り戻し時(同じく、tbで示す)においては、路面状態、フリクション等の影響を受けてラック推力推定の基となるモータアシスト力は僅かな操舵変化で大きく変動するため、ラック推力の推定が困難で、路面μの推定ができないという問題がある。上述の特許文献1では、過去に推定した路面μを加味した加重平均処理により路面μを推定しようとしているが、これでは路面μの急な変化に対処できず、レスポンス良く路面μを推定することができないという課題がある。
本発明は上記事情に鑑みてなされたもので、幅広い運転領域で、レスポンス良く、精度の良い路面μを推定することができる路面摩擦係数推定装置を提供することを目的としている。
本発明は、電動パワーステアリングを有する車両の路面摩擦係数推定装置において、少なくとも操舵トルクに関するパラメータと上記電動パワーステアリングのモータのモータトルクに関するパラメータとに基づいて、サンプリング時間毎に推定ラック推力を算出する推定ラック推力算出手段と、少なくとも車輪速に関するパラメータとハンドル角に関するパラメータとに基づいて、上記推定ラック推力の算出と同じタイミングで、路面摩擦係数をパラメータとして含むタイヤモデルにより基準ラック推力を算出する基準ラック推力算出手段と、少なくとも上記サンプリング時間毎の上記推定ラック推力と上記基準ラック推力との偏差の二乗和が最小となるように上記路面摩擦係数の値を最適化計算により求める路面摩擦係数推定手段とを備えたことを特徴としている。
本発明による路面摩擦係数推定装置によれば、幅広い運転領域で、レスポンス良く、精度の良い路面μを推定することが可能となる。
以下、図面に基づいて本発明の実施の形態を説明する。
図1〜図9は本発明の実施の一形態を示し、図1は操舵機構と路面摩擦係数推定装置の構成図、図2は路面摩擦係数推定装置の機能ブロック図、図3は路面摩擦係数推定プログラムのフローチャート、図4は図3から続くフローチャート、図5は前輪すべり角に応じた重み係数の説明図、図6は横加速度に応じた重み係数の説明図、図7はサンプリング時間に応じた第1の重み係数の説明図、図8はサンプリング時間に応じた第2の重み係数の説明図、図9は路面カントに応じた重み係数の説明図である。
図1において、符号1は路面μを推定する車両の操舵機構の一例を示し、ハンドル(ステアリングホイール)2から入力されるドライバの操舵力が、操舵軸3、ピニオン4を介してラック5に伝達され、これにより、図示しないタイロッド、ナックルアームを介してホイール、タイヤ6が転舵される。また、電動パワーステアリングモータ7が発生するアシストトルクは、減速機8を通じて操舵軸3へと伝達され、ドライバの操舵力をアシストする。
また、操舵機構1には、ハンドル角θhを検出するハンドル角センサ11、操舵トルクThを検出する操舵トルクセンサ12、電動パワーステアリングモータ7の電流値(以下、モータ電流と略称)IEPSを検出する電動パワーステアリングモータ電流センサ13が設けられている。更に、車両には、車速Vを検出する車速センサ14、横加速度(dy/dt)を検出する横加速度センサ15、ヨーレートγを検出するヨーレートセンサ16が設けられており、これらハンドル角θh、操舵トルクTh、モータ電流IEPS、車速V、横加速度(dy/dt)、ヨーレートγは、路面μ推定装置10に入力される。
路面μ推定装置10は、上述の各入力信号に基づき、後述する路面摩擦係数推定プログラムに従って、操舵トルクと電動パワーステアリングモータのモータトルクに基づいて、サンプリング時間毎に推定ラック推力Fmsveを算出し、この推定ラック推力Fmsveの算出と同じタイミングで、車輪速とハンドル角とに基づいて基準ラック推力Fmdveを少なくとも路面μをパラメータとして含むタイヤモデルにより算出し、そしてサンプリング時間毎の推定ラック推力Fmsveと基準ラック推力Fmdveとの偏差の二乗和が最小となるように路面μの値を最適化計算により求めるように構成されている。
すなわち、路面μ推定装置10は、図2に示すように、前輪すべり角演算部10a、路面μ推定判定部10b、推定ラック推力演算部10c、カント演算部10d、重み関数演算部10e、路面μ演算部10fから主要に構成されている。
前輪すべり角演算部10aは、ハンドル角センサ11からハンドル角θhが、車速センサ14から車速Vが入力される。そして、例えば、以下の(1)式により、現在の前輪すべり角βfeを演算する。
βfe=β+(lf/V)・γs−δf …(1)
ここで、lfは前軸−重心間距離、δfは前輪実舵角(=θh/n:nはハンドル角θhと実舵角の比)、βは車体すべり角で以下の(2)式により求められ、γsはヨーレートで以下の(3)式により求められる。
β=((1−(m/(2・(lf+lr)))・(lf/(lr・kr))・V
/(1+A・V))・(lr/(lf+lr))・δf …(2)
γs=(1/(1+A・V))・(V/(lf+lr))・δf …(3)
ここで、mは車両質量、lrは後軸−重心間距離、krは後輪等価コーナリングパワーである。また、Aは車両のスタビリティファクタであり、例えば、以下の(4)式により演算される。
A=−(m/(2・(lf+lr)))
・((lf・kf−lr・kr)/(kf・kr)) …(4)
ここで、kfは前輪等価コーナリングパワーである。
また、前輪すべり角演算部10aは、現在の前輪すべり角βfeを演算すると、過去に演算したサンプリング時間の異なる複数の前輪すべり角により、ベクトル量である前輪すべり角βfveを新たに設定する。本実施の形態では、前輪すべり角βfveの例として、新しくサンプリングされた順に、βf[0]、βf[1]、・・・、βf[m]、・・・、βf[18]、βf[19]の合計20個の成分から構成されているもので説明する。すなわち、
Figure 2010083395
であり、新たに、前輪すべり角βfeが演算されると、
Figure 2010083395
と更新される。上述のように演算される現在の前輪すべり角βfeは、路面μ推定判定部10b、重み関数演算部10eに出力され、前輪すべり角βfveは路面μ演算部10fに出力される。
路面μ推定判定部10bは、ハンドル角センサ11からハンドル角θhが、車速センサ14から車速Vが、前輪すべり角演算部10aから前輪すべり角βfeが入力される。そして、車速Vが設定車速Vc1を越えており(V>Vc1)、且つ、前輪すべり角の絶対値|βfe|が設定値βfc1を越えており(|βfe|>βfc1)、且つ、ハンドル角θhとハンドル角速度(dθh/dt)との乗算値が正(θh・(dθh/dt)>0:すなわち、ハンドル切増状態)の条件(路面μ推定実行条件)が成立しているか否かの判定が行われる。
ハンドル切増状態以外では電動パワーステアリングモータ7のアシストトルク、操舵トルクが小さくなって、フリクション等の影響を受け、ラック推力を推定するにあたり、S/N比が悪化する虞がある。また、前輪すべり角の絶対値|βfe|が小さい場合、車速Vが低い場合もS/N比が悪化する虞がある。従って、上述の路面μ推定実行条件が成立するときのみ路面μの推定を行うと判定し、この判定結果を路面μ演算部10fに出力する。このように、路面μ推定判定部10bは、実行判定手段として設けられている。
尚、上述の|βfe|>βfc1に代えて、|Th|>CTh(CThは予め設定した値)で判定するようにしても良い。また、上述の切増状態判定のθh・(dθh/dt)>0は、βfe・(dβfe/dt)>0で判定するようにしても良く、Th・(dθm/dt)>0(θmは電動パワーステアリングモータ7のモータ回転角)で判定しても良い。
推定ラック推力演算部10cは、検出する操舵トルクセンサ12から操舵トルクThが、電動パワーステアリングモータ電流センサ13からモータ電流IEPSが入力される。そして、例えば、以下の(7)式により、現在の推定ラック推力Fmseを演算する。
Fmse=ζ1・(2・π/hs)・Tp …(7)
ここで、ζ1はラック&ピニオンの効率、hsはラック&ピニオンの比ストローク、Tpはピニオンギヤトルクであり、以下の(8)式により演算される。
Tp=Th+ζ2・ηw・Tm …(8)
ここで、ζ2はウォームギヤの効率、ηwはウォームギヤ比、Tmは電動パワーステアリングモータ7のモータトルクであり、以下の(9)式により演算される。
Tm=sign(Th)・km・3−1/2・IEPS …(9)
ここで、sign(Th)は、操舵トルクThの符号を、kmはモータトルク定数を示す。
また、推定ラック推力演算部10cは、現在の推定ラック推力Fmseを演算すると、過去に演算したサンプリング時間の異なる(それぞれ上述の前輪すべり角取得と同じタイミングの)複数の推定ラック推力により、ベクトル量である推定ラック推力Fmsveを新たに設定する。本実施の形態では、推定ラック推力Fmsveの例として、新しくサンプリングされた順に、Fms[0]、Fms[1]、・・・、Fms[m]、・・・、Fms[18]、βf[19]の合計20個の成分から構成されているもので説明する。すなわち、
Figure 2010083395
であり、新たに、推定ラック推力Fmseが演算されると、
Figure 2010083395
と更新される。上述のように演算される推定ラック推力Fmsveは、路面μ演算部10fに出力される。このように、推定ラック推力演算部10cは、推定ラック推力算出手段として設けられている。
カント演算部10dは、横加速度センサ15から横加速度(dy/dt)が、ヨーレートセンサ16からヨーレートγが入力される。そして、例えば、以下の(12)式により、路面のカントθcaを演算し、重み関数演算部10eに出力する。
θca=((dy/dt)−V・γ)/g …(12)
重み関数演算部10eは、横加速度センサ15から横加速度(dy/dt)が、前輪すべり角演算部10aから前輪すべり角βfeが、カント演算部10dから路面のカントθcaが入力される。そして、以下の(13)式に示すように、上述の前輪すべり角βfve、ラック推力推定値Fmsveのデータ数と同じ行数、列数を持つ正方行列である、第1の重み関数W1veを設定し、路面μ演算部10fに出力する。
Figure 2010083395
ここで、第1の重み関数W1veを構成する各成分は、例えば、以下のように演算されるものである。
W1[0]=W14[0]・W15[0]・(W11[0]+W12[0]+W13[0])
W1[1]=W14[1]・W15[1]・(W11[1]+W12[1]+W13[1])

W1[m]=W14[m]・W15[m]・(W11[m]+W12[m]+W13[m])

W1[18]=W14[18]・W15[18]・(W11[18]+W12[18]+W13[18])
W1[19]=W14[19]・W15[19]・(W11[19]+W12[19]+W13[19])
上述の各W11[0]〜W11[19]は、それぞれそのサンプリング時間における前輪すべり角βfe毎に設定される値であり、例えば、図5に示すようなマップを参照することにより設定される。
すなわち、前輪すべり角βfeが大きくなるほど、路面μの違いによる差異は大きくなるため、外乱入力が略一定であると仮定すれば、前輪すべり角βfeに応じてS/N比が良好になる。従って、前輪すべり角の絶対値|βfe|が大きいほど、その値の重みを重くするべくW11[0]〜W11[19]を大きな値に設定するのである。
また、各W12[0]〜W12[19]は、それぞれそのサンプリング時間における横加速度(dy/dt)毎に設定される値であり、例えば、図6に示すようなマップを参照することにより設定される。
すなわち、横加速度(dy/dt)が大きくなるほど、路面μの違いによる差異は大きくなるため、外乱入力が略一定であると仮定すれば、横加速度(dy/dt)に応じてS/N比が良好になる。従って、横加速度の絶対値|(dy/dt)|が大きいほど、その値の重みを重くするべくW12[0]〜W12[19]を大きな値に設定するのである。そして、このように横加速度の絶対値|(dy/dt)|に応じて重み関数を設定することにより、ドライ路面高G旋回における路面μ推定の復帰を早めることができる。
更に、各W13[0]〜W13[19]は、経過時間に応じた重み関数の要素(サンプリング時間に応じた第1の重み係数)であり、例えば、第1の重み関数W1veを設定する際の、各サンプリング時間の経過時間に応じて図7のマップを参照することにより設定される。
図7では、新しいデータほど重み関数が大きく、新しいデータでの路面判定を優先させるようになっており、路面判定の応答性を向上させるようになっている。
また、各W14[0]〜W14[19]も、経過時間に応じた重み関数の要素(サンプリング時間に応じた第2の重み係数)であり、例えば、第1の重み関数W1veを設定する際の、各サンプリング時間の経過時間に応じて図8のマップを参照することにより設定される。
この図8のマップからも明らかなように、一定時間以上経過した値は、重み係数を0とし、この値を乗算することにより、採用しないよう設定される。
更に、各W15[0]〜W15[19]は、それぞれそのサンプリング時間における路面カントの絶対値|θca|に応じて設定される値であり、例えば、図9に示すようなマップを参照することにより設定される。すなわち、カントのある路面を走行する際は、操舵角とラック推力の関係が変化するため(横力が発生しなくても旋回できる等)、誤判定を誘発する虞がある。そこで、カントのある路面走行の可能性が高い場合は、重み関数を小さく設定し、カント路走行時の誤判定を抑制するのである。このように、重み関数演算部10eは、路面摩擦係数推定手段を構成している。
路面μ演算部10fは、前輪すべり角演算部10aから前輪すべり角βfveが、路面μ推定判定部10bから路面μ推定の実行判定結果が、推定ラック推力演算部10cから推定ラック推力Fmsveが、重み関数演算部10eから第1の重み関数W1veが入力される。そして、路面μ推定判定部10bから路面μ推定の実行許可の信号が入力されている場合、推定ラック推力Fmsveと同じタイミングで、基準ラック推力Fmdveを少なくとも路面μをパラメータとして含むタイヤモデルにより推定し、少なくとも推定ラック推力Fmsveと基準ラック推力Fmdveとの偏差を最小とする路面μの値を最適化計算により求める。
具体的には、以下の(14)式により、路面μが微小変化した時の、基準ラック推力Fmdveの変化量を要素とするベクトルであるヤコビアンJve[n-1]を、路面μ推定値の前回値μ[n-1]を使って演算する。尚、ヤコビアンJve[n-1]の添字[n-1]は、路面μ推定値の前回値μ[n-1]を表すものであり、反復演算n−1=0の場合は、路面μ推定値の前回値μ[n-1]が無いため、先のサンプリング時における路面μの推定結果μ[z-1]を代入する。
Figure 2010083395
ヤコビアンJve[n-1]の各要素は、以下の各式で求められるものである。
(∂Fmd[0]/∂μ[n-1])=((kf・βf[0]
/(3・ln・Wf・μ[n-1]))・((l+2・ζc)
−(((6・l+4・ζc)・kf・βf[0])
/(9・Wf・μ[n-1]))+((l・kf・βf[0]
/(9・Wf・μ[n-1])))
(∂Fmd[1]/∂μ[n-1])=((kf・βf[1]
/(3・ln・Wf・μ[n-1]))・((l+2・ζc)
−(((6・l+4・ζc)・kf・βf[1])
/(9・Wf・μ[n-1]))+((l・kf・βf[1]
/(9・Wf・μ[n-1])))

(∂Fmd[m]/∂μ[n-1])=((kf・βf[m]
/(3・ln・Wf・μ[n-1]))・((l+2・ζc)
−(((6・l+4・ζc)・kf・βf[m])
/(9・Wf・μ[n-1]))+((l・kf・βf[m]
/(9・Wf・μ[n-1])))

(∂Fmd[18]/∂μ[n-1])=((kf・βf[18]
/(3・ln・Wf・μ[n-1]))・((l+2・ζc)
−(((6・l+4・ζc)・kf・βf[18])
/(9・Wf・μ[n-1]))+((l・kf・βf[18]
/(9・Wf・μ[n-1])))
(∂Fmd[19]/∂μ[n-1])=((kf・βf[19]
/(3・ln・Wf・μ[n-1]))・((l+2・ζc)
−(((6・l+4・ζc)・kf・βf[19])
/(9・Wf・μ[n-1]))+((l・kf・βf[19]
/(9・Wf・μ[n-1])))
尚、Fmd[0]〜Fmd[19]は、基準ラック推力Fmdveの各成分(詳しくは後述する)、lnはナックルアーム長、Wfは前輪接地荷重(静止時)、lはタイヤ接地面の進行方向長さ、ζcはキャスタトレールである。
次に、以下の(15)式により、路面μ推定値の変化量δμを演算する。
δμ=[Jve[n-1]W1veJve[n-1]+W2]−1
Jve[n-1]W1ve[Fmsve−Fmdve[n-1]] …(15)
ここで、W2は実験的に定める固定値である。
次いで、以下の(16)式により、路面μ推定値μ[n]を演算する。
μ[n]=μ[n-1]+δμ …(16)
次に、上述の(16)式で演算した路面μ推定値μ[n]を用いて、基準ラック推力Fmdve[n]を演算する。尚、反復演算回数n=0の場合は、前サンプリング時間における推定結果を代入する。
Figure 2010083395
ここで、Fmdve[n]の各要素は、次式で演算される。
左右輪の横力が略等しいと仮定すれば、基準ラック推力Fmd[0][n]は、Fialaのタイヤモデルにより、以下の(18)式により、演算される。
Fmd[0][n]=2・(1/ln)・(SAT+ζc・Fy) …(18)
ここで、SATはセルフアライニングトルクであり、以下の(19)式により演算され、Fyはタイヤ横力であり、以下の(20)式により演算される。
SAT=μ[n]・l・Wf・((1/6)・ψ−(1/6)・ψ
+(1/18)・ψ−(1/162)・ψ) …(19)
Fy=μ[n]・Wf・(ψ−(1/3)・ψ+(1/27)・ψ) …(20)
ψ=(kf/(μ[n]・Wf))・tanβf[0] …(21)
同様に、Fmd[1][n]〜Fmd[19][n]も演算される。
次いで、以下の(22)式の評価関数L[n]を演算する。
L[n]=[Fmsve−Fmdve[n]]W1ve[Fmsve−Fmdve[n]]+W2・δμ
…(22)
そして、この評価関数の前回値L[n-1]と今回値L[n]とを比較して、予め設定した値ε未満に収束しているか否か判定し、収束している場合は、そこで収束演算を止め、演算された路面μ推定値μ[n]を今回の路面μ推定値μ[z]として出力する。また、ε未満に収束していない場合は、再び、ヤコビアンJve[n-1]からの演算を繰り返す。
一方、路面μ推定判定部10bから路面μ推定の実行許可の信号が入力されていない場合は、前回の路面μ推定値μ[z-1]を今回の路面μ推定値μ[z]として出力する。
このように、路面μ演算部10fは、基準ラック推力推定手段、路面摩擦係数推定手段としての機能を有している。
次に、路面μ推定装置10で実行される路面摩擦係数推定プログラムを、図3、図4のフローチャートで説明する。
まず、ステップ(以下、「S」と略称)101で、必要なパラメータ、すなわち、ハンドル角θh、操舵トルクTh、モータ電流IEPS、車速V、横加速度(dy/dt)、ヨーレートγを読み込む。
次いで、S102に進み、前輪すべり角演算部10aで、現在の前輪すべり角βfeを、前述の(1)式により演算する。
次に、S103に進み、推定ラック推力演算部10cで、現在の推定ラック推力Fmseを、前述の(7)式により演算する。
次いで、S104〜S106の判定は、路面μ推定判定部10bで実行される判定であり、S104では、車速Vが設定車速Vc1を越えているか(V>Vc1)、S105では、前輪すべり角の絶対値|βfe|が設定値βfc1を越えているか(|βfe|>βfc1)、S106では、ハンドル角θhとハンドル角速度(dθh/dt)との乗算値が正(θh・(dθh/dt)>0:すなわち、ハンドル切増状態)の条件が成立しているか否かの判定が行われる。
そして、これらの条件が全て成立している場合は、S/N比も良好で精度の良い路面μを推定可能(路面μ推定の実行許可)と判定し、S107へと進み、S104〜S106の何れか一つでも成立していない場合は、S119へ進んで、前回の路面μ推定値μ[z-1]を今回の路面μ推定値μ[z]として(前回の路面μ推定値μ[z-1]を保持して)S117に進む。
S106からS107に進むと、推定ラック推力演算部10cで、前述の(11)式により、推定ラック推力Fmsveの更新が行われ、S108に進み、前輪すべり角演算部10aで、前述の(6)式により、前輪すべり角βfveの更新が行われる。
次いで、S109に進み、重み関数演算部10eで、前輪すべり角の絶対値|βfe|に応じた図5のマップ、横加速度の絶対値|(dy/dt)|に応じた図6のマップ、各サンプリング時間の経過時間に応じた図7及び図8のマップ、路面カントの絶対値|θca|に応じた図9のマップを参照し、各サンプリング時間における成分を演算して、ラック推力推定値Fmsveのデータ数と同じ行数、列数を持つ正方行列である、前述の(13)式に示す第1の重み関数W1veを設定する。
次に、S110に進むと、路面μ演算部10fは、前述した(14)式により、路面μが微小変化した時の、基準ラック推力Fmdveの変化量を要素とするベクトルであるヤコビアンJve[n-1]を、路面μ推定値の前回値μ[n-1]を使って演算する。
次いで、S111に進み、路面μ演算部10fは、前述した(15)式により、路面μ推定値の変化量δμを演算する。
次に、S112に進み、路面μ演算部10fは、前述した(16)式により、路面μ推定値μ[n]を演算する。
次いで、S113に進み、路面μ演算部10fは、Fialaのタイヤモデルにより、前述した(18)式〜(21)式により、(17)式で示す基準ラック推力Fmdve[n]を演算する。
次に、S114に進み、路面μ演算部10fは、前述した(22)式による評価関数L[n]を演算する。
そして、S115に進み、評価関数の前回値L[n-1]と今回値L[n]とを比較して、予め設定した値ε未満に収束しているか否か(L[n]−L[n-1]<εか否か)を判定し、収束している場合は、S116に進んで、路面μ推定値μ[n]を今回の路面μ推定値μ[z]として設定し(μ[z]=μ[n])、収束していない場合は、S120に進んで、Fmdve[n-1]=Fmdve[n]、μ[n-1]=μ[n]、L[n-1]=L[n]と設定して、再び、S110からの演算を繰り返す。
S116、或いは、S119で、今回の路面μ推定値μ[z]を設定した後は、S117に進み、今回の路面μ推定値μ[z]を出力し、S118に進んで、今回の路面μ推定値μ[z]を前回の路面μ推定値μ[z-1]と更新して(μ[z-1]=μ[z])、プログラムを抜ける。
このように、本発明の実施の形態によれば、少なくとも操舵トルクと電動パワーステアリングのモータトルクに基づいて、サンプリング時間が異なる複数の推定ラック推力Fmsveを算出し、少なくとも車輪速とハンドル角に基づいて、推定ラック推力Fmsveの算出と同じタイミングで、基準ラック推力Fmdveを、少なくとも路面μをパラメータとして含むタイヤモデルにより推定し、少なくとも推定ラック推力Fmsveと基準ラック推力Fmdveとの偏差の二乗和が最小となるように路面μの値を最適化計算により求めるようになっている。このため、幅広い運転領域で、レスポンス良く、精度の良い路面μを推定することが可能となる。
尚、本実施の形態では、評価関数L[n]の収束判定を、ε未満になるまで行うようにしているが、収束演算の回数を予め設定しておくようにしても良い。また、演算回数の制限値を設けておいても良い。
更に、本実施の形態では、第1の重み関数W1veは、前輪すべり角の絶対値|βfe|、横加速度の絶対値|(dy/dt)|、各サンプリング時間の経過時間、路面カントの絶対値|θca|をそれぞれ考慮して設定されるようになっているが、何れか1つ、或いは、複数のパラメータを考慮して設定するようにしても良い。
操舵機構と路面摩擦係数推定装置の構成図 路面摩擦係数推定装置の機能ブロック図 路面摩擦係数推定プログラムのフローチャート 図3から続くフローチャート 前輪すべり角に応じた重み係数の説明図 横加速度に応じた重み係数の説明図 サンプリング時間に応じた第1の重み係数の説明図 サンプリング時間に応じた第2の重み係数の説明図 路面カントに応じた重み係数の説明図 操舵状態と操舵力、モータアシスト力との関係の一例を示す説明図
符号の説明
1 操舵機構
2 ハンドル
3 操舵軸
4 ピニオン
5 ラック
6 ホイール、タイヤ
7 電動パワーステアリングモータ
8 減速機
10 路面μ推定装置
10a 前輪すべり角演算部
10b 路面μ推定判定部(実行判定手段)
10c 推定ラック推力演算部(推定ラック推力算出手段)
10d カント演算部
10e 重み関数演算部(路面摩擦係数推定手段)
10f 路面μ演算部(基準ラック推力推定手段、路面摩擦係数推定手段)
11 ハンドル角センサ
12 操舵トルクセンサ
13 電動パワーステアリングモータ電流センサ
14 車速センサ
15 横加速度センサ
16 ヨーレートセンサ

Claims (8)

  1. 電動パワーステアリングを有する車両の路面摩擦係数推定装置において、
    少なくとも操舵トルクに関するパラメータと上記電動パワーステアリングのモータのモータトルクに関するパラメータとに基づいて、サンプリング時間毎に推定ラック推力を算出する推定ラック推力算出手段と、
    少なくとも車輪速に関するパラメータとハンドル角に関するパラメータとに基づいて、上記推定ラック推力の算出と同じタイミングで、路面摩擦係数をパラメータとして含むタイヤモデルにより基準ラック推力を算出する基準ラック推力算出手段と、
    少なくとも上記サンプリング時間毎の上記推定ラック推力と上記基準ラック推力との偏差の二乗和が最小となるように上記路面摩擦係数の値を最適化計算により求める路面摩擦係数推定手段と、
    を備えたことを特徴とする路面摩擦係数推定装置。
  2. 上記路面摩擦係数推定手段は、上記各サンプリング時間における上記偏差を二乗した値に、それぞれのサンプリング時間における計測条件に応じた重み関数を乗算した第1の評価関数と、前回算出した路面摩擦係数に対する今回の路面摩擦係数の修正量を二乗した値を含む第2の評価関数と、上記第1の評価関数と上記第2の評価関数との和である第3の評価関数とを求め、上記第3の評価関数を路面摩擦係数で偏微分した値が0となることを利用して上記路面摩擦係数の修正量を算出し、今回の路面摩擦係数を求めることを特徴とする請求項1記載の路面摩擦係数推定装置。
  3. 上記計測条件に応じた重み関数は、路面カントに応じて設定され、上記路面カントが大きい場合は小さく設定されることを特徴とする請求項2記載の路面摩擦係数推定装置。
  4. 上記重み関数は、前輪すべり角に応じて設定され、上記前輪すべり角の絶対値が大きいほど大きく設定されることを特徴とする請求項2記載の路面摩擦係数推定装置。
  5. 上記重み関数は、横加速度に応じて設定され、上記横加速度の絶対値が大きいほど大きく設定されることを特徴とする請求項2記載の路面摩擦係数推定装置。
  6. 上記重み関数は、サンプリング時間に応じて設定され、上記サンプリング時間が新しいほど大きく設定されることを特徴とする請求項2記載の路面摩擦係数推定装置。
  7. 上記重み関数は、サンプリング時間が一定時間経過している場合は該当するサンプリング時間における重み関数を0とすることを特徴とする請求項2記載の路面摩擦係数推定装置。
  8. 少なくとも操舵の切り増しが行われていない場合は、上記路面摩擦係数推定手段による上記路面摩擦係数の推定を禁止させる実行判定手段を備えたことを特徴とする請求項1乃至請求項7の何れか一つに記載の路面摩擦係数推定装置。
JP2008256540A 2008-10-01 2008-10-01 路面摩擦係数推定装置 Expired - Fee Related JP5231923B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256540A JP5231923B2 (ja) 2008-10-01 2008-10-01 路面摩擦係数推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256540A JP5231923B2 (ja) 2008-10-01 2008-10-01 路面摩擦係数推定装置

Publications (2)

Publication Number Publication Date
JP2010083395A true JP2010083395A (ja) 2010-04-15
JP5231923B2 JP5231923B2 (ja) 2013-07-10

Family

ID=42247765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256540A Expired - Fee Related JP5231923B2 (ja) 2008-10-01 2008-10-01 路面摩擦係数推定装置

Country Status (1)

Country Link
JP (1) JP5231923B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016104181A1 (de) 2015-03-17 2016-09-22 Fuji Jukogyo Kabushiki Kaisha Fahrtsteuervorrichtung für ein Fahrzeug

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10464594B2 (en) 2015-09-03 2019-11-05 Steering Solutions Ip Holding Corporation Model based driver torque estimation
US10336363B2 (en) 2015-09-03 2019-07-02 Steering Solutions Ip Holding Corporation Disabling controlled velocity return based on torque gradient and desired velocity error
DE102017112968B4 (de) * 2016-06-14 2023-10-12 Steering Solutions Ip Holding Corporation Verfahren und System zum Steuern eines elektrischen Servolenkungssystems sowie Servolenkungssystem

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266409A (ja) * 1993-03-15 1994-09-22 Toshiba Corp モデル予測制御装置
JPH08198131A (ja) * 1995-01-30 1996-08-06 Toyota Motor Corp 車両状態推定装置
JP2000043745A (ja) * 1998-07-29 2000-02-15 Toyota Central Res & Dev Lab Inc 路面状態判定装置
JP2000071968A (ja) * 1998-08-27 2000-03-07 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2001334921A (ja) * 2000-05-30 2001-12-04 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2002160653A (ja) * 2000-11-24 2002-06-04 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
JP2002373159A (ja) * 2001-06-14 2002-12-26 Mitsubishi Electric Corp 状態推定方式
JP2008114663A (ja) * 2006-11-01 2008-05-22 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2008168877A (ja) * 2007-01-15 2008-07-24 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06266409A (ja) * 1993-03-15 1994-09-22 Toshiba Corp モデル予測制御装置
JPH08198131A (ja) * 1995-01-30 1996-08-06 Toyota Motor Corp 車両状態推定装置
JP2000043745A (ja) * 1998-07-29 2000-02-15 Toyota Central Res & Dev Lab Inc 路面状態判定装置
JP2000071968A (ja) * 1998-08-27 2000-03-07 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2001334921A (ja) * 2000-05-30 2001-12-04 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2002160653A (ja) * 2000-11-24 2002-06-04 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
JP2002373159A (ja) * 2001-06-14 2002-12-26 Mitsubishi Electric Corp 状態推定方式
JP2008114663A (ja) * 2006-11-01 2008-05-22 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置
JP2008168877A (ja) * 2007-01-15 2008-07-24 Fuji Heavy Ind Ltd 車両の路面摩擦係数推定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016104181A1 (de) 2015-03-17 2016-09-22 Fuji Jukogyo Kabushiki Kaisha Fahrtsteuervorrichtung für ein Fahrzeug
US9586620B2 (en) 2015-03-17 2017-03-07 Fuji Jukogyo Kabushiki Kaisha Travel control apparatus for vehicle
DE102016104181B4 (de) 2015-03-17 2023-01-26 Subaru Corporation Fahrtsteuervorrichtung für ein Fahrzeug

Also Published As

Publication number Publication date
JP5231923B2 (ja) 2013-07-10

Similar Documents

Publication Publication Date Title
US8682599B2 (en) Road surface friction coefficient estimating device and road surface friction coefficient estimating method
US20050216155A1 (en) Steering device
JP5293814B2 (ja) センサオフセット量推定装置
JP2002012160A (ja) 車両の路面摩擦係数推定装置
CN109941342B (zh) 估计转向力矩的方法和装置、用于车辆的横向控制的方法
JP5995040B2 (ja) 路面摩擦係数推定装置及び方法
EP2964502B1 (en) Method for calculating a desired yaw rate for a vehicle
US7260458B2 (en) Steering device
US20200262468A1 (en) Road friction coefficient estimation using steering system signals
JP5206490B2 (ja) 車両接地面摩擦状態推定装置及びその方法
JP5231923B2 (ja) 路面摩擦係数推定装置
JP5251177B2 (ja) 車両走行状態推定装置
JP4319164B2 (ja) 車両挙動状態推定装置
JP5271209B2 (ja) 路面摩擦係数推定装置
KR20170136765A (ko) 조향 제어 장치와 조향 제어 방법 및 그를 위한 조향상태 판단장치
JP5237035B2 (ja) ラック推力推定装置
JP5304171B2 (ja) 路面μ推定装置及びその方法
KR102263187B1 (ko) 차량의 후륜 조향장치 및 그 제어방법
CN109689475B (zh) 车辆控制装置、车辆控制方法以及电动动力转向装置
JP5251176B2 (ja) 車両走行状態推定装置
US11834108B2 (en) Dynamic vehicle model based assist without torque sensor
JP7497603B2 (ja) 車体すべり角推定装置
JP2008006939A (ja) 車両用操舵装置、自動車及び車両操舵方法
JP2003182616A (ja) 電動パワーステアリング装置の制御装置
JP5428390B2 (ja) 車両接地面摩擦状態推定装置及びその方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees