JP2010070839A - マグネシウム合金 - Google Patents
マグネシウム合金 Download PDFInfo
- Publication number
- JP2010070839A JP2010070839A JP2008243311A JP2008243311A JP2010070839A JP 2010070839 A JP2010070839 A JP 2010070839A JP 2008243311 A JP2008243311 A JP 2008243311A JP 2008243311 A JP2008243311 A JP 2008243311A JP 2010070839 A JP2010070839 A JP 2010070839A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- aging
- observed
- hardness
- magnesium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000861 Mg alloy Inorganic materials 0.000 title claims abstract description 18
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 10
- 230000001747 exhibiting Effects 0.000 claims abstract description 4
- 238000003483 aging Methods 0.000 claims description 15
- 230000000996 additive Effects 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 abstract description 16
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 9
- 229910045601 alloy Inorganic materials 0.000 description 46
- 239000000956 alloy Substances 0.000 description 46
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 35
- 230000032683 aging Effects 0.000 description 29
- 239000000243 solution Substances 0.000 description 20
- 239000011701 zinc Substances 0.000 description 18
- 239000011777 magnesium Substances 0.000 description 10
- 229910052749 magnesium Inorganic materials 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 230000003287 optical Effects 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 9
- 238000003917 TEM image Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 150000002910 rare earth metals Chemical class 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- RZVAJINKPMORJF-UHFFFAOYSA-N p-acetaminophenol Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 4
- 239000005297 pyrex Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 229910001152 Bi alloy Inorganic materials 0.000 description 2
- 229910003023 Mg-Al Inorganic materials 0.000 description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000002431 foraging Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
Abstract
希土類元素を用いないで、時効析出現象を生じさせるマグネシウム合金を提供することを目的とする。
【解決手段】
本発明は、時効析出現象を示すマグネシウム合金であって、前記時効析出用の添加元素が、BiとZnからなることを特徴とする。
【選択図】 なし
Description
主な強化手段である結晶粒微細化は、室温強度の改善に非常に有効だが、高温強度の改善は難しい。それに対し、マグネシウムと添加元素より構成される第2相の分散による強化は、分散させる相の種類や分布状態によって、幅広い温度域における強度の改善が可能である。
特に、時効析出は、過飽和固溶体を形成させる溶体化処理と、その後の時効処理の組み合わせによって、微細な析出物を粒内、および結晶粒界に分散させることができ、粒内に分散した析出物は転位の運動を阻害し、幅広い温度域における強度の向上が可能である。また、結晶粒界に分散した析出相は、それが熱的に安定であれば粒界すべりを抑制し、高温強度を改善することができる。
こうした時効析出現象の発現が期待できる合金系は、高温度域と低温度域にて、合金元素の溶解度差がある合金である。多くのMg-Al系、Mg-Zn系合金をはじめとした商用マグネシウム合金は時効析出型だが、時効析出により高融点の析出相を分散させることが出来る合金系は、マグネシウムと希土類金属より構成される高価な合金がほとんどであり、希土類金属を含まないMg-Al系、Mg-Zn系の商用マグネシウム合金では、粒界上にあえて破壊の起点となるような高融点の粗大な晶出物のネットワークを形成させ、延性を犠牲にすることで耐熱性を付与していた。
例えば、特許文献1~5の希土類金属を含むマグネシウム合金の生産コストは、希土類金属フリーのマグネシウム合金より高価になる。また、構成元素に高価な希土類金属元素が含まれるような特許文献1~5に示される合金では、ダイカスト鋳造が難しく、自動車部品の大量生産に非経済的である。
一方で、特許文献6〜11のような希土類金属を含まない合金では、高温強度向上のために高融点の金属間化合物を粒界上に分散させているが、粗大で破壊の起点となりやすく、延性低下や鋳造割れの原因となる。
また、特許文献12のように微細な粒子を母相中に分散させた形で高温強度を改善した例であっても、そのプロセスが複雑である場合には、コスト高を招く原因となる。
また、Znを適当な量添加することで、析出物の形状をマグネシウム合金の強化に最も有効である(1120)面に析出する板状の析出物を多く分散させることが出来た。
以下の実験結果から次のことが明らかとなった。
Biの添加量:
少なくともこれを含み、その含有量が0.85原子%以下とするのが好ましい。
非特許文献1にあるように、Biは常温ではMg母相にほぼ固溶しないが、温度の増加と共に固溶限は急激に拡大し、550℃で0.96 原子%Mg中に固溶する。
しかし、通常、Mg合金の熱処理温度の上限は500〜530℃であり、それを溶体化処理温度の上限とした時に固溶させることが出来るBiの量は約0.85原子%なので、これが好ましい添加量の上限となる。
溶体化処理中にマグネシウム母相に固溶させることが出来るBiの量が溶体化処理の上限温度によって約0.85原子%に限定されるため、これ以上のBiを添加しても、時効析出による硬度、強度上昇の効果を見込むことは不可能であり、また、過剰に添加されたBiは粒界に粗大な晶出物を形成し、溶体化処理後の水冷時に鋳物が割れる原因となり、延性を損なう原因となる。
0.5原子%以上の添加が望ましい。より好ましくは、0.5原子%以上、2原子%未満。
Znは、Mg-Bi合金の時効硬化性を改善する添加元素である。実施例1、2に示すように、ビッカース硬さにして60 VHNの硬度を達成するためには、0.5原子%以上の添加が望ましい。
これは、Znの添加によって、析出物の微細化、形状、および分布状態の変化が起こることが原因であることは、図4、7より明らかである。
また、図8に示すとおり、2原子%のZnを添加した場合は、時効析出に起因する硬化量も1原子%添加した場合と大差ないだけでなく、図10に示すように溶体化処理後の水冷時に鋳物が割れる。そのため、Znのより好ましい添加量として、0.5原子%以上、2原子%未満とするのが良い。
Znを過剰に添加すると、含有元素を溶体化処理中に母相に固溶させることが出来ず、Bi、ZnとMgよりなる晶出物が粒界上に残存する事が原因であることは図9 (f)より容易に類推できる。
時効析出による強化の効果を最大限に高め、高い強度を有する状態にするために、時効処理を最大硬度に達するまで行うと良い。0.5原子%のZnを添加した合金の場合は25時間、1.0原子%以上のZnを添加した合金の場合は100時間とするのが好ましい。
実験は図1に示すフローチャートに沿って行った。
まず、高周波誘導溶解炉を用いて純マグネシウム、純ビスマス、純亜鉛を鉄るつぼ中で溶解し、鉄鋳型に鋳造した。
得られた鋳塊をパイレックス管にHe封入し、マッフル炉を用いて525℃で48時間の均質化処理を行い、水冷した。
次に、均質化処理材をパイレックス管に再度He封入し、マッフル炉を用いて525℃で48時間の溶体化処理を行い、水冷した。
その後オイルバスを用いて160℃で時効処理を行った。
時効処理中における硬さの変化を調べるために、ビッカース硬さ計を用いて硬さの経時変化を測定し、時効硬化曲線を作成した。時効硬化曲線の測定にあたって、ある一定時間経過後、合金をオイルバスから取り出し、荷重300g、荷重時間10秒で異なる任意の場所から10回測定を行い、その測定値のうち最大値と最小値を除いた8つの測定値の平均値をその時間における合金の硬さとした。
ミクロ組織の観察をOM(Optical microscope (光学顕微鏡))、およびSEM(Scanning electron microscope (走査型電子顕微鏡))を用いて行い、粒内の析出組織の観察をTEM(Transmission electron microscope (透過型電子顕微鏡))を用いて行った。
時効処理中最大硬度に達した材料の機械的特性を圧縮試験によって評価した。
表1の測定データに基づく図2の時効硬化曲線に示すように、溶体化処理後のビッカース硬さは47VHNであり、時効開始後30時間してピーク時効に達する。ピーク時効時におけるビッカース硬さは61VHN、時効処理による硬度の増加は14VHNであった。
注:灰色で塗りつぶした測定値は平均値の計算時に除外した測定データを示す。
図3 (a)に示すように、結晶粒径は100~200mm程度であり、図3 (b)に示すように、溶体化処理によってBiおよびZnは母相に固溶し、過飽和固溶体を形成している。
TEMを用いて観察したピーク時効時の粒内の組織を図4に示す。図4(a)、(b)は(1120)および(0001)
晶帯軸から微細組織を低倍率で観察したものであり、図4(c)、(d)は (1120)、および(0001) 晶帯軸から微細組織を高倍率で観察したものである。
図4(a)および(b)に示すように、析出物は母相中に均一に分散している。また、図4(c)および(d)からトレース解析を行った結果、マグネシウムの柱面である{11-20}面に析出する板状の析出物(直径100~250 nm × 厚さ20 nm)が多く観察された。
実施例1と同様、図1に示すフローチャートに沿った実験を行った。
まず、高周波誘導溶解炉を用いて純マグネシウム、純ビスマス、純亜鉛を鉄るつぼ中で溶解し、鉄鋳型に鋳造した。
得られた鋳塊をパイレックス管にHe封入し、マッフル炉を用いて525℃で48時間の均質化処理を行い、水冷した。
次に、均質化処理材をパイレックス管に再度He封入し、マッフル炉を用いて525℃で48時間の溶体化処理を行い、水冷した。
その後オイルバスを用いて160℃で時効処理を行った。
時効処理中における硬さの変化を調べるために、ビッカース硬さ計を用いて硬さの経時変化を測定し、時効硬化曲線を作成した。時効硬化曲線の測定にあたって、ある一定時間経過後、合金をオイルバスから取り出し、荷重300g、荷重時間10秒で異なる任意の場所から10回硬さ測定を行い、その測定値のうち最大の硬さと最小の硬さを除いた8つの測定値の平均値をその時間における合金の硬さとした。
ミクロ組織の観察をOM(Optical microscope (光学顕微鏡))、およびSEM(Scanning electron microscope (走査型電子顕微鏡))を用いて行い、粒内の析出組織の観察をTEM(Transmission electron microscope (透過型電子顕微鏡))を用いて行った。
ミクロ組織の観察をOM(Optical microscope (光学顕微鏡))、およびSEM(Scanning electron microscope (走査型電子顕微鏡))を用いて行い、粒内の析出組織の観察をTEM(Transmission electron microscope (透過型電子顕微鏡))を用いて行った。
時効処理中最大硬度に達した材料の機械的特性を圧縮試験によって評価した。
表2の測定データに基づく図5に示す時効硬化曲線のように、溶体化処理後のビッカース硬さは44VHNであり、時効開始後100時間でピーク時効に達する。ピーク時効時におけるビッカース硬さは68VHN、時効処理による硬度の増加は22VHNであった。また、圧縮試験により強度評価を行った結果、139MPaの降伏強度を示した。
注:灰色で塗りつぶした測定値は平均値の計算時に除外した測定データを示す。
TEMを用いて観察したピーク時効時のMg-0.8Bi-1.0Zn合金の最大硬度時の粒内の微細組織を図7(a), (b)に示す。図7(a)、(b)は、それぞれ(0110)、および(0001)晶帯軸から低倍で観察したものである。析出物はMg-0.8Bi-0.5Znに比べて、微細化されている。また、図7(c)、(d)は、この組織をそれぞれ(0110)、および(0001)晶帯軸から低倍で観察したものであるMg-0.8Bi-0.5Zn合金と同様に、析出物の多くは、マグネシウムの柱面である(1120)面を晶癖面とする板状の析出物(直径40~50 nm× 厚さ10 nm)であった。
それらの合金の時効硬化曲線を図8に示し、表4に溶体化処理後、およびピーク時効時のビッカース硬さ、および時効処理による硬さの増分をまとめる。
注:灰色で塗りつぶした測定値は平均値の計算時に除外した測定データを示す。
しかし、表4、および図9(c)の光学顕微鏡像に示すように、Mg-0.8Bi-2.0Zn合金は他の実験例に示した合金よりも粗大な結晶粒より構成され、また、図9 (f)の反射電子像に示すように、粒界上に溶体化処理によっても母相に固溶させることが出来なかった晶出物が残っている。
Claims (1)
- 時効硬化特性を示すマグネシウム合金であって、前記時効硬化特性用の添加元素が、BiとZnからなることを特徴とするマグネシウム合金。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008243311A JP5419061B2 (ja) | 2008-09-22 | 2008-09-22 | マグネシウム合金 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008243311A JP5419061B2 (ja) | 2008-09-22 | 2008-09-22 | マグネシウム合金 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010070839A true JP2010070839A (ja) | 2010-04-02 |
JP5419061B2 JP5419061B2 (ja) | 2014-02-19 |
Family
ID=42202893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008243311A Expired - Fee Related JP5419061B2 (ja) | 2008-09-22 | 2008-09-22 | マグネシウム合金 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5419061B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017154969A1 (ja) * | 2016-03-10 | 2017-09-14 | 国立研究開発法人物質・材料研究機構 | マグネシウム基合金伸展材及びその製造方法 |
CN107201471A (zh) * | 2017-07-28 | 2017-09-26 | 山东省科学院新材料研究所 | 一种变形镁合金及其制备方法 |
WO2019017307A1 (ja) * | 2017-07-18 | 2019-01-24 | 国立研究開発法人物質・材料研究機構 | マグネシウム基合金展伸材及びその製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511191A (en) * | 1978-05-31 | 1980-01-25 | Magnesium Elektron Ltd | Magnesium alloy |
-
2008
- 2008-09-22 JP JP2008243311A patent/JP5419061B2/ja not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511191A (en) * | 1978-05-31 | 1980-01-25 | Magnesium Elektron Ltd | Magnesium alloy |
Non-Patent Citations (1)
Title |
---|
JPN6013015668; 森省吾ら: 'Mg-4.7mass%Zn合金における準安定相のHRTEM観察' 日本金属学会講演概要 2008年春期(第142回)大会 , 20080326, p.416, 日本金属学会 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017154969A1 (ja) * | 2016-03-10 | 2017-09-14 | 国立研究開発法人物質・材料研究機構 | マグネシウム基合金伸展材及びその製造方法 |
JPWO2017154969A1 (ja) * | 2016-03-10 | 2018-12-27 | 国立研究開発法人物質・材料研究機構 | マグネシウム基合金伸展材及びその製造方法 |
US11060173B2 (en) | 2016-03-10 | 2021-07-13 | National Institute For Materials Science | Wrought processed magnesium-based alloy and method for producing same |
WO2019017307A1 (ja) * | 2017-07-18 | 2019-01-24 | 国立研究開発法人物質・材料研究機構 | マグネシウム基合金展伸材及びその製造方法 |
CN110945154A (zh) * | 2017-07-18 | 2020-03-31 | 国立研究开发法人物质·材料研究机构 | 镁基合金延展材料及其制造方法 |
JPWO2019017307A1 (ja) * | 2017-07-18 | 2020-04-09 | 国立研究開発法人物質・材料研究機構 | マグネシウム基合金展伸材及びその製造方法 |
EP3656884A4 (en) * | 2017-07-18 | 2020-06-24 | National Institute for Materials Science | CORROSIVE MAGNESIUM ALLOY PRODUCT AND PROCESS FOR PRODUCING THE SAME |
US11578396B2 (en) | 2017-07-18 | 2023-02-14 | National Institute For Materials Science | Magnesium-based alloy wrought product and method for producing same |
CN107201471A (zh) * | 2017-07-28 | 2017-09-26 | 山东省科学院新材料研究所 | 一种变形镁合金及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5419061B2 (ja) | 2014-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5852580B2 (ja) | 機械的特性に優れている難燃性マグネシウム合金及びその製造方法 | |
Alizadeh et al. | Evaluating high-temperature mechanical behavior of cast Mg–4Zn–xSb magnesium alloys by shear punch testing | |
Tebib et al. | Effect of P and Sr additions on the microstructure of hypereutectic Al–15Si–14Mg–4Cu alloy | |
Yang et al. | Effects of Sn addition on as-cast microstructure, mechanical properties and casting fluidity of ZA84 magnesium alloy | |
KR101159790B1 (ko) | 고연성 및 고인성의 마그네슘 합금 및 이의 제조방법 | |
JP5703881B2 (ja) | 高強度マグネシウム合金およびその製造方法 | |
JP5586027B2 (ja) | Mg基合金 | |
US11060173B2 (en) | Wrought processed magnesium-based alloy and method for producing same | |
JP5923117B2 (ja) | 金属合金の微細化方法 | |
JP6860235B2 (ja) | マグネシウム基合金展伸材及びその製造方法 | |
JP2010163635A (ja) | 異方性と耐力とのバランスが優れたマグネシウム合金 | |
JP2016089228A (ja) | マグネシウム基合金伸展材及びその製造方法 | |
Golmakaniyoon et al. | Effect of aging treatment on the microstructure, creep resistance and high-temperature mechanical properties of Mg–6Zn–3Cu alloy with La-and Ce-rich rare earth additions | |
Yuna et al. | Effect of homogenization temperature on microstructure and conductivity of Al-Mg-Si-Ce alloy | |
Moradnezhad et al. | Effect of Ca additions on evolved microstructures and subsequent mechanical properties of a cast and hot-extruded Mg–Zn–Zr magnesium alloy | |
JP6860236B2 (ja) | マグネシウム基合金展伸材及びその製造方法 | |
Fan et al. | Dual characteristic of trace rare earth elements in a commercial casting Al–Cu–X alloy | |
JP5419061B2 (ja) | マグネシウム合金 | |
JP2009249647A (ja) | 高温でのクリープ特性に優れたマグネシウム合金およびその製造方法 | |
JP6594663B2 (ja) | 耐熱性マグネシウム鋳造合金とその製造方法 | |
JP2019060026A (ja) | マグネシウム基合金伸展材及びその製造方法 | |
JP5404391B2 (ja) | Mg基合金 | |
Sun et al. | Effects of double-procedure homogenization heat treatment on microstructure and mechanical properties of WE43A alloy | |
Zhiyong et al. | Effect of Pr addition on microstructure and mechanical properties of AZ61 magnesium alloy. | |
JP5590413B2 (ja) | 高熱伝導性マグネシウム合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5419061 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |