JP2010067352A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2010067352A
JP2010067352A JP2008229675A JP2008229675A JP2010067352A JP 2010067352 A JP2010067352 A JP 2010067352A JP 2008229675 A JP2008229675 A JP 2008229675A JP 2008229675 A JP2008229675 A JP 2008229675A JP 2010067352 A JP2010067352 A JP 2010067352A
Authority
JP
Japan
Prior art keywords
fuel cell
oxidant gas
cell system
fluid supply
internal partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008229675A
Other languages
English (en)
Other versions
JP5318506B2 (ja
Inventor
Bunichi Saito
文一 齊藤
Tomio Miyazaki
富夫 宮▲崎▼
Kimiko Fujisawa
輝美子 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008229675A priority Critical patent/JP5318506B2/ja
Priority to US13/062,663 priority patent/US8883362B2/en
Priority to PCT/JP2009/063544 priority patent/WO2010026844A1/ja
Priority to AT09811373T priority patent/ATE557444T1/de
Priority to EP09811373A priority patent/EP2328219B1/en
Publication of JP2010067352A publication Critical patent/JP2010067352A/ja
Application granted granted Critical
Publication of JP5318506B2 publication Critical patent/JP5318506B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/086Phosphoric acid fuel cells [PAFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】比較的簡単な構成で、メンテナンス性を確保し、各機器を作動温度域毎及び機能毎に配置して熱や流体の拡散を最小化するとともに、比較的低温で使用される機器に熱影響が及ぶことを可及的に阻止し、しかも各機器からの放熱を効果的に回収して運転効率の向上を図ることを可能にする。
【解決手段】燃料電池システム10を構成する筐体26は、モジュール部88、第1流体供給部90a、第2流体供給部90b及び電装部92に分割される。電装部92は、筐体26の外部から前記電装部92に酸化剤ガスを吸気する第1吸気口112を設ける一方、第2流体供給部90bは、前記第1吸気口112から吸気された前記酸化剤ガスを酸化剤ガス供給装置18に吸気する第2吸気口114を設ける。筐体26内には、第1吸気口112から第2吸気口114に酸化剤ガスが直線状に流れるのを阻止する迂回通路116を形成する第1及び第2内部隔壁118、120が設けられる。
【選択図】図1

Description

本発明は、少なくとも、燃料電池モジュール、酸化剤ガス供給装置、電力変換装置及び制御装置が筐体に収容される燃料電池システムに関する。
通常、固体酸化物形燃料電池(SOFC)は、固体電解質に酸化物イオン導電体、例えば、安定化ジルコニアを用いており、この固体電解質の両側にアノード電極及びカソード電極を配設した電解質・電極接合体を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、通常、電解質・電極接合体とセパレータとが所定数だけ積層された燃料電池スタックとして使用されている。
上記の燃料電池に供給される燃料ガスは、通常、改質装置によって炭化水素系の原燃料から生成される水素ガスが使用されている。改質装置では、一般的に、メタンやLNG等の化石燃料等の炭化水素系の原燃料から改質原料ガスを得た後、この改質原料ガスに水蒸気改質や部分酸化改質、又はオートサーマル改質等を施すことにより、改質ガス(燃料ガス)が生成されている。
この場合、単一のユニットケース内に、燃料電池、改質装置、前記燃料電池で発生した直流電力を電源出力仕様に変換する電力変換装置、制御装置及び補機類を内蔵した燃料電池システム(燃料電池装置)が知られている。
その際、特に、高温型燃料電池(固体酸化物形燃料電池や溶融炭酸塩形燃料電池等)や、中温型燃料電池(リン酸形燃料電池や水素分離膜形燃料電池等)が用いられると、ユニットケース内は、相当に高温になり易い。しかしながら、電力変換装置、制御装置及び補機類は、性能及び寿命特性の低下を防止するために、雰囲気温度を比較的低温に維持する必要がある。
そこで、例えば、特許文献1に開示されているパッケージ型燃料電池発電装置は、図20に示すように、パッケージ1を備えている。このパッケージ1は、外気の取り入れ口側に換気ファン3を有する上流側パッケージ室1Aと、前記上流側パッケージ室1Aの換気の出口側に連結ダクト1Cを介して連結される下流側パッケージ室1Bとで構成されている。
上流側パッケージ室1Aには、チョッパ4A、インバータ4B及び制御器4Cを備える電力変換部4が収納されている。下流側パッケージ室1Bには、燃料電池5、反応空気ブロワ6A、燃焼空気ブロワ6B及び燃料改質装置7を含む燃料電池部8が収納されている。
そして、換気ファン3によって上流側パッケージ室1Aに送り込まれた常温の空気は、電力変換部4を換気冷却した後、連結ダクト1Cを介して下流側パッケージ室1Bに送り込まれている。この空気は、燃料電池部8の空冷及び換気を行った後、排気口9から外部に排出されている。
また、特許文献2に開示されているパッケージ型燃料電池発電装置の換気構造では、図21に示すように、パッケージ1aを備えている。このパッケージ1aの内部は、通風口2aを有する断熱隔壁3aにより高温装置室4a及び電気装置室4bに画成されるとともに、前記電気装置室4bの外壁には、外気を取り入れる換気口5aが形成されている。高温装置室4aには、燃料電池6a及び燃料電池改質装置7aが収納されている。
高温装置室4aには、燃料電池6aに連結された反応空気ブロワ6bが収納される一方、電気装置室4bには、燃料電池改質装置7aに連結された燃料空気ブロワ7bが収納されている。電気装置室4bには、雰囲気温度の制御を必要とする電力変換装置8a、計測制御装置8b、補機8c及び原燃料タンク8dが収納されている。
このパッケージ1aでは、電気装置室4bは、断熱隔壁3aにより高温装置室4aからの熱影響が遮断されている。さらに、換気口5aから常温の外気を吸入して電気装置室4b内を強制換気することにより、電力変換装置8a、計測制御装置8b、補機8c及び原燃料タンク8d等の雰囲気温度を低温に制御することができる、としている。
特開平4−75263号公報 特開平5−290868号公報
上記の特許文献1では、下流側パッケージ1室B内に、燃料電池5と反応空気ブロワ6A及び燃焼空気ブロワ6Bとが収納されている。このため、特に、高温型燃料電池が使用される際に、作動温度域毎及び機能毎の最適な機器の配置がなされないという問題がある。しかも、熱や流体の管理、例えば、断熱性や流体拡散防止等が十分になされていないという問題がある。
また、上記の特許文献2では、電気装置室4b内に原燃料タンク8dが収納されており、特に、高温型燃料電池が使用される際に、作動温度域毎及び機能毎の最適な機器の配置がなされないという問題がある。さらに、高温装置室4aと電気装置室4bとが直接連通しており、熱や流体の管理、例えば、断熱性や流体拡散防止等が十分になされていないという問題がある。
本発明はこの種の問題を解決するものであり、比較的簡単な構成で、メンテナンス性を確保し、各機器を作動温度域毎及び機能毎に配置して熱や流体の拡散を最小化するとともに、比較的低温で使用される機器に熱影響が及ぶことを可及的に阻止し、しかも各機器からの放熱を効果的に回収して運転効率の向上を図ることが可能な燃料電池システムを提供することを目的とする。
本発明は、少なくとも、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池モジュールと、前記燃料電池モジュールに前記酸化剤ガスを供給する酸化剤ガス供給装置と、前記燃料電池モジュールで発生した直流電力を要求仕様電力に変換する電力変換装置と、前記燃料電池モジュールの発電量を制御する制御装置とを筐体に収容する燃料電池システムに関するものである。
筐体は、燃料電池モジュールが配置されるモジュール部と、酸化剤ガス供給装置が配置される流体供給部と、電力変換装置及び制御装置が配置される電装部とに分割されている。
そして、電装部は、筐体外から前記電装部に酸化剤ガスを吸気する第1吸気口を設ける一方、流体供給部は、前記第1吸気口から吸気された前記酸化剤ガスを酸化剤ガス供給装置に吸気する第2吸気口を設けるとともに、前記筐体内には、前記第1吸気口から前記第2吸気口に前記酸化剤ガスが直線状に流れるのを阻止する迂回通路を形成する内部隔壁が設けられている。
また、内部隔壁は、少なくとも電装部又は流体供給部に設けられるとともに、前記電装部又は前記流体供給部とモジュール部とを仕切る壁部と前記内部隔壁の一方の壁面との距離L1と、前記電装部又は前記流体供給部を形成し且つ前記モジュール部とは反対側に位置する壁部と前記内部隔壁の他方の壁面との距離L2とは、距離L1<距離L2の関係を有することが好ましい。
このため、モジュール部側の壁部と内部隔壁の一方の壁面との間を流れる酸化剤ガスの流速が上がり、電装部又は流体供給部での自然対流が抑制される。従って、強制対流が促進され、低温部である電装部又は流体供給部が高温化することを良好に抑制することができる。
しかも、モジュール部側の壁部と内部隔壁の一方の壁面との間を流れる酸化剤ガスは、高温部である前記モジュール部からの放熱を効果的に回収することができる。これにより、昇温された酸化剤ガスは、燃料電池モジュールに供給されるため、前記燃料電池モジュールの運転効率の向上が図られる。
さらに、電装部に配置される電力変換装置及び制御装置又は流体供給部に配置される酸化剤ガス供給装置は、内部隔壁の他方の壁面に取り付けられることが好ましい。従って、電力変換装置、制御装置又は酸化剤ガス供給装置は、高温部(モジュール部)からの放熱の影響を受け難くなり、高温化を抑制することが可能になる。
しかも、外部雰囲気の酸化剤ガス(フレッシュなエア)を、電装部に配置されている各機器に直接供給することができ、前記各機器の高温化が良好に抑制される。
さらにまた、電装部に配置される電力変換装置は、筐体内の上部に配置されることが好ましい。放熱量の多い機器であるインバータやコンバータを含む電力変換装置からの放熱による影響が、放熱量の少ない機器である制御装置等に及ぶことを阻止し、前記制御装置の高温化を抑制することが可能になる。
また、第1吸気口は、第2吸気口よりも上部に配置されることが好ましい。このため、酸化剤ガスは、第1吸気口から第2吸気口に(上方から下方に向かって)流れ、低温部である電装部内及び流体供給部内の自然対流が抑制され、強制対流が促進されて前記低温部の高温化が抑制される。
さらに、流体供給部は、酸化剤ガス供給装置に供給されない未使用の酸化剤ガスを筐体外に排気する排気口と、未使用の前記酸化剤ガスの排気を促進させる排気扇とを設けることが好ましい。これにより、第1吸気口から筐体内に吸気されて昇温された酸化剤ガスを、流体供給部に強制的に導入することができ、燃料電池モジュールへの前記昇温された酸化剤ガスの供給が促進され、運転効率の向上が図られる。
その上、低温部である電装部及び流体供給部内の自然対流が一層抑制され、強制対流がより促進されて前記低温部の高温化を良好に抑制することが可能になる。
さらにまた、燃料電池モジュールは、固体酸化物形燃料電池モジュールであることが好ましく、これにより、良好な効果が得られる。
また、内部隔壁は、断熱部材で構成されることが好ましい。従って、内部隔壁は、熱伝導率の低い部材からなり、前記内部隔壁に取り付けられた各機器は、高温部(モジュール部)からの放熱による影響を受け難くなって高温化を抑制することができる。
さらに、内部隔壁は、伝熱部材で構成されることが好ましい。このため、内部隔壁は、熱伝導率の高い部材からなり、前記内部隔壁に取り付けられた各機器から該内部隔壁を介して良好に放熱され、前記各機器の高温化を抑制することが可能になる。
本発明によれば、筐体内は、燃料電池モジュールが収容されるモジュール部と、酸化剤ガス供給装置が配置される流体供給部と、電力変換装置及び制御装置が配置される電装部とに分割されている。このため、筐体内は、作動温度毎及び機能毎に分割されており、熱や流体の拡散を最小化するとともに、機能上、最適な配置が遂行可能になる。
さらに、流体供給部は、筐体の外壁部を構成しており、前記流体供給部の冷却が促進されて、高温化し難くなっている。同様に、電装部は、筐体の外壁部を構成しており、前記電装部の冷却が促進されて高温化し難くなっている。これにより、比較的低温で使用される機器、例えばポンプ類を含む流体供給部及び制御装置を含む電装部は、熱影響が及ぶことを可及的に阻止されるため、良好な機能を確実に維持して作動することが可能になる。
さらにまた、筐体内には、第1吸気口から第2吸気口に酸化剤ガスが直線状に流れるのを阻止する迂回通路を形成する内部隔壁が設けられている。このため、筐体外から第1吸気口を通って電装部に吸気された外部雰囲気の酸化剤ガス(冷気)は、前記電装部内の機器である電力変換装置や制御装置からの放熱を効果的に回収することができる。
そして、放熱を回収して暖められた酸化剤ガス(暖気)は、電装部から第2吸気口を通って流体供給部に吸気されている。従って、暖められた酸化剤ガスを燃料電池モジュールに供給することが可能になり、前記燃料電池モジュールの運転効率が良好に向上する。
また、内部隔壁により迂回通路が形成されるため、筐体内の酸化剤ガス流路長が長尺化する。これにより、低温部である電装部内及び流体供給部内での自然対流が抑制されて強制対流が促進され、前記低温部の高温化を抑制することができる。
さらに、外部雰囲気の酸化剤ガスは、第1吸気口から電装部に配置されている各機器に直接供給されるため、前記各機器の高温化を有効に抑制することが可能になる。
図1は、本発明の第1の実施形態に係る燃料電池システム10の概略斜視説明図である。図2は、燃料電池システム10の平面説明図であり、図3は、前記燃料電池システム10の正面説明図であり、図4は、前記燃料電池システム10の回路図である。
燃料電池システム10は、定置用の他、車載用等の種々の用途に用いられている。燃料電池システム10は、燃料ガス(水素ガス)と酸化剤ガス(空気)との電気化学反応により発電する燃料電池モジュール12と、前記燃料電池モジュール12を昇温させる燃焼器14と、前記燃料電池モジュール12に前記燃料ガスを供給する燃料ガス供給装置(燃料ガスポンプを含む)16と、前記燃料電池モジュール12に前記酸化剤ガスを供給する酸化剤ガス供給装置(エアポンプを含む)18と、前記燃料電池モジュール12に水を供給する水供給装置(水ポンプを含む)20と、前記燃料電池モジュール12で発生した直流電力を要求仕様電力に変換する電力変換装置22と、前記燃料電池モジュール12の発電量を制御する制御装置24とを備え、これらが単一の筐体26に収容される。
燃料電池モジュール12は、図示しないが、例えば、安定化ジルコニア等の酸化物イオン導電体で構成される固体電解質(固体酸化物)をアノード電極とカソード電極とで挟んで構成される電解質・電極接合体とセパレータとが積層される固体酸化物形の燃料電池32を設け、複数の前記燃料電池32が鉛直方向に積層される固体酸化物形の燃料電池スタック34を備える(図4参照)。
図3に示すように、燃料電池スタック34の積層方向上端側には、酸化剤ガスを前記燃料電池スタック34に供給する前に、前記燃料電池スタック34から排出される使用済み反応ガスと熱交換して加熱する熱交換器36と、炭化水素を主体とする原燃料(例えば、都市ガス)と水蒸気との混合燃料を生成するために水を蒸発させる蒸発器38と、前記混合燃料を改質して改質ガスを生成する改質器40とが配設される。
燃料電池スタック34の積層方向下端側には、前記燃料電池スタック34を構成する燃料電池32に積層方向(矢印A方向)に沿って締め付け荷重を付与するための荷重付与機構42が配設される(図4参照)。
改質器40は、都市ガス中に含まれるエタン(C26)、プロパン(C36)及びブタン(C410)等の高級炭化水素(C2+)を、主としてメタン(CH4)を含む原燃料ガスに水蒸気改質するための予備改質器であり、数百℃の作動温度に設定される。
燃料電池32は、作動温度が数百℃と高温であり、電解質・電極接合体では、燃料ガス中のメタンが改質されて水素が得られ、この水素がアノード電極に供給される。燃料電池モジュール12及び燃焼器14は、断熱材68に囲繞される(図3参照)。
図4に示すように、燃料ガス供給装置16は、原燃料通路56に接続されるとともに、前記原燃料通路56の途上には、切換弁70を介して原燃料分岐通路72が設けられる。この原燃料分岐通路72は、燃焼器14に接続される。
酸化剤ガス供給装置18は、空気供給管52に接続されるとともに、前記空気供給管52の途上に設けられた切換弁74には、空気分岐通路76が接続される。この空気分岐通路76は、燃焼器14に接続される。燃焼器14は、例えば、バーナを備えており、上記のように、原燃料及び空気が供給される。なお、このバーナに代えて他の手段(電気ヒータ等)を用いることができ、その際、必要に応じて原燃料、空気、電力の供給を選択的に行うように構成すればよい。
水供給装置20には、水通路58が連通する。燃料ガス供給装置16、酸化剤ガス供給装置18及び水供給装置20は、制御装置24により制御されるとともに、前記制御装置24には、燃料ガスを検知する検知器78が電気的に接続される。電力変換装置22には、例えば、商用電源80(又は、負荷や2次電池等)が接続される。
図1〜図3に示すように、筐体26は、全体として矩形状を有する外枠82を有する。この外枠82内には、筐体26内を矢印B方向(水平方向)に分割するための第1縦仕切り板84と、矢印C方向(矢印B方向に交差する水平方向)に分割するための第2縦仕切り板86a、86bとが、設けられる。
図1及び図2に示すように、平面視四角形状(多角形状)を有するモジュール部88は、一の角部を挟んで第1の側面である第1縦仕切り板84及び第2の側面である第2縦仕切り板86aを有する。第1縦仕切り板84と外枠82との間には、第1流体供給部90aが配置される一方、第2縦仕切り板86a、86bと前記外枠82との間には、電装部92が配置されることにより、前記第1流体供給部90a及び前記電装部92は、それぞれ筐体26の外壁部を構成する。モジュール部88の下面には、横仕切り板94を介して第2流体供給部90bが配置される。
図1及び図3に示すように、モジュール部88には、燃料電池モジュール12及び燃焼器14が収容されるとともに、前記燃料電池モジュール12は、前記燃焼器14の上方に配置される。なお、燃料電池モジュール12は、燃焼器14の下方に配置されていてもよい。燃料電池モジュール12及び燃焼器14は、断熱材68内に収容されている。電装部92には、電力変換装置22及び制御装置24が配置されるとともに、前記電力変換装置22は、前記制御装置24よりも上方に配置される。
第1流体供給部90aには、水供給装置20、燃料ガス供給装置16及び検知器78が収容される。水供給装置20は、第1流体供給部90aの最下部に配置されるとともに、検知器78は、燃料ガス供給装置16の上方に配置される。燃料ガス供給装置16は、第1流体供給部90a内で載置台96を介して保持される。第2流体供給部90bには、酸化剤ガス供給装置18が収容される。
図1及び図2に示すように、筐体26は、平面視四角形状を有し、この筐体26の各側面を開閉自在な第1開閉扉102a、第2開閉扉102b、第3開閉扉102c及び第4開閉扉102dを備える。第1開閉扉102a〜第4開閉扉102dの一端部は、蝶番(又は、ヒンジ)104を介して、筐体26の外枠82に対し開閉自在に支持される。
第1開閉扉102aは、モジュール部88、第2流体供給部90b及び電装部92の一部を一体に開閉し、第2開閉扉102bは、前記モジュール部88、前記第2流体供給部90b及び第1流体供給部90aの一部を一体に開閉する。第3開閉扉102cは、第1流体供給部90a及び電装部92の一部を一体に開閉し、第4開閉扉102dは、電装部92を開閉する。
筐体26は、図1及び図3に示すように、回転機構110を介して鉛直軸回りに回転可能に構成される。この回転機構110は、例えば、回転テーブル等の公知の構造を採用している。
第1の実施形態では、電装部92は、筐体26外から前記電装部92に酸化剤ガスを吸気する第1吸気口112を設ける一方、第2流体供給部90bは、前記第1吸気口112から吸気された前記酸化剤ガスを酸化剤ガス供給装置18に吸気する第2吸気口114を設ける。
第1吸気口112は、電装部92の上部側に、且つ、電力変換装置22及び制御装置24から離間する側に対応して第4開閉扉102dに設けられる。第2吸気口114は、第1縦仕切り板84の下部側に位置して設けられており、第1吸気口112は、前記第2吸気口114よりも上方に配置される。
筐体26内には、第1吸気口112から第2吸気口114に酸化剤ガスが直線状に流れるのを阻止する迂回通路116を形成する第1内部隔壁118及び第2内部隔壁120が設けられる。図2に示すように、第1内部隔壁118は、第2縦仕切り板86a、86bと平行して電装部92内に形成されるとともに、第1開閉扉102aとの間に、迂回通路116を形成するための間隙が形成される。
第1内部隔壁118の一方の壁面118aと、モジュール部88側の壁面である第2縦仕切り板86aとの距離L1と、前記モジュール部88とは反対側に位置する壁部である第4開閉扉102dと、前記第1内部隔壁118の他方の壁面118bとの距離L2とは、距離L1<距離L2の関係を有する。
第1内部隔壁118の他方の壁面118bには、電装部98に配置される機器、すなわち、電力変換装置22及び制御装置24が取り付けられる。第2内部隔壁120は、第1流体供給部90aに設けられ、第1縦仕切り板84と平行するとともに、端部が第2縦仕切り板86bに連結される。
第2内部隔壁120の一方の壁面120aと、モジュール部88側の壁面である第1縦仕切り板84との距離L1と、前記モジュール部88とは反対側に位置する壁面である第3開閉扉102cと、前記第2内部隔壁120の他方の壁面120bとの距離L2とは、距離L1<距離L2の関係を有する。第2内部隔壁120の他方の壁面120bには、水供給装置20、燃料ガス供給装置16及び検知器78が取り付けられる。
第1内部隔壁118及び第2内部隔壁120は、断熱部材(熱伝導率の低い部材)で構成される。この断熱部材として、例えば、ベークライト、ニトリルブタジエンゴム等のゴム材料、樹脂材料、グラスファイバ成形部材又はハニカム構造部材等が用いられる。少なくとも第1内部隔壁118では、距離L1:距離L2は、1:10〜5:6の範囲内に設定される。
このように構成される燃料電池システム10の動作について、以下に説明する。
図4に示すように、燃料ガス供給装置16の駆動作用下に、原燃料通路56には、例えば、都市ガス(CH4、C26、C38、C410を含む)等の原燃料が供給される。一方、水供給装置20の駆動作用下に、水通路58には、水が供給されるとともに、空気供給管52には、酸化剤ガス供給装置18の駆動作用下に、酸化剤ガスである、例えば、空気が供給される。
図3に示すように、蒸発器38では、原燃料通路56を流れる原燃料に水蒸気が混在されて混合燃料が得られ、この混合燃料は、改質器40の入口部に供給される。混合燃料は、改質器40内で水蒸気改質され、C2+の炭化水素が除去(改質)されてメタンを主成分とする改質ガス(燃料ガス)が得られる。この改質ガスは、改質器40の出口部を通って燃料電池スタック34に供給される。このため、改質ガス中のメタンが改質されて水素ガスが得られ、この水素ガスを主成分とする燃料ガスは、アノード電極(図示せず)に供給される。
一方、空気供給管52から熱交換器36に供給される空気は、この熱交換器36に沿って移動する際、後述する排ガスとの間で熱交換が行われ、所望の温度に予め加温されている。熱交換器36で加温された空気は、燃料電池スタック34に供給され、図示しないカソード電極に供給される。
従って、電解質・電極接合体では、燃料ガスと空気との電気化学反応により発電が行われる。各電解質・電極接合体の外周部に排出される高温(数百℃)の排ガスは、熱交換器36を通って空気と熱交換を行い、この空気を所望の温度に加温して温度低下が惹起される。
この場合、第1の実施形態では、筐体26内は、燃料電池モジュール12が収容されるモジュール部88と、酸化剤ガス供給装置18が配置される第2流体供給部90bと、電力変換装置22及び制御装置24が配置される電装部92とに分割されている。このため、筐体26内は、作動温度毎及び機能毎に分割されており、熱や流体の拡散を最小化するとともに、機能上、最適な配置が遂行可能になる。
しかも、モジュール部88の下面(横仕切り板94)には、第2流体供給部90bが配置されている。従って、第2流体供給部90bは、筐体26の下壁部(外壁部)を構成しており、前記第2流体供給部90bの冷却が促進されて高温化し難くなっている。
また、モジュール部88の第1の側面(第1縦仕切り板84)には、第1流体供給部90aが配置されている。これにより、第1流体供給部90aは、実質的に筐体26の外壁部を構成しており、前記第1流体供給部90aの冷却が促進されて高温化し難くなっている。
同様に、モジュール部88の第2の側面(第2縦仕切り板86a、86b)には、電装部92が配置されている。これにより、電装部92は、実質的に筐体26の外壁部を構成しており、前記電装部92の冷却が促進されて高温化し難くなっている。
このため、低温部(40℃前後)に維持する必要がある制御装置24を含む電装部92や、ポンプ類を含む第2流体供給部90bは、良好な機能を確実に維持して作動することが可能になるという利点がある。
さらに、第1の実施形態では、筐体26の外部から酸化剤ガス(外気)を吸気する第1吸気口112が、電装部92に設けられる一方、前記第1吸気口112から吸気された前記酸化剤ガスを酸化剤ガス供給装置18に吸気する第2吸気口114が、第2流体供給部90bに設けられている。筐体26内には、第1吸気口112から第2吸気口114に酸化剤ガスが直線状に流れるのを阻止する迂回通路116を形成する第1内部隔壁118及び第2内部隔壁120が設けられている。
従って、筐体26の外部から第1吸気口112を通って電装部92に吸気された酸化剤ガスは、前記電装部92内の電力変換装置22及び制御装置24からの放熱を効果的に回収することができる。そして、放熱を回収することにより暖められた酸化剤ガスは、電装部92から迂回通路116を通って第2吸気口114から第2流体供給部90bに吸気される。このため、酸化剤ガス供給装置18の吸引作用下に、燃料電池モジュール12に暖められた酸化剤ガスが供給されることになり、前記燃料電池モジュール12の運転効率が向上するという効果がある。
しかも、筐体26内には、第1内部隔壁118及び第2内部隔壁120を介して迂回通路116が形成されている。従って、筐体26内の酸化剤ガス流路長が長尺化し、低温部である電装部92及び第2流体供給部90b内の自然対流が抑制され、強制対流が促進されて前記低温部の高温化を有効に抑制することができる。
さらに、第1吸気口112を介して、外部雰囲気の酸化剤ガス(フレッシュなエア)を、電装部92に配置される電力変換装置22及び制御装置24に直接供給することができる。これにより、電力変換装置22及び制御装置24の高温化が良好に抑制されるという利点がある。
さらにまた、図2に示すように、第1内部隔壁118の一方の壁面118aとモジュール部88側の壁部である第2縦仕切り板86aとの距離L1と、前記第1内部隔壁118の他方の壁面118bと前記モジュール部88とは反対側に位置する壁部である第4開閉扉102dとの距離L2とは、距離L1<距離L2との関係を有している。
このため、第2縦仕切り板86aと第1内部隔壁118との間を流れる酸化剤ガスの流速が上がり、電装部92の自然対流が抑制されて強制対流が促進される。従って、低温部である電装部92が高温化することを良好に抑制することが可能になる。
その際、第2縦仕切り板86aと第1内部隔壁118との間を流れる酸化剤ガスは、高温部であるモジュール部88からの放熱を効果的に回収することができ、高温に昇温された酸化剤ガスを燃料電池モジュール12に供給することが可能になり、燃料電池モジュール12の運転効率が向上するという効果がある。
ここで、図5に示すように、距離L1と距離L2とは、距離L1:距離L2=1:10〜5:6の範囲内に設定されることが好ましい。距離L1が、上記の範囲よりも幅狭に設定されると、前記第1内部隔壁118が高温の第2縦仕切り板86aに近接してしまう。これにより、熱伝導が惹起し易く、第1内部隔壁118に取り付けられた電力変換装置22及び制御装置24への熱影響が懸念される。
一方、距離L1が、上記の範囲よりも広い場合には、第2縦仕切り板86aと第1内部隔壁118との間を流通する酸化剤ガスの流速が相当に遅くなる。このため、自然対流が発生して高熱回収の効率化が低下するとともに、第1内部隔壁118に取り付けられている電力変換装置22及び制御装置24への熱影響が懸念される。
従って、距離L1と距離L2との関係は、上記の範囲内に設定することにより、自然対流の抑制を図って低温部の高温化を抑制するとともに、酸化剤ガスによる放熱回収の効率化を図ることが可能になる。
また、第1の実施形態では、第1内部隔壁118の他方の壁面118bに電力変換装置22及び制御装置24が取り付けられている。従って、電力変換装置22及び制御装置24は、高温部であるモジュール部88からの放熱の影響を受け難くなり、前記電力変換装置22及び前記制御装置24の高温化が良好に抑制される。
その上、第1吸気口112から吸気された外部雰囲気の酸化剤ガス(フレッシュなエア)は、電装部92に配置される電力変換装置22及び制御装置24に直接供給されるため、前記電力変換装置22及び前記制御装置24の高温化が一層確実に抑制される。一方、第1流体供給部90aでは、第2内部隔壁120が設けられており、上記の電装部92と同様の効果が得られる。
さらに、電装部92では、放熱量の多い機器である電力変換装置22が、筐体26の上部に、すなわち、制御装置24よりも上方に配置されている。このため、放熱量の少ない制御装置24は、放熱量の多い電力変換装置22からの放熱による影響を受け難くなり、前記制御装置24の高温化を抑制することができる。
さらにまた、第1吸気口112は、第2吸気口114よりも上方に配置されている。これにより、外部の酸化剤ガスは、上方に配置されている第1吸気口112から迂回通路116を通って、下方に配置されている第2吸気口114に円滑に流動する。従って、低温部である電装部92及び第1流体供給部90a内の自然対流が抑制されて強制対流が促進され、前記低温部の高温化が有効に抑制される。
また、第1内部隔壁118は、断熱部材で構成されている。このため、第1内部隔壁118の他方の壁面118bに取り付けられている電力変換装置22及び制御装置24は、モジュール部88からの放熱による影響を受け難くなり、前記電力変換装置22及び前記制御装置24が高温化することを確実に抑制することが可能になる。
なお、第1内部隔壁118は、断熱部材に代えて、伝熱部材(熱伝導率の高い部材)により構成してもよい。伝熱部材としては、例えば、亜鉛メッキ鋼板、アルミニウム板、銅板等が使用されるとともに、電力変換装置22及び制御装置24との接触面積を大きくして接触熱抵抗を下げ、あるいは、接触面にグリス等を塗布して接触熱抵抗を下げることが好ましい。これにより、電力変換装置22及び制御装置24から第1内部隔壁118を介して放熱されるため、前記電力変換装置22及び前記制御装置24の高温化が良好に抑制される。
さらにまた、燃料電池モジュール12では、高温型燃料電池システム、例えば、固体酸化物形燃料電池(SOFC)モジュールにより構成されることにより、良好な効果が得られるが、固体酸化物形燃料電池モジュールに代えて、他の高温型燃料電池モジュールや中温型燃料電池モジュールにも好適に用いることができる。例えば、溶融炭酸塩形燃料電池(MCFC)、リン酸形燃料電池(PAFC)及び水素分離膜形燃料電池(HMFC)等が良好に採用可能である。
図6は、本発明の第2の実施形態に係る燃料電池システム130の概略斜視説明図である。図7は、燃料電池システム130の平面説明図であり、図8は、前記燃料電池システム130の正面説明図である。
なお、第1の実施形態に係る燃料電池システム10と同一の構成要素には同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3〜第6の実施形態においても同様に、その詳細な説明は省略する。
燃料電池システム130を構成する筐体132では、第1縦仕切り板84と外枠82との間に流体供給部90が配置される。流体供給部90は、横仕切り板134を介して第1供給部136と第2供給部138とに、上下に2分割される。第1供給部136には、燃料ガス供給装置16及び検知器78が収容されるとともに、前記検知器78は、前記燃料ガス供給装置16の上方に配置される。第2供給部138には、酸化剤ガス供給装置18及び水供給装置20が配置されるとともに、前記水供給装置20は、流体供給部90の最下部に配置される。酸化剤ガス供給装置18は、第2供給部138内で載置台140を介して保持される。
流体供給部90には、第2内部隔壁120が配設されるとともに、前記第2内部隔壁120の下部側には、第2吸気口114が形成される。第2内部隔壁120の他方の壁面120bには、検知器78、燃料ガス供給装置16、酸化剤ガス供給装置18及び水供給装置20が取り付けられる。
このように構成される第2の実施形態では、酸化剤ガス供給装置18が駆動されると、第1吸気口112から酸化剤ガス(外部空気)が電装部92に吸引されてこの電装部92内を冷却する。さらに、酸化剤ガスは、迂回通路116を通った後、第2外部隔壁122に形成されている第2吸気口114から流体供給部90に吸引される。
このため、上記の第1の実施形態と同様の効果が得られる他、特に、流体供給部90に配置されている酸化剤ガス供給装置18は、モジュール部88からの放熱による熱影響が及ぶことを可及的に阻止することができる。
図9は、本発明の第3の実施形態に係る燃料電池システム150の概略斜視説明図である。図10は、燃料電池システム150の平面説明図であり、図11は、前記燃料電池システム150の正面説明図である。
燃料電池システム150を構成する筐体152は、第1縦仕切り板84と第2縦仕切り板86とが矢印B方向に所定の間隔ずつ離間して設けられることにより、前記筐体152内が矢印B方向に分割される。
筐体152内には、モジュール部88、流体供給部90及び電装部92が矢印B方向に分割されるとともに、前記モジュール部88と前記電装部92との間に、前記流体供給部90が介装される。流体供給部90は、第2の実施形態と同様であり、詳細な説明は省略する。
流体供給部90には、平面視(図10参照)で、略L字状の内部隔壁154が設けられる。内部隔壁154の一方の壁面154aと、モジュール部88側の壁部である第1縦仕切り板84との距離L1と、前記内部隔壁154の他方の壁面154bと、第2縦仕切り板86との距離L2(及び第2縦仕切り板86と外枠82との距離L2)とは、距離L1<距離L2の関係を有する。
電装部92の上部側角部近傍には、第1吸気口112が設けられる一方、内部隔壁154の下部側角部近傍には、第2吸気口114が設けられる。
このように構成される第3の実施形態では、酸化剤ガス供給装置18が駆動されると、外部空気が酸化剤ガスとして第1吸気口112から電装部92に吸気される。この酸化剤ガスは、電装部92に配置されている各機器を冷却した後、流体供給部90に形成される迂回通路116を通って、第2吸気口114から第2供給部138に吸引される。
従って、特に、第1縦仕切り板84と内部隔壁154との間で、酸化剤ガスの良好且つ円滑な流れが得られるため、高温部であるモジュール部88からの放熱による流体供給部90の各機器への熱影響を可及的に阻止することができるという効果が得られる。
なお、第3の実施形態では、筐体152には、第1及び第2の実施形態と同様に、開閉扉を設けることができる他、回転テーブルや走行用車輪等を設けてもよい。また、以下に説明する第4〜第6の実施形態においても同様である。
図12は、本発明の第4の実施形態に係る燃料電池システム160の概略斜視説明図である。図13は、燃料電池システム160の平面説明図であり、図14は、前記燃料電池システム160の正面説明図である。
燃料電池システム160を構成する筐体162は、上記の第3の実施形態と同様に、第1縦仕切り板84及び第2縦仕切り板86を介して矢印B方向に分割されるとともに、モジュール部88を挟んで、矢印B方向両側に流体供給部90及び電装部92が設けられる。
筐体162内には、電装部92に位置して第1内部隔壁164が設けられ、モジュール部88に位置して第2内部隔壁166が設けられ、さらに流体供給部90に位置して第3内部隔壁168が設けられる。第1内部隔壁164は、第2縦仕切り板86と平行に且つ距離L1だけ離間して設けられるとともに、一方の端部側が外枠82の内方に配置されて迂回通路116の一部が形成される。第2内部隔壁166は、矢印B方向に延在して第1縦仕切り板84及び第2縦仕切り板86の端部に連結され、第3内部隔壁168は、前記第1縦仕切り板84と平行に且つ距離L1を有して配設される。
電装部92内では、第1内部隔壁164と外枠82との距離L2が設定される一方、流体供給部90では、第3内部隔壁168と前記外枠82との間に距離L2が設定される。電装部92の上部側には、第1吸気口112が形成されるとともに、第3内部隔壁168の下部側には、第2吸気口114が形成される。
このように構成される第4の実施形態では、酸化剤ガス供給装置18の駆動作用下に、第1吸気口112から電装部92内に酸化剤ガスが吸気され、この酸化剤ガスは、第1内部隔壁164、第2内部隔壁166及び第3内部隔壁168によって形成される迂回通路116を通って、第2吸気口114から第2供給部138内に吸入される。従って、この第4の実施形態では、上記の第1〜第3の実施形態と同様の効果が得られる。
図15は、本発明の第5の実施形態に係る燃料電池システム170の概略斜視説明図である。図16は、燃料電池システム170の平面説明図であり、図17は、前記燃料電池システム170の正面説明図である。
燃料電池システム170を構成する筐体172内は、第4の実施形態と同様に、第1縦仕切り板84及び第2縦仕切り板86を介して矢印B方向に分割され、モジュール部88を中心に矢印B方向両側に第1流体供給部90aと電装部92とが分割形成される。
モジュール部88の下面には、横仕切り板94を介して第2流体供給部90bが配置される。電装部92の上部側には、第1吸気口112が形成される一方、第1縦仕切り板84の下部側には、第2吸気口114が形成される。
筐体172内には、第1吸気口112から第2吸気口114に酸化剤ガスが直線状に流れるのを阻止する迂回通路116を形成する第1内部隔壁164、第2内部隔壁166及び第3内部隔壁168が設けられる。
このように構成される第5の実施形態では、上記の第1〜第4の実施形態と同様の効果が得られる。
図18は、本発明の第6の実施形態に係る燃料電池システム180の概略斜視説明図であり、図19は、前記燃料電池システム180の正面説明図である。
燃料電池システム180を構成する筐体182には、第2流体供給部90bに酸化剤ガス供給装置18で使用されなかった酸化剤ガス(未使用の酸化剤ガス)を、前記筐体182の外部に排出する排気口184が設けられる。この排気口184には、筐体182の外部に装着される排気扉186が配置される。
このように構成される第6の実施形態では、酸化剤ガス供給装置18の駆動作用下に、第1吸気口112から吸引された酸化剤ガスが、第2流体供給部90bで未使用の状態で滞留することはない。排気扉186が駆動されることにより、第2流体供給部90b内の未使用酸化剤ガスが排気口184から外部に強制的に導出されるからである。
これにより、第1吸気口112から筐体182内に吸入された酸化剤ガスは、迂回通路116を通って第2吸気口114から第2流体供給部90bに強制的に導入される。従って、燃料電池モジュール12aへの昇温された酸化剤ガスの供給が促進され、運転効率の向上が図られるという利点がある。
その上、低温部である電装部92及び第2流体供給部90b内の自然対流が一層抑制され、強制対流がより促進されて前記低温部の高温化を良好に抑制することが可能になる。
なお、第6の実施形態では、実質的に第1の実施形態に係る燃料電池システム10を用いているが、これに限定されるものではなく、第2〜第5の実施形態にも適用することが可能である。
本発明の第1の実施形態に係る燃料電池システムの概略斜視説明図である。 前記燃料電池システムの平面説明図である。 前記燃料電池システムの正面説明図である。 前記燃料電池システムの回路図である。 前記燃料電池システムを構成する筐体内に設けられる内部隔壁の位置による状態説明図である。 本発明の第2の実施形態に係る燃料電池システムの概略斜視説明図である。 前記燃料電池システムの平面説明図である。 前記燃料電池システムの正面説明図である。 本発明の第3の実施形態に係る燃料電池システムの概略斜視説明図である。 前記燃料電池システムの平面説明図である。 前記燃料電池システムの正面説明図である。 本発明の第4の実施形態に係る燃料電池システムの概略斜視説明図である。 前記燃料電池システムの平面説明図である。 前記燃料電池システムの正面説明図である。 本発明の第5の実施形態に係る燃料電池システムの概略斜視説明図である。 前記燃料電池システムの平面説明図である。 前記燃料電池システムの正面説明図である。 本発明の第6の実施形態に係る燃料電池システムの概略斜視説明図である。 前記燃料電池システムの正面説明図である。 特許文献1の燃料電池発電装置の概略説明図である。 特許文献2の換気構造の概略説明図である。
符号の説明
10、130、150、160、170、180…燃料電池システム
12…燃料電池モジュール 14…燃焼器
16…燃料ガス供給装置 18…酸化剤ガス供給装置
20…水供給装置 22…電力変換装置
24…制御装置
26、132、152、162、172、182…筐体
32…燃料電池 34…燃料電池スタック
82…外枠 84、86a、86b…縦仕切り板
88…モジュール部 90、90a、90b…流体供給部
92…電装部 94、134…横仕切り板
102a〜102d…開閉扉 110…回転機構
112、114…吸気口 116…迂回通路
118、120、154、164、166、168…内部隔壁
120a、120b、154a、154b…壁面
136、138…供給部 186…排気扇

Claims (9)

  1. 少なくとも、燃料ガスと酸化剤ガスとの電気化学反応により発電する燃料電池モジュールと、
    前記燃料電池モジュールに前記酸化剤ガスを供給する酸化剤ガス供給装置と、
    前記燃料電池モジュールで発生した直流電力を要求仕様電力に変換する電力変換装置と、
    前記燃料電池モジュールの発電量を制御する制御装置と、
    を筐体に収容する燃料電池システムであって、
    前記筐体は、前記燃料電池モジュールが配置されるモジュール部と、
    前記酸化剤ガス供給装置が配置される流体供給部と、
    前記電力変換装置及び前記制御装置が配置される電装部と、
    に分割され、
    前記電装部は、前記筐体外から該電装部に前記酸化剤ガスを吸気する第1吸気口を設ける一方、
    前記流体供給部は、前記第1吸気部から吸気された前記酸化剤ガスを前記酸化剤ガス供給装置に吸気する第2吸気口を設けるとともに、
    前記筐体内には、前記第1吸気口から前記第2吸気口に前記酸化剤ガスが直線状に流れるのを阻止する迂回通路を形成する内部隔壁が設けられることを特徴とする燃料電池システム。
  2. 請求項1記載の燃料電池システムにおいて、前記内部隔壁は、少なくとも前記電装部又は前記流体供給部に設けられるとともに、
    前記電装部又は前記流体供給部と前記モジュール部とを仕切る壁部と前記内部隔壁の一方の壁面との距離L1と、前記電装部又は前記流体供給部を形成し且つ前記モジュール部とは反対側に位置する壁部と前記内部隔壁の他方の壁面との距離L2とは、距離L1<距離L2の関係を有することを特徴とする燃料電池システム。
  3. 請求項1又は2記載の燃料電池システムにおいて、前記電装部に配置される前記電力変換装置及び前記制御装置又は前記流体供給部に配置される前記酸化剤ガス供給装置は、前記内部隔壁の前記他方の壁面に取り付けられることを特徴とする燃料電池システム。
  4. 請求項1〜3のいずれか1項に記載の燃料電池システムにおいて、前記電装部に配置される前記電力変換装置は、前記筐体内の上部に配置されることを特徴とする燃料電池システム。
  5. 請求項1〜4のいずれか1項に記載の燃料電池システムにおいて、前記第1吸気口は、前記第2吸気口よりも上部に配置されることを特徴とする燃料電池システム。
  6. 請求項1〜5のいずれか1項に記載の燃料電池システムにおいて、前記流体供給部は、前記酸化剤ガス供給装置に供給されない未使用の前記酸化剤ガスを前記筐体外に排気する排気口と、
    未使用の前記酸化剤ガスの排気を促進させる排気扇と、
    を設けることを特徴とする燃料電池システム。
  7. 請求項1〜6のいずれか1項に記載の燃料電池システムにおいて、前記燃料電池モジュールは、固体酸化物形燃料電池モジュールであることを特徴とする燃料電池システム。
  8. 請求項1〜7のいずれか1項に記載の燃料電池システムにおいて、前記内部隔壁は、断熱部材で構成されることを特徴とする燃料電池システム。
  9. 請求項1〜7のいずれか1項に記載の燃料電池システムにおいて、前記内部隔壁は、伝熱部材で構成されることを特徴とする燃料電池システム。
JP2008229675A 2008-09-08 2008-09-08 燃料電池システム Active JP5318506B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008229675A JP5318506B2 (ja) 2008-09-08 2008-09-08 燃料電池システム
US13/062,663 US8883362B2 (en) 2008-09-08 2009-07-30 Fuel cell system
PCT/JP2009/063544 WO2010026844A1 (ja) 2008-09-08 2009-07-30 燃料電池システム
AT09811373T ATE557444T1 (de) 2008-09-08 2009-07-30 Brennstoffzellensystem
EP09811373A EP2328219B1 (en) 2008-09-08 2009-07-30 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229675A JP5318506B2 (ja) 2008-09-08 2008-09-08 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2010067352A true JP2010067352A (ja) 2010-03-25
JP5318506B2 JP5318506B2 (ja) 2013-10-16

Family

ID=41797016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229675A Active JP5318506B2 (ja) 2008-09-08 2008-09-08 燃料電池システム

Country Status (5)

Country Link
US (1) US8883362B2 (ja)
EP (1) EP2328219B1 (ja)
JP (1) JP5318506B2 (ja)
AT (1) ATE557444T1 (ja)
WO (1) WO2010026844A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228181A (ja) * 2010-04-21 2011-11-10 Honda Motor Co Ltd 燃料電池システム
JP2011228180A (ja) * 2010-04-21 2011-11-10 Honda Motor Co Ltd 燃料電池システム
JP2013235781A (ja) * 2012-05-10 2013-11-21 Honda Motor Co Ltd 燃料電池システム
JPWO2012090964A1 (ja) * 2010-12-28 2014-06-05 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP2021026871A (ja) * 2019-08-02 2021-02-22 日産自動車株式会社 燃料電池システムの支持構造

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8440362B2 (en) * 2010-09-24 2013-05-14 Bloom Energy Corporation Fuel cell mechanical components
GB2499412A (en) 2012-02-15 2013-08-21 Intelligent Energy Ltd A fuel cell assembly
JP6068202B2 (ja) * 2013-03-06 2017-01-25 本田技研工業株式会社 燃料電池システム
JP6406704B2 (ja) 2015-01-26 2018-10-17 本田技研工業株式会社 燃料電池モジュール
JP6696794B2 (ja) * 2016-02-26 2020-05-20 トヨタ自動車株式会社 燃料電池ユニット
DE102017203516A1 (de) * 2017-03-03 2018-09-06 Thyssenkrupp Ag Außenintegrierte Reformer-Steuereinheit für ein Unterseeboot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320775A (ja) * 1988-06-22 1989-12-26 Tokyo Gas Co Ltd 燃料電池ユニット
JPH05290868A (ja) * 1992-04-09 1993-11-05 Fuji Electric Co Ltd パッケ−ジ型燃料電池発電装置の換気構造
JP2003208915A (ja) * 2002-01-15 2003-07-25 Ebara Ballard Corp 燃料電池発電システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475263A (ja) 1990-07-18 1992-03-10 Fuji Electric Co Ltd パッケージ型燃料電池発電装置
WO1999008354A1 (de) * 1997-08-05 1999-02-18 Almatec Ag Für Elektroschrank-Technik Schrankartiges gehäuse
US7037613B2 (en) * 2000-05-01 2006-05-02 Delphi Technologies, Inc. Temperature zones in a solid oxide fuel cell auxiliary power unit
JP2002170591A (ja) * 2000-12-04 2002-06-14 Sanyo Electric Co Ltd 固体高分子形燃料電池発電装置
US7494731B2 (en) 2001-12-27 2009-02-24 Toyota Jidosha Kabushiki Kaisha Fuel cell power generation system
JP4464594B2 (ja) 2002-01-23 2010-05-19 トヨタ自動車株式会社 燃料電池発電システム
CN1647307A (zh) * 2002-04-22 2005-07-27 普腾能源系统有限公司 用于提供模块化电源的方法和装置
US6835479B2 (en) * 2002-06-26 2004-12-28 Utc Fuel Cells, Llc System and method for shutting down a fuel cell power plant
JP2008098019A (ja) * 2006-10-13 2008-04-24 Toyota Motor Corp 燃料電池用加湿器
JP5063126B2 (ja) * 2007-02-01 2012-10-31 京セラ株式会社 燃料電池装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320775A (ja) * 1988-06-22 1989-12-26 Tokyo Gas Co Ltd 燃料電池ユニット
JPH05290868A (ja) * 1992-04-09 1993-11-05 Fuji Electric Co Ltd パッケ−ジ型燃料電池発電装置の換気構造
JP2003208915A (ja) * 2002-01-15 2003-07-25 Ebara Ballard Corp 燃料電池発電システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228181A (ja) * 2010-04-21 2011-11-10 Honda Motor Co Ltd 燃料電池システム
JP2011228180A (ja) * 2010-04-21 2011-11-10 Honda Motor Co Ltd 燃料電池システム
US8859137B2 (en) 2010-04-21 2014-10-14 Honda Motor Co., Ltd. Fuel cell system
US8859136B2 (en) 2010-04-21 2014-10-14 Honda Motor Co., Ltd. Fuel cell system
JPWO2012090964A1 (ja) * 2010-12-28 2014-06-05 Jx日鉱日石エネルギー株式会社 燃料電池システム
JP2013235781A (ja) * 2012-05-10 2013-11-21 Honda Motor Co Ltd 燃料電池システム
JP2021026871A (ja) * 2019-08-02 2021-02-22 日産自動車株式会社 燃料電池システムの支持構造

Also Published As

Publication number Publication date
EP2328219A1 (en) 2011-06-01
WO2010026844A1 (ja) 2010-03-11
US8883362B2 (en) 2014-11-11
ATE557444T1 (de) 2012-05-15
JP5318506B2 (ja) 2013-10-16
US20110159391A1 (en) 2011-06-30
EP2328219B1 (en) 2012-05-09
EP2328219A4 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP5318506B2 (ja) 燃料電池システム
JP3837383B2 (ja) 燃料電池電源装置
JP6068202B2 (ja) 燃料電池システム
JP5109252B2 (ja) 燃料電池
JP6082417B2 (ja) 燃料電池システム
JP4810624B2 (ja) 燃料電池スタック及びそれを備える燃料電池コージェネレーションシステム
TW201607133A (zh) 燃料電池發電系統
US7399548B2 (en) Fuel cell stack
JP6111904B2 (ja) 燃料電池装置
JP2008218277A (ja) 燃料電池
JP2007026928A (ja) 燃料電池
JP2013235781A (ja) 燃料電池システム
KR101127004B1 (ko) 내부 막가습기를 포함하는 연료전지 스택
JP2013069685A (ja) 給電装置
JPH10312821A (ja) 燃料電池システム
JPH0935737A (ja) 固体高分子電解質型燃料電池
JP2008235108A (ja) 燃料電池システム
JP2008235109A (ja) 燃料電池システム
JP2003288925A (ja) 燃料電池
JP4994075B2 (ja) 燃料電池システム
JP5073335B2 (ja) 燃料電池システム
JP2008235094A (ja) 燃料電池システム
JPH1092456A (ja) 機器搭載用燃料電池装置
JP4994076B2 (ja) 燃料電池システム
JP2011210570A (ja) 燃料電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5318506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250