JP2010044182A - 電気光学装置の製造方法、電気光学装置及び電子機器 - Google Patents

電気光学装置の製造方法、電気光学装置及び電子機器 Download PDF

Info

Publication number
JP2010044182A
JP2010044182A JP2008207684A JP2008207684A JP2010044182A JP 2010044182 A JP2010044182 A JP 2010044182A JP 2008207684 A JP2008207684 A JP 2008207684A JP 2008207684 A JP2008207684 A JP 2008207684A JP 2010044182 A JP2010044182 A JP 2010044182A
Authority
JP
Japan
Prior art keywords
electro
black matrix
color filter
substrate
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008207684A
Other languages
English (en)
Inventor
Takehiro Ono
雄大 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008207684A priority Critical patent/JP2010044182A/ja
Publication of JP2010044182A publication Critical patent/JP2010044182A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

【課題】高品位な画像表示が可能な液晶装置等の電気光学装置の製造方法において、製造工程の容易化及び高精度を図る。
【解決手段】電気光学装置の製造方法は、基板上に、カラーフィルタを形成する工程と、カラーフィルタ上に形成された遮光性材料をパターニングしてブラックマトリクスを形成する工程と、カラーフィルタ及びブラックマトリクスの段差に対応した段差を表面に有するオーバーコート膜を形成する工程と、オーバーコート膜の表面の段差に対応した段差を表面に有するように、電気光学物質に電圧を印加するための電圧印加用電極を形成する工程とを含む。
【選択図】図5

Description

本発明は、例えば液晶装置等の電気光学装置を製造する方法、電気光学装置、及びこのような電気光学装置を備える電子機器の技術分野に関する。
この種の電気光学装置の一例である、単体で或いは単板式にて、カラー表示が可能な液晶装置では、RGB(即ち、赤色、緑色、青色)の画素から構成されており、隣り合う画素に画像信号に応じて相異なる電位を適宜供給することでカラー画像を表示している。
ここで、液晶を挟持する一対の基板間に、画像信号に応じて生じる電界(以下単に「縦電界」という)によって液晶を駆動する縦電界駆動方式の場合、高精細化という一般的要請下で、このような画素ピッチを小さくすると、相異なる電位の画像信号が供給される相隣り合う画素電極間の電位差(以下単に「横電界」という)が、縦電界に対して相対的に大きくなってしまう。よって、横電界の悪影響が顕在化し、液晶の配向不良が問題となる。特に反転駆動方式で相隣接する画素電極間に極性の異なる電位の画像信号が供給される場合には、この問題は顕著となる。このため、画素電極の表面に段差を有するように、画素電極の形状を変形することによって横電界を抑制するという技術が提案されている(特許文献1参照)。
特開2002−14349号公報
上述の背景技術によれば、複数の画素電極上に段差を均一かつ正確に形成する必要があるため、このような電気光学装置を製造することは技術的な困難性を伴う。特に、高精細化が求められる液晶装置のような電気光学装置では、画素ピッチを小さくすると、必然的に画素電極もできるだけ小さく形成することが求められるため、その深刻さは増大する。
また、基板上にカラーフィルタを形成する場合には、画素電極に段差を形成する際にカラーフィルタに高温がかかるため、カラーフィルタが特性劣化や損傷を引き起こし、表示画像に色ムラや表示不良の原因となる。
本発明は、例えば上記問題点に鑑みてなされたものであり、高品位のカラー表示が可能な電気光学装置をより容易な手法で精度よく製造することができる電気光学装置の製造方法、電気光学装置及びそのような電気光学装置を備える電子機器を提供することを課題とする。
本発明の電気光学装置の製造方法は上記課題を解決するために、一対の基板間に電気光学物質を挟持してなる電気光学装置の製造方法であって、前記一対の基板の一方となる基板上に、画素毎にカラーフィルタを形成するカラーフィルタ形成工程と、前記カラーフィルタ上に形成された遮光性材料をパターニングすることにより、前記画素毎の非開口領域を少なくとも部分的に規定するブラックマトリクスを形成するブラックマトリクス形成工程と、前記カラーフィルタ及び前記ブラックマトリクス上に、前記カラーフィルタ及び前記ブラックマトリクスの段差に対応した段差を表面に有するようにオーバーコート膜を形成するオーバーコート膜形成工程と、前記オーバーコート膜上に、前記オーバーコート膜の表面の段差に対応した段差を表面に有するように、前記電気光学物質に電圧を印加するための電圧印加用電極を形成する電極形成工程とを含む。
本発明によって製造することのできる電気光学装置は、一対の基板間に電気光学物質、例えば液晶が挟持されており、基板間に画像信号に応じて生じる縦電界によって液晶の配向状態を制御して画像を表示する。
カラーフィルタ形成工程では、一対の基板の一方の基板上に、画素毎にカラーフィルタを形成する。ここに「画素」とは、RG又はBの単一色表示を行う最小単位を意味してもよいし、RG及びBを含んでなりカラー表示を行う最小単位を意味してもよい。後者の場合、各画素に含まれるRG又はBの単一色表示を行う最小単位を「サブ画素」と称することもでき、カラー表示を行う最小単位をカラー画素或いはフルカラー画素と称することもできる。カラーフィルタは典型的には、RGB(即ち、赤色、緑色、青色)夫々に対応する着色層が画素毎に交互に配列されるように、基板上に形成される。しかし、本発明では、カラーフィルタの形成時には、基板上に未だブラックマトリクスが形成されていないため、基板の表面は比較的平坦である。そのため、カラーフィルタを凹凸のある表面に形成した場合(例えば、基板上に予めブラックマトリクスを形成した場合)に比べて、色ムラが少なく、均一なカラーフィルタを形成することができる。尚、カラーフィルタを形成する前に基板上に素子等(例えば、薄膜トランジスタや配線等)を形成する必要がある場合には、その上層を平坦化膜等によって平坦にしてからカラーフィルタを形成してもよい。
ブラックマトリクス形成工程では、カラーフィルタ上に遮光性材料を塗布し、画素毎の非開口領域を少なくとも部分的に規定するようにパターニングすることによって、ブラックマトリクスを形成する。まず、ブラックマトリクスの材料である遮光性材料が、例えばスピンコート等の手法によって、カラーフィルタ上に塗布される。ここに「遮光性材料」とは、光透過率がカラーフィルタと比べて低い材料を意味し、好ましくは光透過率がゼロに近い或いは実質的にゼロである材料を意味する。その後、画素の非開口領域、即ち、カラーフィルタの各着色層の境界付近の領域の少なくとも一部を除いて、遮光性材料をパターニングによって除去する。その結果、画素の非開口領域、即ち、カラーフィルタの各着色層の境界付近の領域の少なくとも一部についてブラックマトリクスが形成される。ここに「ブラックマトリクス」とは、好ましくは格子状或いはマトリクス状をなすが、他の遮光膜と協働で格子状或いはマトリクス状の非開口領域を規定することも可能である。その場合には、ブラックマトリクスは、マトリクス状に限らず、ストライプ状或いは島状であってもよく、一部が欠けたマトリクス状であってもよい。
ここで、カラーフィルタの表面とブラックマトリクスの表面との段差は、カラーフィルタ上に塗布される遮光性材料の膜厚によって規定される。この段差は、後述する電気光学物質の電圧印加用電極の表面における段差の大きさを規定する要因であるため、電圧印加用電極の表面に設けたい段差の大きさに応じて調整すればよい。尚、本願発明者の研究結果によると、このようにして規定された遮光性材料の膜厚は、ブラックマトリクスが十分な遮光性を発揮するために必要な厚さに比べて、十分大きい膜厚となる。
電気光学装置における典型的なブラックマトリクスは、カラーフィルタが形成される前に基板上に形成される。即ち、あらかじめ基板上にブラックマトリクスを形成しておき、その間にカラーフィルタが形成される。これに対し、本発明では、基板上にあらかじめ形成しておいたカラーフィルタ上に、ブラックマトリクスを形成することに特徴がある。このような工程順を経ることによって、ムラのない高品質なカラーフィルタを形成しつつ、非開口領域を規定し、画素間の光漏れや混色を防止するブラックマトリクスの典型提起な機能を発揮させることが可能となる。
オーバーコート膜形成工程では、基板上に形成されたカラーフィルタ及びブラックマトリクス上にオーバーコート膜が塗布される。この際特に、オーバーコート膜は、基板上におけるカラーフィルタの表面とブラックマトリクスの表面とによる段差に対応して段差が形成されるように塗布される。具体的には、そのような段差が形成されるように、オーバーコート膜の膜厚、材質、形成方法等は、所定の膜厚等とされている。これら所定の膜厚等は、膜厚、材質、形成方法等を変更して形成される段差を実験的、経験的或いはシミュレーション等により求めることで、予め設定可能である。「オーバーコート膜」は、段差を有する程度に薄く形成されており、好ましくは、段差を有する程度に薄く且つピンホール等の欠陥が発生しない程度に厚い、所定膜厚で形成される。この結果、カラーフィルタ上に凸上に形成されているブラックマトリクスの上層に該当部分付近において、オーバーコート膜の表面が盛り上がるように、オーバーコート膜の表面が形成される。
電圧印加用電極形成工程では、オーバーコート膜上に、一対の基板間に挟持された電気光学物質の電圧印加用電極が所定の膜厚で形成される。このとき、オーバーコート膜の表面は、基板上に形成されたカラーフィルタの表面とブラックマトリクスの表面とによる段差に基づく段差、即ち、基板上で平面的に見てブラックマトリクスと重畳している領域の付近において盛り上がる形状を有している。そのため、オーバーコート膜の上に所定の膜厚で形成される電圧印加用電極もまた、当該部分付近の領域において表面が盛り上がるように形成される。このように、電圧印加用電極の表面が盛り上がるように形成することができるので、当該領域付近における横電界の影響を抑制することができる。即ち、縦電界が構築される電極間の距離を段差で盛り上がった分だけ短くすることができ、該距離が短い程強まる性質を持つ縦電界を、相対的に(即ち横電界に対して)強められる。同時に、盛り上げられた段差内部は、液晶等の電気光学物質内と比べて横電界が通過し難いので、その分だけ横電界を相対的に(即ち縦電界に対して)弱められる。
尚、「電圧印加用電極」の表面には、例えば液晶の配向を規制するための配向膜など、電気光学物質の動作を規制するための各種機能膜が形成されてもよい。他方で、一対の基板の他方については、例えばその上に、画素電極、素子、配線、遮光膜等が形成されることで、素子基板或いはTFTアレイ基板等とされ、一方の基板と貼り合わせられる。
以上の工程によって製造された電気光学装置は、電圧印加用電極の段差付近(即ち、ブラックマトリクスの存在する非開口領域付近)において、横電界の発生を抑制することができ、配向不良の少ない高品位な画像表示をすることができる。また、このような工程を経ることによって、基板上に品質の良いカラーフィルタを形成することができる。更に、以上の工程において、配向制御電極の段差は実質的にブラックマトリクスのパターニングによって、カラーフィルタとブラックマトリクスとの段差を形成することによって作ることができるため、背景技術のような高度な技術的な困難性を伴わない。従って、高精細化の要請に応じた微細な構造を要求される電気光学装置の製造においても適用可能であり、極めて実用的で有効な製造方法を提供することができる。
本発明の電気光学装置の製造方法の一態様では、前記ブラックマトリクス形成工程において、前記カラーフィルタ及び前記ブラックマトリクスの段差が0.6μm以上になるようにブラックマトリクスを形成する。
この態様によれば、基板上に形成されたカラーフィルタの表面とブラックマトリクスの表面との段差が0.6μmと、典型的なブラックマトリクスの高さに比べて遥かに大きく形成されている。このようにブラックマトリクスの高さを十分大きく確保することによって、オーバーコート膜の表面における段差を大きくすることができ、その結果、電圧印加用電極の表面における段差も大きくすることができる。逆に、この程度の段差であれば、その上に電圧印加用電極を、ITO等から問題なく形成することも可能である。従って、電圧印加用電極の表面段差が大きくなると、基板間に生じる横電界をより効率的に抑制することができるので、非常に高品位な画像表示が可能な電気光学装置を製造することができる。
本発明の電気光学装置の製造方法の他の態様では、前記電圧印加用電極は、前記一方となる基板上にベタ状に形成された対向電極である。
この態様によれば、電圧印加用電極は対向基板上に形成された対向電極である。対向電極は、基板上の画素が存在する領域(即ち、画像表示領域)全体に渡って一体的に形成される。即ち、電圧印加用電極は、ブラックマトリクスが形成されている領域付近において段差を有し、かつ、画像表示領域を含む大きな電極として形成される。対向基板側であれば、ブラックマトリクス等を高温プロセスに晒さないで済むのが著しく容易となり、全体としても製造が容易となる。
本発明の電気光学装置の製造方法の他の態様では、前記電圧印加用電極は、前記画素毎に配置された複数の画素電極である
この態様によれば、電圧印加用電極は、カラーフィルタを内蔵した素子基板(即ち、典型的には薄膜トランジスタ、データ線、走査線等が形成される基板)上に形成された画素電極である。つまり、電圧印加用電極は、画素毎に配置された複数の画素電極から構成されている。尚、カラーフィルタを形成する前に、基板上に薄膜トランジスタ、データ線、走査線等により凹凸が生じている場合には、平坦化膜等を用いてあらかじめ平坦化処理を行ってから、カラーフィルタを形成してもよい。或いは、薄膜トランジスタ、データ線、走査線等により生じている凹凸を、ブラックマトリクスにおける段差を高めることに利用してもよい。
この態様では、前記複数の画素電極の各々は、前記一方となる基板上で平面的に見て、前記ブラックマトリクスと重畳する領域を有するように形成されてもよい。
このように製造すれば、画素電極の端部のうち重畳している部分は、下層側に形成されているブラックマトリクスによって盛り上がるように形成される。つまり、各画素電極は端部が盛り上がっている形状(例えば、お椀型)に形成される。その結果、各画素電極の端部において基板間に生じる横電界を効果的に抑制することができ、電気光学物質の配向不良を防止することが可能となる。
本発明の電気光学装置の製造方法の他の態様では、前記遮光性材料の融点が200℃以下である。
本発明では、ブラックマトリクスを形成する遮光性材料が、カラーフィルタ上に塗布されるため、塗布する際の溶解した遮光性材料の温度が高温な場合、先に形成したカラーフィルタが熱によって変質及び損傷を受けることがある。本態様によれば、200℃と比較的融点の低い遮光性材料を用いることによって、カラーフィルタに影響を与えることなく、ブラックマトリクスを形成することが可能となる。言い換えれば、高温プロセスに耐え得るような高融点金属を使用する必要は無くなり、例えば、樹脂等の遮光性材料を採用可能となる。
この態様では、前記遮光性材料はフォトレジストを含んだ遮光性樹脂であってもよい。
このように製造すれば、遮光性樹脂は比較的低い融点を有しているため、カラーフィルタに影響(例えば、変質や損傷など)を与えることはない。また、遮光性材料にフォトレジストを含有しているので、ブラックマトリクス形成工程において露光によって容易にパターニングを行うことができる。更に、露光によるパターニングは極めて精度よくパターニングすることができるので、カラーフィルタとブラックマトリクスとの段差を精度よく制御することが可能となる。その結果、電圧印加用電極の表面における段差の大きさの制御精度も向上させることができる。
本発明の電気光学装置の製造方法の他の態様では、前記ブラックマトリクス形成工程において、前記ブラックマトリクスが前記一方となる基板上で平面的に見てマトリクス状に形成されるように、前記遮光性材料をパターニングする。
この態様によれば、ブラックマトリクスは、マトリクス状、即ち、画素間の境界に沿って、非開口領域の少なくとも一部を形成するように遮光性材料をパターニングすることによって形成される。このように形成することによって、全ての画素間において電圧印加用電極に段差を持たせることができるため、極めて効率的に横電界を抑制することが可能な電気光学装置を製造することができる。しかも、ブラックマトリクス単体で非開口領域の全てを規定することも可能となる。また、尚、ブラックマトリクスと重畳するように、遮光性材料で走査線やデータ線を形成することで、ブラックマトリクスと合わせて非開口領域を規定してもよい。
本発明の電気光学装置は上記課題を解決するために、一対の基板間に電気光学物質を挟持してなる電気光学装置であって、前記一対の基板の一方となる基板上に、画素毎に形成されたカラーフィルタと、前記カラーフィルタ上に形成されており、前記画素毎の非開口領域を少なくとも部分的に規定するブラックマトリクスと、前記カラーフィルタ及び前記ブラックマトリクス上に形成されており、前記カラーフィルタ及び前記ブラックマトリクスの段差に対応した段差を表面に有するオーバーコート膜と、前記オーバーコート膜上に形成されており、前記オーバーコート膜の表面の段差に対応した段差を表面に有する前記電気光学物質に電圧を印加するための電圧印加用電極とを備える。
本発明の電気光学装置は、一対の基板間に電気光学物質、例えば液晶が挟持されており、基板間に画像信号に応じて生じる縦電界によって液晶の配向状態を制御して画像を表示する。基板上に形成されたカラーフィルタの表面と、その上に形成されたブラックマトリクスの表面との段差に応じて、上層側に形成されたオーバーコート膜の表面に段差を有している。更に、オーバーコート膜上に形成される電圧印加用電極もまた、オーバーコート膜の段差に応じて表面に段差を有している。このように、表面に段差を有している電圧印加用電極は、基板間に発生する横電界を抑制し、液晶等の電気光学物質の配向不良を抑制する。
本発明の電気光学装置の他の態様では、前記カラーフィルタ及び前記ブラックマトリクスの段差が0.6μm以上である。
この態様によれば、基板上に形成されたカラーフィルタの表面とブラックマトリクスの表面との段差が0.6μmと、典型的なブラックマトリクスの高さに比べて遥かに大きく形成されている。このようにブラックマトリクスの高さを十分大きく確保することによって、オーバーコート膜の表面における段差を大きくすることができ、その結果、電圧印加用電極の表面における段差も大きくすることができる。従って、電圧印加用電極の表面段差が大きくなると、基板間に生じる横電界をより効率的に抑制することができるので、非常に高品位な画像表示が可能な電気光学装置を製造することができる。
本発明の電気光学装置の他の態様では、前記電圧印加用電極は、前記画素毎に配置された画素電極であり、前記一方となる基板上で平面的に見て、前記ブラックマトリクスと重畳する領域を有する。
この態様によれば、電圧印加用電極は、カラーフィルタを内蔵した素子基板(即ち、典型的には薄膜トランジスタ、データ線、走査線等が形成される基板)上に形成された画素電極であり、基板上で特定の画素の周辺領域を平面的に見ると、画素電極の端部が非開口領域に形成されているブラックマトリクスと一部重畳している。このように形成すると、画素電極の端部のうち重畳している部分は、下層側に形成されているブラックマトリクスによって盛り上がるように形成される。つまり、各画素電極は端部が盛り上がっている形状(例えば、お椀型)に形成される。その結果、各画素電極の端部において基板間に生じる横電界を効果的に抑制することができ、電気光学物質の配向不良を防止することが可能となる。
本発明の電気光学装置の他の態様では、前記電圧印加用電極は、前記一方の基板上にベタ状に形成された対向電極である。
この態様によれば、電圧印加用電極は対向基板上に形成された対向電極である。対向電極は、基板上の画素が存在する領域(即ち、画像表示領域)全体に渡って一体的に形成される。即ち、電圧印加用電極は、ブラックマトリクスが形成されている領域付近において段差を有し、かつ、画像表示領域を含む大きな電極として形成される。
本発明の電子機器は上記課題を解決するために、上述した本発明の電気光学装置(但し、その各種態様を含む)を備える。
本発明の電子機器によれば、上述した本発明の電気光学装置を備えてなるので、高品質な画像表示を行うことが可能な、投射型表示装置、テレビ、携帯電話、電子手帳、ワードプロセッサ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、ワークステーション、テレビ電話、POS端末、タッチパネルなどの各種電子機器を実現できる。
本発明の作用及び他の利得は次に説明する実施するための最良の形態から明らかにされる。
以下、本発明に係る電気光学装置の製造方法について、実施形態をもとに説明する。
<1.液晶装置>
先ず、本実施形態に係る電気光学装置の製造方法によって製造される液晶装置の全体構成を説明する。
<1−1.第1実施形態>
ここに図1は、本実施形態に係る液晶装置の全体構成を示す平面図であり、図2は、図1のH−H’線断面図である。
図1及び図2において、本実施形態に係る液晶装置では、TFTアレイ基板10と対向基板20とが対向配置されている。TFTアレイ基板10は、例えば石英基板、ガラス基板等の透明基板や、シリコン基板等である。対向基板20は、例えば石英基板、ガラス基板等の透明基板である。TFTアレイ基板10と対向基板20との間には、液晶層50が封入されている。TFTアレイ基板10と対向基板20とは、複数の画素電極が設けられた画像表示領域10aの周囲に位置するシール領域に設けられたシール材52により相互に接着されている。
シール材52は、両基板を貼り合わせるための、例えば紫外線硬化樹脂、熱硬化樹脂等からなり、製造プロセスにおいてTFTアレイ基板10上に塗布された後、紫外線照射、加熱等により硬化させられたものである。シール材52中には、TFTアレイ基板10と対向基板20との間隔(即ち、基板間ギャップ)を所定値とするためのグラスファイバ或いはガラスビーズ等のギャップ材が散布されている。
シール材52が配置されたシール領域の内側に並行して、画像表示領域10aの額縁領域を規定する遮光性の額縁遮光膜53が、対向基板20側に設けられている。但し、このような額縁遮光膜53の一部又は全部は、TFTアレイ基板10側に内蔵遮光膜として設けられてもよい。
周辺領域のうち、シール材52が配置されたシール領域の外側に位置する領域には、データ線駆動回路101及び外部回路接続端子102がTFTアレイ基板10の一辺に沿って設けられている。この一辺に沿ったシール領域よりも内側に、サンプリング回路7が額縁遮光膜53に覆われるようにして設けられている。走査線駆動回路104は、この一辺に隣接する2辺に沿い、且つ、額縁遮光膜53に覆われるようにして設けられている。
TFTアレイ基板10上には、対向基板20の4つのコーナー部に対向する領域に、両基板間を上下導通材107で接続するための上下導通端子106が配置されている。これらにより、TFTアレイ基板10と対向基板20との間で電気的な導通をとることができる。
図2において、TFTアレイ基板10上には、画素スイッチング用のTFTや走査線、データ線等の配線が作りこまれた積層構造が形成されている。画像表示領域10aには、画素スイッチング用のTFTや走査線、データ線等の配線の上層に、ITO(Indium Tin Oxide)等の透明材料からなる画素電極9がマトリクス状に設けられている。画素電極9上には、配向膜(図2において省略)が形成されている。
他方、対向基板20上には、RGB(即ち、赤色、緑色、青色)に対応するカラーフィルタ26が画素毎に形成されている。赤色のカラーフィルタは、赤色の光(即ち、例えば625〜740nmの波長を有する光)のみを通過させるカラーフィルタであり、緑色のカラーフィルタは、緑色の光(即ち、例えば500〜565nmの波長を有する光)のみを通過させるカラーフィルタであり、青色のカラーフィルタは、青色の光(即ち、例えば450〜485nmの波長を有する光)のみを通過させるカラーフィルタである。例えば赤色のカラーフィルタに対応するサブ画素、緑色のカラーフィルタに対応するサブ画素、及び青色のカラーフィルタに対応するサブ画素という、三つのサブ画素の集合から、一つの画素(即ち、一つのカラー画素或いはフルカラー画素)が構築されている。
対向基板20上に形成されたカラーフィルタ26の更に上には、隣り合う画素の境界に沿ってブラックマトリクス23が形成されている。ブラックマトリクス23は、遮光性材料から形成されており、本実施形態では特に、遮光性樹脂(典型的には、融点が200℃以下)から形成されている。ここで、図3は本実施形態における液晶装置から、ブラックマトリクス23のみを抽出し、その全体的な構造を模式的に表した概念図である。図3に示すように、ブラックマトリクス23は、対向基板20上で平面的に見て格子状にパターニングされている。このように、ブラックマトリクスが画像表示領域において隣り合う画素間に沿って形成されることによって、画素間の混色や表示画像のコントラスト比の向上に貢献している。再び図2に戻って、ブラックマトリクス23上には、ITO等の透明材料からなる対向電極21が複数の画素電極9と対向して、対向基板20の全面に亘って(例えばベタ状に)形成されている。対向電極21上には配向膜が形成されている。
このように構成され、画素電極9と対向電極21とが対面するように配置されたTFTアレイ基板10と対向基板20との間には、液晶層50が形成されている。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなり、これら一対の配向膜間で所定の配向状態をとる。
尚、図1及び図2に示したTFTアレイ基板10上には、これらのデータ線駆動回路101、走査線駆動回路104等の駆動回路の他に、複数のデータ線に所定電圧レベルのプリチャージ信号を画像信号に先行して各々供給するプリチャージ回路、製造途中や出荷時の当該電気光学装置の品質、欠陥等を検査するための検査回路、検査用パターン等が形成されていてもよい。
次に、第1実施形態に係る液晶装置の画像表示領域の電気的な構成について、図4を参照して説明する。ここに図4は、第1実施形態に係る液晶装置の画像表示領域を構成するマトリクス状に形成された複数の画素における各種素子、配線等の等価回路図である。
図4において、画像表示領域10aを構成するマトリクス状に形成された複数の画素の
各々には、画素電極9及び本発明に係る「トランジスタ」の一例としての画素スイッチング用のTFT30が形成されている。TFT30は、画素電極9に電気的に接続されており、本実施形態に係る液晶装置の動作時に画素電極9をスイッチング制御する。画像信号が供給されるデータ線6は、TFT30のソース領域に電気的に接続されている。データ線6に書き込む画像信号S1、S2、…、Snは、この順に線順次に供給しても構わないし、互いに隣り合う複数のデータ線6同士に対して、グループ毎に供給するようにしてもよい。
TFT30のゲートには走査線11が電気的に接続されており、本実施形態に係る液晶装置は、所定のタイミングで、走査線11にパルス的に走査信号G1、G2、…、Gmを、この順に線順次で印加するように構成されている。画素電極9は、TFT30のドレインに電気的に接続されており、スイッチング素子であるTFT30を一定期間だけそのスイッチを閉じることにより、データ線6から供給される画像信号S1、S2、…、Snが所定のタイミングで書き込まれる。画素電極9を介して液晶に書き込まれた所定レベルの画像信号S1、S2、…、Snは、対向基板20(図2参照)に形成された対向電極21(図2参照)との間で一定期間保持される。
液晶層50(図2参照)を構成する液晶は、印加される電圧レベルにより分子集合の配向や秩序が変化することにより、光を変調し、階調表示を可能とする。ノーマリーホワイトモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が減少し、ノーマリーブラックモードであれば、各画素の単位で印加された電圧に応じて入射光に対する透過率が増加され、全体として液晶装置からは画像信号に応じたコントラストをもつ光が出射される。
ここで保持された画像信号がリークすることを防ぐために、画素電極9と対向電極21(図2参照)との間に形成される液晶容量に対して電気的に並列に蓄積容量70が付加されている。
次に、図5を参照して、本実施形態における対向電極21の構造及びその機能について説明する。ここで、図5は、画像表示領域10aのデータ線6に直行する方向における詳細な積層構造を示した図式的な断面図である。
TFTアレイ基板10上には、TFTや配線等(図5において省略)を形成した後、層間絶縁膜11で平坦化し、画素電極9が形成されている。画素電極9はラビング処理された配向膜15が形成されている。
一方、対向基板20上(図5において下方向)には、下地絶縁膜22の上にカラーフィルタ26が画素毎に形成されている。隣り合う画素間にはブラックマトリクス23が配置されており、画素間の混色を防止している。ここで、カラーフィルタ26及びブラックマトリクス23上にはオーバーコート膜24が所定の膜厚で形成されている。特に、カラーフィルタ26上にブラックマトリクス23が形成されることによって、段差が生じているため、この段差に対応して、オーバーコート膜24の表面にも段差が生じている。そして、オーバーコート膜24上には対向電極21がベタ状に形成されており、オーバーコート膜24と同様に、その表面には段差が形成されている。対向電極21の表面には段差が生じているが、配向膜25で平坦化されている。このように、本実施形態では、対向電極21が、本発明に係る「電圧印加用電極」の一例を構成している。
以上に説明した一対の基板によって液晶50が挟持されることによって、液晶装置が成り立っている。
本実施形態に係る液晶装置は、画素電極9と対向電極21との間に電界を発生させることによって基板間に挟持された液晶50の配向を制御して画像表示を行っている。画素電極9と対向電極21との間の電界は、図5の点線で示す方向に発生している。
ここで、図6は、本実施形態において段差を有する対向電極21に代えて平らな対向電極を用いて構成した比較例における、基板間の電界の発生方向を示した図である。尚、図6の構成は、対向電極21が平面形状を有しており、ブラックマトリクス23がカラーフィルタと同層に形成されていることが、本実施形態と異なっている。この場合、図6において点線で示しているように、電界は、隣り合う画素電極9間の電位差に基づいて横方向の電界(即ち、横電界)を多く含んでいる。そのため、本来であれば、基板に対して垂直な方向で配向制御すべき領域の液晶分子が、横電界の影響によって配向不良を起こしてしまう。
一方、図5に戻って、本実施形態における液晶装置では、画素の境界領域において対向電極21が盛り上がるように段差を有して形成されている。そのため、画素の境界領域付近においては、画素電極9と対向電極21との間の距離が短くなる。その分、隣り合う画素電極9間に生じていた横電界が、縦方向(即ち、基板に垂直な方向)に引き寄せられ、図5に示すように、全体の電界に対する横電界の割合が相対的に少なくなる。その結果、画素間において横電界によって引き起こされる配向不良を抑制することができる。
<1−2.第2実施形態>
次に、第2実施形態に係る液晶装置について、図7及び図8を参照して説明する。本実施形態は、TFTアレイ基板10側にカラーフィルタ及びブラックマトリクスが設けられている点において、第1実施形態と異なっている。このようにカラーフィルタ及びブラックマトリクスをTFTアレイ基板10側に形成することによって、各画素の位置に対して、カラーフィルタやブラックマトリクスの位置が、一対の基板を重ね合わせるときにズレないという利点がある。以下、詳細に構造を説明する。
図7は、第2実施形態における液晶装置の画像表示領域の複数の画素について、基板に垂直な断面図を詳細に示す模式図である。
TFTアレイ基板10上には、TFTや配線等(図7において省略)を形成した後、層間絶縁膜11で平坦化し、カラーフィルタ16が形成されている。カラーフィルタ16上には、隣り合うカラーフィルタ16の境界に対応してブラックマトリクス13が形成されている。ここで、カラーフィルタ16及びブラックマトリクス13上にはオーバーコート膜14が所定の膜厚で形成されている。特に、カラーフィルタ16上にブラックマトリクス13が形成されることによって段差が生じているため、この段差に対応して、オーバーコート膜14の表面にも段差が生じている。そして、オーバーコート膜14上には画素電極9が画素毎に島状に形成されている。図7に示すように、各画素電極9は、オーバーコート膜24と同様に段差を有するように形成されている。画素電極9上は、配向膜15が形成され、平坦化されている。
一方、対向基板20上(図7において下方向)には、下地絶縁膜22の上に対向電極21がベタ状に形成されており、その上に配向膜25が形成されている。そして、以上に説明した一対の基板によって液晶50が挟持されることによって、液晶装置が成り立っている。
本実施形態に係る液晶装置は、画素電極9と対向電極21との間に電界を発生させることによって基板間に挟持された液晶50の配向を制御して画像表示を行っている。画素電極9と対向電極21との間の電界は、図7の点線で示す方向に発生している。
ここで、図8は、典型的なカラーフィルタ及びブラックマトリクスがTFTアレイ基板上に形成された液晶装置における、基板間の電界の発生方向を示した図である。尚、図8の構成は、各画素電極9は平面形状を有しており、ブラックマトリクス13がカラーフィルタ16と同層に形成されている点で、本実施形態と異なっている。この場合、図8において点線で示しているように、電界は、隣り合う画素電極9間の電位差に基づいて横方向の電界(即ち、横電界)を多く含んでいる。そのため、本来であれば、基板に対して垂直な方向で配向制御すべき領域の液晶分子が、横電界の影響によって配向不良を起こしてしまう。
一方、図7に戻って、本実施形態における液晶装置では、画素の境界領域において画素電極9の両端部が盛り上がるように段差を有している。そのため、画素の境界領域付近においては、画素電極9と対向電極21との間の距離が短くなっている。そのため、隣り合う画素電極9間に生じていた横電界が、縦方向(即ち、基板に垂直な方向)に引き寄せられ、図7に示すように、全体の電界に対する横電界の割合が相対的に少なくなる。その結果、画素間において横電界によって引き起こされる配向不良を抑制することができる。
図9は、本実施形態において、ブラックマトリクス13と画素電極9との位置関係を示す模式図である。本実施形態では特に、基板上で平面的にみた際に、各画素電極9の端部とブラックマトリクス13とが重畳する領域(即ち、図9の矢印で示した領域)を有するように形成されている。このように形成することによって、図7に示すように各画素電極9の端部が盛り上がるように段差を形成するので、各画素において横電界を極めて効果的に抑制することが可能となる。
<2.液晶装置の製造方法>
続いて、図10及び図11を参照して、以上で説明した実施形態における液晶装置の製造方法について説明する。
<2−1.製造方法1>
図10を参照して、第1実施形態における対向基板20上の積層構造、即ち、対向基板20上に形成されるカラーフィルタ26、ブラックマトリクス23、オーバーコート膜24及び対向電極21について、その製造工程を工程毎に説明する。
まず、カラーフィルタ形成工程について図8(a)を参照して説明する。対向基板20上に夫々R(赤色)、G(緑色)、B(青色)に対応したカラーフィルタ26を形成する。例えば、初めに、Rに対応するフォトレジストを含んだカラーレジストを対向基板20上に均一に塗布する。その後、露光及びパターニングを行い、不要なカラーレジストを除去し、カラーフィルタ26(R)を完成させる。次に、Gに対応するフォトレジストを含んだカラーレジストを、先に形成したカラーフィルタ26(R)及び対向基板20上に塗布し、不要なカラーレジストを除去してカラーフィルタ26(G)を完成させる。同様に、Bに対応するフォトレジストを含んだカラーレジストを先に形成したカラーフィルタ26(R)及び26(G)並びに対向基板20上に塗布し、不要なカラーレジストを除去してカラーフィルタ26(B)を完成させる。このようにして、対向基板20上にRGB夫々に対応したカラーフィルタ26が完成する。
尚、本実施形態では、カラーフィルタ26の形成時には、対向基板20上に未だブラックマトリクス23が形成されていないため、対向基板20の表面は平坦である。そのため、あらかじめ対向基板上にブラックマトリクスを形成してからカラーフィルタを形成する典型的な液晶装置に比べて、色ムラが少なく、均一なカラーフィルタを形成することができ、高品位なカラー表示が可能な液晶装置を製造することが可能となる。
尚、仮に対向基板20の表面に凹凸がある場合には、カラーフィルタ26を形成する前に、下地絶縁膜(図10において省略)でコーティングを行い、基板表面を平坦化してからカラーフィルタを形成してもよい。
次に、ブラックマトリクス形成工程について、図10(b)及び(c)を参照して説明する。まず、図10(b)に示すように、対向基板20上に形成されたカラーフィルタ26の上に、液体上の遮光性材料をスピンコート等の手法によって均一に塗布する。ここで塗布される遮光性材料は、後の工程でフォトリソグラフィによってパターニングされるので(図10(c)参照)、予めフォトレジストを含んでいる。尚、形成されたカラーフィルタ26の表面に凹凸がある場合には、表面の凹凸をなくすために平坦化膜を形成してもよい(図10において省略)。
本願発明者の研究によると、遮光性材料の膜厚は、ブラックマトリクスが十分な遮光性を発揮するために必要な厚さに比べて、厚く形成される。つまり、本製造方法によって製造される液晶装置において、基板間に発生する横電界を抑制する役割を有する対向電極21の表面における段差は、カラーフィルタ26の表面とブラックマトリクス23の表面との段差に応じて設けられる。つまり、第1実施形態では、ブラックマトリクス形成工程において塗布される遮光性材料の膜厚によって、ブラックマトリクス23の高さが決まるため、塗布される遮光性材料の膜厚は横電界を抑制できる効果が得られる程度でなければならない。本願発明者の研究によると、横電界を良好に抑制するために必要なブラックマトリクス23の高さは、典型的な金属製ブラックマトリクスの膜厚(典型的には、ナノメートルのオーダー)よりも遥かに厚く形成する必要がある。この必要な遮光性材料の膜厚は、基板間ギャップの長さや、基板間に挟持されている電気光学物質の種類等の要因に依存するが、本実施形態においては、例えば、膜厚は約0.6μm以上確保することが好ましい。
また、本実施形態において塗布される遮光性材料は、例えば融点が200℃以下である遮光性樹脂である。図10(b)において遮光性材料が塗布される際、スピンコート等の手法を用いてカラーフィルタ26上に均一に塗布するために、遮光性材料は融解した状態でカラーフィルタ26上に塗布される。このとき、融解した遮光性材料の温度が200℃よりも高いと、遮光性材料に変質や損傷をきたしてしまう。しかも、200℃よりも高い高温雰囲気に晒されると、遮光性材料の下地となるカラーフィルタ26にも変質や損傷を招いてしまう。そのため、カラーフィルタ26にこれらの悪影響が及ばない程度の温度で融解する遮光性材料を用いるとよい。本実施形態では、遮光性樹脂を遮光性材料として用いており、その融点は典型的には200℃以下である。
続いて、図10(c)を参照して、図10(b)で塗布した遮光性材料をパターニングして、ブラックマトリクス23を形成する工程について説明する。ここで形成されるブラックマトリクス23は、画素の境界、即ち、隣り合うカラーフィルタ26の間に設けられることによって、混色の防止やコントラスト比の向上に貢献する機能を有している。従って、図10(c)に示すように、隣り合うカラーフィルタ26の間に遮光性材料を残し、その他の余分な遮光性材料を除去することによって、ブラックマトリクス23は隣り合うカラーフィルタ26の間に配置される。本実施形態では、遮光性材料にはあらかじめフォトレジストが含まれているので、露光を行いパターニングすることによってブラックマトリクス23を容易に形成することができる。
本実施形態において、ブラックマトリクス23は、マトリクス状にパターニングを行うことによって形成される(図3参照)。これにより、画素間の全ての境界において、横電界を抑制することが可能となり、極めて高品位な画像表示を実現することができる。
続いて、オーバーコート膜形成工程について、図10(d)を参照して説明する。図10(a)から(c)までの工程によって、対向基板20上にはカラーフィルタ26とブラックマトリクス23が形成されており、夫々の表面には段差が生じている。これらの上に、オーバーコート膜24を所定の膜厚で一様に塗布することにより、カラーフィルタ26とブラックマトリクス23との段差に応じた段差を有するオーバーコート膜24を形成することができる。つまり、オーバーコート膜24を一様に塗布することにより、ブラックマトリクス23がカラーフィルタ26上で出っ張っている分だけ、オーバーコート膜24の表面が盛り上がるように形成される。
続いて、図10(e)を参照して、対向電極形成工程について説明する。この工程では、オーバーコート膜24上に対向電極21を形成する。対向電極21は、例えばITO等の透明電極で形成される。ここで、下地にあるオーバーコート膜24が有する段差に応じて、対向電極21の表面にも対応する段差が生じる。即ち、対向電極21の表面には、基板上で平面的に見てブラックマトリクス23が設けられている領域の付近において盛り上がるように段差を有している。
尚、対向電極21上にはラビング処理がされた配向膜(図10において省略)等が形成されることによって、対向基板が完成する。
このようにして完成させられた対向基板21は、別途、素子や配線等が形成されたTFTアレイ基板10と貼り合わされ、液晶50が両基板間に挟持されること等によって、第1実施形態に係る電気光学装置が完成する。このようにして完成させられた電気光学装置は、基板間に生じる横電界を良好に抑制することができる。また、上述のように製造工程においてカラーフィルタの変質や損傷を受けることがないため、カラーフィルタの品質を向上させることもできる。従って、以上の製造方法によれば、高品位なカラー画像を表示可能な電気光学装置を製造することが可能となる。
<2−2.製造方法2>
次に、図11を参照して、第2実施形態における対向基板20上の積層構造の製造工程について、工程毎に説明する。
まず、図11(a)を参照して、カラーフィルタ形成工程について説明する。TFTアレイ基板10上に、TFTや配線等(図11にて省略)を構成したのち、層間絶縁膜15を積層する。層間絶縁膜15上には、図10(a)と同様にRGBに対応するカラーフィルタ16が形成される。尚、カラーフィルタ16の表面に凹凸がある場合には、層間絶縁膜を用いて平坦化してもよい(図11において省略)。
ブラックマトリクス形成工程(図11(b)及び(c))及びオーバーコート膜形成工程(図11(d))については、上述の「製造方法1」と同様である。TFTアレイ基板10上にカラーフィルタ16を形成し、更に、フォトレジストを含んだ融解した遮光性材料をスピンコート等の手法によって均一に塗布する(図11(b))。続いて、塗布された遮光性材料を露光及びパターニングによって、余分な遮光性材料を除去して(図11(c))ブラックマトリクス13が完成する。オーバーコート膜14は、TFTアレイ基板10上に形成されたカラーフィルタ16及びブラックマトリクス13上に一様に塗布される。このようにして、ブラックマトリクス13とカラーフィルタ16とが完成する。
尚、この態様によれば、TFTアレイ基板10上にカラーフィルタ16及びブラックマトリクス13が形成されるので、第1実施形態と異なり、TFTアレイ基板10と対向基板20とを重ね合わせる際の誤差を格段に小さくすることができる。
続いて、画素電極の形成工程について、図11(e)及び(f)を参照して説明する。オーバーコート膜14上には、図10(e)における対向電極21と同様に、ITO等の透明電極が所定の膜厚で形成される。このとき、オーバーコート膜24には、カラーフィルタ16上に形成されたブラックマトリクス13によって、盛り上がるように段差が形成されている。そのため、オーバーコート膜14上に形成した透明電極も、同様の段差を有するように形成される。このようにして形成された透明電極は、エッチング処理することによって、図11(f)に示すように、画素毎に(つまり、カラーフィルタ16の境界に応じて)画素電極9に分割される。形成された画素電極9の各々は、その端部において盛り上がるような段差を有しており、これにより、基板間に生ずる横電界を抑制することが可能となる。特に、TFTアレイ基板10上で平面的に見たときに、ブラックマトリクス13と画素電極9の端部とが重畳する領域を有するように透明電極を画素電極9に分割して形成するとよい。
尚、以上の工程によって形成された積層構造の上には、ラビング処理がされた配向膜(図11において処理)等が形成され対向基板が完成する。
このようにして完成した対向基板21は、別途、対向電極21等が形成された対向基板21と貼り合わせられ、両基板間に液晶50が挟持されることによって、第2実施形態に係る電気光学装置が完成する。
<3.電子機器>
次に、上述した電気光学装置である液晶装置を各種の電子機器に適用する場合について説明する。ここに図12は、プロジェクタの構成例を示す平面図である。以下では、この液晶装置をライトバルブとして用いたプロジェクタについて説明する。
図12に示されるように、プロジェクタ1100内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。このランプユニット1102から射出された投射光は、ライトガイド1104内に配置された4枚のミラー1106及び2枚のダイクロイックミラー1108によってRGBの3原色に分離され、各原色に対応するライトバルブとしての液晶パネル1110R、1110B及び1110Gに入射される。
液晶パネル1110R、1110B及び1110Gの構成は、上述した液晶装置と同等であり、画像信号処理回路から供給されるR、G、Bの原色信号でそれぞれ駆動されるものである。そして、これらの液晶パネルによって変調された光は、ダイクロイックプリズム1112に3方向から入射される。このダイクロイックプリズム1112においては、R及びBの光が90度に屈折する一方、Gの光が直進する。従って、各色の画像が合成される結果、投射レンズ1114を介して、スクリーン等にカラー画像が投写されることとなる。
ここで、各液晶パネル1110R、1110B及び1110Gによる表示像について着目すると、液晶パネル1110Gによる表示像は、液晶パネル1110R、1110Bによる表示像に対して左右反転することが必要となる。
尚、液晶パネル1110R、1110B及び1110Gには、ダイクロイックミラー1108によって、R、G、Bの各原色に対応する光が入射するので、カラーフィルタを設ける必要はない。
尚、図12を参照して説明した電子機器の他にも、モバイル型のパーソナルコンピュータや、携帯電話、液晶テレビや、ビューファインダ型、モニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた装置等が挙げられる。そして、これらの各種電子機器に適用可能なのは言うまでもない。
また、本発明は上述の各実施形態で説明した液晶装置以外にも反射型液晶装置(LCOS)、プラズマディスプレイ(PDP)、電界放出型ディスプレイ(FED、SED)、有機ELディスプレイ、デジタルマイクロミラーデバイス(DMD)、電気泳動装置等にも適用可能である。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電気光学装置用基板及び電気光学装置、並びに該電気光学装置を備えた電子機器もまた本発明の技術的範囲に含まれるものである。
第1実施形態に係る液晶装置の平面図である。 図1のH−H´断面図である。 第1実施形態に係る液晶装置の対向基板上に形成されたブラックマトリクスの全体構成を模式的に表した概念図である。 第1実施形態に係る液晶装置の電気的な構成を示すブロック図である。 第1実施形態に係る液晶装置の画像表示領域における基板間の電界の様子を示す断面図である。 対向基板にブラックマトリクス及びカラーフィルタを設けた典型的な液晶装置の画像表示領域における基板間の電界の様子を示す断面図である。 第2実施形態に係る液晶装置の画像表示領域における基板間の電界の様子を示す断面図である。 TFTアレイ基板にブラックマトリクス及びカラーフィルタを設けた典型的な液晶装置の画像表示領域における基板間の電界の様子を示す断面図である。 図7においてブラックマトリクスと画素電極の位置関係を示す断面図である。 第1実施形態に係る液晶装置の対向基板の製造方法を、順を追って示す工程断面図である。 第2実施形態に係る液晶装置のTFTアレイ基板の製造方法を、順を追って示す工程断面図である。 電気光学装置を適用した電子機器の一例たるプロジェクタの構成を示す平面図である。
符号の説明
6 データ線、 9 画素電極、 10 TFTアレイ基板、 10a 画像表示領域、 11 走査線、 20 対向基板、 21 対向電極、 23 ブラックマトリクス、 24 オーバーコート膜、 26 カラーフィルタ、 30 TFT、 50 液晶、 100 液晶装置

Claims (13)

  1. 一対の基板間に電気光学物質を挟持してなる電気光学装置の製造方法であって、
    前記一対の基板の一方となる基板上に、画素毎にカラーフィルタを形成するカラーフィルタ形成工程と、
    前記カラーフィルタ上に形成された遮光性材料をパターニングすることにより、前記画素毎の非開口領域を少なくとも部分的に規定するブラックマトリクスを形成するブラックマトリクス形成工程と、
    前記カラーフィルタ及び前記ブラックマトリクス上に、前記カラーフィルタ及び前記ブラックマトリクスの段差に対応した段差を表面に有するようにオーバーコート膜を形成するオーバーコート膜形成工程と、
    前記オーバーコート膜上に、前記オーバーコート膜の表面の段差に対応した段差を表面に有するように前記電気光学物質に電圧を印加するための電圧印加用電極を形成する電極形成工程と
    を含むことを特徴とする電気光学装置の製造方法。
  2. 前記ブラックマトリクス形成工程において、前記カラーフィルタ及び前記ブラックマトリクスの段差が0.6μm以上になるようにブラックマトリクスを形成することを特徴とする請求項1に記載の電気光学装置の製造方法。
  3. 前記電圧印加用電極は、前記一方となる基板上にベタ状に形成された対向電極であることを特徴とする請求項1又は2に記載の電気光学装置の製造方法。
  4. 前記電圧印加用電極は、前記画素毎に配置された複数の画素電極であることを特徴とする請求項1又は2に記載の電気光学装置の製造方法。
  5. 前記複数の画素電極の各々は、前記一方となる基板上で平面的に見て、前記ブラックマトリクスと重畳する領域を有するように形成されていることを特徴とする請求項4に記載の電気光学装置の製造方法。
  6. 前記遮光性材料の融点が200℃以下であることを特徴とする請求項1から5のいずれか一項に記載の電気光学装置の製造方法。
  7. 前記遮光性材料はフォトレジストを含んだ遮光性樹脂であることを特徴とする請求項6に記載の電気光学装置の製造方法。
  8. 前記ブラックマトリクス形成工程において、前記ブラックマトリクスが前記一方となる基板上で平面的に見てマトリクス状に形成されるように、前記遮光性材料をパターニングすることを特徴とする請求項1又は2に記載の電気光学装置の製造方法。
  9. 一対の基板間に電気光学物質を挟持してなる電気光学装置であって、
    前記一対の基板の一方となる基板上に、画素毎に形成されたカラーフィルタと、
    前記カラーフィルタ上に形成されており、前記画素毎の非開口領域を少なくとも部分的に規定するブラックマトリクスと、
    前記カラーフィルタ及び前記ブラックマトリクス上に形成されており、前記カラーフィルタ及び前記ブラックマトリクスの段差に対応した段差を表面に有するオーバーコート膜と、
    前記オーバーコート膜上に形成されており、前記オーバーコート膜の表面の段差に対応した段差を表面に有する前記電気光学物質に電圧を印加するための電圧印加用電極と
    を備えることを特徴とする電気光学装置。
  10. 前記カラーフィルタ及び前記ブラックマトリクスの段差が0.6μm以上であることを特徴とする請求項9に記載の電気光学装置の製造方法。
  11. 前記電圧印加用電極は、前記画素毎に配置された画素電極であり、前記一方となる基板上で平面的に見て、前記ブラックマトリクスと重畳する領域を有することを特徴とする請求項9又は10に記載の電気光学装置。
  12. 前記電圧印加用電極は、前記一方の基板上にベタ状に形成された対向電極であることを特徴とする請求項9又は10に記載の電気光学装置。
  13. 請求項8から12のいずれか一項に記載の電気光学装置を備えた電子機器。
JP2008207684A 2008-08-12 2008-08-12 電気光学装置の製造方法、電気光学装置及び電子機器 Withdrawn JP2010044182A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207684A JP2010044182A (ja) 2008-08-12 2008-08-12 電気光学装置の製造方法、電気光学装置及び電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207684A JP2010044182A (ja) 2008-08-12 2008-08-12 電気光学装置の製造方法、電気光学装置及び電子機器

Publications (1)

Publication Number Publication Date
JP2010044182A true JP2010044182A (ja) 2010-02-25

Family

ID=42015625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207684A Withdrawn JP2010044182A (ja) 2008-08-12 2008-08-12 電気光学装置の製造方法、電気光学装置及び電子機器

Country Status (1)

Country Link
JP (1) JP2010044182A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052165A1 (ja) 2009-10-27 2011-05-05 パナソニック株式会社 表示画像切替装置及び表示方法
JP2011221479A (ja) * 2010-04-07 2011-11-04 J Touch Corp 立体映像結像装置
JP2012137738A (ja) * 2010-10-29 2012-07-19 Apple Inc 偏光窓及び不透明マスク層を有する電子デバイスのディスプレイ
JP2018136381A (ja) * 2017-02-20 2018-08-30 株式会社Jvcケンウッド 液晶装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052165A1 (ja) 2009-10-27 2011-05-05 パナソニック株式会社 表示画像切替装置及び表示方法
JP2011221479A (ja) * 2010-04-07 2011-11-04 J Touch Corp 立体映像結像装置
JP2012137738A (ja) * 2010-10-29 2012-07-19 Apple Inc 偏光窓及び不透明マスク層を有する電子デバイスのディスプレイ
US9372505B2 (en) 2010-10-29 2016-06-21 Apple Inc. Displays with polarizer windows and opaque masking layers for electronic devices
US10571957B2 (en) 2010-10-29 2020-02-25 Apple Inc. Displays with polarizer windows and opaque masking layers for electronic devices
US11188118B2 (en) 2010-10-29 2021-11-30 Apple Inc. Displays with polarizer windows and opaque masking layers for electronic devices
JP2018136381A (ja) * 2017-02-20 2018-08-30 株式会社Jvcケンウッド 液晶装置
JP7055271B2 (ja) 2017-02-20 2022-04-18 株式会社Jvcケンウッド 液晶装置

Similar Documents

Publication Publication Date Title
JP5211985B2 (ja) 電気光学装置及び電子機器
US8247818B2 (en) Electro-optical device and electronic apparatus
JP5396905B2 (ja) 電気光学装置及び電子機器
JP5187067B2 (ja) 電気光学装置及び電子機器
JP2010085537A (ja) 電気光学装置及びその製造方法並びに電子機器
JP5499736B2 (ja) 電気光学装置及び電子機器
JP2010044182A (ja) 電気光学装置の製造方法、電気光学装置及び電子機器
JP5298480B2 (ja) 電気光学装置及び電子機器
JP2006119401A (ja) 電気光学装置の製造方法及び製造装置、電気光学装置並びに電子機器
JP6048553B2 (ja) 電気光学装置及び電子機器
JP2011186285A (ja) 電気光学装置及びその製造方法、並びに電子機器
JP5200720B2 (ja) 電気光学装置及び電子機器、並びに電気光学装置の製造方法
JP2010191408A (ja) 電気光学装置及び電子機器
JP2009069247A (ja) 電気光学装置、その製造方法及び電子機器、並びに配線構造
JP5326460B2 (ja) 電気光学装置用基板、並びに電気光学装置及び電子機器
JP2009053417A (ja) 電気光学装置及びその製造方法、並びに電子機器
JP5309568B2 (ja) 電気光学装置及び電子機器
JP5804113B2 (ja) 電気光学装置及び電子機器
JP5402511B2 (ja) 液晶装置及びその製造方法、並びに電子機器
JP2010039209A (ja) 電気光学装置及びその製造方法並びに電子機器
JP2010060901A (ja) 電気光学装置及び電子機器
JP2011180524A (ja) 電気光学装置及び電子機器
JP5104156B2 (ja) 電気光学装置及びこれを備えた電子機器
JP2011186365A (ja) 電気光学装置及びその製造方法、並びに電子機器
JP2011186283A (ja) 電気光学装置及び電子機器

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101