JP2010041577A - Antenna system - Google Patents

Antenna system Download PDF

Info

Publication number
JP2010041577A
JP2010041577A JP2008204373A JP2008204373A JP2010041577A JP 2010041577 A JP2010041577 A JP 2010041577A JP 2008204373 A JP2008204373 A JP 2008204373A JP 2008204373 A JP2008204373 A JP 2008204373A JP 2010041577 A JP2010041577 A JP 2010041577A
Authority
JP
Japan
Prior art keywords
phase
antenna
phased array
calculating
array antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008204373A
Other languages
Japanese (ja)
Other versions
JP4952681B2 (en
Inventor
Narihiro Nakamoto
成洋 中本
Toru Takahashi
徹 高橋
Masataka Otsuka
昌孝 大塚
Toshihiko Aoki
俊彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008204373A priority Critical patent/JP4952681B2/en
Publication of JP2010041577A publication Critical patent/JP2010041577A/en
Application granted granted Critical
Publication of JP4952681B2 publication Critical patent/JP4952681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an antenna system allowing a radiation characteristics thereof to be calibrated so as to decrease the amount of gain reduction in comparison with the prior arts when a signal-to-noise ratio of a detection system is low. <P>SOLUTION: The antenna system includes: a means for calculating setting phases of element antennas connected to corresponding phase shifters, when a phased array antenna receives a radio wave for radiation characteristics calibration, on the basis of a change in reception power output from a detection means in rotating setting phases of phase shifters at 360° each sequentially; and a differential phase calculating means for storing a reference value and a comparison value to be used for calibrating a radiation characteristics change of the phased array antenna for the setting phases of the phase shifters calculated twice by the above means and for calculating a differential phase between the reference value and the comparison value. A phase surface of an optimal desired function is calculated from the differential phase and by using a correction phase obtained by the phase surface, exciting phases of element antennas are changed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、フェーズドアレーアンテナのアンテナ放射特性を校正可能な構成を有するアンテナ装置に関する。   The present invention relates to an antenna device having a configuration capable of calibrating antenna radiation characteristics of a phased array antenna.

フェーズドアレーアンテナでは、アンテナ運用中において、アンテナ開口面の機械的変形や送受信モジュールの特性変化などにより、アンテナ放射特性が変化することがある。そのため、その特性変化を検出し、校正する技術が必要とされている。上記特性変化を検出する方法として、従来フェーズドアレーアンテナにおいて、ピックアップアンテナを配置し、各素子アンテナの励振位相を順次変化させ、上記ピックアップアンテナを用いて測定したアレー合成電力の最大値と最小値の比およびその最大値を与える位相変化量を測定して、上記測定値より各素子アンテナの振幅・位相を算出する方法があった。(例えば特許文献1参照)
さらに上記手法により、フェーズドアレーアンテナの初期構成時に測定した各素子アンテナの初期位相と、フェーズドアレー運用中に上記手法によって測定した各素子アンテナの位相との差分位相を求め、この差分位相を補正位相として各素子アンテナの励振位相を変更し、フェーズドアレーアンテナの放射特性変化を校正するものがあった。(例えば特許文献2参照)
In a phased array antenna, the antenna radiation characteristics may change during antenna operation due to mechanical deformation of the antenna opening surface or changes in the characteristics of the transmission / reception module. Therefore, a technique for detecting and calibrating the characteristic change is required. As a method of detecting the characteristic change, in the conventional phased array antenna, a pickup antenna is arranged, the excitation phase of each element antenna is sequentially changed, and the maximum and minimum values of the array combined power measured using the pickup antenna are measured. There has been a method of measuring the amount of phase change that gives the ratio and its maximum value, and calculating the amplitude and phase of each element antenna from the measured values. (For example, see Patent Document 1)
Furthermore, the above method is used to obtain the differential phase between the initial phase of each element antenna measured during the initial configuration of the phased array antenna and the phase of each element antenna measured by the above method during phased array operation, and this differential phase is determined as the corrected phase. As described above, the excitation phase of each element antenna is changed to calibrate the change in radiation characteristics of the phased array antenna. (For example, see Patent Document 2)

特開昭57−93267号公報JP-A-57-93267 特開平2−104104号公報Japanese Patent Laid-Open No. 2-104104

上記のような従来のアンテナ装置では、検波系統の信号対雑音比が小さい場合には、測定される各素子アンテナの位相量には大きな誤差が含まれることとなり、上記位相量より求められる補正位相量についても誤差が大きくなる。結果として、上記の大きな誤差を含んだ補正位相量を用いて各素子アンテナの励振位相を変更すると、放射特性を校正できないだけでなく、放射パターンが変化してしまい、利得低下が生じるという問題があった。   In the conventional antenna apparatus as described above, when the signal-to-noise ratio of the detection system is small, the phase amount of each element antenna to be measured includes a large error, and the correction phase obtained from the phase amount is obtained. The amount of error also increases. As a result, if the excitation phase of each element antenna is changed using the correction phase amount including a large error as described above, not only the radiation characteristics cannot be calibrated, but also the radiation pattern changes, resulting in a decrease in gain. there were.

この発明は、上記の問題を解決するためになされたものであり、上記差分位相から最適な所望関数の位相面を算出し、上記位相面より求められる補正位相を用いて各素子アンテナの励振位相を変更することにより、検波系統の信号対雑音比が低い場合において、従来技術に比べて、利得低下量を小さくするような放射特性の校正が可能なアンテナ装置を得ることを目的としている。   The present invention has been made to solve the above-described problem, and calculates an optimum desired function phase plane from the differential phase, and uses the correction phase obtained from the phase plane to drive the excitation phase of each element antenna. The purpose of the present invention is to obtain an antenna device capable of calibrating the radiation characteristics so as to reduce the amount of gain reduction compared to the prior art when the signal-to-noise ratio of the detection system is low.

この発明に係わるアンテナ装置は、複数個の素子アンテナ、上記素子アンテナのそれぞれに接続された移相器、上記各移相器の設定位相を制御する移相器制御回路、上記各移相器に接続された電力分配合成回路、上記電力分配合成回路に接続された検波手段、を有するフェーズドアレーアンテナと、上記フェーズドアレーアンテナが放射特性校正用の電波を受信した場合に、上記各移相器の設定位相を順次それぞれに360度回転させた時の上記検波手段から出力される受信電力の変化に基づいて、対応する各移相器に接続された素子アンテナの設定位相を算出する手段と、2度にわたって上記手段により算出した上記各移相器の設定位相の上記フェーズドアレーアンテナの放射特性変化の校正に供する基準値と比較値を記憶し、上記基準値と比較値の差分位相を算出する差分位相算出手段と、上記差分位相から所定の最適化により所望関数の位相面を算出し、算出された位相面に基づいて各素子アンテナに設定する補正位相を算出する補正位相算出手段と、上記補正位相と上記各移相器に予め設定された初期励振位相に基づいて上記各素子アンテナに与える励振位相を算出し、上記移相器制御回路に出力する励振位相演算回路と、を備えたものである。   An antenna device according to the present invention includes a plurality of element antennas, a phase shifter connected to each of the element antennas, a phase shifter control circuit for controlling a set phase of each phase shifter, and each phase shifter. A phased array antenna having a connected power distribution and synthesis circuit, and a detecting means connected to the power distribution and synthesis circuit; and when the phased array antenna receives a radio wave for radiating characteristic calibration, Means for calculating a set phase of an element antenna connected to each corresponding phase shifter based on a change in received power output from the detection means when the set phase is sequentially rotated 360 degrees; The reference value and the comparison value used for calibration of the radiation characteristic change of the phased array antenna of the set phase of each phase shifter calculated by the above means over time are stored. A differential phase calculating means for calculating a differential phase of the value, a phase plane of a desired function is calculated from the differential phase by a predetermined optimization, and a correction phase to be set for each element antenna is calculated based on the calculated phase plane Correction phase calculation means, excitation phase calculation for calculating the excitation phase to be given to each element antenna based on the correction phase and the initial excitation phase preset for each phase shifter, and outputting to the phase shifter control circuit And a circuit.

この発明では、上記差分位相から所定の最適化により所望関数の位相面を算出し、上記位相面より求められる補正位相を用いて各素子アンテナの励振位相を変更することにより、検波系統の信号対雑音比が低い場合でも、アンテナ利得低下量を小さくするような放射特性の校正が可能なアンテナ装置を得られる。   In the present invention, the phase plane of the desired function is calculated from the differential phase by a predetermined optimization, and the excitation phase of each element antenna is changed using the correction phase obtained from the phase plane, thereby detecting the signal pair of the detection system. Even when the noise ratio is low, it is possible to obtain an antenna device that can calibrate radiation characteristics so as to reduce the amount of antenna gain reduction.

実施の形態1.
図1は、この発明の実施の形態1に係わるアンテナ装置を示す構成説明図である。図において、フェーズドアレーアンテナ開口面上に設置された複数の素子アンテナ1−n(n=1、2、3、・・・、N)にそれぞれ移相器2−n(n=1、2、3、・・・、N)が接続され、さらにこれらが電力分配合成回路3に接続され、電力分配合成回路3には送信機4が接続されている。なお、電力分配合成回路3は素子アンテナ方向へは電力分配回路として動作し、送信機4方向へは電力合成回路として動作する。また、これら移相器2−nにはそれぞれ移相器制御回路5が接続され、移相器制御回路5が各移相器2−nを制御する。フェーズドアレーアンテナの各素子アンテナ1−nとは別に設けられたピックアップアンテナ6には、検波回路7が接続され、さらに、フェーズドアレーアンテナの各移相器2−nの設定位相を変化させた時の受信電力を測定し、その受信電力の変化から該移相器に接続された各素子アンテナの素子電界の振幅及び位相を算出する素子電界演算回路8が接続されている。さらに、素子電界演算回路8には、アンテナ初期構成時に素子電界演算回路8で求められた各素子アンテナの初期電界位相φ0,n(n=1、2、3、・・・、N)を記憶する初期位相記憶回路9と、アンテナ運用中に上記素子電界演算回路8で求められた各アンテナ素子の電界位相φ1,n(n=1、2、3、・・・、N)を記憶する位相記憶回路10と、が接続される。なお、アンテナ初期構成とは、基準とするアンテナ運用前などのアンテナ構成のことを言う。さらに、初期位相記憶回路9と位相記憶回路10は、アンテナ運用中に発生した放射特性変化を補正するため、これら回路に記憶された位相量の差分量を求める差分位相演算回路11に接続される。つまり、差分位相演算回路11は、(1)式により各素子アンテナの差分位相φ2,n(n=1、2、3、・・・、N)を求める回路である。
Embodiment 1 FIG.
FIG. 1 is a configuration explanatory view showing an antenna apparatus according to Embodiment 1 of the present invention. In the figure, a plurality of element antennas 1-n (n = 1, 2, 3,..., N) installed on the phased array antenna opening surface are respectively phase shifters 2-n (n = 1, 2, 3,..., N) are connected to the power distribution / combination circuit 3, and the transmitter 4 is connected to the power distribution / combination circuit 3. The power distribution / combination circuit 3 operates as a power distribution circuit in the direction of the element antenna, and operates as a power combination circuit in the direction of the transmitter 4. Further, a phase shifter control circuit 5 is connected to each of the phase shifters 2-n, and the phase shifter control circuit 5 controls each phase shifter 2-n. A detection circuit 7 is connected to the pickup antenna 6 provided separately from each element antenna 1-n of the phased array antenna, and when the set phase of each phase shifter 2-n of the phased array antenna is changed An element electric field calculation circuit 8 is connected for measuring the received electric power of the element and calculating the amplitude and phase of the element electric field of each element antenna connected to the phase shifter from the change in the received power. Further, the element electric field calculation circuit 8 stores the initial electric field phase φ0, n (n = 1, 2, 3,..., N) of each element antenna obtained by the element electric field calculation circuit 8 at the time of initial antenna configuration. And an initial phase storage circuit 9 that stores the electric field phase φ1, n (n = 1, 2, 3,..., N) of each antenna element obtained by the element electric field calculation circuit 8 during antenna operation. The memory circuit 10 is connected. Note that the initial antenna configuration refers to an antenna configuration before operation of a reference antenna. Further, the initial phase storage circuit 9 and the phase storage circuit 10 are connected to a differential phase calculation circuit 11 that obtains a difference amount of the phase amounts stored in these circuits in order to correct a radiation characteristic change that occurs during antenna operation. . That is, the differential phase calculation circuit 11 is a circuit for obtaining the differential phase φ2, n (n = 1, 2, 3,..., N) of each element antenna by the equation (1).

Figure 2010041577
Figure 2010041577

さらに、差分位相演算回路11は位相面演算回路12に接続される。位相面演算回路12は、上記差分位相演算回路11により求められた差分位相φ2,nに最適な所望関数の位相面を求める演算回路である。つまり、位相面演算回路12は、(2)式を最小とするような位相面φsを最小二乗法などにより求める回路である。   Further, the differential phase calculation circuit 11 is connected to the phase plane calculation circuit 12. The phase plane arithmetic circuit 12 is an arithmetic circuit for obtaining a phase plane of a desired function optimum for the differential phase φ2, n obtained by the differential phase arithmetic circuit 11. That is, the phase plane arithmetic circuit 12 is a circuit that obtains the phase plane φs that minimizes the expression (2) by the least square method or the like.

Figure 2010041577
(2)
Figure 2010041577
(2)

(2)式において、nは上記素子アンテナ番号を表し、本実施の形態ではn=1、2、3、・・・、Nである。xn及びynは素子アンテナ番号nの各素子アンテナのフェーズドアレーアンテナ開口面上での位置を表す。
さらに、位相面演算回路12は、補正位相演算回路13に接続される。補正位相演算回路13は、上記位相面演算回路12により求められた位相面φsより各素子アンテナに設定する補正位相φc,n(n=1、2、3、・・・、N)を求める回路である。つまり、補正位相演算回路13は、(3)式により各素子アンテナに与える補正位相φc−nを求める。
In the formula (2), n represents the element antenna number, and in this embodiment, n = 1, 2, 3,. xn and yn represent the positions of the element antennas of the element antenna number n on the phased array antenna opening surface.
Further, the phase plane calculation circuit 12 is connected to the correction phase calculation circuit 13. The correction phase calculation circuit 13 calculates a correction phase φc, n (n = 1, 2, 3,..., N) to be set for each element antenna from the phase plane φs obtained by the phase plane calculation circuit 12. It is. That is, the correction phase calculation circuit 13 obtains the correction phase φc−n to be given to each element antenna by the equation (3).

Figure 2010041577
(3)
Figure 2010041577
(3)

補正位相演算回路13は、励振位相演算回路14に接続され、励振位相演算回路14には初期励振位相記憶回路15が接続されている。励振位相演算回路14は、各移相器2−nに与える励振位相Φ1,nを求める回路であり、初期励振位相記憶回路15は、フェーズドアレーアンテナ初期構成時に移相器制御回路5が各移相器2−nに与えていた初期励振位相Φ0,n(n=1、2、3、・・・、N)を記憶する回路である。つまり、励振位相演算回路14は下式4によって、各移相器2−nに与える励振位相Φ1,n(n=1、2、3、・・・、N)を求める。   The correction phase calculation circuit 13 is connected to the excitation phase calculation circuit 14, and the initial excitation phase storage circuit 15 is connected to the excitation phase calculation circuit 14. The excitation phase calculation circuit 14 is a circuit for obtaining the excitation phase Φ1, n to be given to each phase shifter 2-n, and the initial excitation phase storage circuit 15 is the phase shifter control circuit 5 that receives each phase shifter at the initial configuration of the phased array antenna. This is a circuit for storing the initial excitation phase Φ0, n (n = 1, 2, 3,..., N) applied to the phase shifter 2-n. That is, the excitation phase calculation circuit 14 obtains the excitation phase Φ1, n (n = 1, 2, 3,..., N) to be given to each phase shifter 2-n by the following equation 4.

Figure 2010041577
(4)
Figure 2010041577
(4)

以上のように構成されたアンテナ装置において、図2及び図3に示すような手順により放射特性の校正を行う。ここで、図2と図3は以下に述べる手続きAと手続きBの手順を示した図である。
送信機4から送信された高周波信号は、電力分配合成回路3によって分配され、移相器2−nによって励振位相が与えられた後に素子アンテナ1−nから空間中に放射される。放射された信号はピックアップアンテナ6によって受信され、検波回路7によって検波される。
このため、移相器制御回路5によりある素子アンテナの励振位相を360度回転させたときの受信電力の変化は検波回路7で検波され、さらにこの受信電力の変化を素子電界演算回路8により演算処理することにより、当該素子アンテナの素子電界振幅及び位相が求められる。さらにこの手続きを全ての素子アンテナに対し繰り返すことにより、全ての素子アンテナの素子電界振幅及び位相が求められる。この一連の測定手続きを手続きAとする。
フェーズドアレーアンテナの初期構成時に上記手続きAにより測定された全素子アンテナの初期素子電界位相φ0,nは初期位相記憶回路9に記憶され、以後フェーズドアレーアンテナ運用中に、同様に上記手続きAにより測定した全素子アンテナの素子電界位相φ1,nは位相記憶回路10に記憶される。上記の記憶された両位相は、アンテナ運用中における放射特性変化により異なった値となり、この特性変化を校正するため、上記両位相から各素子アンテナの差分位相φ2,nを差分位相演算回路11により求める。得られた差分位相を(2)式に代入すれば、最適な所望関数の位相面φsが位相面演算回路12により求められる。得られた位相面φsと各素子アンテナ位置より(3)式によって各素子アンテナに与える補正位相が補正位相演算回路13により求められる。このようにして求めた各素子アンテナの補正位相をφc,nとする。求めた補正位相φc,nと、初期励振位相記憶回路15に記憶されたフェーズドアレーアンテナ初期構成時において各移相器2−nに与えていた初期励振位相Φ0,nを(4)式に代入すれば、新たに各移相器2−nに与える励振位相Φ1,nが励振位相演算回路14により求められる。この一連の手続きを手続きBとする。
In the antenna device configured as described above, the radiation characteristic is calibrated by the procedure shown in FIGS. Here, FIGS. 2 and 3 are diagrams showing procedures A and B described below.
The high-frequency signal transmitted from the transmitter 4 is distributed by the power distribution / combination circuit 3, and after the excitation phase is given by the phase shifter 2-n, it is radiated into the space from the element antenna 1-n. The radiated signal is received by the pickup antenna 6 and detected by the detection circuit 7.
Therefore, a change in the received power when the excitation phase of a certain element antenna is rotated 360 degrees by the phase shifter control circuit 5 is detected by the detection circuit 7, and further this change in received power is calculated by the element electric field calculation circuit 8. By processing, the element electric field amplitude and phase of the element antenna are obtained. Further, by repeating this procedure for all element antennas, the element electric field amplitudes and phases of all element antennas are obtained. This series of measurement procedures is referred to as procedure A.
The initial element electric field phase φ0, n of all element antennas measured by the above procedure A during the initial configuration of the phased array antenna is stored in the initial phase storage circuit 9, and subsequently measured by the above procedure A during the phased array antenna operation. The element electric field phases φ 1, n of all the element antennas are stored in the phase storage circuit 10. Both of the stored phases have different values due to a change in radiation characteristics during antenna operation. In order to calibrate the change in characteristics, the difference phase φ2, n of each element antenna is calculated by the difference phase calculation circuit 11 from both phases. Ask. By substituting the obtained differential phase into equation (2), the phase plane φs of the optimum desired function is obtained by the phase plane arithmetic circuit 12. From the obtained phase plane φs and the position of each element antenna, a correction phase to be given to each element antenna is obtained by the correction phase calculation circuit 13 according to equation (3). The correction phase of each element antenna thus obtained is assumed to be φc, n. The obtained correction phase φc, n and the initial excitation phase Φ0, n given to each phase shifter 2-n in the initial configuration of the phased array antenna stored in the initial excitation phase storage circuit 15 are substituted into the equation (4). Then, the excitation phase Φ1, n newly given to each phase shifter 2-n is obtained by the excitation phase calculation circuit 14. This series of procedures is referred to as procedure B.

さて上述のように、フェーズドアレーアンテナ運用中にアレーアンテナ開口面に回転や歪みなどの機械的変形が生じた場合には、上記素子電界位相φ0,n及びφ1,nはそれぞれ異なった値となる。このとき、検波系統の信号対雑音比が大きい場合には、上記素子電界位相φ0,n及びφ1,nから求められる上記差分位相φ2,nの分布は、図4のようになり、アレーアンテナ開口面の機械的変形による光路長の変化を表す位相分布に近い分布となる。ここで、図4において横軸は各素子アンテナ1−nのアレーアンテナ開口面上での位置を、縦軸は各素子アンテナの上記差分位相φ2,nを、図中の直線はアレーアンテナ開口面の機械的変形(ここでは開口面の軸回転を示す)による光路長の変化を示す位相分布を、それぞれ示している。そのため、上記手続きBにより求められる励振位相Φ1,nを各移相器2−nに与えることは、アレーアンテナ開口面の機械的変形による光路長の変化を電気的に補正することとなり、フェーズドアレーアンテナの放射特性をアレーアンテナ初期構成時の放射特性に校正することが可能となる。   As described above, when mechanical deformation such as rotation or distortion occurs on the array antenna opening surface during operation of the phased array antenna, the element electric field phases φ0, n and φ1, n have different values. . At this time, when the signal-to-noise ratio of the detection system is large, the distribution of the differential phase φ2, n obtained from the element electric field phases φ0, n and φ1, n is as shown in FIG. The distribution is close to a phase distribution representing a change in optical path length due to mechanical deformation of the surface. Here, in FIG. 4, the horizontal axis represents the position of each element antenna 1-n on the array antenna opening surface, the vertical axis represents the differential phase φ2, n of each element antenna, and the straight line in the figure represents the array antenna opening surface. 2 respectively show phase distributions indicating changes in the optical path length due to mechanical deformation of (herein, indicating axial rotation of the aperture surface). Therefore, applying the excitation phase Φ1, n obtained by the procedure B to each phase shifter 2-n electrically corrects the change in the optical path length due to the mechanical deformation of the array antenna opening surface. It becomes possible to calibrate the radiation characteristic of the antenna to the radiation characteristic in the initial configuration of the array antenna.

しかし、検波系統の信号対雑音比が小さい場合には、上記手続きAにより求められる上記素子電界位相φ0,n及びφ1,nには大きな誤差が含まれることとなる。このとき、上記差分位相φ2,nの分布は、図5のようになり、アレーアンテナ開口面の機械的変形による光路長の変化を示す位相分布から大きく異なる分布となる。ここで、図5は図4と同様の軸と値を示し、さらに位相面φsを示している。従来の技術では、このような大きな誤差を含む補正位相より得られる新たな励振位相を各移相器に与えるため、アンテナパターンが初期構成時から大きく変化し、その結果、校正を行ってもアンテナ利得が大きく低下してしまう。   However, when the signal-to-noise ratio of the detection system is small, the element electric field phases φ0, n and φ1, n obtained by the procedure A include a large error. At this time, the distribution of the differential phase φ2, n is as shown in FIG. 5, which is significantly different from the phase distribution indicating the change in the optical path length due to the mechanical deformation of the array antenna aperture. Here, FIG. 5 shows the same axes and values as in FIG. 4, and further shows the phase plane φs. In the conventional technique, since a new excitation phase obtained from a correction phase including such a large error is given to each phase shifter, the antenna pattern changes greatly from the initial configuration. The gain is greatly reduced.

本発明では、上記差分位相φ2,nを所望関数の位相面φsに最適化するため、この所望関数としてアレーアンテナ開口面の機械的変形による光路長の変化を表すような関数(この場合は各素子アンテナ位置に関して1次の関数)を採用することにより、(2)式により求められる上記位相面φsは、雑音に起因する誤差はランダムな誤差であるから、アレーアンテナ開口面の機械的変形による光路長の変化を示す位相分布と同様の位相面となる。こうして得られた上記位相面φsより求められる上記励振位相Φ1,nは、位相のそろった励振位相となり、励振位相Φ1,nを各移相器に与えることにより、校正後のアンテナパターンの初期構成時からの変化を小さくすることができ、その結果、アンテナ利得低下量を小さくすることが可能となる。
従って、上記手続きBによって得られる上記励振位相Φ1,nを各移相器2−nに与えることにより、検波系統の信号対雑音比が小さく、手続きAによる測定が十分に行えないような場合においても、従来技術に比べアンテナ利得低下量を小さくするような放射特性の校正が可能となる効果がある。
In the present invention, in order to optimize the differential phase φ2, n to the phase plane φs of the desired function, a function (in this case, each function representing the change in the optical path length due to mechanical deformation of the array antenna aperture is used as the desired function. By adopting a linear function with respect to the element antenna position, the error due to noise is a random error in the above phase plane φs obtained by the equation (2), and therefore due to mechanical deformation of the array antenna aperture surface. The phase plane is the same as the phase distribution indicating the change in the optical path length. The excitation phase Φ1, n obtained from the phase plane φs thus obtained becomes an excitation phase having the same phase, and the excitation phase Φ1, n is given to each phase shifter, whereby the initial configuration of the antenna pattern after calibration is obtained. The change from time can be reduced, and as a result, the amount of decrease in antenna gain can be reduced.
Accordingly, when the excitation phase Φ1, n obtained by the procedure B is given to each phase shifter 2-n, the signal-to-noise ratio of the detection system is small, and the measurement by the procedure A cannot be performed sufficiently. However, there is an effect that the radiation characteristic can be calibrated so as to reduce the amount of decrease in antenna gain as compared with the prior art.

なお、図1において素子アンテナ1−nとピックアップアンテナ6の送信と受信の関係を入れ替えて、例えば図6に示すように、ピックアップアンテナ6に送信機4を接続し、送信機4から送信された高周波信号をピックアップアンテナ6から空間中に放射し、放射された信号を素子アンテナ1−nによりそれぞれ受信し、移相器2−n によって適当な励振位相を与えた後、電力分配合成回路3により合成し、検波回路7により受信電力を検波するようにしてもよい。   In FIG. 1, the transmission / reception relationship between the element antenna 1-n and the pickup antenna 6 is switched, and the transmitter 4 is connected to the pickup antenna 6 and transmitted from the transmitter 4 as shown in FIG. A high-frequency signal is radiated from the pickup antenna 6 into the space, the radiated signal is received by the element antenna 1-n, and an appropriate excitation phase is given by the phase shifter 2-n. Alternatively, the received power may be detected by the detection circuit 7.

実施の形態2.
実施の形態1では、位相面φsがアレーアンテナ開口面の回転変形による光路長の変化を示す位相分布と同様の位相面となるよう、所望関数として上記各素子アンテナ位置に関して1次の関数を採用した。
実施の形態2では、位相面φsがアレーアンテナ開口面の熱歪み変形による光路長の変化を示す位相分布と同様の位相面となるよう、所望関数として上記各素子アンテナ位置に関して2次の関数を採用する。従って、実施の形態2では、アレーアンテナ開口面に熱歪み変形が生じた場合にも、実施の形態1と同様の効果を得ることができる。
Embodiment 2. FIG.
In the first embodiment, a linear function is adopted as a desired function with respect to each element antenna position so that the phase plane φs becomes a phase plane similar to a phase distribution indicating a change in optical path length due to rotational deformation of the array antenna aperture. did.
In the second embodiment, a quadratic function with respect to each element antenna position is used as a desired function so that the phase plane φs becomes a phase plane similar to a phase distribution indicating a change in optical path length due to thermal distortion deformation of the array antenna aperture. adopt. Therefore, in the second embodiment, the same effect as in the first embodiment can be obtained even when thermal distortion deformation occurs in the array antenna opening surface.

実施の形態3.
実施の形態3では、位相面φsがアレーアンテナ開口面の波状変形による光路長の変化を示す位相分布と同様の位相面となるよう、所望関数として上記各素子アンテナ位置に関する正弦関数を採用する。従って、実施の形態3では、アレーアンテナ開口面に波状変形が生じた場合にも、実施の形態1と同様の効果を得ることができる。
Embodiment 3 FIG.
In the third embodiment, a sine function relating to each element antenna position is adopted as a desired function so that the phase plane φs becomes a phase plane similar to a phase distribution indicating a change in optical path length due to wave-like deformation of the array antenna aperture. Therefore, in the third embodiment, the same effect as in the first embodiment can be obtained even when a wave-like deformation occurs in the array antenna opening surface.

実施の形態4.
実施の形態4では、所望関数として上記各素子アンテナ位置に関する1次の関数と2次の関数と正弦関数の和であらわされる関数を採用する。従って、実施の形態4では、上記実施で示したような、アレーアンテナ開口面に軸回転、歪変形、波状変形が同時に生じた場合にも、実施の形態1と同様の効果を得ることができる。
Embodiment 4 FIG.
In the fourth embodiment, a function represented by the sum of a first-order function, a second-order function, and a sine function related to each element antenna position is adopted as a desired function. Therefore, in the fourth embodiment, the same effect as in the first embodiment can be obtained even when axial rotation, distortion deformation, and wave-like deformation occur simultaneously on the array antenna opening surface as shown in the above embodiment. .

実施の形態5.
図7はこの発明の実施の形態5におけるアンテナ装置の構成を示す図である。ここでは、実施の形態1で例示した図1に適用した場合を例示して説明する。図7において上記実施の形態1のものと同一もしくは相当部分は同一符号で示し説明を省略する。実施の形態5では、フェーズドアレーアンテナに対向して反射鏡16を設置し、アレー給電反射鏡アンテナを構成する。
以上のように構成された実施の形態5では、送信機4から送信された高周波信号は、電力分配合成回路3によって分配され、移相器2−nによって励振位相が与えられた後に素子アンテナ1−nから空間中に放射され、反射鏡16によって放射された信号を反射する。反射鏡16により反射された信号はピックアップアンテナ6によって受信され、検波回路7によって検波される。
従って、実施の形態5では、フェーズドアレーアンテナと反射鏡との位置関係が変化しアンテナ放射特性が変化した場合にも、実施の形態1と同様の効果を得ることができる。
Embodiment 5 FIG.
FIG. 7 is a diagram showing a configuration of an antenna apparatus according to Embodiment 5 of the present invention. Here, the case where it is applied to FIG. 1 exemplified in Embodiment 1 will be described as an example. In FIG. 7, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals and the description thereof is omitted. In the fifth embodiment, the reflecting mirror 16 is installed facing the phased array antenna to constitute an array-fed reflecting mirror antenna.
In the fifth embodiment configured as described above, the high-frequency signal transmitted from the transmitter 4 is distributed by the power distribution / combination circuit 3, and after the excitation phase is given by the phase shifter 2-n, the element antenna 1 -N radiates into space and reflects the signal emitted by the reflector 16; The signal reflected by the reflecting mirror 16 is received by the pickup antenna 6 and detected by the detection circuit 7.
Therefore, in the fifth embodiment, the same effect as in the first embodiment can be obtained even when the positional relationship between the phased array antenna and the reflecting mirror changes and the antenna radiation characteristics change.

なお、図7において素子アンテナ1−nとピックアップアンテナ6の送信と受信の関係を入れ替えて、例えば図8に示すように、ピックアップアンテナ6に送信機4を接続し、送信機4から送信された高周波信号をピックアップアンテナ6から空間中に放射し、反射鏡16によって放射された信号を反射する。反射鏡16により反射された信号を素子アンテナ1−nによりそれぞれ受信し、移相器2−n によって適当な励振位相を与えた後、電力分配合成回路3により合成し、検波回路7により受信電力を検波するようにしてもよい。   In FIG. 7, the relationship between transmission and reception of the element antenna 1-n and the pickup antenna 6 is switched. For example, as shown in FIG. 8, the transmitter 4 is connected to the pickup antenna 6 and transmitted from the transmitter 4. A high frequency signal is radiated from the pickup antenna 6 into the space, and the signal radiated by the reflecting mirror 16 is reflected. The signals reflected by the reflecting mirror 16 are respectively received by the element antenna 1-n, given an appropriate excitation phase by the phase shifter 2-n, synthesized by the power distribution and synthesis circuit 3, and received power by the detection circuit 7. May be detected.

実施の形態6.
図9はこの発明の実施の形態6におけるアンテナ装置の構成を示す図である。ここでは、実施の形態1で例示した図1に適用した場合を例示して説明する。図9において上記実施の形態1のものと同一もしくは相当部分は同一符号で示し説明を省略する。
実施の形態6では、フェーズドアレーアンテナと、受信用アンテナ17と、受信機18と、を移動体に搭載し、実施の形態1で述べたその他の手段と、送信用アンテナ19と、送信機20、を固定局に備えた形態をとる。
Embodiment 6 FIG.
FIG. 9 is a diagram showing the configuration of the antenna device according to the sixth embodiment of the present invention. Here, the case where it is applied to FIG. 1 exemplified in Embodiment 1 will be described as an example. In FIG. 9, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
In the sixth embodiment, the phased array antenna, the receiving antenna 17, and the receiver 18 are mounted on the moving body, and the other means described in the first embodiment, the transmitting antenna 19, and the transmitter 20 are mounted. , Is provided in a fixed station.

以上のように構成された実施の形態6では、励振位相演算回路14で求められた励振位相Φ1,nが送信機20によって高周波信号となり、送信アンテナ19によって空間中に放射される。放射された信号は受信アンテナ17によって受信され、受信機18によって受信される。受信した励振位相Φ1,nを移相器2−nに与えることとなる。
従って、例えば移動体を静止衛星とし、固定局を地球局とした場合には、静止衛星の軌道が本来の軌道から僅かに変化したことによりアンテナ放射特性が変化した場合にも、実施の形態1と同様の効果を得ることができる。
In the sixth embodiment configured as described above, the excitation phase Φ1, n obtained by the excitation phase calculation circuit 14 becomes a high-frequency signal by the transmitter 20 and is radiated into the space by the transmission antenna 19. The radiated signal is received by the receiving antenna 17 and received by the receiver 18. The received excitation phase Φ1, n is given to the phase shifter 2-n.
Therefore, for example, when the moving body is a geostationary satellite and the fixed station is an earth station, the first embodiment also applies to the case where the antenna radiation characteristic changes due to a slight change in the orbit of the geostationary satellite from the original orbit. The same effect can be obtained.

なお、図9において素子アンテナ1−nとピックアップアンテナ6の送信と受信の関係を入れ替えて、例えば図10に示すように、ピックアップアンテナ6に送信機4を接続し、送信機4から送信された高周波信号をピックアップアンテナ6から空間中に放射し、放射された信号を素子アンテナ1−nによりそれぞれ受信し、移相器2−nによって適当な励振位相を与えた後、電力分配合成回路3により合成し、検波回路7により受信電力を検波するようにしてもよい。   In FIG. 9, the transmission and reception relationships of the element antenna 1-n and the pickup antenna 6 are switched, and the transmitter 4 is connected to the pickup antenna 6 and transmitted from the transmitter 4 as shown in FIG. A high frequency signal is radiated from the pickup antenna 6 into the space, the radiated signal is received by the element antenna 1-n, and an appropriate excitation phase is given by the phase shifter 2-n. Alternatively, the received power may be detected by the detection circuit 7.

実施の形態7.
上記実施の形態では、位相面演算回路12において、差分位相φ2,nと所望関数の位相面との差が最小となるような位相面φsを求める手段として、(2)式を用いた。しかし、上記手続きAにより求められる各素子アンテナの電界位相には360度の不確定性が存在するため、図11に示すように上記差分位相φ2,nの分布が、アレーアンテナ開口面の機械的変形による光路長の変化を示す位相分布から大きく異なる分布となる場合がある。
Embodiment 7 FIG.
In the above-described embodiment, the equation (2) is used as means for obtaining the phase plane φs that minimizes the difference between the differential phase φ2, n and the phase plane of the desired function in the phase plane arithmetic circuit 12. However, since there is a 360-degree uncertainty in the electric field phase of each element antenna obtained by the procedure A, the distribution of the differential phase φ2, n as shown in FIG. There is a case where the distribution is greatly different from the phase distribution indicating the change of the optical path length due to the deformation.

ここで、図11は図4と同様の軸と値を示し、さらに位相面φsを示している。そのため、(2)式を用いて求めた位相面φsがアレーアンテナ開口面の機械的変形による光路長の変化を示す位相分布と大きく異なる分布となり、上記のような効果を得ることができなくなる場合がある。この位相の不確定性は、位相を複素数で扱うことにより考慮することができる。つまり、(5)式を最小とするような位相面φsを、例えば共役勾配法などにより求めることにより、同様の効果を得ることができる。   Here, FIG. 11 shows the same axes and values as in FIG. 4, and further shows the phase plane φs. For this reason, the phase plane φs obtained using the equation (2) has a distribution greatly different from the phase distribution indicating the change in the optical path length due to the mechanical deformation of the array antenna aperture, and the above effects cannot be obtained. There is. This phase uncertainty can be taken into account by treating the phase with complex numbers. That is, the same effect can be obtained by obtaining the phase plane φs that minimizes the expression (5) by, for example, the conjugate gradient method.

Figure 2010041577
(5)
Figure 2010041577
(5)

なお、この発明は上記実施の形態に限定されるものではなく、これらの可能な組み合わせを含むことは言うまでもない。   Needless to say, the present invention is not limited to the above-described embodiment, and includes possible combinations thereof.

この発明の実施の形態1に係わるアンテナ装置を示す構成説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is structure explanatory drawing which shows the antenna apparatus concerning Embodiment 1 of this invention. この発明の、手続きAの手順を示す図である。It is a figure which shows the procedure of the procedure A of this invention. この発明の、手続きBの手順を示す図である。It is a figure which shows the procedure of the procedure B of this invention. 信号対雑音比が大きい場合の、差分位相の位相分布を示した説明図である。It is explanatory drawing which showed the phase distribution of a difference phase in case a signal-to-noise ratio is large. 信号対雑音比が小さい場合の、差分位相の位相分布を示した説明図である。It is explanatory drawing which showed the phase distribution of a difference phase in case a signal-to-noise ratio is small. この発明の実施の形態1に係わるアンテナ装置の他の構成例を示す構成説明図である。It is a structure explanatory drawing which shows the other structural example of the antenna apparatus concerning Embodiment 1 of this invention. この発明の実施の形態5に係わるアンテナ装置を示す構成説明図である。It is a structure explanatory drawing which shows the antenna apparatus concerning Embodiment 5 of this invention. この発明の実施の形態5に係わるアンテナ装置の他の構成例を示す構成説明図である。It is a structure explanatory drawing which shows the other structural example of the antenna apparatus concerning Embodiment 5 of this invention. この発明の実施の形態6に係わるアンテナ装置を示す構成説明図である。It is composition explanatory drawing which shows the antenna apparatus concerning Embodiment 6 of this invention. この発明の実施の形態6に係わるアンテナ装置の他の構成例を示す構成説明図である。It is structure explanatory drawing which shows the other structural example of the antenna apparatus concerning Embodiment 6 of this invention. 電界位相の360度の不確定性による影響を示した説明図である。It is explanatory drawing which showed the influence by the uncertainty of 360 degree | times of an electric field phase.

符号の説明Explanation of symbols

1−1〜1−N 素子アンテナ、2−1〜2−N 移相器、3 電力分配合成回路、4 送信機、5 移相器制御回路、6 ピックアップアンテナ、7 検波回路、8 素子電界演算回路、9 初期位相記憶回路、10 位相記憶回路、11 差分位相演算回路、12 位相面演算回路、13 補正位相演算回路、14 励振位相演算回路、15 初期励振位相記憶回路、16 反射鏡、17 受信用アンテナ、18 受信機、19 送信用アンテナ、20 送信機。   1-1 to 1-N element antenna, 2-1 to 2-N phase shifter, 3 power distribution and synthesis circuit, 4 transmitter, 5 phase shifter control circuit, 6 pickup antenna, 7 detector circuit, 8 element electric field calculation Circuit, 9 initial phase storage circuit, 10 phase storage circuit, 11 differential phase calculation circuit, 12 phase plane calculation circuit, 13 correction phase calculation circuit, 14 excitation phase calculation circuit, 15 initial excitation phase storage circuit, 16 reflector, 17 reception Antenna, 18 receiver, 19 Transmitting antenna, 20 Transmitter.

Claims (7)

複数個の素子アンテナ、上記素子アンテナのそれぞれに接続された移相器、上記各移相器の設定位相を制御する移相器制御回路、上記各移相器に接続された電力分配合成回路、上記電力分配合成回路に接続された検波手段、を有するフェーズドアレーアンテナと、上記フェーズドアレーアンテナが放射特性校正用の電波を受信した場合に、上記各移相器の設定位相を順次それぞれに360度回転させた時の上記検波手段から出力される受信電力の変化に基づいて、対応する各移相器に接続された素子アンテナの設定位相を算出する手段と、2度にわたって上記手段により算出した上記各移相器の設定位相の上記フェーズドアレーアンテナの放射特性変化の校正に供する基準値と比較値を記憶し、上記基準値と比較値の差分位相を算出する差分位相算出手段と、上記差分位相から所定の最適化により所望関数の位相面を算出し、算出された位相面に基づいて各素子アンテナに設定する補正位相を算出する補正位相算出手段と、上記補正位相と上記各移相器に予め設定された初期励振位相に基づいて上記各素子アンテナに与える励振位相を算出し、上記移相器制御回路に出力する励振位相演算回路と、を備えたことを特徴とするアンテナ装置。 A plurality of element antennas, a phase shifter connected to each of the element antennas, a phase shifter control circuit for controlling a set phase of each of the phase shifters, a power distribution and synthesis circuit connected to each of the phase shifters, A phased array antenna having detection means connected to the power distribution and synthesis circuit; and when the phased array antenna receives a radio wave for calibration of radiation characteristics, the set phase of each phase shifter is sequentially set to 360 degrees. Based on a change in received power output from the detection means when rotated, means for calculating a set phase of an element antenna connected to each corresponding phase shifter, and the means calculated by the means twice Stores the reference value and comparison value for calibration of the radiation characteristic change of the phased array antenna of the set phase of each phase shifter, and calculates the difference phase between the reference value and the comparison value Calculating means, calculating a phase plane of a desired function from the differential phase by a predetermined optimization, calculating a correction phase to be set for each element antenna based on the calculated phase plane, and the correction phase And an excitation phase calculation circuit that calculates an excitation phase to be applied to each element antenna based on an initial excitation phase preset in each phase shifter and outputs the calculated phase to the phase shifter control circuit. An antenna device. 複数個の素子アンテナ、上記素子アンテナのそれぞれに接続された移相器、上記各移相器の設定位相を制御する移相器制御回路、上記各移相器に接続された電力分配合成回路、上記電力分配合成回路に接続された送信手段、を有するフェーズドアレーアンテナと、上記フェーズドアレーアンテナからの電波を受信可能に上記フェーズドアレーアンテナに対向して設置されるピックアップアンテナと、上記ピックアップアンテナに接続された検波手段と、上記各移相器の設定位相を順次それぞれに360度回転させた時の上記検波手段から出力される上記ピックアップアンテナでの受信電力の変化に基づいて、対応する各移相器に接続された素子アンテナの設定位相を算出する手段と、2度にわたって上記手段により算出した上記各移相器の設定位相の上記フェーズドアレーアンテナの放射特性変化の校正に供する基準値と比較値を記憶し、上記基準値と比較値の差分位相を算出する差分位相算出手段と、上記差分位相から所定の最適化により所望関数の位相面を算出し、算出された位相面に基づいて各素子アンテナに設定する補正位相を算出する補正位相算出手段と、上記補正位相と上記各移相器に予め設定された初期励振位相に基づいて上記各素子アンテナに与える励振位相を算出し、上記移相器制御回路に出力する励振位相演算回路と、を備えたことを特徴とするアンテナ装置。 A plurality of element antennas, a phase shifter connected to each of the element antennas, a phase shifter control circuit for controlling a set phase of each of the phase shifters, a power distribution and synthesis circuit connected to each of the phase shifters, A phased array antenna having a transmission means connected to the power distribution and synthesis circuit; a pickup antenna installed opposite to the phased array antenna so as to receive radio waves from the phased array antenna; and connected to the pickup antenna Based on the change in received power at the pickup antenna output from the detection means when the set phase of each of the phase shifters is sequentially rotated 360 degrees respectively Means for calculating the set phase of the element antenna connected to the device, and the set position of each phase shifter calculated by the means twice. A reference value and a comparison value for calibration of radiation characteristic change of the phased array antenna are stored, a difference phase calculation means for calculating a difference phase between the reference value and the comparison value, and a desired optimization by a predetermined optimization from the difference phase A correction phase calculating means for calculating a phase plane of the function and calculating a correction phase to be set for each element antenna based on the calculated phase plane; and an initial excitation phase preset for each of the correction phase and each phase shifter And an excitation phase calculation circuit that calculates an excitation phase to be applied to each element antenna based on the above and outputs the excitation phase to the phase shifter control circuit. 請求項2記載のアンテナ装置において、さらに上記励振位相演算回路の出力を上記移相器制御回路へ空間伝送する送信手段と受信手段を備えたことを特徴とするアンテナ装置。 3. The antenna apparatus according to claim 2, further comprising a transmitting means and a receiving means for spatially transmitting the output of the excitation phase calculation circuit to the phase shifter control circuit. 上記フェーズドアレーアンテナからの電波を受信可能に上記フェーズドアレーアンテナに対向して設置された反射鏡を備えたことを特徴とする請求項1、2、又は3記載のアンテナ装置。 4. The antenna apparatus according to claim 1, further comprising a reflecting mirror disposed so as to be opposed to the phased array antenna so as to be able to receive radio waves from the phased array antenna. 上記所望関数の位相面として、上記各素子アンテナの位置座標に関する1次の関数で表される位相面としたことを特徴とする請求項1〜4のいずれか1項に記載のアンテナ装置。 5. The antenna device according to claim 1, wherein the phase plane of the desired function is a phase plane represented by a linear function related to the position coordinates of each of the element antennas. 上記所望関数の位相面として、上記各素子アンテナの位置座標に関する2次の関数で表される位相面としたことを特徴とする請求項1〜4のいずれか1項に記載のアンテナ装置。 5. The antenna device according to claim 1, wherein the phase plane of the desired function is a phase plane represented by a quadratic function related to the position coordinates of each element antenna. 上記所望関数の位相面として、上記各素子アンテナの位置座標に関する正弦関数で表される位相面としたことを特徴とする請求項1〜4のいずれか1項に記載のアンテナ装置。 The antenna device according to any one of claims 1 to 4, wherein the phase plane of the desired function is a phase plane represented by a sine function relating to the position coordinates of each element antenna.
JP2008204373A 2008-08-07 2008-08-07 Antenna device Expired - Fee Related JP4952681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204373A JP4952681B2 (en) 2008-08-07 2008-08-07 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204373A JP4952681B2 (en) 2008-08-07 2008-08-07 Antenna device

Publications (2)

Publication Number Publication Date
JP2010041577A true JP2010041577A (en) 2010-02-18
JP4952681B2 JP4952681B2 (en) 2012-06-13

Family

ID=42013614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204373A Expired - Fee Related JP4952681B2 (en) 2008-08-07 2008-08-07 Antenna device

Country Status (1)

Country Link
JP (1) JP4952681B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017927A1 (en) * 2010-08-02 2012-02-09 日本電気株式会社 Calibration device and calibration method for array antenna
JP2013522993A (en) * 2010-03-18 2013-06-13 アルカテル−ルーセント Calibration of active antenna arrays for mobile communications
RU2577827C1 (en) * 2014-11-06 2016-03-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский радиотехнический институт имени академика А.И. Берга" Self-focusing multibeam antenna array
WO2022070355A1 (en) * 2020-09-30 2022-04-07 三菱電機株式会社 Phased array antenna calibration method and calibration system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165103A (en) * 1989-11-22 1991-07-17 Nec Corp Array antenna phase calibrator
JPH07170117A (en) * 1993-10-20 1995-07-04 Atr Koudenpa Tsushin Kenkyusho:Kk Method for controlling array antenna and its controller
JPH09172316A (en) * 1995-12-19 1997-06-30 Unyusho Senpaku Gijutsu Kenkyusho Detection method for fault location of phase shifter for phased array antenna and detection method for phase error of feeding system of the phased array antenna
JPH1093325A (en) * 1996-06-06 1998-04-10 He Holdings Inc Dba Hughes Electron Method for calibration for satellite communication payload using hybrid matrix
JP2002368664A (en) * 2001-06-12 2002-12-20 Mitsubishi Electric Corp Communication system and transmission array antenna calibration method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165103A (en) * 1989-11-22 1991-07-17 Nec Corp Array antenna phase calibrator
JPH07170117A (en) * 1993-10-20 1995-07-04 Atr Koudenpa Tsushin Kenkyusho:Kk Method for controlling array antenna and its controller
JPH09172316A (en) * 1995-12-19 1997-06-30 Unyusho Senpaku Gijutsu Kenkyusho Detection method for fault location of phase shifter for phased array antenna and detection method for phase error of feeding system of the phased array antenna
JPH1093325A (en) * 1996-06-06 1998-04-10 He Holdings Inc Dba Hughes Electron Method for calibration for satellite communication payload using hybrid matrix
JP2002368664A (en) * 2001-06-12 2002-12-20 Mitsubishi Electric Corp Communication system and transmission array antenna calibration method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522993A (en) * 2010-03-18 2013-06-13 アルカテル−ルーセント Calibration of active antenna arrays for mobile communications
WO2012017927A1 (en) * 2010-08-02 2012-02-09 日本電気株式会社 Calibration device and calibration method for array antenna
RU2577827C1 (en) * 2014-11-06 2016-03-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский радиотехнический институт имени академика А.И. Берга" Self-focusing multibeam antenna array
WO2022070355A1 (en) * 2020-09-30 2022-04-07 三菱電機株式会社 Phased array antenna calibration method and calibration system
JPWO2022070355A1 (en) * 2020-09-30 2022-04-07
JP7427105B2 (en) 2020-09-30 2024-02-02 三菱電機株式会社 Calibration method and calibration system for phased array antenna

Also Published As

Publication number Publication date
JP4952681B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
US8154452B2 (en) Method and apparatus for phased array antenna field recalibration
US8049662B2 (en) Systems and methods for antenna calibration
US10917228B2 (en) Phase adjustment control device, array antenna device, antenna measuring device, and method for adjusting phase of phased array antenna
JP7446681B2 (en) Antenna device and antenna calibration method
JP2010071889A (en) Radar system mounted on movable body and calibration method
JP4952681B2 (en) Antenna device
US6320538B1 (en) Method and apparatus for calibrating an electronically scanned reflector
JP5556154B2 (en) Antenna beam directing device and antenna beam directing method
KR101217134B1 (en) Active array radar system using polynomial curve fitting calibration
JP6908406B2 (en) Radar transmission beam calibration equipment, programs and methods
JP3638108B2 (en) Antenna measuring apparatus and antenna measuring method
JP2010237069A (en) Apparatus for measuring radar reflection cross-section
EP2356535B1 (en) Methods for determining a reference signal at any location along a transmission media
JP3832234B2 (en) ANTENNA DEVICE AND METHOD FOR MEASURING THE ANTENNA
JP3138728B2 (en) Array antenna calibration method
US6661384B2 (en) Mirror surface accuracy measuring device and mirror surface control system of reflector antenna
JP5506513B2 (en) Guidance device
JP2006242761A (en) Radio wave incoming azimuth measuring device
JP6815340B2 (en) Antenna device
JP6198547B2 (en) Antenna device
JP6847066B2 (en) Antenna calibration method
WO2022070355A1 (en) Phased array antenna calibration method and calibration system
JP2017225006A (en) Directivity correction system and command signal generation device
JP4113827B2 (en) Reflector antenna
JP2023170370A (en) Microwave shape measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R151 Written notification of patent or utility model registration

Ref document number: 4952681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees