JP2010035265A - Temperature-measuring device for rotor of electric motor - Google Patents

Temperature-measuring device for rotor of electric motor Download PDF

Info

Publication number
JP2010035265A
JP2010035265A JP2008191908A JP2008191908A JP2010035265A JP 2010035265 A JP2010035265 A JP 2010035265A JP 2008191908 A JP2008191908 A JP 2008191908A JP 2008191908 A JP2008191908 A JP 2008191908A JP 2010035265 A JP2010035265 A JP 2010035265A
Authority
JP
Japan
Prior art keywords
temperature
rotor
light
light receiving
transparent ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008191908A
Other languages
Japanese (ja)
Inventor
Yuji Hashiguchi
裕司 橋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2008191908A priority Critical patent/JP2010035265A/en
Publication of JP2010035265A publication Critical patent/JP2010035265A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature-measuring device for rotor of motor, wherein accurate measurement of the temperature of a rotor can be estimated, using a simple configuration and estimate the temperature of a permanent magnet. <P>SOLUTION: The temperature measuring device is provided with: a transparent ring 18, that is formed into a cylindrical shape, fixed on an end face 14a of a rotor 14 in tight contact, transmits light, and is varied in refraction index according to temperature change; a light-emitting unit 19 that projects laser light 1 so that it is orthogonal to the direction of the axis of the transparent ring 18 and is incident on the outer circumferential surface 18a of the transparent ring 18, at a predetermined incident angle θi<SB>1</SB>; a light-receiving unit 20 that is so disposed as to receive the laser light 1 passed through the transparent ring 18 and outputs different electrical signals, according to the position where the laser light 1 enters; and an arithmetic processing unit 23 that determines the temperature of the rotor 14, based on an electrical signal output from the light-receiving unit 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電動機のロータ温度測定装置に関する。   The present invention relates to a rotor temperature measuring device for an electric motor.

ロータの内部に永久磁石を埋め込む構造を有する電動機において、電動機の運転に伴ってロータに埋め込まれた永久磁石の温度が上昇し永久磁石の温度が一定の温度以上になると、この永久磁石の磁力が減磁されてしまう。永久磁石は一度減磁してしまうとその性能が著しく低下するため、運転中の電動機に対しては常に永久磁石の温度情報をモニターし、永久磁石の温度が、磁力が減磁される温度に達する前に、前もって電流を制限するなどして永久磁石の温度を調整する必要がある。   In an electric motor having a structure in which a permanent magnet is embedded in the rotor, when the temperature of the permanent magnet embedded in the rotor rises as the motor is operated and the temperature of the permanent magnet exceeds a certain temperature, the magnetic force of the permanent magnet is increased. Demagnetized. Once a permanent magnet is demagnetized, its performance drops significantly. Therefore, the temperature information of the permanent magnet is always monitored for the motor in operation, and the temperature of the permanent magnet is adjusted to the temperature at which the magnetic force is demagnetized. Before reaching the temperature, it is necessary to adjust the temperature of the permanent magnet by limiting the current in advance.

ところで、回転体であるロータに埋め込まれた永久磁石の温度を有線式のセンサで直接測定することは困難である。そのため、従来の電動機においては例えばステータのコイルの温度を測定し、その温度値に基づいて永久磁石の温度を推定するなど、ロータの温度を直接測定することなくロータの温度を推定することが行われていた。なお、ステータのコイルの温度は、例えばサーミスタをコイルに固定するなどにより行っている。   By the way, it is difficult to directly measure the temperature of the permanent magnet embedded in the rotor, which is a rotating body, using a wired sensor. Therefore, in the conventional electric motor, for example, the temperature of the stator coil is measured, and the temperature of the rotor is estimated without directly measuring the rotor temperature, such as estimating the temperature of the permanent magnet based on the temperature value. It was broken. The temperature of the stator coil is determined, for example, by fixing a thermistor to the coil.

しかし、永久磁石の温度を調整するために電流を制限することは電動機の性能及び効率の低下に繋がるおそれがある。このような電動機の性能及び効率の低下を抑制するためには、永久磁石の温度を高精度に測定し、電流の制限を必要最小限に抑える必要があるが、上述したようにステータのコイルの温度を測定し、このコイルの温度に基づいて永久磁石の温度を推定する場合、永久磁石の正確な温度を得ることは難しかった。   However, limiting the current to adjust the temperature of the permanent magnet may lead to a reduction in the performance and efficiency of the motor. In order to suppress such a decrease in the performance and efficiency of the electric motor, it is necessary to measure the temperature of the permanent magnet with high accuracy and minimize the current limit. When measuring the temperature and estimating the temperature of the permanent magnet based on the temperature of this coil, it has been difficult to obtain an accurate temperature of the permanent magnet.

そこで、従来、ロータの内部に熱電対を取り付けるとともに、該熱電対に発光体を接続し、測定回路において発光体の輝度を非接触で検出することにより、ロータの温度を測定する技術がある(例えば、下記特許文献1参照)。   Therefore, conventionally, there is a technique for measuring the temperature of the rotor by attaching a thermocouple inside the rotor, connecting a light emitter to the thermocouple, and detecting the brightness of the light emitter in a contactless manner in a measurement circuit ( For example, see Patent Document 1 below).

また、ロータ本体に二つのコイルとこれら二つのコイルの間に介在配置されるサーミスタとを固定し、一方のコイルにおいて誘起した電流をサーミスタを介して他方のコイルに供給し、該他方のコイルによって発生する磁界をステータ軸に固定したセンサ用コイルによって非接触で検出することにより、ロータの温度を測定するものもある(例えば、下記特許文献2参照)。   Further, the rotor body is fixed with two coils and a thermistor disposed between the two coils, and the current induced in one coil is supplied to the other coil via the thermistor, and the other coil Some of them measure the temperature of the rotor by detecting the generated magnetic field in a non-contact manner with a sensor coil fixed to the stator shaft (for example, see Patent Document 2 below).

特開平10−327561号公報JP-A-10-327561 特開2002−39088号公報JP 2002-39088 A

しかしながら、上述した特許文献1に記載のものは、ロータの内部に熱電対を取り付ける必要があるために組立作業が煩雑になることが考えられるという問題、発光体を設置可能な位置が回転子の反負荷側のみであるために利便性が十分とはいえない問題があった。   However, in the above-described Patent Document 1, it is necessary to attach a thermocouple inside the rotor, so that the assembly work is considered to be complicated, and the position where the light emitter can be installed is the rotor. There is a problem that the convenience is not sufficient because it is only on the anti-load side.

また、上述した特許文献2に記載のものについても、ロータに複数の部材からなるコイルユニットを固定する構成であるため、装置構成が複雑になるという問題、さらに、回転子が回転していなければ温度を検知することができないため利便性が十分とはいえず、また回転速度の補正も必要であるため温度検出にかかる作業が煩雑になることが考えられるといった問題があった。   In addition, since the configuration described in Patent Document 2 described above is a configuration in which a coil unit composed of a plurality of members is fixed to the rotor, there is a problem that the configuration of the device becomes complicated, and further, if the rotor does not rotate. Since the temperature cannot be detected, the convenience is not sufficient, and it is necessary to correct the rotation speed, so that there is a problem that the temperature detection operation may be complicated.

このようなことから本発明は、簡素な構成で高精度にロータの温度を測定し、永久磁石の温度を推定することが可能な電動機のロータ温度測定装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a rotor temperature measuring device for an electric motor capable of measuring the temperature of the rotor with high accuracy and estimating the temperature of the permanent magnet with a simple configuration.

上記の課題を解決するための第1の発明に係る電動機のロータ温度測定装置は、電動機のロータの温度を測定する装置であって、円筒状に形成されて前記ロータの端面に密着固定され、光を透過するとともに温度変化に応じて屈折率が変化する透光部材と、前記透光部材の軸方向に直交するように且つ前記透光部材の外周面に所定の入射角で入射するようにレーザ光を出射する発光手段と、前記透光部材を透過した前記レーザ光を受光するように配置され、前記レーザ光が入射する位置に応じて異なる電気信号を出力する受光手段と、前記受光手段から出力される電気信号に基づいて前記ロータの温度を求める演算処理手段とを備えることを特徴とすることを特徴とする。   A rotor temperature measuring device for an electric motor according to a first invention for solving the above-mentioned problem is a device for measuring the temperature of the rotor of the electric motor, and is formed in a cylindrical shape and closely fixed to an end surface of the rotor, A translucent member that transmits light and whose refractive index changes according to a temperature change, and is incident on the outer peripheral surface of the translucent member at a predetermined incident angle so as to be orthogonal to the axial direction of the translucent member. Light emitting means for emitting laser light, light receiving means arranged to receive the laser light transmitted through the light transmissive member, and outputting different electrical signals depending on the position where the laser light is incident, and the light receiving means Arithmetic processing means for obtaining the temperature of the rotor based on an electrical signal output from the motor.

第2の発明に係る電動機のロータ温度測定装置は、第1の発明において、前記受光手段が、前記レーザ光の直径と同一の直径を有する穴が形成されたマスク部材を備え、該マスク部材が、前記透光部材が予め設定する所定の温度のときに前記穴の中心と前記レーザ光の光軸とが一致するように配置されていることを特徴とする。   According to a second aspect of the present invention, there is provided the rotor temperature measuring apparatus for an electric motor according to the first aspect, wherein the light receiving means includes a mask member in which a hole having the same diameter as the diameter of the laser beam is formed. The translucent member is arranged so that the center of the hole and the optical axis of the laser beam coincide with each other at a predetermined temperature set in advance.

第3の発明に係る電動機のロータ温度測定装置は、第1又は第2の発明において、前記発光手段及び前記受光手段は、前記レーザ光が二度の屈折を経て前記受光手段に入射するように相互の位置を設定されていることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the invention, the light emitting means and the light receiving means are arranged so that the laser light is incident on the light receiving means after being refracted twice. The mutual position is set.

第4の発明に係る電動機のロータ温度測定装置は、第1又は第2の発明において、前記発光手段及び前記受光手段は、前記レーザ光が二度の屈折及び前記シャフトによる一度の反射を経て前記受光手段に入射するように相互の位置を設定されていることを特徴とする。   According to a fourth aspect of the present invention, there is provided the electric motor rotor temperature measuring apparatus according to the first or second aspect, wherein the light emitting means and the light receiving means are configured so that the laser light undergoes refraction twice and reflection once by the shaft. The mutual positions are set so as to be incident on the light receiving means.

上述した本発明に係る電動機のロータ温度測定装置によれば、ロータに直接接触している透光部材の温度の変化に基づいてロータの温度を推定し、得られた結果に基づいて永久磁石の温度を推定することができるので、簡素な構成で高精度にロータ及び永久磁石の温度を推定することができる。   According to the above-described rotor temperature measuring device for an electric motor according to the present invention, the temperature of the rotor is estimated based on the change in the temperature of the translucent member that is in direct contact with the rotor, and the permanent magnet is detected based on the obtained result. Since the temperature can be estimated, the temperatures of the rotor and the permanent magnet can be estimated with high accuracy with a simple configuration.

また、発光手段、受光手段は負荷側、反負荷側のいずれにも設置することが可能であるとともに、回転子が静止している状態であっても温度を検出することが可能であり、且つ、回転子の回転速度等を考慮する必要もないので、利便性の向上に繋がる。   The light emitting means and the light receiving means can be installed on either the load side or the anti-load side, and can detect the temperature even when the rotor is stationary, and Since there is no need to consider the rotational speed of the rotor, etc., this leads to improved convenience.

また、受光手段に、レーザ光の直径と同一の直径を有する穴が形成されたマスク部材を設け、該マスク部材を、透光部材が予め設定する所定の温度のときに穴の中心とレーザ光の光軸とが一致するように配置すれば、透光部材を透過したレーザ光の位置の変化を高精度に検出することができ、ロータの温度をより高精度に推定することができる。   Further, the light receiving means is provided with a mask member in which a hole having the same diameter as that of the laser beam is formed, and the mask member is placed at the center of the hole and the laser beam at a predetermined temperature set in advance by the translucent member. If the optical axes are aligned with each other, a change in the position of the laser light transmitted through the translucent member can be detected with high accuracy, and the temperature of the rotor can be estimated with high accuracy.

本発明の実施の形態を以下に示す実施例において詳細に説明する。   Embodiments of the present invention will be described in detail in the following examples.

図1乃至図6を用いて本発明の第1の実施例を詳細に説明する。図1は本実施例に係る電動機のロータ温度測定装置の構造を示す概略断面図、図2は図1のA−A断面図、図3は本実施例の透明リングを透過する光の光路の変化を示す説明図、図4(a)〜(c)はそれぞれ図3のD〜F部の拡大図、図5はマスクの正面図、図6(a)、図6(b)はそれぞれ本実施例の他の例に係る発光部用マスク、受光部用マスクの正面図、図7は本実施例の他の例において受光部用マスクに入射するレーザ光の例を示す説明図である。なお、図中の一点鎖線は透明リング表面のレーザ光が入出射する位置に対して円周方向に直交する直線(法線)を示す。   The first embodiment of the present invention will be described in detail with reference to FIGS. 1 is a schematic sectional view showing the structure of a rotor temperature measuring device for an electric motor according to the present embodiment, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is an optical path of light transmitted through the transparent ring of the present embodiment. 4 (a) to 4 (c) are enlarged views of portions D to F in FIG. 3, FIG. 5 is a front view of the mask, and FIGS. 6 (a) and 6 (b) are books. FIG. 7 is an explanatory view showing an example of laser light incident on the light receiving portion mask in another example of the present embodiment, and FIG. 7 is a front view of a light emitting portion mask and a light receiving portion mask according to another example of the embodiment. In addition, the one-dot chain line in a figure shows the straight line (normal line) orthogonal to the circumferential direction with respect to the position where the laser beam of a transparent ring surface enters / exits.

図1及び図2に示すように、本実施例に係る電動機のロータ温度測定装置が適用されるモータ1は、モータフレーム11にベアリング12を介して回転自在に支持されるシャフト13、内部に永久磁石16が埋め込まれ、シャフト13と一体に回転するロータ14、モータフレーム11の中空部にロータ14との間に周方向にわたって所定の間隙を有するように固定配置され、ステータコイル17を備えるステータ15を備えている。   As shown in FIGS. 1 and 2, a motor 1 to which a rotor temperature measuring device for an electric motor according to this embodiment is applied includes a shaft 13 that is rotatably supported by a motor frame 11 via a bearing 12, and a permanent inside. A stator 14 having a stator coil 17 embedded with a magnet 16 and fixedly disposed in the hollow portion of the motor frame 11 so as to have a predetermined gap between the rotor 14 and the rotor 14 in the circumferential direction. It has.

さらに、本実施例においてロータ14の一方の端面14aには、透光部材としての透明リング18が設けられている。透明リング18は光を透過する部材からなり、円筒状に形成されてロータ14の端部14aに密着固定され、シャフト13及びロータ14と一体に回転するように構成されている。そして、モータフレーム11の中空部内であって透明リング18の外周面18aに対向する位置に、発光手段としての発光部19および受光手段としての受光部20が配設されている。   Further, in the present embodiment, a transparent ring 18 as a translucent member is provided on one end surface 14a of the rotor 14. The transparent ring 18 is made of a light transmitting member, is formed in a cylindrical shape, is tightly fixed to the end portion 14 a of the rotor 14, and is configured to rotate integrally with the shaft 13 and the rotor 14. A light emitting unit 19 as a light emitting unit and a light receiving unit 20 as a light receiving unit are disposed in the hollow portion of the motor frame 11 and at a position facing the outer peripheral surface 18 a of the transparent ring 18.

発光部19はレーザ光1を出射する手段であり、本実施例においては、レーザ光1の光軸がシャフト13の軸方向に直交するように且つレーザ光1が透明リングの外周面18aに所定の入射角θi1で入射するようにその位置を設定されている。入射角θi1は、図2に示すようにレーザ光1が二度の屈折を経て受光部20に入射するような角度とする。二度の屈折により、透明リング18に入射したレーザ光1は透明リング18の内部を屈折角θn1で進行し、出射角θo1で透明リング18の外部へ出射される。 The light emitting section 19 is a means for emitting the laser beam 1. In this embodiment, the laser beam 1 is predetermined on the outer peripheral surface 18 a of the transparent ring so that the optical axis of the laser beam 1 is orthogonal to the axial direction of the shaft 13. It is set to that position so that it is incident at an incident angle theta i1 of. The incident angle θ i1 is an angle at which the laser beam 1 enters the light receiving unit 20 after being refracted twice as shown in FIG. Due to the double refraction, the laser beam 1 incident on the transparent ring 18 travels inside the transparent ring 18 at a refraction angle θ n1 and is emitted to the outside of the transparent ring 18 at an emission angle θ o1 .

また、受光部20は受光部本体21とマスク部材としてのマスク22とから構成されている。受光部本体21は、発光部19から出射され、透明リング18を透過したレーザ光(透過光)1を受光し、受光量に応じた電気信号を出力する手段である。該受光部本体21は、図2中に示すA部、B部において屈折されたレーザ光1を受光することができるようにその位置を設定されている。   In addition, the light receiving unit 20 includes a light receiving unit main body 21 and a mask 22 as a mask member. The light receiving unit main body 21 is a unit that receives the laser light (transmitted light) 1 emitted from the light emitting unit 19 and transmitted through the transparent ring 18 and outputs an electrical signal corresponding to the amount of received light. The position of the light receiving unit main body 21 is set so that the laser light 1 refracted in the A part and the B part shown in FIG. 2 can be received.

一方、マスク22は光を透過しない遮光部材からなり、受光部本体21の受光面21aを覆うように設けられている。このマスク22には図5に示すようにレーザ光1の直径とほぼ同一の直径を有するピンホール22aが形成されており、該マスク22は、例えば透明リング18の温度が予め設定する所定温度Taのときにレーザ光1がピンホール22aの中心を通過するように位置を設定している。なお、本実施例では、所定温度Taは電動機を使用する環境に応じて設定すれば良い。   On the other hand, the mask 22 is made of a light shielding member that does not transmit light, and is provided so as to cover the light receiving surface 21 a of the light receiving unit main body 21. As shown in FIG. 5, a pinhole 22a having a diameter substantially the same as the diameter of the laser beam 1 is formed in the mask 22, and the mask 22 has, for example, a predetermined temperature Ta at which the temperature of the transparent ring 18 is set in advance. At this time, the position is set so that the laser beam 1 passes through the center of the pinhole 22a. In the present embodiment, the predetermined temperature Ta may be set according to the environment in which the electric motor is used.

そして、受光部本体21から出力される電気信号は演算処理手段としての演算処理部23に入力される。演算処理部23は、受光部本体21から出力される電気信号の出力値に基づいて透明リング18の温度を算出し、さらに、算出された透明リング18の温度に基づいて、ロータ14の温度を求め、得られたロータ14の温度から永久磁石16の温度を推定する手段である。   And the electric signal output from the light-receiving-part main body 21 is input into the arithmetic processing part 23 as an arithmetic processing means. The arithmetic processing unit 23 calculates the temperature of the transparent ring 18 based on the output value of the electrical signal output from the light receiving unit main body 21, and further calculates the temperature of the rotor 14 based on the calculated temperature of the transparent ring 18. This is a means for estimating the temperature of the permanent magnet 16 from the obtained temperature of the rotor 14.

なお、本実施例においてロータ14の温度を求める方法としては、例えば、透明リング18の温度とロータ14の温度との関係を予め参照値と取得しておき、この参照値を用いてロータ14の温度を求める等の方法が考えられる。また、永久磁石16はロータ14内に埋め込まれており、接着剤でロータ14に強固に密着しているので、永久磁石16の温度とロータ14の温度がほぼ同一として永久磁石16の温度の推定を行う。   In this embodiment, as a method for obtaining the temperature of the rotor 14, for example, a relationship between the temperature of the transparent ring 18 and the temperature of the rotor 14 is acquired in advance as a reference value, and the reference value is used to determine the rotor 14. A method such as obtaining the temperature can be considered. In addition, since the permanent magnet 16 is embedded in the rotor 14 and firmly adhered to the rotor 14 with an adhesive, the temperature of the permanent magnet 16 is estimated to be substantially the same as the temperature of the permanent magnet 16 and the temperature of the rotor 14. I do.

以下、図3乃至図5を用いて本実施例に係る電動機のロータ温度測定装置によるロータ温度測定方法について説明する。   Hereinafter, a rotor temperature measuring method by the rotor temperature measuring apparatus for an electric motor according to the present embodiment will be described with reference to FIGS. 3 to 5.

図3及び図4に示すように、例えば、透明リング18の温度が上述した所定温度Ta(例えば25℃)である場合、発光部19から出射され入射角θi1で透明リング18に入射したレーザ光1は、図中実線で示すように、屈折角θn1aで透明リング18内を透過し、出射角θo1aで透明リング18から出射され、マスク22を介して受光部本体21に入射される。 As shown in FIGS. 3 and 4, for example, when the temperature of the transparent ring 18 is the above-described predetermined temperature Ta (for example, 25 ° C.), the laser beam emitted from the light emitting unit 19 and incident on the transparent ring 18 at the incident angle θ i1. The light 1 passes through the transparent ring 18 at the refraction angle θ n1a , is emitted from the transparent ring 18 at the emission angle θ o1a , and enters the light receiving unit main body 21 through the mask 22 as indicated by the solid line in the figure. .

ここで、上述したようにマスク22に形成されたピンホール22aは透明リング18の温度がTaの場合にその中心とレーザ光1の光軸が一致するようにその位置を設定されているため、レーザ光1aはほぼ100%ピンホール22aを通過し、受光部本体21において電気信号に変換される。   Here, as described above, the pinhole 22a formed in the mask 22 has its position set so that the center and the optical axis of the laser beam 1 coincide when the temperature of the transparent ring 18 is Ta. The laser beam 1a passes through almost 100% of the pinhole 22a and is converted into an electric signal in the light receiving unit main body 21.

一方、透明リング18の温度がTb(≠Ta、例えば75℃)のとき、透明リング18の屈折率n(=sin(入射角)/sin(屈折角))は透明リング18の温度に応じて変化するため、発光部19から出射され入射角θi1で透明リング18に入射したレーザ光1は、透明リング18の温度がTaのときとは異なり、図中二点鎖線で示すように、屈折角θn1bで透明リング18内を透過し、出射角θo1bで透明リング18から出射される。そのため、レーザ光1bの光軸はピンホール22aの中心に対してΔd1ずれることとなり、図5に示すようにレーザ光1bの一部がマスク22によって遮蔽され、レーザ光1bの図5中斜線を付した部分のみがマスク22を通過する。 On the other hand, when the temperature of the transparent ring 18 is Tb (≠ Ta, for example, 75 ° C.), the refractive index n (= sin (incident angle) / sin (refractive angle)) of the transparent ring 18 depends on the temperature of the transparent ring 18. Therefore, the laser light 1 emitted from the light emitting unit 19 and incident on the transparent ring 18 at an incident angle θ i1 is refracted as indicated by a two-dot chain line in the figure, unlike when the temperature of the transparent ring 18 is Ta. through the transparent ring 18 at the angular theta n1b, it is emitted from the transparent rings 18 at the exit angle θ o1b. Therefore, the optical axis of the laser beam 1b is shifted by Δd1 with respect to the center of the pinhole 22a, and a part of the laser beam 1b is shielded by the mask 22 as shown in FIG. 5, and the oblique line of the laser beam 1b in FIG. Only the marked part passes through the mask 22.

これにより、受光部本体21における受光量は透明リング18の温度がTaの場合に比較して減少し、演算処理部23に入力される電気信号が変化する。演算処理部23では入力された電気信号と予め求めた参照値とを比較して透明リング18の温度を求め、この透明リング18の温度からロータ14、さらには永久磁石16の温度を推定する。   As a result, the amount of light received by the light receiving unit main body 21 decreases as compared with the case where the temperature of the transparent ring 18 is Ta, and the electric signal input to the arithmetic processing unit 23 changes. The arithmetic processing unit 23 compares the input electrical signal with a previously obtained reference value to obtain the temperature of the transparent ring 18 and estimates the temperature of the rotor 14 and further the permanent magnet 16 from the temperature of the transparent ring 18.

このように、本実施例においては透明リング18の温度変化に伴って該透明リング18の屈折率が変化することを利用して、透明リング18を透過した光が入射する位置の変化に基づいて透明リング18の温度を求め、これによりロータ14の温度、永久磁石16の温度の推定を行う。   As described above, in this embodiment, the refractive index of the transparent ring 18 is changed with the temperature change of the transparent ring 18 and based on the change in the position where the light transmitted through the transparent ring 18 is incident. The temperature of the transparent ring 18 is obtained, and thereby the temperature of the rotor 14 and the temperature of the permanent magnet 16 are estimated.

上述した本実施例に係る電動機のロータ温度測定装置によれば、光を用いたセンシングでロータ14の温度を推定することができるため、ロータ14の温度を高精度に推定することができる。さらに、ロータ14に直接接触している透明リング18の温度に基づいてロータ14の温度を推定し、推定したロータ14の温度に基づいて永久磁石の温度を推定するため、簡素な構成で高精度に永久磁石16の温度を推定することができ、モータ1の性能及び効率を向上させることができる。   According to the above-described rotor temperature measuring device for an electric motor according to this embodiment, the temperature of the rotor 14 can be estimated by sensing using light, and therefore the temperature of the rotor 14 can be estimated with high accuracy. Further, since the temperature of the rotor 14 is estimated based on the temperature of the transparent ring 18 that is in direct contact with the rotor 14, and the temperature of the permanent magnet is estimated based on the estimated temperature of the rotor 14, high accuracy with a simple configuration. In addition, the temperature of the permanent magnet 16 can be estimated, and the performance and efficiency of the motor 1 can be improved.

なお、上述した実施例では所定温度Taを25℃として説明したが、これに限定されるものではなく、例えば、電動機を使用する環境下において最も低いと考えられる温度に設定する等、種々の変更が可能である。   In the above-described embodiment, the predetermined temperature Ta has been described as 25 ° C., but the present invention is not limited to this. For example, various changes such as setting to a temperature that is considered to be the lowest in an environment where the electric motor is used are performed. Is possible.

また、本実施例においては、受光部20を構成するマスク22に円形のピンホール22aを設ける例を示したが、例えば図6に示すように、発光部19のレーザ光出射面に対向する位置に図6(a)に示す長方形状の孔24aを有する発光部用マスク24を設ける一方、受光部20に上述したマスク22に代えて、マスク部材として図6(b)に示すような三角形状の孔25aを有する受光部用マスク25を設けるようにするなど、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。   In the present embodiment, an example in which a circular pinhole 22a is provided in the mask 22 constituting the light receiving unit 20 has been shown. However, as shown in FIG. 6, for example, a position facing the laser light emitting surface of the light emitting unit 19 6A is provided with a light emitting portion mask 24 having a rectangular hole 24a as shown in FIG. 6A, while the light receiving portion 20 has a triangular shape as shown in FIG. 6B as a mask member instead of the mask 22 described above. Various modifications can be made without departing from the gist of the present invention, such as providing the light receiving portion mask 25 having the holes 25a.

上記構成とした場合、例えば、透明リング18の温度が低温から高温に変化するのに対し、レーザ光が受光部用マスク25の三角形状の孔25aの底辺側から頂点側へ移動するように設定すれば、図7に示すように、低温時においてはレーザ光1aが実線で示す位置に照射され、高温時においてはレーザ光1bが破線で示す位置に照射されて、それぞれ図中斜線を付した部分が孔25aを通過することにより受光部本体21に入射する受光量が変化する。   In the case of the above configuration, for example, the temperature of the transparent ring 18 changes from a low temperature to a high temperature, whereas the laser beam is set to move from the bottom side of the triangular hole 25a of the light receiving portion mask 25 to the apex side. Then, as shown in FIG. 7, the laser beam 1a is irradiated at a position indicated by a solid line at a low temperature, and the laser beam 1b is irradiated at a position indicated by a broken line at a high temperature, and each is hatched. When the portion passes through the hole 25a, the amount of light received incident on the light receiving unit main body 21 changes.

このように、受光部本体21において測定される受光量が透明リング18の温度変化に伴って変化するので、得られた受光量を電気信号に変換して演算処理部23において受光部本体21から入力された電気信号と予め求めた参照値とを比較することにより、透明リング18の温度を求めることができ、この透明リング18の温度からロータ14、さらには永久磁石16の温度を推定することができる。   As described above, the amount of light received measured at the light receiving unit main body 21 changes with the temperature change of the transparent ring 18, so that the obtained light reception amount is converted into an electric signal, and the arithmetic processing unit 23 determines from the light receiving unit main body 21. The temperature of the transparent ring 18 can be obtained by comparing the input electric signal with a reference value obtained in advance, and the temperature of the rotor 14 and further the permanent magnet 16 is estimated from the temperature of the transparent ring 18. Can do.

図8乃至図10を用いて本発明の第2の実施例を詳細に説明する。図8は本実施例の電動機の断面図、図9は本実施例の透明リングを透過する光の光路の変化を示す説明図、図10(a)〜(d)はそれぞれ図9のI〜L部の拡大図である。本実施例は、実施例1において発光部19及び受光部20の位置を変更した例であり、以下、図1及び図2に示し上述した部材と同一の部材には同一の符号を付し、重複する説明は省略する。   The second embodiment of the present invention will be described in detail with reference to FIGS. 8 is a cross-sectional view of the electric motor of the present embodiment, FIG. 9 is an explanatory diagram showing changes in the optical path of light transmitted through the transparent ring of the present embodiment, and FIGS. It is an enlarged view of the L section. The present embodiment is an example in which the positions of the light emitting unit 19 and the light receiving unit 20 are changed in the first embodiment. Hereinafter, the same members as those shown in FIGS. A duplicate description is omitted.

図8に示すように、本実施例において発光部19はレーザ光1の光軸がシャフト13の軸方向に直交するように且つレーザ光1が透明リングの外周面18aに所定の入射角θi2で入射するようにその位置を設定されている。入射角θi2は、図8に示すようにレーザ光1が二度の屈折及び一度の反射を経て受光部20に入射するような角度とする。二度の屈折及び一度の反射により、透明リング18に入射したレーザ光1は透明リング18の内部を屈折角θn2で進行し、出射角θo2で透明リング18の外部へ出射される。 As shown in FIG. 8, in the present embodiment, the light emitting unit 19 is configured so that the optical axis of the laser beam 1 is orthogonal to the axial direction of the shaft 13 and the laser beam 1 is incident on the outer peripheral surface 18a of the transparent ring at a predetermined incident angle θ i2. The position is set so as to be incident. The incident angle θ i2 is an angle at which the laser beam 1 enters the light receiving unit 20 after being refracted twice and reflected once as shown in FIG. The laser light 1 incident on the transparent ring 18 travels through the inside of the transparent ring 18 at a refraction angle θ n2 and is emitted to the outside of the transparent ring 18 at an emission angle θ o2 due to twice refraction and one reflection.

また、受光部本体21は、図8中に示すF部、G部、H部において屈折又は反射されたレーザ光1を受光することができるようにその位置を設定されている。さらに、マスク22は、実施例1と同様、透明リング18が所定温度Taの時にレーザ光1の光軸とピンホール22aの中心が一致するように配設されている。   In addition, the position of the light receiving unit main body 21 is set so that the laser beam 1 refracted or reflected by the F unit, the G unit, and the H unit shown in FIG. 8 can be received. Further, the mask 22 is arranged so that the optical axis of the laser beam 1 coincides with the center of the pinhole 22a when the transparent ring 18 is at a predetermined temperature Ta, as in the first embodiment.

図9及び図10を用いて本実施例に係る電動機のロータ温度測定装置によるロータ温度測定方法について説明する。   A rotor temperature measuring method using the rotor temperature measuring apparatus for an electric motor according to this embodiment will be described with reference to FIGS. 9 and 10.

図9及び図10に示すように、例えば、透明リング18の温度がTa(例えば25℃)のとき、発光部19から出射され入射角θi2で透明リング18に入射したレーザ光1は、屈折角θn2aで透明リング18内を透過し、ロータ14によって反射されたのち出射角θo2aで透明リング18から出射され、マスク22を介して受光部本体21に入射される。ここで、上述したようにマスク22に形成されたピンホール22aは透明リング18の温度がTaの場合にその中心とレーザ光1の光軸が一致するようにその位置を設定されているため、レーザ光1aはほぼ100%ピンホール22aを通過し、受光部本体21において電気信号に変換される。 As shown in FIGS. 9 and 10, for example, when the temperature of the transparent ring 18 Ta (for example 25 ° C.), the laser beam 1 that is incident on the transparent ring 18 is emitted incident angle theta i2 from the light emitting unit 19 has a refractive The light passes through the transparent ring 18 at the angle θ n2a , is reflected by the rotor 14, is then emitted from the transparent ring 18 at the emission angle θ o2a , and is incident on the light receiving unit main body 21 through the mask 22. Here, as described above, the pinhole 22a formed in the mask 22 has its position set so that the center and the optical axis of the laser beam 1 coincide when the temperature of the transparent ring 18 is Ta. The laser beam 1a passes through almost 100% of the pinhole 22a and is converted into an electric signal in the light receiving unit main body 21.

一方、透明リング18の温度がTb(≠Ta、例えば75℃)のとき、透明リング18の屈折率nは透明リング18の温度に応じて変化するため、発光部から出射され入射角θi2で透明リング18に入射したレーザ光1は、透明リング18の温度がTaのときとは異なり、屈折角θn2bで透明リング18内を透過し、ロータ14によって反射された後、出射角θo2bで透明リング18から出射される。 On the other hand, the temperature Tb (≠ Ta, for example, 75 ° C.) of the transparent ring 18 when, for the refractive index n of the transparent ring 18 that varies depending on the temperature of the transparent rings 18, at an incident angle theta i2 emitted from the light emitting portion Unlike the case where the temperature of the transparent ring 18 is Ta, the laser beam 1 incident on the transparent ring 18 is transmitted through the transparent ring 18 at a refraction angle θ n2b , reflected by the rotor 14, and then at an emission angle θ o2b . The light is emitted from the transparent ring 18.

そのため、レーザ光1bの光軸はピンホール22aの中心に対してΔd2ずれることとなり、レーザ光1bの一部がマスク22によって遮蔽される。これにより、受光部本体21における受光量は透明リング18の温度がTaの場合に比較して減少し、演算処理部23に入力される電気信号が変化する。演算処理部23では入力された電気信号と予め求めた参照値とを比較して透明リング18の温度を求め、この透明リング18の温度からロータ14、さらには永久磁石16の温度を推定する。   Therefore, the optical axis of the laser beam 1b is shifted by Δd2 with respect to the center of the pinhole 22a, and a part of the laser beam 1b is shielded by the mask 22. As a result, the amount of light received by the light receiving unit main body 21 decreases as compared with the case where the temperature of the transparent ring 18 is Ta, and the electric signal input to the arithmetic processing unit 23 changes. The arithmetic processing unit 23 compares the input electrical signal with a previously obtained reference value to obtain the temperature of the transparent ring 18 and estimates the temperature of the rotor 14 and further the permanent magnet 16 from the temperature of the transparent ring 18.

このように、本実施例に係る電動機のロータ温度測定装置によれば、光を用いたセンシングでロータ14の温度を推定することができるため、ロータ14の温度を高精度に推定することができる。さらに、ロータ14に直接接触している透明リング18の温度に基づいてロータ14の温度を推定し、推定したロータ14の温度に基づいて永久磁石の温度を推定するため、簡素な構成で高精度に永久磁石16の温度を推定することができ、モータ1の性能及び効率を向上させることができる。   Thus, according to the rotor temperature measuring device for an electric motor according to the present embodiment, the temperature of the rotor 14 can be estimated by sensing using light, and therefore the temperature of the rotor 14 can be estimated with high accuracy. . Further, since the temperature of the rotor 14 is estimated based on the temperature of the transparent ring 18 that is in direct contact with the rotor 14, and the temperature of the permanent magnet is estimated based on the estimated temperature of the rotor 14, high accuracy with a simple configuration. In addition, the temperature of the permanent magnet 16 can be estimated, and the performance and efficiency of the motor 1 can be improved.

なお、ピンホールの形状は円形に限らず、レーザ光1が入射される位置に応じて受光部本体20に入射される受光量が変化するような形状であればよく、屈折率を導出することが可能な範囲で変更が可能であることはいうまでもない。   Note that the shape of the pinhole is not limited to a circle, and may be any shape that changes the amount of received light incident on the light receiving unit main body 20 according to the position where the laser beam 1 is incident, and the refractive index is derived. Needless to say, changes can be made to the extent possible.

本発明は、電動機のロータ温度測定装置に適用可能である。   The present invention is applicable to a rotor temperature measuring device for an electric motor.

本発明の実施例1に係る電動機のロータ温度測定装置の概略断面図である。It is a schematic sectional drawing of the rotor temperature measuring apparatus of the electric motor which concerns on Example 1 of this invention. 図1のX−X矢視断面図である。It is XX arrow sectional drawing of FIG. 本発明の実施例1に係る電動機のロータ温度測定装置における光路の変化の例を示す説明図である。It is explanatory drawing which shows the example of the change of the optical path in the rotor temperature measuring apparatus of the electric motor which concerns on Example 1 of this invention. 図4(a)は図3に示すC部拡大図、図4(b)は図3に示すD部拡大図、図4(c)は図3に示すE部拡大図である。4A is an enlarged view of a C portion shown in FIG. 3, FIG. 4B is an enlarged view of a D portion shown in FIG. 3, and FIG. 4C is an enlarged view of an E portion shown in FIG. 本発明の実施例1に係るマスクの例を示す正面図である。It is a front view which shows the example of the mask which concerns on Example 1 of this invention. 図6(a)は本発明の実施例1に係る発光部用マスクの例を示す正面図、図6(b)は本発明の実施例1に係る受光部用マスクの他の例を示す正面図である。FIG. 6A is a front view showing an example of a light-emitting portion mask according to Embodiment 1 of the present invention, and FIG. 6B is a front view showing another example of a light-receiving portion mask according to Embodiment 1 of the present invention. FIG. 図6に示す受光部用マスクに入射するレーザ光の例を示す説明図である。It is explanatory drawing which shows the example of the laser beam which injects into the mask for light-receiving parts shown in FIG. 本発明の実施例2に係る電動機のロータ温度測定装置の図1のX−X矢視断面図である。It is XX arrow sectional drawing of FIG. 1 of the rotor temperature measuring apparatus of the electric motor which concerns on Example 2 of this invention. 本発明の実施例2に係る電動機のロータ温度測定装置における光路の変化の例を示す説明図である。It is explanatory drawing which shows the example of the change of the optical path in the rotor temperature measuring apparatus of the electric motor which concerns on Example 2 of this invention. 図10(a)は図9に示すI部拡大図、図10(b)は図9に示すJ部拡大図、図10(c)は図9に示すK部拡大図、図10(d)は図9に示すL部拡大図である。10 (a) is an enlarged view of the I part shown in FIG. 9, FIG. 10 (b) is an enlarged view of the J part shown in FIG. 9, FIG. 10 (c) is an enlarged view of the K part shown in FIG. FIG. 10 is an enlarged view of a portion L shown in FIG. 9.

符号の説明Explanation of symbols

1 レーザ光(光軸)
1a レーザ光(低温時)
1b レーザ光(高温時)
11 モータフレーム
12 ベアリング
13 シャフト
14 ロータ
14a ロータ端部
15 ステータ
16 永久磁石
17 ステータコイル
18 透明リング
19 発光部
20 受光部
21 受光部本体
22,25 マスク
23 演算処理部
1 Laser beam (optical axis)
1a Laser light (at low temperature)
1b Laser light (at high temperature)
DESCRIPTION OF SYMBOLS 11 Motor frame 12 Bearing 13 Shaft 14 Rotor 14a Rotor end 15 Stator 16 Permanent magnet 17 Stator coil 18 Transparent ring 19 Light emitting part 20 Light receiving part 21 Light receiving part main body 22, 25 Mask 23 Arithmetic processing part

Claims (4)

電動機のロータの温度を測定する装置であって、
円筒状に形成されて前記ロータの端面に密着固定され、光を透過するとともに温度変化に応じて屈折率が変化する透光部材と、
前記透光部材の軸方向に直交するように且つ前記透光部材の外周面に所定の入射角で入射するようにレーザ光を出射する発光手段と、
前記透光部材を透過した前記レーザ光を受光するように配置され、前記レーザ光が入射する位置に応じて異なる電気信号を出力する受光手段と、
前記受光手段から出力される電気信号に基づいて前記ロータの温度を求める演算処理手段と
を備えることを特徴とする電動機のロータ温度測定装置。
A device for measuring the temperature of a rotor of an electric motor,
A light-transmitting member that is formed in a cylindrical shape and is closely fixed to the end face of the rotor, transmits light, and changes its refractive index in accordance with a temperature change;
A light emitting means for emitting laser light so as to be perpendicular to the axial direction of the light transmissive member and to be incident on the outer peripheral surface of the light transmissive member at a predetermined incident angle;
A light receiving means arranged to receive the laser light transmitted through the light transmissive member, and outputting different electrical signals depending on the position where the laser light is incident;
An apparatus for measuring a rotor temperature of an electric motor, comprising: arithmetic processing means for obtaining a temperature of the rotor based on an electric signal output from the light receiving means.
前記受光手段が、前記レーザ光の直径と同一の直径を有する穴が形成されたマスク部材を備え、該マスク部材が、前記透光部材が予め設定する所定の温度のときに前記穴の中心と前記レーザ光の光軸とが一致するように配置されていることを特徴とする請求項1記載の電動機のロータ温度測定装置。   The light receiving means includes a mask member in which a hole having the same diameter as the diameter of the laser beam is formed, and the mask member has a center of the hole when the light transmitting member has a predetermined temperature set in advance. The rotor temperature measuring device for an electric motor according to claim 1, wherein the rotor temperature measuring device is arranged so as to coincide with an optical axis of the laser beam. 前記発光手段及び前記受光手段は、前記レーザ光が二度の屈折を経て前記受光手段に入射するように相互の位置を設定されていることを特徴とする請求項1又は2記載の電動機のロータ温度測定装置。   The rotor of an electric motor according to claim 1 or 2, wherein the light emitting means and the light receiving means are mutually positioned so that the laser light enters the light receiving means after being refracted twice. Temperature measuring device. 前記発光手段及び前記受光手段は、前記レーザ光が二度の屈折及び前記シャフトによる一度の反射を経て前記受光手段に入射するように相互の位置を設定されていることを特徴とする請求項1又は2記載の電動機のロータ温度測定装置。   2. The position of the light emitting means and the light receiving means is set so that the laser light is incident on the light receiving means after being refracted twice and reflected once by the shaft. Or the rotor temperature measuring apparatus of the electric motor of 3.
JP2008191908A 2008-07-25 2008-07-25 Temperature-measuring device for rotor of electric motor Withdrawn JP2010035265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008191908A JP2010035265A (en) 2008-07-25 2008-07-25 Temperature-measuring device for rotor of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008191908A JP2010035265A (en) 2008-07-25 2008-07-25 Temperature-measuring device for rotor of electric motor

Publications (1)

Publication Number Publication Date
JP2010035265A true JP2010035265A (en) 2010-02-12

Family

ID=41739104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008191908A Withdrawn JP2010035265A (en) 2008-07-25 2008-07-25 Temperature-measuring device for rotor of electric motor

Country Status (1)

Country Link
JP (1) JP2010035265A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011140276A2 (en) * 2010-05-04 2011-11-10 Remy Technologies, Llc Electric machine component temperature monitoring
JP2011254581A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotating electric machine
US8269383B2 (en) 2010-06-08 2012-09-18 Remy Technologies, Llc Electric machine cooling system and method
DE102011108382A1 (en) * 2011-07-22 2013-01-24 Audi Ag Electric machine
US8395287B2 (en) 2010-10-04 2013-03-12 Remy Technologies, Llc Coolant channels for electric machine stator
US8446056B2 (en) 2010-09-29 2013-05-21 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8492952B2 (en) 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8497608B2 (en) 2011-01-28 2013-07-30 Remy Technologies, Llc Electric machine cooling system and method
US8508085B2 (en) 2010-10-04 2013-08-13 Remy Technologies, Llc Internal cooling of stator assembly in an electric machine
US8513840B2 (en) 2010-05-04 2013-08-20 Remy Technologies, Llc Electric machine cooling system and method
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8546982B2 (en) 2011-07-12 2013-10-01 Remy Technologies, Llc Electric machine module cooling system and method
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
US8624452B2 (en) 2011-04-18 2014-01-07 Remy Technologies, Llc Electric machine module cooling system and method
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
US8659190B2 (en) 2010-06-08 2014-02-25 Remy Technologies, Llc Electric machine cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
US8803381B2 (en) 2011-07-11 2014-08-12 Remy Technologies, Llc Electric machine with cooling pipe coiled around stator assembly
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method
WO2021166177A1 (en) * 2020-02-20 2021-08-26 三菱電機株式会社 Rotating electric machine and rotating electric machine system

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513840B2 (en) 2010-05-04 2013-08-20 Remy Technologies, Llc Electric machine cooling system and method
WO2011140276A3 (en) * 2010-05-04 2012-01-19 Remy Technologies, Llc Electric machine component temperature monitoring
WO2011140276A2 (en) * 2010-05-04 2011-11-10 Remy Technologies, Llc Electric machine component temperature monitoring
JP2011254581A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotating electric machine
US9054565B2 (en) 2010-06-04 2015-06-09 Remy Technologies, Llc Electric machine cooling system and method
US8269383B2 (en) 2010-06-08 2012-09-18 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8659190B2 (en) 2010-06-08 2014-02-25 Remy Technologies, Llc Electric machine cooling system and method
US8519581B2 (en) 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8482169B2 (en) 2010-06-14 2013-07-09 Remy Technologies, Llc Electric machine cooling system and method
US8614538B2 (en) 2010-06-14 2013-12-24 Remy Technologies, Llc Electric machine cooling system and method
US8446056B2 (en) 2010-09-29 2013-05-21 Remy Technologies, Llc Electric machine cooling system and method
US8593021B2 (en) 2010-10-04 2013-11-26 Remy Technologies, Llc Coolant drainage system and method for electric machines
US8508085B2 (en) 2010-10-04 2013-08-13 Remy Technologies, Llc Internal cooling of stator assembly in an electric machine
US8492952B2 (en) 2010-10-04 2013-07-23 Remy Technologies, Llc Coolant channels for electric machine stator
US8395287B2 (en) 2010-10-04 2013-03-12 Remy Technologies, Llc Coolant channels for electric machine stator
US8648506B2 (en) 2010-11-09 2014-02-11 Remy Technologies, Llc Rotor lamination cooling system and method
US8497608B2 (en) 2011-01-28 2013-07-30 Remy Technologies, Llc Electric machine cooling system and method
US8624452B2 (en) 2011-04-18 2014-01-07 Remy Technologies, Llc Electric machine module cooling system and method
US8692425B2 (en) 2011-05-10 2014-04-08 Remy Technologies, Llc Cooling combinations for electric machines
US8803380B2 (en) 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
US9041260B2 (en) 2011-07-08 2015-05-26 Remy Technologies, Llc Cooling system and method for an electronic machine
US8803381B2 (en) 2011-07-11 2014-08-12 Remy Technologies, Llc Electric machine with cooling pipe coiled around stator assembly
US8546982B2 (en) 2011-07-12 2013-10-01 Remy Technologies, Llc Electric machine module cooling system and method
DE102011108382A1 (en) * 2011-07-22 2013-01-24 Audi Ag Electric machine
US9048710B2 (en) 2011-08-29 2015-06-02 Remy Technologies, Llc Electric machine module cooling system and method
US8975792B2 (en) 2011-09-13 2015-03-10 Remy Technologies, Llc Electric machine module cooling system and method
US9099900B2 (en) 2011-12-06 2015-08-04 Remy Technologies, Llc Electric machine module cooling system and method
US9331543B2 (en) 2012-04-05 2016-05-03 Remy Technologies, Llc Electric machine module cooling system and method
US10069375B2 (en) 2012-05-02 2018-09-04 Borgwarner Inc. Electric machine module cooling system and method
WO2021166177A1 (en) * 2020-02-20 2021-08-26 三菱電機株式会社 Rotating electric machine and rotating electric machine system

Similar Documents

Publication Publication Date Title
JP2010035265A (en) Temperature-measuring device for rotor of electric motor
TWM506280U (en) Rotating optical range finder
JP2009294073A (en) Absolute encoder
JP6532061B2 (en) Optical measurement apparatus, optical measurement method and rotary machine
JP2010025766A (en) Fiber-optic current sensor, current measurement method and accident area detection device
JP2008249014A (en) Distortion detecting method and device for roller bearing rolling element
EP3067668B1 (en) Optical encoder unit and optical encoder
JP2008216019A (en) Torque sensor and electric power steering device
JP6266926B2 (en) Rotation angle measuring device
TWI774606B (en) Magnetic angle detector
JP5343592B2 (en) Encoder
TWI592680B (en) Rotating optical range finder
US8890513B2 (en) Device for measuring the angle of rotation of two objects rotating in relation to each other
JP2014522964A (en) Gas turbine with pyrometer
EP4040167A1 (en) Fabry-perot based speed sensor
KR101412927B1 (en) Method and Apparatus for Detecting Rotational Amount and Rotational Direction of Rotary Switch by Using Electromagnetic Induction
JP2006084292A (en) Rotor physical quantity measuring method, and rotor physical quantity measuring device
CN216308887U (en) Magnetic angle detector
JP2002535667A (en) Sensor and method for detecting a change in distance
JP2010230347A (en) Torque measuring device
KR20130130121A (en) Encoder
JP7149478B2 (en) Distance measuring device and its control method
KR101834939B1 (en) Non-contact light transmission type torque detector
FI125781B (en) Method and system for measuring magnetic fields formed by a current in a line
JP2011112380A (en) Encoder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004