JP2010007135A - Horizontal-type rotary kiln for sulfurizing and refining, and method for sulfurizing-refining copper-dross using the same - Google Patents

Horizontal-type rotary kiln for sulfurizing and refining, and method for sulfurizing-refining copper-dross using the same Download PDF

Info

Publication number
JP2010007135A
JP2010007135A JP2008168457A JP2008168457A JP2010007135A JP 2010007135 A JP2010007135 A JP 2010007135A JP 2008168457 A JP2008168457 A JP 2008168457A JP 2008168457 A JP2008168457 A JP 2008168457A JP 2010007135 A JP2010007135 A JP 2010007135A
Authority
JP
Japan
Prior art keywords
furnace
copper
horizontal rotary
oxygen
dross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008168457A
Other languages
Japanese (ja)
Inventor
Hiroshi Inoue
拓 井上
Kazuo Kudo
万雄 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008168457A priority Critical patent/JP2010007135A/en
Publication of JP2010007135A publication Critical patent/JP2010007135A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary kiln for sulfurizing and refining and a method for sulfurizing and refining copper dross using the kiln, with which while preventing local over-heat in the rotary kiln, melting time can be shortened. <P>SOLUTION: The rotary kiln for sulfurizing and refining for separating the copper from lead as copper-sulfide from copper dross includes: a high-pressure burner having a nozzle so as to blow generated flame into the kiln at a furnace nose; and an oxygen-blowing pipe for blowing pure oxygen, which has an opening part near the nozzle separately from the high pressure burner. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、銅と鉛を含む銅ドロスから、銅を硫化銅として分離する硫化精製工程に用いられる横型回転炉、および、これを用いた銅ドロスの硫化精製法に関する。   The present invention relates to a horizontal rotary furnace used in a sulfidation purification process for separating copper from copper dross containing copper and lead as copper sulfide, and a method for sulfidation purification of copper dross using the same.

鉛と亜鉛とを含む原料より、鉛と亜鉛とを同時に製錬して、鉛と亜鉛とを回収する方法として、ISP(Imperial Smelting Process)法がある。ISP法では、原料を酸化焙焼して得た焼鉱と、還元剤および熱源としてのコークスとを、交互に溶鉱炉に装入する。装入した焼鉱は、溶鉱炉内に吹き込まれた熱風によるコークス燃焼に伴って、加熱還元され、亜鉛が蒸気として炉ガスとともに上昇して、炉頂から約1000℃で鉛スプラッシュコンデンサに入る。   There is an ISP (Imperial Smelting Process) method as a method of simultaneously refining lead and zinc from a raw material containing lead and zinc and recovering lead and zinc. In the ISP method, sinter obtained by oxidizing and roasting raw materials and coke as a reducing agent and a heat source are alternately charged into a blast furnace. The charged sinter is heated and reduced with the coke combustion by the hot air blown into the blast furnace, and zinc rises with the furnace gas as steam and enters the lead splash condenser at about 1000 ° C. from the top of the furnace.

鉛スプラッシュコンデンサには、大量の溶融鉛が溜められており、撹拌機により多量の鉛スプラッシュが発生されている。ガスが、鉛スプラッシュコンデンサの中を通過する際、ガス中の亜鉛蒸気と鉛スプラッシュとが接触して、亜鉛蒸気は急冷凝縮され、鉛中に溶け込む。   A large amount of molten lead is stored in the lead splash condenser, and a large amount of lead splash is generated by the stirrer. When the gas passes through the lead splash condenser, the zinc vapor in the gas comes into contact with the lead splash, and the zinc vapor is rapidly condensed and dissolved in the lead.

その後、スプラッシュコンデンサの溶融鉛は、ポンプアップされ、冷却樋へ送り出され、相分離され、亜鉛は回収され、鉛はスプラッシュコンデンサに戻される。   Thereafter, the molten lead in the splash condenser is pumped up, sent to a cooling trough, phase separated, zinc is recovered, and lead is returned to the splash condenser.

一方、原料中の鉛は、溶鉱炉で溶融され、溶鉱炉の炉底よりスラグと共に粗鉛として前床に取り出され、分離される。   On the other hand, the lead in the raw material is melted in the blast furnace, taken out from the bottom of the blast furnace together with slag to the front floor as crude lead, and separated.

得られる粗鉛は、銅をはじめとして、金、銀などの有価物を含むため、たとえば、脱銅鍋に入れ、鉛を撹拌機により激しく撹拌して浮き上がってきたドロスを、その都度すくいとることによりスキミングして、銅ドロスと粗鉛とに分離する(特許文献1参照)。   Since the obtained crude lead contains valuable materials such as copper, gold, and silver, for example, put it in a copper removal pan and scoop up the dross that has been lifted by vigorously stirring the lead with a stirrer each time. And is separated into copper dross and crude lead (see Patent Document 1).

これは、溶融している粗鉛を冷却する過程において、銅およびその他の不純物を多く含む相の密度と、鉛の密度との差により分離が起こり、不純物を多く含む相が浮き上がって、ドロスを形成することを利用している。このようにして得られた粗鉛は、電解精製に供される。   This is because during the process of cooling the molten crude lead, separation occurs due to the difference between the density of the phase rich in copper and other impurities and the density of lead, and the phase rich in impurities rises, causing dross Take advantage of forming. The crude lead thus obtained is subjected to electrolytic purification.

一方、銅ドロスは、鉛を多く含むため、硫黄およびソーダ灰、鉄、粉コークスなどを添加し、反射炉、横型回転炉などを用いて、溶解し、銅を硫化銅として鉛と分離する硫化精製工程に供される。   On the other hand, since copper dross contains a lot of lead, sulfur and soda ash, iron, powdered coke, etc. are added and dissolved using a reflection furnace, horizontal rotary furnace, etc., and the sulfide is separated from copper as copper sulfide. It is used for the purification process.

横型回転炉には種々の構造のものがあるが(たとえば、特許文献2、特許文献3参照)、かかる硫化精製工程に用いられる横型回転炉も基本的には同様の構造である。具体的には、図2に示すように、横型回転炉1は、耐火材を内張りした円筒体からなる炉体2(たとえば、外径:3.3m、長さ4m)からなり、炉体2の一端側には、バーナ口および排気口を兼ねる炉口3が設けられている。また、炉体2の外周の一部に、出湯口(図示せず)が設けられている。炉体2は、図示しない支持ローラにより支持され、所定の回転速度で回転するようになっている。   There are various types of horizontal rotary furnaces (see, for example, Patent Document 2 and Patent Document 3), but the horizontal rotary furnace used in the sulfidation purification process basically has the same structure. Specifically, as shown in FIG. 2, the horizontal rotary furnace 1 includes a furnace body 2 (for example, an outer diameter: 3.3 m, a length of 4 m) made of a cylindrical body lined with a refractory material. A furnace port 3 that also serves as a burner port and an exhaust port is provided on one end side. Further, a hot water outlet (not shown) is provided on a part of the outer periphery of the furnace body 2. The furnace body 2 is supported by a support roller (not shown) and is rotated at a predetermined rotational speed.

炉口3には、炉体2の内部に向けて高圧バーナ4が配置されている。高圧バーナ4には、重油、ガスなどの燃料および図示しないファンにより二次燃焼に必要な量の二次空気も含めた空気が加圧されて供給され、高圧バーナ4により、火炎、燃料ガスおよび空気が炉内に吹き込まれる。   A high-pressure burner 4 is disposed at the furnace port 3 toward the inside of the furnace body 2. The high pressure burner 4 is supplied with fuel such as heavy oil and gas and air including secondary air in an amount necessary for secondary combustion by a fan (not shown), and is supplied by the high pressure burner 4 with flame, fuel gas and Air is blown into the furnace.

また、炉口3側には、該炉口3を覆うように入口が配された排煙道(図示せず)が設置されている。   Further, on the furnace port 3 side, a flue (not shown) having an inlet disposed so as to cover the furnace port 3 is installed.

このような横型回転炉1を利用した銅ドロスの硫化精製工程では、炉体2を回転させつつ、高圧バーナ4の火炎を炉内に吹込み、高圧バーナ4を通じて導入される火炎と燃料ガスと二次空気とにより、炉体レンガおよび炉内の銅ドロスを、均一に850℃〜900℃の範囲に維持している。そして、炉内の銅ドロスの溶解を促進し、銅ドロス中の銅を硫化銅とし、鉛を粗鉛として分離回収している。この間、排ガスは、開口部3から排煙道を通じて排出される。なお、得られた硫化銅は、通常、銅製錬工程で処理される。   In the copper dross sulfidation purification process using such a horizontal rotary furnace 1, the flame of the high pressure burner 4 is blown into the furnace while rotating the furnace body 2, and the flame and fuel gas introduced through the high pressure burner 4. With the secondary air, the furnace bricks and the copper dross in the furnace are uniformly maintained in the range of 850 ° C to 900 ° C. Then, melting of copper dross in the furnace is promoted, and copper in the copper dross is separated and recovered as copper sulfide and lead as crude lead. During this time, the exhaust gas is discharged from the opening 3 through the flue. In addition, the obtained copper sulfide is normally processed in a copper smelting process.

硫化精製工程では、円滑に炉内の内容物を加熱溶解し、炉体2の回転により内容物を撹桴して、内容物を均一に所定温度まで昇温することが重要である。   In the sulfidation purification step, it is important to heat and dissolve the contents in the furnace smoothly, stir the contents by rotation of the furnace body 2, and uniformly raise the contents to a predetermined temperature.

しかしながら、このような横型回転炉1を用いて銅ドロスを処理するため、炉内を所定温度に昇温するには、炉体放散熱、排ガス持去り顕熱のヒートロスにより、約10時間もの長い時間を要するという問題がある。   However, since copper dross is processed using such a horizontal rotary furnace 1, the temperature inside the furnace is increased to a predetermined temperature by about 10 hours due to heat loss of the furnace body radiated heat and exhaust gas removal sensible heat. There is a problem that it takes time.

このような問題を解消する手段として、高圧バーナに代わりに純酸素を供給する酸素バーナを使用することにより、排ガスの持ち去り顕熱を低減させることができる。   By using an oxygen burner that supplies pure oxygen instead of a high-pressure burner as a means for solving such a problem, exhaust gas can be carried away and sensible heat can be reduced.

しかしながら、高圧バーナ4に純酸素のみを供給して用いた場合、発生する火炎が1.5m程度の長さと短フレイム化するため、横型回転炉1の炉口3近辺が局所的に加熱され、これにより、炉体2のレンガ熔損が発生し、定期的な補修が必要となるため、却ってコストが嵩むという問題がある。また、かかる局所的な加熱による高融点酸化物の炉内居着きにより、炉体2の炉容積が減少し、結果として、銅ドロスの処理量が減少するという問題がある。
特開平4−224639号公報 特開2001−3122号公報 特開平7−70662号公報
However, when only pure oxygen is supplied to the high-pressure burner 4, the generated flame is shortened to a length of about 1.5 m and a short flame, so the vicinity of the furnace port 3 of the horizontal rotary furnace 1 is locally heated, Thereby, brick melting of the furnace body 2 occurs, and periodic repairs are necessary, which increases the cost. Moreover, the furnace volume of the furnace body 2 decreases due to the local heating of the high melting point oxide due to the local heating, and as a result, there is a problem that the amount of copper dross processed decreases.
Japanese Patent Laid-Open No. 4-224439 Japanese Patent Laid-Open No. 2001-3122 JP 7-70662 A

本発明の目的は、以上のような問題を解決すべく、横型回転炉の局所的な加熱を防止しつつ、溶解時間の短縮を図ることが可能な硫化精製用回転炉およびこれを用いた銅ドロスの硫化精製法を提供することにある。   An object of the present invention is to solve the above-described problems, and to prevent the local heating of the horizontal rotary furnace and to reduce the melting time, and to provide a sulfur furnace for refining purification and a copper using the same. It is to provide a dross sulfidation purification method.

本発明は、銅ドロスから銅を硫化銅として鉛と分離するための硫化精製用横型回転炉およびこれを用いた銅ドロスの硫化精製方法に係る。   The present invention relates to a horizontal rotary furnace for sulfidation purification for separating copper from copper dross as copper sulfide and lead and a method for sulfidation purification of copper dross using the same.

特に、本発明に係る硫化精製用横型回転炉は、一端に炉口を有する円筒形の炉体と、該炉口近傍にノズルが設けられ、該ノズルから炉内に向けて火炎と燃料ガスを吹き込む高圧バーナと、該高圧バーナとは分離して、前記ノズルの近傍に吹込み口を有し、該吹込み口から炉内に向けて純酸素を吹き込む酸素吹込み管とを備えることを特徴とする。   In particular, the horizontal rotary furnace for sulfidation purification according to the present invention is provided with a cylindrical furnace body having a furnace port at one end and a nozzle provided in the vicinity of the furnace port, and flame and fuel gas are directed from the nozzle into the furnace. A high-pressure burner to be blown, and a high-pressure burner separated from the high-pressure burner, having a blow-off port in the vicinity of the nozzle, and an oxygen blow-in tube for blowing pure oxygen from the blow-in port into the furnace. And

前記酸素吹込み管の向きおよび位置を調整可能に固定する構造をさらに備えることが好ましい。   It is preferable to further include a structure for fixing the orientation and position of the oxygen blowing tube in an adjustable manner.

また、前記酸素吹込み管の外周の全部または一部に保護管が設けられていることが好ましい。なお、該保護管は、ステンレス製であることが好ましい。   Moreover, it is preferable that a protective tube is provided on all or part of the outer periphery of the oxygen blowing tube. The protective tube is preferably made of stainless steel.

本発明に係る銅ドロスの硫化精製方法は、上記の硫化精製用横型回転炉を用い、少なくとも銅ドロスを溶解する間、炉内において前記燃料ガスの二次燃焼に必要な量の純酸素を前記酸素吹込み管により、前記高圧バーナのノズルの近傍に供給することを特徴とする。なお、この際、高圧バーナへの大気の供給量を低減させる。   A method for sulfidizing and purifying copper dross according to the present invention uses the horizontal rotary furnace for sulfidizing and refining at least the amount of pure oxygen necessary for secondary combustion of the fuel gas in the furnace while melting copper dross. It supplies to the vicinity of the nozzle of the said high pressure burner by the oxygen blowing pipe | tube. At this time, the amount of air supplied to the high-pressure burner is reduced.

本発明の硫化精製用横型回転炉により、銅ドロスの硫化精製工程において、銅ドロスを溶解する間、高圧バーナのノズル近傍に二次燃焼用として必要な量の純酸素が吹き込まれ、従来の高圧バーナを用いた横型回転炉と比較して、火炎温度を上昇させることができると同時に、二次空気量を削減することができる。よって、排ガス量を削減することができるため、排ガスの持ち去り顕熱を有意に減少させることができる。   With the horizontal rotary furnace for sulfidation purification of the present invention, in the sulfidation purification process of copper dross, while the copper dross is melted, pure oxygen in an amount necessary for secondary combustion is blown into the vicinity of the nozzle of the high pressure burner. Compared with a horizontal rotary furnace using a burner, the flame temperature can be raised, and at the same time, the amount of secondary air can be reduced. Therefore, since the amount of exhaust gas can be reduced, it is possible to significantly reduce the sensible heat that the exhaust gas is taken away.

一方、本発明に係る横型回転炉では、高圧バーナを用いているため、酸素バーナを用いた横型回転炉とは異なり短フレイム化が認められないため、炉体のレンガ溶損および炉容積の減少などを減少させることができる。   On the other hand, in the horizontal rotary furnace according to the present invention, since a high pressure burner is used, unlike the horizontal rotary furnace using an oxygen burner, shortening of the flame is not recognized. Etc. can be reduced.

この結果、回転炉の局所的な加熱による問題を回避しつつ、溶解時間の短縮を図ることができ、操業時間の短縮、銅ドロス処理量の増加、純酸素の使用による効果的な操業原単位削減、および、炉体のレンガ溶損による補修のための休止損失の低減が可能となる。   As a result, it is possible to shorten the melting time while avoiding problems due to local heating of the rotary furnace, shortening the operation time, increasing the amount of copper dross treatment, and effective operating unit by using pure oxygen It is possible to reduce the outage loss for repair and repair by melting the brick of the furnace body.

図面を参照して、本発明を説明する。図1は、本発明の横型回転炉の一実施態様を斜視図で示す。   The present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the horizontal rotary furnace of the present invention.

本発明の硫化精製用の横型回転炉1は、耐火レンガなどの耐火材を内張りした円筒体からなる炉体2からなり、炉体2の一端側には、バーナ口および排気口を兼ねる炉口3が設けられている。銅ドロスの硫化精製に用いられる横型回転炉1は、一般的に、外径3.3m、長さ4mで、鉄製の炉体を有する。   The horizontal rotary furnace 1 for sulfidation purification of the present invention comprises a furnace body 2 composed of a cylindrical body lined with a refractory material such as refractory bricks, and a furnace opening serving as a burner port and an exhaust port at one end side of the furnace body 2. 3 is provided. A horizontal rotary furnace 1 used for sulfidation purification of copper dross generally has an outer diameter of 3.3 m, a length of 4 m, and an iron furnace body.

従来と同様に、炉体2の外周部に図示しない出湯口が設けられ、また、図示しない支持ローラにより支持され、所定の回転速度で回転するようになっている。   As in the prior art, a hot water outlet (not shown) is provided on the outer periphery of the furnace body 2 and is supported by a support roller (not shown) so as to rotate at a predetermined rotational speed.

炉口3には、炉体2の内部に向けて高圧バーナ4が配置されている。高圧バーナ4には、重油、ガスなどの燃料および図示しないファンにより二次燃焼に必要な量の二次空気が加圧されて供給され、炉口3の近傍に設けられたノズルから、火炎、燃料ガスおよび二次空気が炉内に吹き込まれる。ただし、供給される空気については、バルブなどの調節機構により、その流量を制限することが可能となっている。   A high-pressure burner 4 is disposed at the furnace port 3 toward the inside of the furnace body 2. The high-pressure burner 4 is supplied with fuel such as heavy oil and gas and secondary air in an amount required for secondary combustion by a fan (not shown), and is supplied from a nozzle provided near the furnace port 3 from a flame, Fuel gas and secondary air are blown into the furnace. However, the flow rate of supplied air can be limited by an adjusting mechanism such as a valve.

また、炉口3側には、該炉口3を覆うように入口が配された排煙道(図示せず)が設置されている。   Further, on the furnace port 3 side, a flue (not shown) having an inlet disposed so as to cover the furnace port 3 is installed.

本発明の横型回転炉1では、高圧バーナ4とは分離して、高圧バーナ4のノズルの近傍に開口部を有する、純酸素を吹き込むための酸素吹込み管5を備えることを特徴とする。   The horizontal rotary furnace 1 of the present invention includes an oxygen blowing pipe 5 for blowing pure oxygen, which is separated from the high pressure burner 4 and has an opening in the vicinity of the nozzle of the high pressure burner 4.

この酸素吹込み管5は、ステンレス製の管材であり、供給側において、汎用の酸素ボンベ、酸素プラントなどの酸素供給源に接続される。ここで、「純酸素」とは、工業用酸素およびこれに準ずるものをいう。   The oxygen blowing pipe 5 is a stainless steel pipe, and is connected to an oxygen supply source such as a general-purpose oxygen cylinder or an oxygen plant on the supply side. Here, “pure oxygen” refers to industrial oxygen and the like.

この酸素吹込み管5は、図1に示すように、高圧バーナ4のノズルの近傍に設けられる。また、酸素吹込み管5の向きおよび位置を調整可能に固定する構造を備えることが好ましい。この構造としては、機械部品による取付け手段など、公知の技術のいずれでもよい。かかる構造により、酸素の吹込み角度および吹込み位置を任意に調整することができる。   This oxygen blowing pipe 5 is provided in the vicinity of the nozzle of the high-pressure burner 4 as shown in FIG. Moreover, it is preferable to provide a structure for fixing the orientation and position of the oxygen blowing tube 5 so as to be adjustable. This structure may be any known technique such as attachment means using mechanical parts. With this structure, the oxygen blowing angle and blowing position can be arbitrarily adjusted.

操業においては、少なくとも銅ドロスの溶解開始から完全に溶解するまでの間、高圧バーナ4から炉内への二次空気の供給量を低減させ、その代わりに、かかる酸素吹込み管5により、純酸素を供給する。   In operation, the amount of secondary air supplied from the high-pressure burner 4 to the furnace is reduced at least from the start of dissolution of the copper dross until it completely dissolves. Supply oxygen.

かかる酸素吹込み管5からの純酸素の吹込みにより、供給時における火炎温度の上昇が可能となる。また、高圧バーナから発生する火炎の長さを適切に調整することが可能となり、炉内における熱分布を均一にすることができる。よって、火炎の短フレイム化が抑制され、回転炉の炉口近辺の局所的な過熱による炉体のレンガ熔損を抑制することができる。   The injection of pure oxygen from the oxygen blowing pipe 5 makes it possible to increase the flame temperature during supply. In addition, the length of the flame generated from the high-pressure burner can be appropriately adjusted, and the heat distribution in the furnace can be made uniform. Therefore, the flame shortening can be suppressed and brick melting of the furnace body due to local overheating near the furnace port of the rotary furnace can be suppressed.

さらに、二次燃焼に必要とされる酸素量は、それに必要とされる二次空気としての大気の供給量より低減されるため、排ガス量が削減できる。よって、排ガスの持ち去り顕熱を減少させることが可能となる。   Furthermore, since the amount of oxygen required for secondary combustion is reduced from the supply amount of air as secondary air required for it, the amount of exhaust gas can be reduced. Therefore, it is possible to reduce the sensible heat by removing exhaust gas.

本発明の横型回転炉1においては、酸素吹込み管5の外周の全部または一部に、保護管6が設けられる。この保護管6は、酸素吹込み管5の損傷を防止するように機能する。保護管6の材質は、耐熱性および耐食性を考慮して、SUS等のステンレスや耐火物などが好ましい。   In the horizontal rotary furnace 1 of the present invention, a protective tube 6 is provided on all or part of the outer periphery of the oxygen blowing tube 5. The protective tube 6 functions to prevent damage to the oxygen blowing tube 5. The material of the protective tube 6 is preferably stainless steel such as SUS or refractory in consideration of heat resistance and corrosion resistance.

なお、酸素吹込み管5による酸素吹込み位置を高圧バーナ4の火炎近傍とするのは、横型回転炉1に保護管6を設ける際に、炉体2を貫通させる必要が生ずることを回避するためである。   Note that the oxygen blowing position by the oxygen blowing pipe 5 is set near the flame of the high-pressure burner 4 in order to avoid the necessity of penetrating the furnace body 2 when the protective pipe 6 is provided in the horizontal rotary furnace 1. Because.

また、銅ドロスを溶解する間、横型回転炉1を静止させておき、銅ドロスが溶解した後、横型回転炉1を回転させて、銅の硫化反応を促進させるような操業を行うことがあるため、酸素吹込み管5の先端を、炉本体の軸方向に伸長可能とするように、保護管の先端を、高圧バーナのノズルの近傍に位置させることが好ましい。このような操業を必要としない場合は、保護管の先端を任意の位置としてもよい。   Further, while the copper dross is melted, the horizontal rotary furnace 1 is kept stationary, and after the copper dross is melted, the horizontal rotary furnace 1 is rotated to perform an operation for promoting the copper sulfidation reaction. Therefore, it is preferable that the tip of the protective tube is positioned in the vicinity of the nozzle of the high-pressure burner so that the tip of the oxygen blowing tube 5 can be extended in the axial direction of the furnace body. When such an operation is not required, the tip of the protective tube may be set at an arbitrary position.

(実施例1)
本発明に係る横型回転炉を試験的に操業し、操業時間、銅ドロスの処理量、操業原単位および補修による休止損失の影響について調べた。
Example 1
The horizontal rotary furnace according to the present invention was operated on a trial basis, and the operation time, the amount of copper dross treated, the basic unit of operation, and the effect of the outage loss due to repair were investigated.

耐火レンガにより内張りされた炉体からなる横型回転炉(外径3.3m、長さ4m)の炉内に、銅ドロス9.5トンおよび溶剤を装入した。なお、溶剤の量は、銅ドロスの銅品位と、精製される硫化マット品位とにより調整され、本実施例では2.4トンとした。   Into a horizontal rotary furnace (outer diameter 3.3 m, length 4 m) made of a furnace body lined with refractory bricks, 9.5 tons of copper dross and a solvent were charged. The amount of the solvent was adjusted according to the copper quality of the copper dross and the quality of the sulfided mat to be refined, and was 2.4 tons in this example.

重油使用量が110〜140L/hrである高圧重油バーナで加熱する際に、酸素吹込み管の向きおよび位置を調整しつつ、昇温開始から銅ドロスが完全に溶解するまで、酸素吹込み管から、純酸素としてボンベ入りの工業用酸素を500リットル/分、導入した。なお、この間、高圧重油バーナに対する大気の供給量を低減させた。銅ドロスの完全な溶解は炉内検尺により確認した。昇温開始から銅ドロスの溶解までの時間は、3時間であった。   When heating with a high pressure heavy oil burner having a heavy oil consumption of 110 to 140 L / hr, the oxygen blowing pipe is adjusted until the copper dross is completely dissolved from the start of temperature rise while adjusting the direction and position of the oxygen blowing pipe. From this, 500 liters / minute of industrial oxygen in a cylinder was introduced as pure oxygen. During this period, the amount of air supplied to the high-pressure heavy oil burner was reduced. Complete dissolution of copper dross was confirmed by in-furnace scale. The time from the start of temperature increase to the dissolution of copper dross was 3 hours.

その後、工業用酸素の供給を停止すると共に、高圧重油バーナに、二次空気として空気ファンで昇圧した大気を供給して、高圧重油バーナによる加熱を継続し、炉内の銅を硫化銅とした。   After that, the supply of industrial oxygen was stopped, and the high-pressure heavy oil burner was supplied with air pressurized by an air fan as secondary air, and heating with the high-pressure heavy oil burner was continued, and the copper in the furnace was changed to copper sulfide. .

1回の操業に必要とされた時間は、昇温開始から硫化精製の終了までで10時間であった。この結果、硫化銅を4トン、および、粗鉛を5トン得た。   The time required for one operation was 10 hours from the start of temperature elevation to the end of the sulfurization purification. As a result, 4 tons of copper sulfide and 5 tons of crude lead were obtained.

以上の横型回転炉の操業を3ヶ月間続けたところ、本発明の横型回転炉を用いた方法では、二次空気として大気を用いる従来の場合と比較して、溶解時間の短縮により全体の操業時間を1時間程度短縮することができた。また、銅ドロスの月当たりの処理量は、従来方法より多い400トンであった。   When the operation of the horizontal rotary furnace described above was continued for 3 months, in the method using the horizontal rotary furnace of the present invention, the entire operation was achieved by shortening the melting time as compared with the conventional case using the atmosphere as secondary air. The time was reduced by about 1 hour. Moreover, the amount of copper dross processed per month was 400 tons, which is higher than that of the conventional method.

(比較例1)
高圧重油バーナの代わりに純酸素バーナを用いたこと以外は、実施例1と同様にして、3ヶ月間試験的に横型回転炉の操業を行った。
(Comparative Example 1)
The horizontal rotary furnace was experimentally operated for 3 months in the same manner as in Example 1 except that a pure oxygen burner was used instead of the high-pressure heavy oil burner.

実施例1と比較して、最大で溶解時間が2時間程度短縮されたが、局所的過熱が生じ、回転炉の炉体のレンガ溶損と高融点酸化物の炉内居着きにより、炉容積が減少し、装入可能な銅ドロスおよび溶剤の合計が7トン前後になった。このため、銅ドロスの月当りの処理量は350トンにまで減少した。   Compared with Example 1, the melting time was shortened by about 2 hours at the maximum, but local overheating occurred, and the furnace volume was reduced due to brick melting of the rotary furnace body and refractory oxide in the furnace. The total amount of copper dross and solvent that can be charged is about 7 tons. As a result, the monthly throughput of copper dross has been reduced to 350 tons.

これに対して、本発明の横型回転炉を用いた実施例1では、炉内における熱分布が均一となり、局所的過熱に伴う、高融点酸化物の炉内居着きが発生および炉容積の減少の発生が共に防止されることで、銅ドロスの処理量を向上させうることが理解される。   On the other hand, in Example 1 using the horizontal rotary furnace of the present invention, the heat distribution in the furnace becomes uniform, and refractory oxide deposition occurs in the furnace due to local overheating, and the furnace volume decreases. It is understood that the amount of copper dross treated can be improved by preventing both occurrences.

また、使用した純酸素の量は、純酸素バーナを使用した比較例1と比較して、約30%程度であった。これにより、操業原単位の削減も達成できることが理解される。さらには、炉体のレンガ溶損による補修による休止損失および補修費の削減も可能となることが理解される。   The amount of pure oxygen used was about 30% as compared with Comparative Example 1 using a pure oxygen burner. As a result, it is understood that a reduction in the basic unit of operation can also be achieved. Furthermore, it is understood that the outage loss and the repair cost can be reduced by repairing the furnace body due to the melted brick.

図1は、本発明の横型回転炉の一実施態様を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a horizontal rotary furnace of the present invention. 図2は、従来の横型回転炉の従来例を示す斜視図である。FIG. 2 is a perspective view showing a conventional example of a conventional horizontal rotary furnace.

符号の説明Explanation of symbols

1 横型回転炉
2 炉体
3 炉口
4 高圧バーナ
5 酸素吹込み管
6 保護管
DESCRIPTION OF SYMBOLS 1 Horizontal rotary furnace 2 Furnace body 3 Furnace port 4 High pressure burner 5 Oxygen blowing pipe 6 Protection pipe

Claims (5)

銅ドロスから銅を硫化銅として鉛と分離するための硫化精製用横型回転炉であって、
一端に炉口を有する円筒形の炉体と、該炉口近傍にノズルが設けられ、該ノズルから炉内に向けて火炎と燃料とを吹き込む高圧バーナと、該高圧バーナとは分離して、前記ノズルの近傍に吹込み口を有し、該吹込み口から炉内に向けて純酸素を吹き込む酸素吹込み管とを備える、硫化精製用横型回転炉。
A horizontal rotary furnace for sulfur purification for separating copper from copper dross as copper sulfide with lead,
A cylindrical furnace body having a furnace port at one end, a nozzle provided in the vicinity of the furnace port, a high pressure burner for blowing flame and fuel from the nozzle into the furnace, and the high pressure burner are separated from each other, A horizontal rotary furnace for sulfidation purification, comprising an injection port in the vicinity of the nozzle, and an oxygen injection pipe for injecting pure oxygen from the injection port into the furnace.
前記酸素吹込み管の向きおよび位置を調整可能に固定する構造を備える、請求項1に記載の硫化精製用横型回転炉。   The horizontal rotary furnace for sulfidation purification according to claim 1, comprising a structure for fixing the orientation and position of the oxygen blowing pipe in an adjustable manner. 前記酸素吹込み管の外周の全部または一部に保護管が設けられている、請求項1または2記載の硫化精製用横型回転炉。   The horizontal rotary furnace for sulfidation purification according to claim 1 or 2, wherein a protective tube is provided on all or part of the outer periphery of the oxygen blowing tube. 前記保護管がステンレス製である、請求項1〜3のいずれか一項に記載の硫化精製用横型回転炉。   The horizontal rotary furnace for sulfuration purification according to any one of claims 1 to 3, wherein the protective tube is made of stainless steel. 請求項1〜4のいずれか一項に記載の硫化精製用横型回転炉を用いた銅ドロスの硫化精製方法であって、
少なくとも銅ドロスを溶解する間、炉内に送られる二次空気に代えて、炉内において前記燃料ガスの二次燃焼に必要な量の純酸素を前記酸素吹込み管により、前記高圧バーナのノズルの近傍に供給する、銅ドロスの硫化精製方法。
A method for sulfidation purification of copper dross using the horizontal rotary furnace for sulfidation purification according to any one of claims 1 to 4,
At least during the melting of copper dross, instead of the secondary air sent into the furnace, pure oxygen in an amount necessary for secondary combustion of the fuel gas in the furnace is supplied to the nozzle of the high-pressure burner by the oxygen blowing pipe. To sulfidize copper dross to be supplied in the vicinity.
JP2008168457A 2008-06-27 2008-06-27 Horizontal-type rotary kiln for sulfurizing and refining, and method for sulfurizing-refining copper-dross using the same Pending JP2010007135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008168457A JP2010007135A (en) 2008-06-27 2008-06-27 Horizontal-type rotary kiln for sulfurizing and refining, and method for sulfurizing-refining copper-dross using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008168457A JP2010007135A (en) 2008-06-27 2008-06-27 Horizontal-type rotary kiln for sulfurizing and refining, and method for sulfurizing-refining copper-dross using the same

Publications (1)

Publication Number Publication Date
JP2010007135A true JP2010007135A (en) 2010-01-14

Family

ID=41587946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008168457A Pending JP2010007135A (en) 2008-06-27 2008-06-27 Horizontal-type rotary kiln for sulfurizing and refining, and method for sulfurizing-refining copper-dross using the same

Country Status (1)

Country Link
JP (1) JP2010007135A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263951A (en) * 2014-09-19 2015-01-07 河南金利金铅有限公司 Method for processing copper dross by using rotary furnace through pure oxygen side-blown bath smelting
CN104480300A (en) * 2014-11-20 2015-04-01 中南大学 Pellet production method based on prediction of compressive strength of pellets in rotary kiln

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198624A (en) * 1975-02-26 1976-08-31 Gandonamaridorosuno donamaribunrikaishuho
JPS5376920A (en) * 1977-04-28 1978-07-07 Mitsui Mining & Smelting Co Oxygen smelting method of lead dross in short rotary furnace
JPS62158144A (en) * 1985-12-27 1987-07-14 三菱製紙株式会社 Method and apparatus for collecting quick lime in lime kiln
JP2001003122A (en) * 1999-06-17 2001-01-09 Nippon Sanso Corp Method for melting metal
JP2001263632A (en) * 1999-09-15 2001-09-26 L'air Liquide Oxidant-driven recycling method and device for rotary kiln

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198624A (en) * 1975-02-26 1976-08-31 Gandonamaridorosuno donamaribunrikaishuho
JPS5376920A (en) * 1977-04-28 1978-07-07 Mitsui Mining & Smelting Co Oxygen smelting method of lead dross in short rotary furnace
JPS62158144A (en) * 1985-12-27 1987-07-14 三菱製紙株式会社 Method and apparatus for collecting quick lime in lime kiln
JP2001003122A (en) * 1999-06-17 2001-01-09 Nippon Sanso Corp Method for melting metal
JP2001263632A (en) * 1999-09-15 2001-09-26 L'air Liquide Oxidant-driven recycling method and device for rotary kiln

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104263951A (en) * 2014-09-19 2015-01-07 河南金利金铅有限公司 Method for processing copper dross by using rotary furnace through pure oxygen side-blown bath smelting
CN104480300A (en) * 2014-11-20 2015-04-01 中南大学 Pellet production method based on prediction of compressive strength of pellets in rotary kiln

Similar Documents

Publication Publication Date Title
AU2006232236B2 (en) Operation of iron oxide recovery furnace for energy savings, volatile metal removal and slag control
PL170853B1 (en) Method of obtaining sponge or pig iron
CN201273767Y (en) Multifunctional industrial furnace and continuous smelting system comprising the industrial furnace
CN101838741B (en) Lead skim reducing process
EP0493476A4 (en) Top submerged injection with a shrouded lance
JP6378683B2 (en) Plasma induced transpiration
EA026227B1 (en) Top submerged lancing
CN203976893U (en) Monobasic stove copper smelting device
JP2010007135A (en) Horizontal-type rotary kiln for sulfurizing and refining, and method for sulfurizing-refining copper-dross using the same
SU1128844A3 (en) Method of obtaining blister copper from copper ore
EP3237131B1 (en) Method of sealing and repairing a refractory tap hole
CN201581119U (en) Lead slag reducing furnace
AU2009351077B2 (en) Furnace for lead-slag reduction and process for lead-slag reduction
CN107849622B (en) Method for reducing iron oxide pellets by utilizing waste gas of smelting furnace
JP2005126732A (en) Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus
RU2295574C2 (en) Method of production of metal and plant for realization of this method
JP2000045008A (en) Production of reduced metal
CN204625746U (en) Adopt the device of winding-up shaft furnace production ferronickel water
RU2557187C2 (en) Gas crucible furnace
JP2010012409A (en) Heat treatment device/method
RU2576281C2 (en) Method and system for furnace skull removal
JP2009167469A (en) Method for treating copper-containing dross
RU2451753C2 (en) Oxygen blast steel converter
JP5723304B2 (en) How to operate the rotary kiln
JP2015190050A (en) Operation method of rotary kiln

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702