JP2010001764A - Divided ring cooling structure - Google Patents

Divided ring cooling structure Download PDF

Info

Publication number
JP2010001764A
JP2010001764A JP2008159480A JP2008159480A JP2010001764A JP 2010001764 A JP2010001764 A JP 2010001764A JP 2008159480 A JP2008159480 A JP 2008159480A JP 2008159480 A JP2008159480 A JP 2008159480A JP 2010001764 A JP2010001764 A JP 2010001764A
Authority
JP
Japan
Prior art keywords
cooling
air
ring
combustion gas
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008159480A
Other languages
Japanese (ja)
Other versions
JP5173621B2 (en
Inventor
Toshimichi Koyabu
豪通 小薮
Satoru Haneda
哲 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008159480A priority Critical patent/JP5173621B2/en
Publication of JP2010001764A publication Critical patent/JP2010001764A/en
Application granted granted Critical
Publication of JP5173621B2 publication Critical patent/JP5173621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a divided ring cooling structure of a gas turbine capable of minimizing the use amount of cooling air and of further increasing the cooling efficiency and cooling capacity of a divided ring. <P>SOLUTION: This divided ring cooling structure cools the divided ring of a gas turbine which comprises a plurality of divided bodies 11 arranged in the circumferential direction and formed in an annular shape and which is disposed in a cabin in such a manner that the inner peripheral surface thereof keeps a specified distance from the end of the moving blade 5 thereof. In the structure, a convection cooling flow passage 21 is formed to flow cooling air after impingement cooling along the upstream side end of the divided body 11 in the combustion gas flow direction, a restricted section 24 is formed at the outlet 23 of the convection cooling flow passage 21, and an air outlet hole 26 communicating with an impingement cooling space is formed at the side ends 14, 15 of the divided body 11 and the downstream side end 25 thereof in the combustion gas flow direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスタービンの分割環冷却構造に関する。   The present invention relates to a split ring cooling structure for a gas turbine.

従来、発電等に用いられるガスタービンは、タービン部を高温高圧の燃焼ガスが通過するため、安定した運転を継続するためには分割環等の冷却が重要となる。
分割環の冷却に関する従来技術としては、分割環の温度を抑えて高温酸化による欠損を防止するとともに、熱変形による分割環の歪みを低減するものが開示されている。(たとえば、特許文献1参照)
Conventionally, in a gas turbine used for power generation or the like, high-temperature and high-pressure combustion gas passes through a turbine portion, so cooling of a split ring or the like is important in order to continue stable operation.
As a conventional technique related to cooling of the split ring, there is disclosed a technique that suppresses the temperature of the split ring to prevent defects due to high-temperature oxidation and reduces distortion of the split ring due to thermal deformation. (For example, see Patent Document 1)

また、分割環端部の冷却穴について、曲げ部の箇所を少なくして鋳造時の作業性を良くする分割環の冷却穴構造が提案されている。(たとえば、特許文献2参照)
また、分割環の冷却効率を向上させるため、分割環とインピンジメント冷却板との間を周方向に延びる圧力隔板により軸方向で区画し、それぞれ異なる圧力に調整した複数のキャビティを設けた分割環の冷却構造が開示されている。(たとえば、特許文献3参照)
特開2004−100682号公報 特開平11−22411号公報 特開平11−247621号公報
Moreover, about the cooling hole of the division | segmentation ring edge part, the cooling hole structure of the division | segmentation ring which reduces the location of a bending part and improves workability | operativity at the time of casting is proposed. (For example, see Patent Document 2)
In addition, in order to improve the cooling efficiency of the split ring, the split is provided with a plurality of cavities that are divided in the axial direction by a pressure partition plate extending in the circumferential direction between the split ring and the impingement cooling plate and adjusted to different pressures, respectively. An annulus cooling structure is disclosed. (For example, see Patent Document 3)
JP 2004-1000068 A Japanese Patent Laid-Open No. 11-22411 Japanese Patent Laid-Open No. 11-247621

ところで、特許文献2及び3の分割環冷却構造では、インピンジメント冷却した後の冷却空気を利用し、一部の分割環端部についてのみ対流冷却を行うものであった。
また、特許文献1の分割環冷却構造は、分割環の四方に冷却通路を設けてインピンジメント冷却後の冷却空気を放出しているため、穴加工の加工数が多くなるという問題に加えて、冷却流路が長くなることにより出口部の冷却空気温度を上昇させ、十分な端部冷却を実施できないという問題を有している。特に、熱負荷が大きい燃焼ガス流れ方向の上流側端部においては、連結部があるためインピンジメント冷却を実施できないこともあり、冷却不足の問題はより顕著になる。
By the way, in the division | segmentation ring cooling structure of patent document 2 and 3, the cooling air after impingement cooling was utilized, and convection cooling was performed only about a part of division | segmentation ring ends.
In addition, the split ring cooling structure of Patent Document 1 provides cooling passages on four sides of the split ring to discharge the cooling air after impingement cooling, so that the number of drilling operations increases, Due to the length of the cooling channel, the cooling air temperature at the outlet is raised, and there is a problem that sufficient end cooling cannot be performed. In particular, at the upstream end portion in the combustion gas flow direction where the heat load is large, the impingement cooling cannot be performed because there is a connecting portion, and the problem of insufficient cooling becomes more prominent.

また、冷却空気量を増加して分割環等の冷却能力を向上させることも考えられるが、冷却空気量の増加分はタービン部を通過する燃焼ガス温度を低下させることとなる。従って、燃焼器から供給される燃焼ガス温度を高く設定しても、多量の冷却空気を使用して燃焼ガス温度が低下すれば、ガスタービンの運転効率向上が妨げられるため好ましくない。
近年においては、ガスタービンの効率向上を目指してタービン部に供給される燃焼ガス温度が上昇する傾向にあるため、分割環の熱的環境はますます厳しいものとなり、従来の分割環冷却構造では冷却不足が懸念される。従って、ガスタービンの安定した運転を継続するためには、分割環の冷却不足を解消し、分割環等の冷却効率及び冷却能力をより一層向上させることが望まれる。
Although it is conceivable to increase the cooling air amount to improve the cooling capacity of the split ring or the like, the increased amount of the cooling air amount lowers the temperature of the combustion gas passing through the turbine section. Therefore, even if the temperature of the combustion gas supplied from the combustor is set high, if the combustion gas temperature is lowered by using a large amount of cooling air, improvement in the operation efficiency of the gas turbine is hindered.
In recent years, the temperature of the combustion gas supplied to the turbine section tends to increase with the aim of improving the efficiency of gas turbines, so the thermal environment of the split ring becomes increasingly severe. There is concern about the shortage. Therefore, in order to continue the stable operation of the gas turbine, it is desired to eliminate the insufficient cooling of the split ring and further improve the cooling efficiency and cooling capacity of the split ring and the like.

このような背景から、ガスタービンの分割環冷却構造においては、冷却空気の使用量を最小限に抑えるとともに、分割環の冷却効率及び冷却能力をより一層向上させることが望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、冷却空気の使用量を最小限に抑えるとともに、分割環の冷却効率及び冷却能力をより一層向上させることができるガスタービンの分割環冷却構造を提供することにある。
From such a background, in the split ring cooling structure of a gas turbine, it is desired to minimize the amount of cooling air used and further improve the cooling efficiency and cooling capacity of the split ring.
The present invention has been made in view of the above circumstances, and its object is to minimize the amount of cooling air used and to further improve the cooling efficiency and cooling capacity of the split ring. An object of the present invention is to provide a split ring cooling structure for a gas turbine.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明による分割環冷却構造の第1の態様は、周方向に配設されて環状をなす複数の分割体からなり、内周面が動翼の先端から一定の距離を保つようにして車室内に配設されるガスタービンの分割環を冷却する分割環冷却構造において、前記分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、該対流冷却流路の出口に絞り部を設けるとともに、前記分割体の側端部及び燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The first aspect of the divided ring cooling structure according to the present invention is composed of a plurality of annularly arranged divided bodies arranged in the circumferential direction, and the inner circumferential surface keeps a certain distance from the tip of the moving blade. In the split ring cooling structure for cooling the split ring of the gas turbine disposed in the convection cooling channel, a convection cooling flow path for flowing cooling air after impingement cooling is formed along the upstream end of the split body in the combustion gas flow direction. In addition, a throttle portion is provided at the outlet of the convection cooling flow path, and an air outflow hole communicating with the impingement cooling space is provided at the side end portion of the divided body and the downstream end portion in the combustion gas flow direction. Is.

上述した本発明の第1の態様によれば、分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、該対流冷却流路の出口に絞り部を設けるとともに、分割体の側端部及び燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたので、インピンジメント冷却後の冷却空気は、絞り部により規定される冷却空気量が対流冷却流路を流れ、熱負荷の厳しい分割体の燃焼ガス流れ方向上流側端部を効率よく冷却することができる。このような対流冷却流路は、多数の冷却孔を穿設する構造と比較して、加工数を低減できる。
また、分割体の側端部及び燃焼ガス流れ方向下流側端部についても、インピンジメント冷却空間と連通する空気流出孔から流出するインピンジメント冷却後の冷却空気により冷却することができる。
According to the first aspect of the present invention described above, the convection cooling flow path for flowing the cooling air after impingement cooling is formed along the upstream end portion in the combustion gas flow direction of the divided body. A throttle part is provided at the outlet, and an air outlet hole communicating with the impingement cooling space is provided at the side end of the divided body and the downstream end in the combustion gas flow direction. The amount of cooling air defined by the above flows through the convection cooling flow path, and the upstream end portion in the combustion gas flow direction of the divided body with severe heat load can be efficiently cooled. Such a convection cooling channel can reduce the number of processing compared to a structure in which a large number of cooling holes are formed.
Further, the side end portion of the divided body and the downstream end portion in the combustion gas flow direction can also be cooled by the cooling air after impingement cooling flowing out from the air outflow hole communicating with the impingement cooling space.

本発明による分割環冷却構造の第2の態様は、周方向に配設されて環状をなす複数の分割体からなり、内周面が動翼の先端から一定の距離を保つようにして車室内に配設されるガスタービンの分割環を冷却する分割環冷却構造において、前記分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、該対流冷却流路の末端に空気流出孔を設けるとともに、前記分割体の側端部及び燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたことを特徴とするものである。   The second aspect of the split ring cooling structure according to the present invention is composed of a plurality of annularly arranged divided bodies arranged in the circumferential direction, and the inner peripheral surface is kept at a certain distance from the tip of the moving blade. In the split ring cooling structure for cooling the split ring of the gas turbine disposed in the convection cooling channel, a convection cooling flow path for flowing cooling air after impingement cooling is formed along the upstream end of the split body in the combustion gas flow direction. In addition, an air outflow hole is provided at the end of the convection cooling channel, and an air outflow hole communicating with the impingement cooling space is provided at the side end of the divided body and the downstream end of the combustion gas flow direction. To do.

上述した本発明の第2の態様によれば、分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、該対流冷却流路の末端に空気流出孔を設けるとともに、分割体の側端部及び燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたので、上述した第1の態様と同様の作用に加えて、対流冷却流路の末端に設けた空気流出孔から対流冷却後の冷却空気が燃焼ガス流中へ排出するので、前縁側端部の冷却が強化される。   According to the second aspect of the present invention described above, the convection cooling flow path for flowing the cooling air after impingement cooling is formed along the upstream end portion in the combustion gas flow direction of the divided body. Since the air outflow hole is provided at the end, and the air outflow hole communicating with the impingement cooling space is provided at the side end of the divided body and the downstream end of the combustion gas flow direction, the same action as the first aspect described above In addition, since the cooling air after the convection cooling is discharged into the combustion gas flow from the air outflow hole provided at the end of the convection cooling flow path, the cooling of the end portion on the leading edge side is enhanced.

本発明による分割環冷却構造の第3の態様は、周方向に配設されて環状をなす複数の分割体からなり、内周面が動翼の先端から一定の距離を保つようにして車室内に配設されるガスタービンの分割環を冷却する分割環冷却構造において、前記分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、前記分割体の側端部に前記対流冷却流路に連通する側部流路を形成し、分割体の側端部に前記側部流路に連通する空気流出孔を設けるとともに、燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたことを特徴とするものである。   The third aspect of the split ring cooling structure according to the present invention is composed of a plurality of annularly arranged divided bodies arranged in the circumferential direction, and the inner peripheral surface is kept at a certain distance from the tip of the moving blade. In the split ring cooling structure for cooling the split ring of the gas turbine disposed in the convection cooling channel, a convection cooling flow path for flowing cooling air after impingement cooling is formed along the upstream end of the split body in the combustion gas flow direction. A side flow path communicating with the convection cooling flow path is formed at a side end of the divided body, an air outflow hole communicating with the side flow path is provided at a side end of the divided body, and a combustion gas flow An air outflow hole communicating with the impingement cooling space is provided at the downstream end in the direction.

上述した本発明の第3の態様によれば、分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、分割体の側端部に対流冷却流路に連通する側部流路を形成し、分割体の側端部に側部流路に連通する空気流出孔を設けるとともに、燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたので、分割体の側端部に対流冷却流路に連通する側部流路を形成し、前記分割体の側端部に前記側部流路に連通する空気流出孔を設けているので、冷却空気の使い廻しが可能であり、冷却空気量の一層の低減が可能である。   According to the third aspect of the present invention described above, the convection cooling flow path for flowing the cooling air after impingement cooling is formed along the upstream end portion in the combustion gas flow direction of the divided body, and the side end portion of the divided body A side flow passage that communicates with the convection cooling flow passage, an air outflow hole that communicates with the side flow passage is provided at the side end of the divided body, and an impingement cooling space at the downstream end in the combustion gas flow direction. Since the air outflow hole communicating with the air is provided, a side channel communicating with the convection cooling channel is formed at the side end of the divided body, and the air communicating with the side channel is formed at the side end of the divided body. Since the outflow hole is provided, the cooling air can be reused, and the amount of cooling air can be further reduced.

上記の発明において、前記対流冷却流路は、前記分割体の動翼回転方向上流側でインピンジメントメント冷却空間に開口する入口から冷却空気を導入し、前記分割体の動翼回転方向下流側の側端部に開口する出口から流出させることが好ましく、これにより、対流冷却流路を通って出口から燃焼ガス流路へ流出する冷却空気の流れがスムーズになる。   In the above invention, the convection cooling flow path introduces cooling air from an inlet opening to the impingement cooling space on the upstream side in the rotor blade rotation direction of the divided body, and on the downstream side in the rotor blade rotation direction of the divided body. It is preferable to let it flow out from the outlet opening at the side end, so that the flow of cooling air flowing out from the outlet to the combustion gas flow path through the convection cooling flow path becomes smooth.

上記の発明において、分割体の側端部及び燃焼ガス流れ方向下流側端部に設けられる空気流出孔については、燃焼ガス流れ方向から傾斜していることが好ましく、これにより、冷却空気量の低減が可能になる。   In the above invention, the air outflow holes provided at the side ends of the divided bodies and the downstream end in the combustion gas flow direction are preferably inclined from the combustion gas flow direction, thereby reducing the amount of cooling air. Is possible.

上述した本発明によれば、冷却空気の使用量を最小限に抑えるとともに、分割環の冷却効率及び冷却能力をより一層向上させたガスタービンの分割環冷却構造を提供することができる。従って、冷却空気により低下するガスタービンの燃焼ガス温度を最小限に抑え、ガスタービンの信頼性や運転効率を向上させることができる。   According to the present invention described above, it is possible to provide a split ring cooling structure for a gas turbine in which the amount of cooling air used is minimized and the cooling efficiency and cooling capacity of the split ring are further improved. Therefore, the combustion gas temperature of the gas turbine that is lowered by the cooling air can be minimized, and the reliability and operating efficiency of the gas turbine can be improved.

以下、本発明に係る分割環冷却構造について、その一実施形態を図面に基づいて説明する。
図12に示すように、ガスタービン1は、燃焼用空気を圧縮する圧縮部(圧縮機)2と、この圧縮部2から送られてきた高圧空気中に燃料を噴射して燃焼させ、高温燃焼ガスを発生させる燃焼部(燃焼器)3と、この燃焼部3の下流側に位置し、燃焼部3を出た燃焼ガスにより駆動されるタービン部(タービン)4とを主たる要素とするものである。
Hereinafter, an embodiment of a split ring cooling structure according to the present invention will be described with reference to the drawings.
As shown in FIG. 12, the gas turbine 1 includes a compressor (compressor) 2 that compresses combustion air, and injects and burns fuel into the high-pressure air sent from the compressor 2 to perform high-temperature combustion. The main elements are a combustion section (combustor) 3 that generates gas and a turbine section (turbine) 4 that is located on the downstream side of the combustion section 3 and is driven by the combustion gas exiting the combustion section 3. is there.

図2は、本実施形態に係るガスタービン1の分割環冷却構造として、分割環10の要部断面図を示している。この分割環10は、たとえばニッケル合金から形成されている。
分割環10は、周方向に配設されて環状をなす複数の分割体11からなり、内周面11aが動翼5の先端5aから一定の距離を保つようにして、ガスタービン1の車室内に配設されるタービン部4の構成部材である。なお、図中の符号6は、タービン部4の静翼である。
FIG. 2 shows a cross-sectional view of the main part of the split ring 10 as the split ring cooling structure of the gas turbine 1 according to the present embodiment. The split ring 10 is made of, for example, a nickel alloy.
The split ring 10 includes a plurality of ring-shaped split bodies 11 that are arranged in the circumferential direction, and the inner peripheral surface 11a is kept at a constant distance from the tip 5a of the rotor blade 5 so that the vehicle interior of the gas turbine 1 is kept. It is a structural member of the turbine part 4 arrange | positioned. In addition, the code | symbol 6 in a figure is a stationary blade of the turbine part 4. FIG.

上述したガスタービン1において、分割環10と動翼5とが近接する領域、すなわち、図2に示す動翼5の先端5aに設定された翼長L(動翼前縁5bと動翼後縁5cとの間の幅)の領域は、高温の燃焼ガスが分割環10と動翼先端5aとの隙間を流れるため、特に分割体11の冷却を必要としている。   In the gas turbine 1 described above, the blade length L (the blade leading edge 5b and the blade trailing edge) set in the region where the split ring 10 and the blade 5 are close to each other, that is, the tip 5a of the blade 5 shown in FIG. In the region between 5c and 5c), since the high-temperature combustion gas flows through the gap between the split ring 10 and the rotor blade tip 5a, it is necessary to cool the split body 11 in particular.

分割体11は、高温ガスの上流側に設けられたフック12と、下流側に設けられたフック13とにより、遮熱環30に取り付けられている。この分割体11には、たとえば図1に示すように、燃焼ガス流れ方向の上流側及び下流側に設けられたフック12,13と、燃焼ガス流れ方向と略直交する動翼回転方向の上流側及び下流側に設けられた側端部14,15とにより囲まれたインピンジメント冷却面(以下、「冷却面」と呼ぶ)16が形成されている。この冷却面16は、動翼5の先端5aが所定の距離を保って回転する分割体11の内周面11aから見て裏面(外周面)側となり、表面積を増すため多数のディンプル17が形成されている。   The divided body 11 is attached to the heat shield ring 30 by a hook 12 provided on the upstream side of the high-temperature gas and a hook 13 provided on the downstream side. For example, as shown in FIG. 1, the divided body 11 includes hooks 12 and 13 provided on the upstream side and the downstream side in the combustion gas flow direction, and the upstream side in the rotor blade rotation direction substantially orthogonal to the combustion gas flow direction. Further, an impingement cooling surface (hereinafter referred to as “cooling surface”) 16 surrounded by side end portions 14 and 15 provided on the downstream side is formed. The cooling surface 16 is on the back surface (outer peripheral surface) side when viewed from the inner peripheral surface 11a of the divided body 11 where the tip 5a of the rotor blade 5 rotates at a predetermined distance, and a large number of dimples 17 are formed to increase the surface area. Has been.

上述した冷却面16の上方には、インピンジメント冷却空間(以下、「冷却空間」と呼ぶ)18を形成するようにしてインピンジメント板(以下、「遮蔽板」と呼ぶ)19が設置されている。この遮蔽板19には、インピンジメント冷却用の冷却空気を通す多数の小穴20が穿設されている。
遮蔽板19の上方には、遮熱環30により画成され、冷却空気供給流路32を通って供給されるインピンジメント冷却用の冷却空気を導入する冷却空気受入空間33が形成されている。この冷却空気受入空間33内に供給された冷却空気は、全体が略同一圧力に均圧された状態で小穴20から流出し、冷却面16をインピンジメント冷却する。
An impingement plate (hereinafter referred to as “shielding plate”) 19 is installed above the cooling surface 16 so as to form an impingement cooling space (hereinafter referred to as “cooling space”) 18. . A large number of small holes 20 through which cooling air for impingement cooling is passed are formed in the shielding plate 19.
Above the shielding plate 19, a cooling air receiving space 33 is formed which introduces cooling air for impingement cooling which is defined by the heat shielding ring 30 and is supplied through the cooling air supply flow path 32. The cooling air supplied into the cooling air receiving space 33 flows out from the small hole 20 in a state where the whole is equalized to substantially the same pressure, and impingement cools the cooling surface 16.

図3は、図1に示す分割環10の分割体11について、第1の実施形態を示す平面図である。なお、図4は図3のA−A断面図、図5は図3のB−B断面図である。
本実施形態の分割体11には、燃焼ガス流れ方向上流側端部に沿って対流冷却流路21が設けられている。この対流冷却流路21は、インピンジメント冷却後の冷却空気を図中の破線矢印Ca方向へ流す流路であり、分割体11の動翼回転方向上流側でインピンジメント冷却空間に開口する入口22から冷却空気を導入し、分割体11の動翼回転方向下流側の側端部14に開口する出口23から流出させるようになっている。
また、分割体11に形成された対流冷却流路21の出口23には、流路断面積を狭めた絞り部24が設けられている。
FIG. 3 is a plan view showing the first embodiment of the divided body 11 of the divided ring 10 shown in FIG. 4 is a cross-sectional view taken along the line AA in FIG. 3, and FIG. 5 is a cross-sectional view taken along the line BB in FIG.
In the divided body 11 of the present embodiment, a convection cooling flow path 21 is provided along the upstream end portion in the combustion gas flow direction. The convection cooling flow path 21 is a flow path for flowing the cooling air after impingement cooling in the direction of the broken line arrow Ca in the figure, and an inlet 22 that opens into the impingement cooling space on the upstream side in the moving blade rotation direction of the divided body 11. Then, cooling air is introduced from the outlet 23 and flows out from an outlet 23 that opens at the side end 14 of the divided body 11 on the downstream side in the rotor blade rotation direction.
A constricted portion 24 having a narrow channel cross-sectional area is provided at the outlet 23 of the convection cooling channel 21 formed in the divided body 11.

すなわち、対流冷却流路21は、分割体11の燃焼ガス流れ方向上流側端部において、フック12の内部に形成された中空部であり、この対流冷却流路21は、入口22が冷却空間18の動翼回転方向上流側に開口し、出口23が動翼回転方向下流側の側端部14に開口している。この場合の出口23は、対流冷却流路21に設けた絞り部24の出口と一致している。
このような対流冷却流路21とすれば、対流冷却流路21を通って出口23から静翼4及び動翼5間の燃焼ガス流路へ流出する冷却空気の流れは、燃焼ガスの流れに沿ってスムーズになる。
That is, the convection cooling channel 21 is a hollow portion formed inside the hook 12 at the upstream end portion of the divided body 11 in the combustion gas flow direction, and the convection cooling channel 21 has an inlet 22 in the cooling space 18. The outlet 23 opens to the side end portion 14 on the downstream side in the moving blade rotation direction. In this case, the outlet 23 coincides with the outlet of the throttle section 24 provided in the convection cooling channel 21.
With such a convection cooling flow path 21, the flow of cooling air flowing out from the outlet 23 to the combustion gas flow path between the stationary blade 4 and the moving blade 5 through the convection cooling flow path 21 becomes the flow of combustion gas. Smooth along.

分割体11の側端部14,15と、燃焼ガス流れ方向において下流側となる分割体11の下流側端部25には、冷却空間18と連通する空気流出孔26が所定のピッチで複数設けられている。以下の説明では、空気流出孔26を設置する位置により区別する場合、側端部14に設けた通路(流路)を空気流出孔26A、側端部15に設けた通路を空気流出孔26B、下流側端部25に設けた通路を空気流出孔26Rと呼ぶこととし、図中の符号Hが通路出口の開口となる。   A plurality of air outflow holes 26 communicating with the cooling space 18 are provided at a predetermined pitch in the side end portions 14 and 15 of the divided body 11 and the downstream end portion 25 of the divided body 11 which is downstream in the combustion gas flow direction. It has been. In the following description, when distinguishing by the position where the air outflow hole 26 is installed, the passage (flow path) provided in the side end portion 14 is the air outflow hole 26A, and the passage provided in the side end portion 15 is the air outflow hole 26B, The passage provided in the downstream end portion 25 is referred to as an air outflow hole 26R, and the symbol H in the figure is the passage outlet opening.

さて、図3に示す第1の実施形態では、側端部14,15に設けた空気流出孔26A,26Bが、いずれも動翼回転方向及び燃焼ガス流れ方向から傾斜している。すなわち、空気流出孔26Aは、燃焼ガス流れ方向から動翼回転方向上流側の方向へ傾斜して設けられ、空気流出孔26Bは、燃焼ガス流れ方向から動翼回転方向下流側の方向へ傾斜して設けられている。
また、下流側端部25に設けた空気流出孔26Rは、燃焼ガス流れ方向と平行に設けられている。
Now, in the first embodiment shown in FIG. 3, the air outflow holes 26A, 26B provided in the side end portions 14, 15 are both inclined from the rotating blade rotation direction and the combustion gas flow direction. That is, the air outflow hole 26A is inclined from the combustion gas flow direction to the upstream side in the rotor blade rotation direction, and the air outflow hole 26B is inclined from the combustion gas flow direction to the downstream side in the rotor blade rotation direction. Is provided.
Moreover, the air outflow hole 26R provided in the downstream end 25 is provided in parallel with the combustion gas flow direction.

上述した分割環冷却構造によれば、遮蔽板19の小穴20を通過した冷却空気が冷却面16に衝突することで、分割体11及び分割体11を構成要素とする分割環10のインピンジメント冷却が行われる。こうしてインピンジメント冷却に使用された冷却空気は、その一部が冷却空間18に開口する入口22から対流冷却流路21内へ流入する。この冷却空気は、対流冷却流路21内を流れて出口23から流出するが、この過程で分割体11の上流側端部領域を冷却する。
また、インピンジメント冷却に使用された冷却空気の残りは、すなわち、対流冷却流路21へ流入して上流側端部領域の冷却に使用された以外の冷却空気は、側端部14,15及び下流側端部25に設けた空気流出孔26から流出するので、分割体11の側端部14,15及び下流側端部25についても冷却することができる。
According to the split ring cooling structure described above, impingement cooling of the split ring 11 and the split ring 10 having the split body 11 as components is caused by the cooling air that has passed through the small holes 20 of the shielding plate 19 colliding with the cooling surface 16. Is done. A part of the cooling air thus used for impingement cooling flows into the convection cooling flow path 21 from the inlet 22 that opens to the cooling space 18. The cooling air flows through the convection cooling flow path 21 and flows out from the outlet 23. In this process, the upstream end region of the divided body 11 is cooled.
The rest of the cooling air used for impingement cooling, that is, the cooling air other than that used to cool the upstream end region after flowing into the convection cooling flow path 21 is the side ends 14, 15 and Since it flows out from the air outflow hole 26 provided in the downstream end 25, the side ends 14 and 15 and the downstream end 25 of the divided body 11 can also be cooled.

従来の分割環冷却構造において、冷却不足が懸念される分割体11の燃焼ガス流れ方向上流側の端部領域については、上流側端部に沿って設けられた対流冷却流路21をインピンジメント冷却後の冷却空気が流れて冷却するので、効率よく確実な冷却を行うことができる。このとき、対流冷却流路21の出口23に絞り部24が設けられているので、上流側端部領域と他の端部領域とに分配する冷却空気量を規定することができる。すなわち、インピンジメント冷却後の冷却空気は、絞り部24により規定される冷却空気量が対流冷却流路21を流れ、分割体11の燃焼ガス流れ方向上流側端部を効率よく冷却することができる。   In the conventional split ring cooling structure, impingement cooling is performed on the convection cooling channel 21 provided along the upstream end of the end region on the upstream side in the combustion gas flow direction of the split body 11 where there is a concern about insufficient cooling. Since subsequent cooling air flows and cools, efficient and reliable cooling can be performed. At this time, since the throttle part 24 is provided at the outlet 23 of the convection cooling channel 21, the amount of cooling air distributed to the upstream end region and the other end regions can be defined. That is, in the cooling air after impingement cooling, the amount of cooling air defined by the throttle portion 24 flows through the convection cooling flow path 21 and can efficiently cool the upstream end of the divided body 11 in the combustion gas flow direction. .

このような対流冷却流路21は、多数の冷却孔を穿設する従来構造と比較して、加工数を低減できるという利点がある。また、フック12が存在してインピンジメント冷却を実施できない領域では、長い冷却孔を通過して出口から流出する冷却空気の温度がかなり高い状態になっているので、冷却孔に冷却空気を流す冷却構造では冷却空気量を増やさないと冷却能力の確保が困難になる。しかし、上述した対流冷却流路21は、確実かつ効率よく冷却することができるので、冷却空気量を必要最小限に抑えることができる。なお、側端部15側の空気流出孔26Bは、図6に示すように、側端部自身の冷却の他に隣接する分割体11との間に形成されるシップラップ構造部を冷却する役割も果たす。
また、分割体11の側端部14,15及び下流側端部25に設けられる空気流出孔26についても、後述する変形例を含めて、燃焼ガス流れ方向から傾斜していることにより、冷却空気の有効利用が可能になるので、冷却空気量の低減が可能になる。
Such a convection cooling channel 21 has an advantage that the number of processing can be reduced as compared with the conventional structure in which a large number of cooling holes are formed. Further, in the region where the impingement cooling cannot be performed due to the presence of the hook 12, the temperature of the cooling air passing through the long cooling hole and flowing out from the outlet is considerably high. In the structure, it is difficult to secure the cooling capacity unless the amount of cooling air is increased. However, since the convection cooling channel 21 described above can be cooled reliably and efficiently, the amount of cooling air can be minimized. In addition, as shown in FIG. 6, the air outflow hole 26B on the side end 15 side serves to cool the ship wrap structure formed between the adjacent divided bodies 11 in addition to cooling the side end itself. Also fulfills.
In addition, the air outflow holes 26 provided in the side end portions 14 and 15 and the downstream end portion 25 of the divided body 11 are inclined from the direction of combustion gas flow, including the modifications described later, thereby cooling air. Therefore, the amount of cooling air can be reduced.

図6は、図1に示す分割環10の分割体11について、第2の実施形態を示す平面図である。
本実施形態の分割体11Aでは、前述した第1の実施形態に対して、対流冷却通路21の側端部14側に複数の空気流出孔26Cを設けた点が異なっている。この空気流出孔26Cは、上流側を対流冷却通路21に連通させ、かつ、下流側を燃焼ガス流に開口させることにより、側端部14の燃焼ガス流れ方向上流側となる端部近傍を冷却している。
空気流出孔26Cは、インピンジメント冷却面16に干渉しない範囲で、燃焼ガスの流れの側端部上流側から下流側へ向けて複数配置されており、図7には空気流出孔26Cの配置に関する一例が示されている(図6のD−D矢視図)。また、空気流出孔26Cの孔径を変えることにより、空気流出孔26Cから吹き出す冷却空気の流量を調整できるので、空気流出孔26Cは絞りの役割も果たしている。
FIG. 6 is a plan view showing a second embodiment of the divided body 11 of the divided ring 10 shown in FIG.
The divided body 11A of the present embodiment differs from the first embodiment described above in that a plurality of air outflow holes 26C are provided on the side end portion 14 side of the convection cooling passage 21. The air outflow hole 26C is connected to the convection cooling passage 21 on the upstream side and is opened to the combustion gas flow on the downstream side, thereby cooling the vicinity of the end portion of the side end portion 14 on the upstream side in the combustion gas flow direction. is doing.
A plurality of air outflow holes 26C are arranged from the upstream side toward the downstream side of the side end of the combustion gas flow within a range not interfering with the impingement cooling surface 16, and FIG. 7 relates to the arrangement of the air outflow holes 26C. An example is shown (DD view of FIG. 6). Further, since the flow rate of the cooling air blown out from the air outflow hole 26C can be adjusted by changing the diameter of the air outflow hole 26C, the air outflow hole 26C also serves as a throttle.

この実施形態によれば、前縁側端部の対流冷却が行われるとともに、対流冷却後の冷却空気により、従来構造では冷却不足が懸念されていた側端部14の上流側を冷却することができるので、冷却空気の使い廻しにより冷却空気量の低減をできる。   According to this embodiment, the convection cooling of the front edge side end portion is performed, and the upstream side of the side end portion 14 that is concerned about insufficient cooling in the conventional structure can be cooled by the cooling air after the convection cooling. Therefore, the amount of cooling air can be reduced by reusing the cooling air.

図8は、図1に示す分割環10の分割体11について、第3の実施形態を示す平面図である。
本実施形態の分割体11Bは、上述した第1の実施形態と下記の点で異なっている。すなわち、対流冷却通路21は、その中央近傍にインピンジメント冷却空間(冷却面16)から冷却空気を導入する入口22を備えている。対流冷却通路21の下流側には、分割体11Bの側端部14,15に配設された側部冷却通路27A,27Bが連通している。
そして、この側部冷却通路27A,27Bには、側端部14、15に連通するようにして、空気流出孔26D,26Eが設けられている。
また、側端部14、15に連通する空気流出孔26D、27Eは、端面14a、15aの開口Hが、図2に示す動翼5の翼長Lの範囲内に配置されていることが望ましい。
FIG. 8 is a plan view showing a third embodiment of the divided body 11 of the divided ring 10 shown in FIG.
The divided body 11B of this embodiment differs from the first embodiment described above in the following points. That is, the convection cooling passage 21 includes an inlet 22 for introducing cooling air from the impingement cooling space (cooling surface 16) in the vicinity of the center thereof. On the downstream side of the convection cooling passage 21, side cooling passages 27 </ b> A and 27 </ b> B arranged at the side end portions 14 and 15 of the divided body 11 </ b> B communicate with each other.
The side cooling passages 27A and 27B are provided with air outflow holes 26D and 26E so as to communicate with the side end portions 14 and 15, respectively.
In addition, the air outflow holes 26D and 27E communicating with the side end portions 14 and 15 are preferably arranged such that the opening H of the end surfaces 14a and 15a is within the range of the blade length L of the moving blade 5 shown in FIG. .

このように、対流冷却通路21に連通する側部冷却通路27A、27Bを設けて、側端部14,15に開口する空気流出孔26D、26Eを配設した構成とすれば、冷却空気の使い廻しが可能であるから、冷却空気量の低減を期待できる。また、空気流出孔26D,27Eの開口Hが動翼5における翼長Lの範囲内に配置されることにより、分割環10では、特に熱負荷の厳しい領域に対して有効な冷却を行うことができる。   As described above, when the side cooling passages 27A and 27B communicating with the convection cooling passage 21 are provided and the air outflow holes 26D and 26E opened in the side end portions 14 and 15 are provided, the use of the cooling air is performed. Since it can be rotated, a reduction in the amount of cooling air can be expected. Further, by arranging the opening H of the air outflow holes 26D and 27E within the range of the blade length L of the rotor blade 5, the split ring 10 can perform effective cooling particularly in a region where the heat load is severe. it can.

ところで、空気流出孔26については、上述した各実施形態に限定されることはなく、たとえば図10及び図11に基づいて以下に説明するような変形例が可能である。なお、上述した各実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
図10に示す第1変形例及び図11に示す第2変形例においては、側端部15の空気流出孔26Bを廃止するとともに、下流側端部25に設ける空気流出孔26R′を傾斜させている。これらの場合、側端部15の冷却については、たとえば図9(図3のC−C断面図)に示すように、隣接する分割体11とのシップラップ構造を採用しているので、隣接する分割体11の空気流出孔26Aから流出する冷却空気を利用できる。
By the way, about the air outflow hole 26, it is not limited to each embodiment mentioned above, For example, the modification as demonstrated below based on FIG.10 and FIG.11 is possible. In addition, the same code | symbol is attached | subjected to the part similar to each embodiment mentioned above, and the detailed description is abbreviate | omitted.
In the first modification shown in FIG. 10 and the second modification shown in FIG. 11, the air outflow hole 26B at the side end 15 is eliminated, and the air outflow hole 26R ′ provided at the downstream end 25 is inclined. Yes. In these cases, as shown in FIG. 9 (C-C cross-sectional view of FIG. 3), for example, the cooling of the side end portion 15 employs a ship wrap structure with the adjacent divided body 11, so that it is adjacent. Cooling air flowing out from the air outflow hole 26A of the divided body 11 can be used.

また、第1変形例と第2変形例とを比較すると、側端部14及び下流側端部25に設ける空気流出孔26の傾斜角度が異なっている。すなわち、第1変形例においては、空気流出孔26Aと空気流出孔26R′とが異なる傾斜角度になっているが、第2変形例においては、空気流出孔26A′と空気流出孔26R″とが同じ傾斜角度になっている。
この結果、第1変形例においては、下流側端部25に近い空気流出孔26A及び側端部14に近い空気流出孔26R′から流出する冷却空気の流れが互いに干渉し、流れに乱れを生じるのに対し、第2変形例ではこの問題が解消されている。
Further, when the first modification and the second modification are compared, the inclination angles of the air outflow holes 26 provided in the side end portion 14 and the downstream end portion 25 are different. That is, in the first modification, the air outflow hole 26A and the air outflow hole 26R ′ are inclined at different angles, but in the second modification, the air outflow hole 26A ′ and the air outflow hole 26R ″ are formed. The angle of inclination is the same.
As a result, in the first modification, the flow of the cooling air flowing out from the air outflow hole 26A close to the downstream end 25 and the air outflow hole 26R ′ close to the side end 14 interfere with each other, and the flow is disturbed. On the other hand, this problem is solved in the second modification.

このように、上述した本発明の分割環冷却構造によれば、冷却空気の使用量を最小限に抑えるとともに、分割体11及びこれを構成要素とする分割環10の冷却効率及び冷却能力をより一層向上させることができる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
As described above, according to the above-described split ring cooling structure of the present invention, the amount of cooling air used is minimized, and the cooling efficiency and cooling capacity of the split body 11 and the split ring 10 including the split body 11 are increased. This can be further improved.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明に係る分割環冷却構造の一実施形態を示す要部の斜視図である。It is a perspective view of an important section showing one embodiment of a division ring cooling structure concerning the present invention. 図1に示す分割環がガスタービンに組み付けられた状況を示す要部の断面図である。It is sectional drawing of the principal part which shows the condition where the split ring shown in FIG. 1 was assembled | attached to the gas turbine. 図1に示す分割体に係る第1の実施形態について、インピンジメント冷却面側から見た平面図である。It is the top view seen from the impingement cooling surface side about 1st Embodiment which concerns on the division body shown in FIG. 図3のA−A断面図である。It is AA sectional drawing of FIG. 図3のB−B矢視図である。It is a BB arrow line view of FIG. 図1に示す分割体に係る第2の実施形態について、インピンジメント冷却面側から見た平面図である。It is the top view seen from the impingement cooling surface side about 2nd Embodiment which concerns on the division body shown in FIG. 図6のD−D矢視図である。It is the DD arrow line view of FIG. 図1に示す分割体に係る第3の実施形態について、インピンジメント冷却面側から見た平面図である。It is the top view seen from the impingement cooling surface side about 3rd Embodiment which concerns on the division body shown in FIG. 図3のC−C断面図である。It is CC sectional drawing of FIG. 図3の分割体に係る第1変形例を示す平面図である。It is a top view which shows the 1st modification which concerns on the division body of FIG. 図3の分割体に係る第2変形例を示す平面図である。It is a top view which shows the 2nd modification which concerns on the division body of FIG. ガスタービンの概要を示す部分断面斜視図である。It is a partial section perspective view showing an outline of a gas turbine.

符号の説明Explanation of symbols

1 ガスタービン
10 分割環
11,11A,11B 分割体
12,13 フック
14,15 側端部
16 インピンジメント冷却面(冷却面)
17 ディンプル
18 インピンジメント冷却空間(冷却空間)
19 インピンジメント板(遮蔽板)
20 小穴
21 対流冷却流路
22 入口
23 出口
24 絞り部
25 下流側端部
26,26A,26B 空気流出孔
30 遮熱環
32 冷却空気供給流路
33 冷却空気受入空間
1 Gas Turbine 10 Split Ring 11, 11A, 11B Split Body 12, 13 Hook 14, 15 Side End 16 Impingement Cooling Surface (Cooling Surface)
17 Dimple 18 Impingement cooling space (cooling space)
19 Impingement plate (shield plate)
20 Small hole 21 Convection cooling flow path 22 Inlet 23 Outlet 24 Restriction part 25 Downstream end part 26, 26A, 26B Air outflow hole 30 Heat shield ring 32 Cooling air supply flow path 33 Cooling air receiving space

Claims (5)

周方向に配設されて環状をなす複数の分割体からなり、内周面が動翼の先端から一定の距離を保つようにして車室内に配設されるガスタービンの分割環を冷却する分割環冷却構造において、
前記分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、該対流冷却流路の出口に絞り部を設けるとともに、
前記分割体の側端部及び燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたことを特徴とする分割環冷却構造。
Divided to cool the ring ring of the gas turbine that is arranged in the vehicle interior so that the inner circumferential surface is kept at a certain distance from the tip of the rotor blade, and is composed of a plurality of annularly arranged divided bodies arranged in the circumferential direction In the ring cooling structure,
Forming a convection cooling flow path through which cooling air after impingement cooling flows along the upstream end portion in the combustion gas flow direction of the divided body, and providing a throttle at the outlet of the convection cooling flow path;
A split ring cooling structure characterized in that an air outflow hole communicating with the impingement cooling space is provided at a side end portion of the split body and a downstream end portion in the combustion gas flow direction.
周方向に配設されて環状をなす複数の分割体からなり、内周面が動翼の先端から一定の距離を保つようにして車室内に配設されるガスタービンの分割環を冷却する分割環冷却構造において、
前記分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、該対流冷却流路の末端に空気流出孔を設けるとともに、
前記分割体の側端部及び燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたことを特徴とする分割環冷却構造。
Divided to cool the ring ring of the gas turbine that is arranged in the vehicle interior so that the inner circumferential surface is kept at a certain distance from the tip of the rotor blade, and is composed of a plurality of annularly arranged divided bodies arranged in the circumferential direction In the ring cooling structure,
A convection cooling flow path for flowing cooling air after impingement cooling is formed along the upstream end portion in the combustion gas flow direction of the divided body, and an air outflow hole is provided at the end of the convection cooling flow path.
A split ring cooling structure characterized in that an air outflow hole communicating with the impingement cooling space is provided at a side end portion of the split body and a downstream end portion in the combustion gas flow direction.
周方向に配設されて環状をなす複数の分割体からなり、内周面が動翼の先端から一定の距離を保つようにして車室内に配設されるガスタービンの分割環を冷却する分割環冷却構造において、
前記分割体の燃焼ガス流れ方向上流側端部に沿ってインピンジメント冷却後の冷却空気を流す対流冷却流路を形成し、
前記分割体の側端部に前記対流冷却流路に連通する側部冷却流路を形成し、前記分割体の側端部に前記側部冷却流路に連通する空気流出孔を設けるとともに、
燃焼ガス流れ方向下流側端部にインピンジメント冷却空間と連通する空気流出孔を設けたことを特徴とする分割環冷却構造。
Divided to cool the ring ring of the gas turbine that is arranged in the vehicle interior so that the inner circumferential surface is kept at a certain distance from the tip of the rotor blade, and is composed of a plurality of annularly arranged divided bodies arranged in the circumferential direction In the ring cooling structure,
Forming a convection cooling flow path for flowing cooling air after impingement cooling along the upstream end portion in the combustion gas flow direction of the divided body;
Forming a side cooling channel communicating with the convection cooling channel at a side end of the divided body, and providing an air outflow hole communicating with the side cooling channel at a side end of the divided body;
A split ring cooling structure characterized in that an air outflow hole communicating with the impingement cooling space is provided at the downstream end portion in the combustion gas flow direction.
前記対流冷却流路は、前記分割体の動翼回転方向上流側でインピンジメント冷却空間に開口する入口から冷却空気を導入し、前記分割体の動翼回転方向下流側の側端部に開口する出口から流出させることを特徴とする請求項1または2に記載の分割環冷却構造。   The convection cooling channel introduces cooling air from an inlet opening into the impingement cooling space on the upstream side in the rotor blade rotation direction of the divided body, and opens at a side end portion on the downstream side in the rotor blade rotation direction of the divided body. The split ring cooling structure according to claim 1, wherein the split ring cooling structure is caused to flow out from an outlet. 前記空気流出孔が燃焼ガス流れ方向から傾斜していることを特徴とする請求項1から3のいずれかに記載の分割環冷却構造。
The split ring cooling structure according to any one of claims 1 to 3, wherein the air outflow hole is inclined from a combustion gas flow direction.
JP2008159480A 2008-06-18 2008-06-18 Split ring cooling structure Active JP5173621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159480A JP5173621B2 (en) 2008-06-18 2008-06-18 Split ring cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159480A JP5173621B2 (en) 2008-06-18 2008-06-18 Split ring cooling structure

Publications (2)

Publication Number Publication Date
JP2010001764A true JP2010001764A (en) 2010-01-07
JP5173621B2 JP5173621B2 (en) 2013-04-03

Family

ID=41583686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159480A Active JP5173621B2 (en) 2008-06-18 2008-06-18 Split ring cooling structure

Country Status (1)

Country Link
JP (1) JP5173621B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479385A3 (en) * 2011-01-25 2014-07-30 United Technologies Corporation Blade outer air seal assembly and support
WO2015146854A1 (en) * 2014-03-27 2015-10-01 三菱日立パワーシステムズ株式会社 Split ring cooling mechanism and gas turbine provided with same
KR20160031053A (en) * 2010-04-20 2016-03-21 미츠비시 쥬고교 가부시키가이샤 Segment body of ring segment for gas turbine
KR101623303B1 (en) 2015-03-13 2016-05-23 한국남부발전 주식회사 Blade ring segment for gas turbine
JP2018115654A (en) * 2016-11-04 2018-07-26 ゼネラル・エレクトリック・カンパニイ Transition manifold for cooling channel connection in cooled structure
EP3336316A4 (en) * 2015-08-11 2019-03-27 Mitsubishi Hitachi Power Systems, Ltd. Stationary blade and gas turbine provided with same
JP2019052650A (en) * 2019-01-10 2019-04-04 三菱日立パワーシステムズ株式会社 Cooling structure for split ring of gas turbine and gas turbine with the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993150A (en) * 1998-01-16 1999-11-30 General Electric Company Dual cooled shroud
JP2004100682A (en) * 2002-09-06 2004-04-02 Mitsubishi Heavy Ind Ltd Gas turbine divided ring
JP2007107516A (en) * 2005-10-11 2007-04-26 United Technol Corp <Utc> Turbine shroud section, turbine engine and method for cooling turbine shroud

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993150A (en) * 1998-01-16 1999-11-30 General Electric Company Dual cooled shroud
JP2004100682A (en) * 2002-09-06 2004-04-02 Mitsubishi Heavy Ind Ltd Gas turbine divided ring
JP2007107516A (en) * 2005-10-11 2007-04-26 United Technol Corp <Utc> Turbine shroud section, turbine engine and method for cooling turbine shroud

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722894B1 (en) * 2010-04-20 2017-04-05 미츠비시 쥬고교 가부시키가이샤 Segment body of ring segment for gas turbine
KR20160031053A (en) * 2010-04-20 2016-03-21 미츠비시 쥬고교 가부시키가이샤 Segment body of ring segment for gas turbine
US10077680B2 (en) 2011-01-25 2018-09-18 United Technologies Corporation Blade outer air seal assembly and support
EP2479385A3 (en) * 2011-01-25 2014-07-30 United Technologies Corporation Blade outer air seal assembly and support
KR101833662B1 (en) * 2014-03-27 2018-02-28 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Ring segment cooling structure and gas turbine having the same
CN106133295A (en) * 2014-03-27 2016-11-16 三菱日立电力系统株式会社 Split ring cooling structure and there is the gas turbine of this segmentation ring cooling structure
US20170138211A1 (en) * 2014-03-27 2017-05-18 Mitsubishi Hitachi Power Systems, Ltd. Ring segment cooling structure and gas turbine having the same
JP2015190354A (en) * 2014-03-27 2015-11-02 三菱日立パワーシステムズ株式会社 Cooling structure of split ring of gas turbine, and gas turbine having the same
CN106133295B (en) * 2014-03-27 2018-04-06 三菱日立电力系统株式会社 Split ring cooling structure and the gas turbine with the segmentation ring cooling structure
CN108278159A (en) * 2014-03-27 2018-07-13 三菱日立电力系统株式会社 Divide ring cooling structure and the gas turbine with the segmentation ring cooling structure
WO2015146854A1 (en) * 2014-03-27 2015-10-01 三菱日立パワーシステムズ株式会社 Split ring cooling mechanism and gas turbine provided with same
KR101623303B1 (en) 2015-03-13 2016-05-23 한국남부발전 주식회사 Blade ring segment for gas turbine
EP3336316A4 (en) * 2015-08-11 2019-03-27 Mitsubishi Hitachi Power Systems, Ltd. Stationary blade and gas turbine provided with same
US10641116B2 (en) 2015-08-11 2020-05-05 Mitsubishi Hitachi Power Systems, Ltd. Vane and gas turbine including the same
JP2018115654A (en) * 2016-11-04 2018-07-26 ゼネラル・エレクトリック・カンパニイ Transition manifold for cooling channel connection in cooled structure
JP7109901B2 (en) 2016-11-04 2022-08-01 ゼネラル・エレクトリック・カンパニイ Transition manifold for cooling channel connections of cooling structures
JP2019052650A (en) * 2019-01-10 2019-04-04 三菱日立パワーシステムズ株式会社 Cooling structure for split ring of gas turbine and gas turbine with the same

Also Published As

Publication number Publication date
JP5173621B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5173621B2 (en) Split ring cooling structure
EP2530279B1 (en) Split ring cooling structure and gas turbine
US8777559B2 (en) Cooling system of ring segment and gas turbine
US8057178B2 (en) Turbine bucket for a turbomachine and method of reducing bow wave effects at a turbine bucket
JP6466647B2 (en) Gas turbine split ring cooling structure and gas turbine having the same
JP5683573B2 (en) Split ring cooling structure and gas turbine
JP2008138667A (en) System to facilitate preferentially distributed recuperated film cooling of turbine shroud assembly
EP2896787B1 (en) Gas turbine
JP2007170810A (en) Combustor assembly for turbine engine and liner assembly for combustor assembly
JP2003286863A (en) Gas turbine combustor and cooling method of gas turbine combustor
EP2789799B1 (en) Turbine rotor blade, corresponding gas turbine and method for cooling a turbine rotor blade
JP2016173104A (en) System for cooling turbine shroud
JP2014020307A (en) Gas turbine
US7011492B2 (en) Turbine vane cooled by a reduced cooling air leak
JP5518235B2 (en) Split ring cooling structure and gas turbine
JP2013245676A (en) Turbine shroud cooling assembly for gas turbine system
JP5331743B2 (en) Gas turbine blade
JP2009013837A (en) Gas turbine facility
WO2018131142A1 (en) Transition piece
JP2008202419A (en) Steam turbine casing structure
JP2010084766A (en) Turbine nozzle for gas turbine engine
KR20210124423A (en) turbine blades and gas turbines
JP5222057B2 (en) Gas turbine hot section cooling system
JP2004316542A (en) Turbine nozzle cooling structure for gas turbine
JP2010216422A (en) Turbine blade

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121227

R151 Written notification of patent or utility model registration

Ref document number: 5173621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350