JP2009290628A - 固体撮像装置 - Google Patents

固体撮像装置

Info

Publication number
JP2009290628A
JP2009290628A JP2008141877A JP2008141877A JP2009290628A JP 2009290628 A JP2009290628 A JP 2009290628A JP 2008141877 A JP2008141877 A JP 2008141877A JP 2008141877 A JP2008141877 A JP 2008141877A JP 2009290628 A JP2009290628 A JP 2009290628A
Authority
JP
Japan
Prior art keywords
unit
sample
pixel
bias
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008141877A
Other languages
English (en)
Inventor
Seisuke Matsuda
成介 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2008141877A priority Critical patent/JP2009290628A/ja
Priority to US12/475,021 priority patent/US8659682B2/en
Publication of JP2009290628A publication Critical patent/JP2009290628A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 垂直信号線の出力レベルがバイアス電流用トランジスタの飽和動作領域を越えて低下した場合でも、白い横スジの発生を回避できるようにした固体撮像装置を提供する。
【解決手段】 光電変換手段と増幅手段とリセット手段とを有する画素セル1を行列方向に2次元的に配置した画素部2と、画素部の読み出し行を選択する垂直走査部3と、画素部から列単位で画素信号を出力する垂直信号線V1〜V3と、垂直信号線に接続され画素の増幅手段に流れる電流を設定するホールド容量C41〜C43を有するサンプルホールド型バイアス部9とを備え、サンプルホールド型バイアス部は、画素の信号電荷を増幅手段から読み出す際に、ホールド容量にホールドされた電圧に対応した電流を発生させるように構成する。
【選択図】 図2

Description

この発明は、固体撮像装置に係わり、特に増幅型MOSセンサを用いた固体撮像装置に関する。
近年、固体撮像素子として増幅型MOSセンサと呼ばれる固体撮像素子が、モバイル機器向けの低消費電力固体撮像装置や高解像度の電子スチルカメラに搭載されている。現在の増幅型MOSセンサを用いた固体撮像装置では、複数の画素セルを行列状に配列した画素エリアを行単位で選択し、各画素セルに含まれる増幅手段を介して光電荷を電圧信号に変換して読み出す手法が提案されている。このとき、各画素セルの増幅手段は列毎に設けられたバイアス手段によってバイアス電流が供給されるが、多画素化の進展によりバイアス手段が接続されるグランド配線の抵抗成分の影響が無視できなくなっている。例えば、強い光が入射した画素セルでは、画素セルの出力レベルが大幅に低下し、バイアス手段の正常動作範囲を超えるためバイアス電流が流れなくなる。このバイアス手段の電流変動がグランド配線に生じる抵抗成分を介して、同一行にある他の画素セルのバイアス電流を増加させる。このバイアス電流変動により、強い光が入射した画素セルを含む画素行では白い横スジ状の画像となる。
この白い横スジを低減するための各種手法が提案されている。図12は、特開2001−230974号公報開示の固体撮像装置の構成を示す回路構成図であり、こうした白い横スジを低減させる固体撮像装置の一例である。この固体撮像装置は、画素セル1(Pixel11〜Pixel33)が行方向及び列方向に2次元的(ここでは3行3列)に配置された画素部2と、画素部2の読み出し行を選択する垂直走査部3と、画素部2から列単位で画素信号を出力する垂直信号線V1〜V3と、垂直信号線V1〜V3を介して画素セル1の増幅手段に電流を供給するバイアス電流部4と、垂直信号線V1〜V3の電位をクリップさせ、バイアス電流部4が正常動作範囲となるように制限させるクリップ部5とから構成される。
画素セル1は、Pixel11を代表として説明すると、光電変換部であるフォトダイオードPD11と、フォトダイオードPD11に蓄積した電荷を電圧に変換するフローティングディフュージョンFD11と、フローティングディフュージョンFD11を画素電源電圧VDDにリセットするリセットトランジスタM211 と、蓄積した電荷信号を増幅する増幅トランジスタM311 と、各行を選択するための行選択トランジスタM411 とから成る。画素部2は、ここでは画素セル1を3行3列に並べて構成されている。垂直走査部3は、リセットトランジスタM211 〜M233 の動作を制御するリセット制御信号φRS1〜φRS3と、行選択トランジスタM411 〜M433 の動作を制御する行選択制御信号φSEL1〜φSEL3とを出力する。
バイアス電流部4は、ドレインが垂直信号線V1〜V3に接続され、ゲートが基準電流Iref を印加したゲートとドレインを接続したバイアス電流設定用入力トランジスタM40のゲートに接続され、ソースがグランドラインに接続されたバイアス電流用トランジスタM41〜M43から構成され、垂直走査部3で選択された選択行の増幅トランジスタにバイアス電流Ibiasを供給する。クリップ部5は、ゲートがクリップ電圧入力端子Vclipに接続されているクリップ用トランジスタM51〜M53と、ゲートがクリップ制御信号φclipに接続されたクリップ選択トランジスタM54〜M56から構成され、垂直信号線V1〜V3の電位がクリップ電圧入力端子Vclipに対応する出力レベル未満にならないようにする。
次に、図12に示した固体撮像装置の動作を説明する。ここでは、垂直走査部3により画素部2の上から1行目が選択され、画素Pixel11とPixel31には光が殆ど入射せず、画素Pixel21に強い光が入射したとする。ここで、画素Pixel11とPixel31は、ほぼ同じ状態なので、画素Pixel11とPixel21の動作のみを説明する。まず、フォトダイオードPD11とPD21に光が入射されると、フォトダイオードPD11とPD21には光電荷が蓄積される。垂直走査部3により上から1行目が選択されているので、行選択信号φSEL1=Hとなり、選択トランジスタM411 とM421 がオンし、増幅トランジスタM311 と垂直信号線V1 及び増幅トランジスタM321 と垂直信号線V2が接続され、1行目の画素信号が読み出される。また、クリップ部5のクリップ制御信号φclip=Hにより、クリップ選択トランジスタM54〜M56もオンし、クリップ用トランジスタM51が垂直信号線V1と、クリップ用トランジスタM52が垂直信号線V2に接続される。
ここで、増幅トランジスタM311 とクリップ用トランジスタM51及び増幅トランジスタM321 とクリップ用トランジスタM52は、ソースが共通に接続された差動入力構成となっている。ここで、画素Pixel11に光が殆ど入射せず、増幅トランジスタM311 のゲート電位であるフローティングディフュージョンFD11の光信号電位Vsig(FD11)が、クリップ用トランジスタM51のゲート電位であるクリップ電圧入力端子Vclipより高いときは、クリップ用トランジスタM51がオフし、垂直信号線V1にはフローティングディフュージョンFD11の光信号電位Vsig(FD11)に対応した出力レベルが得られる。このとき、垂直信号線V1はバイアス電流用トランジスタM41が飽和領域で動作する出力レベルである。
一方、画素Pixel21に強い光が入射し、増幅トランジスタM321 のゲート電位であるフローティングディフュージョンFD21の光信号電位Vsig(FD21)が、クリップ用トランジスタM52のゲート電位であるクリップ電圧入力端子Vclipより低い場合、増幅トランジスタM321 がオフし、垂直信号線V2はクリップ用トランジスタM52のゲートに印加されるクリップ電圧入力端子Vclipに対応した出力レベルとなり、Vclip−VGS(M52)未満には低下しない。ここで、クリップ電圧入力端子Vclipを適切な値に設定すれば、バイアス電流用トランジスタM42は常に飽和領域で動作し、バイアス電流Ibiasが一定となる。
以上のように、画素Pixel21に強い光が入射しても、垂直信号線V2はクリップ電圧入力端子Vclipに対応した出力レベル未満にならないため、バイアス電流用トランジスタM42の出力電流Ibiasの変動を抑えられ、白い横スジが発生しない。
特開2001−230974号公報
しかしながら、図12に示す従来提案されている固体撮像装置では、垂直信号線V2の最低出力レベルはバイアス電流用トランジスタM42の飽和領域での動作を確保するために 0.3V程度必要であり、画素信号の最大値まで利用することができなかった。加えて、画素電源電圧VDDを低減した場合、利用できない画素信号レベルが増え、画素電源電圧VDDの低電圧化に対して十分な考慮がなされていない。
本発明は、従来の固体撮像装置における上記問題点を解消するためになされたもので、垂直信号線の出力レベルがバイアス電流用トランジスタの飽和動作領域を超えて低下した場合でも、白い横スジの発生を回避できるようにした固体撮像装置を提供することを目的とする。
上記問題を解決するため請求項1に係る発明は、光電変換手段と光電変換手段の信号電荷を増幅して画素信号を出力する増幅手段と、増幅手段に蓄積された信号電荷をリセットするリセット手段とを含んだ画素を行方向及び列方向に2次元的に配置した画素部と、画素部の読み出し行を選択する垂直走査部と、画素部からの信号を出力する列単位に設けられている垂直信号線と、垂直信号線に接続され増幅手段に流れる電流を設定する少なくともホールド手段を含むサンプルホールド型バイアス部とを備え、前記サンプルホールド型バイアス部は、光電変換手段に蓄積された信号電荷を増幅手段からから読み出す際に、前記ホールド手段に設定された電圧に対応した電流を発生させるようにして固体撮像装置を構成するものである。
請求項2に係る発明は、請求項1に係る固体撮像装置において、前記サンプルホールド型バイアス部の前記ホールド手段は、容量手段を有していることを特徴とするものである。
請求項3に係る発明は、請求項1に係る固体撮像装置において、前記サンプルホールド型バイアス部が、第1の基準電圧と、該第1の基準電圧に第1の端子が接続されたサンプル手段と、前記サンプル手段の第2の端子と第1の端子が接続された前記容量手段と、前記容量手段の第1の端子にゲートが接続されソースが第2の基準電圧に接続されドレインがバイアス電流出力端子となるトランジスタとを備え、前記容量手段の第2の端子が前記トランジスタのソース又は前記第2の基準電圧に接続され、前記光電変換手段に蓄積された信号電荷を前記増幅手段からから読み出す際に、前記容量手段の第1と第2の端子間の電位差に応じて、前記トランジスタのドレイン電流が決定されることを特徴とするものである。
請求項4に係る発明は、請求項2に係る固体撮像装置において、前記サンプルホールド型バイアス部は、第1の基準電圧と、該第1の基準電圧に第1の端子が接続されたサンプル手段と、前記サンプル手段の第2の端子と第1の端子が接続された前記容量手段と、前記容量手段の第1の端子にゲートが接続されソースが抵抗手段を介して第2の基準電圧に接続されドレインがバイアス電流出力端子となるトランジスタとを備え、前記容量手段の第2の端子が抵抗手段と第2の基準電圧の接続点の近くに接続され、前記光電変換手段に蓄積された信号電荷を増幅手段からから読み出す際に、前記容量手段の第1と第2の端子間の電位差に応じて、前記トランジスタのドレイン電流が決定されることを特徴とするものである。
請求項5に係る発明は、請求項3又は4に係る固体撮像装置において、前記サンプルホールド型バイアス部は、前記サンプル手段による前記第1の基準電圧と前記容量手段を接続するサンプル動作を、読み出し行の変更の都度行うことを特徴とするものである。
請求項6に係る発明は、請求項3〜5のいずれか1項に係る固体撮像装置において、前記サンプルホールド型バイアス部は、前記増幅手段に入力される信号電荷のリセット終了後に、前記サンプル手段による前記第1の基準電圧と前記容量手段を接続するサンプル動作を終えることを特徴とするものである。
請求項7に係る発明は、請求項3又は4に係る固体撮像装置において、前記サンプルホールド型バイアス部は、前記サンプル手段による前記第1の基準電圧と前記容量手段を接続するサンプル動作を、複数行の読み出し動作が終了した場合に行うことを特徴とするものである。
請求項1及び2に係る発明によれば、画素に強い光が入射することで特定の画素列に接続された垂直信号線が大幅に低下しても、他の画素列が影響を受けることがないので、白い横スジの発生を抑圧できる。請求項3に係る発明によれば、画素に強い光が入射することで特定の画素列に接続された垂直信号線が大幅に低下しても、他の画素列が影響を受けることがないので、白い横スジの発生を抑圧でき、加えて、簡単な回路構成で実現できる。請求項4及び5に係る発明によれば、画素に強い光が入射することで特定の画素列に接続された垂直信号線が大幅に低下しても、他の画素列が影響を受けることがないので、白い横スジの発生を抑圧でき、加えて、多くの回路構成で実現できる。請求項6に係る発明によれば、画素に強い光が入射することで特定の画素列に接続された垂直信号線が大幅に低下しても、他の画素列が影響を受けることがないので、白い横スジの発生を抑圧でき、加えて、増幅手段の入力電位を昇圧することができるので、画素電源電圧の低電圧化を行うことができる。請求項7に係る発明によれば、画素に強い光が入射することで特定の画素列に接続された垂直信号線が大幅に低下しても、他の画素列が影響を受けることがないので、白い横スジの発生を抑圧でき、加えて、複数行に渡って等しいバイアス電流で画素信号を読み出すことができるので、画素信号のバラツキを抑えることができる。
次に、本発明を実施するための最良の形態について説明する。
(実施例1)
まず、本発明に係る増幅型MOSセンサを用いた固体撮像装置の実施例1について、図面を参照しながら説明する。図1は、実施例1に係る増幅型MOSセンサを用いた固体撮像装置の概略構成を示すブロック図である。この実施例に係る固体撮像装置は、画素セル1が行方向及び列方向に2次元的に配置した画素部2と、画素部2の読み出し行を選択する垂直走査部3と、画素部2から列単位で画素信号を出力する垂直信号線V1〜Vnと、垂直信号線V1〜Vnに接続し画素部2にバイアス電流を供給するサンプルホールド型バイアス部9と、垂直信号線V1〜Vnに出力された画素信号のノイズを抑圧するノイズ抑圧部6と、ノイズ抑圧部6の読み出し列を選択する水平走査部7と、ノイズ抑圧部6の信号を出力する水平信号線8と、垂直走査部3,サンプルホールド型バイアス部9,ノイズ抑圧部6,及び水平走査部7を制御する制御部12とから構成されている。
図2は、図1のブロック図について、画素部2と垂直走査部3とサンプルホールド型バイアス部9と垂直信号線V1〜V3の具体的な構成を示す回路構成図である。図12に示した従来例と同じ構成要素については、同一の符号を付して示している。図2に示す回路構成部分は、画素セル1が行方向及び列方向に3行×3列配置した画素部2と、画素部2の読み出し行を選択する垂直走査部3と、画素部2から列単位で画素信号を出力する垂直信号線V1〜V3と、垂直信号線V1〜V3に接続し画素部2にバイアス電流を供給するサンプルホールド型バイアス部9とから構成される。
画素セル1と画素部2及び垂直走査部3の構成は、図12に示した従来例と同じ構成なので説明を省略する。サンプルホールド型バイアス部9は、基準電流入力端子Iref と、ゲートとドレインを接続した電流設定用入力トランジスタM40と、バイアス電流用トランジスタM41〜M43と、バイアス電流用トランジスタM41〜M43のゲート−ソース間に接続されたホールド容量C41〜C43と、ホールド容量C41〜C43にバイアス設定電圧Vbiasを設定するサンプル用トランジスタM44〜M46から構成され、サンプル用トランジスタM44〜M46の動作はバイアス用サンプル制御信号φCTLで行う。
図3は、図2に示すサンプルホールド型バイアス部9を用いた場合の駆動タイミングの概略を示す図である。ここで、垂直走査部3により画素部2の上から1行目の画素行が選択され、画素Pixel11とPixel31には光が殆ど入射せず、画素Pixel21のみに強い光が入射した場合の動作説明である。ここで、画素Pixel11とPixel31の状態はほぼ同じなので、画素Pixel11とPixel21の動作について説明する。初めに、画素Pixel11とPixel21のフォトダイオードPD11とPD12に蓄積された光信号出力を得る。まず、バイアス用サンプル制御信号φCTL=Lとすることでサンプル用トランジスタM44とM45をオフさせ、ホールド用容量C41とC42にバイアス設定電圧Vbiasをホールドする。これにより、バイアス電流用トランジスタM41とM42のゲート−ソース間に接続されているホールド用容量C41とC42の両端の電圧差に応じたバイアス電流Ibiasを発生する。その後、行選択制御信号φSEL1=Hとすることで行選択トランジスタM411 とM421 をオンとし、1行目の画素行と垂直信号線V1とV2を接続させる。
光が入射していない画素Pixel11のフローティングディフュージョンFD11の光信号電位Vsig(FD11)は、リセットレベルである画素電源電位VDDとなる。したがって、垂直信号線V1の光信号電位Vsig(V1 )は、次式(1)となる。
Vsig(V1 )=Vsig(FD11)−VGS(M311)=VDD−VGS(M311)
・・・・・・・・・・(1)
ここで、VGS(M311)は、増幅トランジスタM311 にバイアス電流Ibiasが流れたときの増幅トランジスタM311 のゲート−ソース間電圧とする。
一方、強い光が入射している画素Pixel21 のフローティングディフュージョンFD21の光信号電位Vsig(FD21)は、大幅な電位変化ΔVが発生し、ほぼグランドレベルまで低下する。そのため、増幅トランジスタM321 がオフし、次式(2)で示すように、垂直信号線V2の光信号電位Vsig(V2)はグランドレベルとなる。
Vsig(V2)=0 ・・・・・・・・・・・・・・・・(2)
すると、バイアス電流用トランジスタM42がオフするため、バイアス電流用トランジスタM41のソースが接続されているグランド配線に流れる電流値が変化し、グランド配線に生じる抵抗成分の影響でバイアス電流用トランジスタM41のソース電位も変動する。しかしながら、バイアス電流用トランジスタM41のバイアス電流Ibiasは、ソース−ゲート間に接続されているホールド容量C41の両端の電位差で決まっているため、ソース電位の変動の影響を受けない。つまり、ホールド容量C41のゲート側電位は、ソース側電位の変動に応じて変動するためホールド容量C41のソース側端子とゲート側端子の両端の電圧差は一定値となる。そのため、光が入射していない画素Pixel11の垂直信号線V1の光信号電位Vsig(V1)は、画素Pixel21に強い光が入射している場合でも変動しない。このとき、垂直信号線V1とV2の光信号電位Vsig(V1)とVsig(V2)は、ノイズ抑圧部6に一旦記憶される。
次に、画素Pixel11とPixel21からフォトダイオードPD11とPD12の蓄積電荷をリセットしたリセット出力を得る。まず、行選択制御信号φSEL1=Hのままで1行目の画素行と垂直信号線V1とV2を接続させた状態で、リセット信号φRS1=HとすることでリセットトランジスタM211 とM221 をオンとし、フォトダイオードPD11とPD21に蓄積された電荷をリセットし、併せてフローティングディフュージョンFD11とFD21を画素電源電圧VDDにリセットする。
その後、リセット信号φRS1=Lに戻すことでリセットトランジスタM211 とM221 をオフとし、フローティングディフュージョンFD11とFD21をハイインピーダンス状態とする。このとき、光が入射していない画素Pixel11及び強い光が入射している画素Pixel21ともに、フローティングディフュージョンFD11とFD21のリセット信号電位Vres(FD11)とVres(FD21)は、画素電源電位VDDとなる。したがって、垂直信号線V1とV2のリセット信号電位Vres(V1)とVres(V2)は、次式(3),(4)となる。 Vres(V1)=Vres(FD11)−VGS(M311)=VDD−VGS(M311)
・・・・・・・・・・(3)
Vres(V2)=Vres(FD21)−VGS(M321)=VDD−VGS(M321)
・・・・・・・・・・(4)
ここで、VGS(M321)は、増幅トランジスタM321 にバイアス電流Ibiasが流れたときの増幅トランジスタM321 のゲート−ソース間電圧とする。これら、垂直信号線V1とV2のリセット信号電位Vres(V1)とVres(V2)は、ノイズ抑圧部6にて、光信号電位との間で差分処理が行われ、次式(5),(6)に示すような入射光に応じた差分信号出力Vsub(V1)とVsub(V2)が得られる。
Vsub(V1)=Vres(V1)−Vsig(V1)=0 ・・・・・・・・・・(5)
Vsub(V2)=Vres(V2)−Vsig(V2)=VDD−VGS(M321)
・・・・・・・・・・(6)
(5)式から明らかなように、画素Pixel21に強い光が入射し垂直信号線V2がグランドになる場合でも、バイアス電流用トランジスタM41のバイアス電流が一定値Ibiasであるため、白い横スジの発生を抑圧することができる。その後、行選択制御信号φSEL1=Lとすることで行選択トランジスタM411 とM421 をオフとし、1行目の画素行と垂直信号線V1とV2とを切り離す。同時に、バイアス用サンプル制御信号φCTL=Hとしホールド用容量C41とC42にバイアス設定電圧Vbiasを再びサンプルさせる。
このように、本実施例では、強い光が入射した画素列の垂直信号線がグランドレベルとなる場合でも、そのほかの画素列のバイアス電流は変化しないので、白い横スジの発生を抑圧できる。加えて、垂直信号線の出力レベルをグランドレベルまで低下させることができるため、画素電源電圧VDDの低電圧化にも対応できる。
なお、本実施例は各種の変形が可能である。例えば、サンプルホールド型バイアス部9として、図4に示すカスコード型回路を利用することもできる。図4に示す変形例では、図2に示すサンプルホールド型バイアス部9におけるバイアス電流用トランジスタM41〜M43のドレイン側に、ゲートが基準電圧入力端子Vref に接続されたカスコード用トランジスタM44〜M46を接続させ、カスコード用トランジスタM44〜M46を介して垂直信号線V1〜V3にバイアス電流Ibiasを供給する構成としている。これにより、カスコード用トランジスタM44〜M46のドレイン側からの出力抵抗が大きくなり、バイアス電流Ibiasの定電流性が改善している。また、本実施例においては、図5の(A)のタイミングチャートに示すように、サンプルホールド型バイアス部9のバイアス用サンプル制御信号φCTLによるサンプル動作を光信号出力以外の期間で行うこともできる。更に、図5の(B)のタイミングチャートに示すように、サンプルホールド型バイアス部9のサンプル動作を複数行の読み出しに1回行うこともできる。
(実施例2)
次に、実施例2について説明する。図6は、実施例2に係る増幅型MOSセンサを用いた固体撮像装置における主要部の構成を示すもので、実施例1に対して、サンプルホールド型バイアス部9に含まれるホールド容量C41〜C43の接続点を変更したものである。すなわち、本実施例のサンプルホールド型バイアス部9では、ホールド容量C41〜C43の一端をバイアス電流用トランジスタM41〜M43のゲートに接続し、ホールド容量C41〜C43の他端をバイアス電流用トランジスタM41〜M43のバイアス電流Ibiasを流し込むグランド配線付近に接続している。
本実施例の動作は、実施例1と同様であるので説明を省略するが、同様な効果が得られる。なお、本実施例は、各種の変形が可能である。例えば、サンプルホールド型バイアス部9として、図7に示すように、ソース抵抗を利用したバイアス回路を利用することができる。図7に示すサンプルホールド型バイアス部9では、バイアス電流設定用入力トランジスタM40のソース側にソース抵抗R40を接続し、バイアス電流用トランジスタM41〜M43のソース側にソース抵抗R41〜R43を接続している。これにより、バイアス電流用トランジスタM41〜M43のドレインから見た出力抵抗が大きくなり、バイアス電流Ibiasの定電流性が改善される。このようなソース抵抗付きバイアス回路でも、同様の効果が得られる。
このように、本実施例では、強い光が入射した画素列の垂直信号線がグランドレベルとなる場合でも、そのほかの画素列のバイアス電流は変化しないので、白い横スジの発生を抑圧できる。加えて、垂直信号線の出力レベルをグランドレベルまで低下させることができるため、画素電源電圧VDDの低電圧化にも対応できる。更に、より多くのバイアス回路に適用できる。
(実施例3)
次に、実施例3について説明する。図8は、実施例3に係る増幅型MOSセンサを用いた固体撮像装置の構成を示す回路構成図で、実施例1に対して、画素セルと垂直走査部の構成を変更したものである。図8に示す回路構成図において、図2に示す実施例1と同じ構成要素については、同一の符号を付して示している。この実施例における画素セル10は、光電変換部であるフォトダイオードPD11と、フォトダイオードPD11に蓄積した電荷を電圧に変換するフローティングディフュージョンFD11と、フォトダイオードPD11からフローティングディフュージョンFD11に電荷を転送する転送トランジスタM111 と、フローティングディフュージョンFD11をリセットするリセットトランジスタM211 と、フローティングディフュージョンFD11の電圧を増幅する増幅トランジスタM311 と、各行を選択するための行選択トランジスタM411 とから成る。
画素部2は、ここでは画素セル10を3行3列に並べて構成されている。垂直走査部11は、転送トランジスタM111 〜M133 の動作を制御する転送制御信号φTX1〜φTX3と、リセットトランジスタM211 〜M233 の動作を制御するリセット制御信号φRS1〜φRS3と、行選択トランジスタM411 〜M433 の動作を制御する行選択制御信号φSEL1〜φSEL3とを出力する。
図9は、サンプルホールド型バイアス部9の動作を説明するための駆動タイミングの概略を示す図である。ここでは、垂直走査部11により画素部2の上から1行目の画素行が選択され、画素Pixel11とPixel31には光が殆ど入射せず、画素Pixel21のみに強い光が入射した場合の動作を示している。ここで、画素Pixel11とPixel31の状態はほぼ同じなので、画素Pixel11とPixel21の動作について説明する。
はじめに、画素Pixel11とPixel21からフローティングディフュージョンFD11とFD21をリセットしたリセット出力を得る。まず、バイアス用サンプル制御信号φCTL=Lとすることでサンプル用トランジスタM44とM45をオフさせ、ホールド用容量C41〜C42にバイアス設定電圧Vbiasをホールドする。これにより、バイアス電流用トランジスタM41とM42のゲート−ソース間に接続されているホールド用容量C41とC42の両端の電圧差に応じたバイアス電流Ibiasを発生する。その後、行選択制御信号φSEL1=Hとすることで行選択トランジスタM411 とM421 をオンとし、1行目の画素行と垂直信号線V1とV2を接続させる。引き続き、リセット信号φRS1=HとすることでリセットトランジスタM211 とM221 をオンとし、フローティングディフュージョンFD11とFD21を画素電源電圧VDDにリセットする。
その後、リセット信号φRS1=Lに戻すことでリセットトランジスタM211 とM221 をオフとし、フローティングディフュージョンFD11とFD21をハイインピーダンス状態とする。このとき、光が殆ど入射していない画素Pixel11及び強い光が入射している画素Pixel21ともに、フローティングディフュージョンFD11とFD21のリセット信号電位Vres(FD11)とVres(FD21)は、画素電源電位VDDとなる。したがって、垂直信号線V1とV2のリセット信号電位Vres(V1)とVres(V2)は、次式(7),(8)となる。
Vres(V1)=Vres(FD11)−VGS(M311)=VDD−VGS(M311)
・・・・・・・・・・(7)
Vres(V2)=Vres(FD21)−VGS(M321)=VDD−VGS(M321)
・・・・・・・・・・(8)
ここで、VGS(M311)は増幅トランジスタM311 にバイアス電流Ibiasが流れたときの増幅トランジスタM311 のゲート−ソース間電圧、VGS(M321)は増幅トランジスタM321 にバイアス電流Ibiasが流れたときの増幅トランジスタM321 のゲート−ソース間電圧とする。このとき、垂直信号線V1とV2のリセット信号電位Vres(V1)とVres(V2)は、ノイズ抑圧部6に一旦記憶される。
次に、画素Pixel11とPixel21のフォトダイオードPD11とPD12に蓄積された光信号出力を得る。まず、行選択制御信号φSEL1=Hを継続し1行目の画素行と垂直信号線V1とV2を接続させた状態で、転送制御信号φTX1=Hとすることで転送トランジスタM111 とM121 をオンさせ、フォトダイオードPD11とPD12に蓄積された電荷をフローティングディフュージョンFD11とFD21に転送する。その後、転送制御信号φTX1=Lと戻すことで、転送トランジスタM111 とM121 をオフさせる。このとき、バイアス用サンプル信号φCTL=Lは継続されているので、バイアス電流用トランジスタM41とM42はバイアス電流Ibiasを発生し続ける。
光が殆ど入射していない画素Pixel11のフローティングディフュージョンFD11の光信号電位Vsig(FD11)はリセットレベルである画素電源電位VDDとなる。したがって、垂直信号線V1の光信号電位Vsig(V1)は、次式(9)となる。
Vsig(V1)=Vsig(FD11)−VGS(M311)=VDD−VGS(M311)
・・・・・・・・・・(9)
ここで、VGS(M311)は、増幅トランジスタM311 にバイアス電流Ibiasが流れたときの増幅トランジスタM311 のゲート−ソース間電圧とする。
一方、強い光が入射している画素Pixel21のフローティングディフュージョンFD21の光信号電位Vsig(FD21)は、大幅な電位変化ΔVが発生し、ほぼグランドレベルまで低下する。そのため、増幅トランジスタM321 がオフし、次式(10)で示すように、垂直信号線V2の光信号電位Vsig(V2)はグランドレベルとなる。
Vsig(V2)=0 ・・・・・・・・・・・・・・・・(10)
これにより、バイアス電流用トランジスタM42がオフするため、バイアス電流用トランジスタM41のソースが接続されているグランド配線に流れる電流値が変化し、グランド配線に生じる抵抗成分の影響でバイアス電流用トランジスタM41のソース電位も変動する。しかしながら、バイアス電流用トランジスタM41のバイアス電流Ibiasは、ソース−ゲート間に接続されているホールド容量C41の両端の電位差で決まっているため、ソース電位の変動の影響を受けない。つまり、ホールド容量C41のゲート側電位は、ソース側電位の変動に応じて変動するため、ホールド容量C41のソース側端子とゲート側端子の両端の電圧差は一定値となる。
そのため、光が入射していない画素Pixel11の垂直信号線V1の光信号電位Vsig(V1)は、画素Pixel21に強い光が入射している場合でも変動しない。これら、垂直信号線V1とV2の光信号電位Vsig(V1)とVsig(V2)は、ノイズ抑圧部6にて、リセット電位と差分処理が行われ、次式(11),(12)に示すような入射光に応じた差分信号Vsub(V1)とVsub(V2)が得られる。
Vsub(V1)=Vsig(V1)−Vres(V1)=0 ・・・・・・・・・・(11)
Vsub(V2)=Vsig(V2)−Vres(V2)=−〔VDD−VGS(M321)〕
・・・・・・・・・・(12)
(11)式から明らかなように、画素Pixel21に強い光が入射し垂直信号線V2がグランドになる場合でも、バイアス電流用トランジスタM41のバイアス電流が一定値Ibiasであるため、白い横スジの発生を抑圧することができる。その後、行選択制御信号φSEL1=Lとすることで行選択トランジスタM411 とM421 をオフとし、1行目の画素行と垂直信号線V1とV2とを切り離す。同時に、バイアス用サンプル制御信号φCTL=Hとし、ホールド用容量C41とC42にバイアス設定電圧Vbiasを再びサンプルさせる。
このように、本実施例では、強い光が入射した画素列の垂直信号線がグランドレベルとなる場合でも、そのほかの画素列のバイアス電流は変化しないので、白い横スジの発生を抑圧できる。加えて、垂直信号線の出力レベルをグランドレベルまで低下させることができるため、画素電源電圧VDDの低電圧化にも対応できる。
なお、本実施例は、各種の変形が可能である。例えば、サンプルホールド型バイアス部9として、図4と図6及び図7に示す実施例1の変形例あるいは実施例2で示したものを利用することができる。また、本実施例においては、サンプルホールド型バイアス部9のサンプル動作の終了タイミングは、光信号出力の前であれば図9に示したタイミングから変更してもよい。例えば、図10の(A)のタイミングチャートに示すように、サンプルホールド型バイアス部9のサンプル動作を転送トランジスタの転送動作の開始直前まで継続することもできる。更に、図10の(B)に示すように、サンプルホールド型バイアス部9のサンプル動作を複数行の読み出しに1回行うこともできる。
(実施例4)
次に、実施例4について説明する。本実施例4に係る増幅型MOSセンサを用いた固体撮像装置自体の構成は、図8に示した実施例3と同じである。図11は、本実施例に係る固体撮像装置の動作を説明するためのタイミングチャートである。本実施例における動作は、実施例3に対して、バイアス用サンプル制御信号φCTL=Lのホールド期間のバイアス電流用トランジスタM41〜M43に流れるバイアス電流Ibias(φCTL=L)が小さくなるように設定し、更にサンプルホールド型バイアス部9の動作タイミングを変更している。図11は、サンプルホールド型バイアス部9を用いた場合の駆動タイミングの概略を示す図である。ここでは、垂直走査部11により画素部2の上から1行目の画素行が選択され、画素Pixel11とPixel31には殆ど光が入射せず、画素Pixel21のみに強い光が入射した場合である。ここで、画素Pixel11とPixel31の状態はほぼ同じなので、画素Pixel11とPixel21の動作について説明する。
はじめに、画素Pixel11とPixel21からフローティングディフュージョンFD11とFD21をリセットしたリセット出力を得る。まず、行選択制御信号φSEL1=Hとし1行目の画素行と垂直信号線V1とV2を接続させる。ここで、バイアス用サンプル制御信号φCTL=Hとすることでサンプル用トランジスタM44とM45をオンさせ、ホールド用容量C41とC42にバイアス設定電圧Vbiasをサンプルする。このとき、バイアス電流用トランジスタM41とM42はバイアス電流Ibiasを発生する。この状態で、リセット信号φRS1=HとすることでリセットトランジスタM211 とM221 をオンとし、フローティングディフュージョンFD11とFD21を画素電源電圧VDDにリセットする。
その後、リセット信号φRS1=Lに戻すことでリセットトランジスタM211 とM221 をオフとし、フローティングディフュージョンFD11とFD21をハイインピーダンス状態とする。引き続き、バイアス用サンプル制御信号φCTL=Lとしサンプル用トランジスタM44とM45をオフすることで、ホールド用容量C41とC42にバイアス設定電圧Vbiasをホールドする。しかしながら、サンプル用トランジスタM44とM45のゲートに印加されるバイアス用サンプル制御信号φCTLがHからLに切り替わるときに発生するフィードスルーにより、ホールド用容量C41とC42のゲート側電位が低下し、バイアス電流変動ΔIbiasが発生する。バイアス電流用トランジスタM41とM42で発生するバイアス電流値Ibias(φCTL=L)は、次式(13)となる。
Ibias(φCTL=L)=Ibias−ΔIbias ・・・・・・・・・・・・・(13)
増幅トランジスタM311 とM321 に流れるバイアス電流がΔIbias変化すると、増幅トランジスタM311 とM321 のゲート−ソース間電圧VGS(M311)とVGS(M321)が、ΔVGS(M311)及びΔVGS(M321)減少し、垂直信号線V1とV2がΔVGS(M311)とΔVGS(M321)分上昇する。このとき、ハイインピーダンス状態のフローティングディフュージョンFD11は増幅トランジスタM311 のゲート−ソース間容量CGS(M311)により垂直信号線V1と容量結合しているため、垂直信号線V1の上昇分ΔVGS(M311)により、フローティングディフュージョンFD11のリセット電位Vres(FD11)は、次式(14),(15)となる。
Vres(FD11)=VDD+ΔVGS(M311)
×{(CGS(M311))/(C(FD11))} ・・・・・(14)
C(FD11)=CGS(M111)+CJ(M111)+CGS(M211)+CJ(M211)
+CGD(M311)+CGS(M311) ・・・・・・・・・・・(15)
ここで、C(FD11)はフローティングディフュージョンFD11に生じる容量成分の合計で、CGS(M111)は転送トランジスタM111 のゲート−ソース間容量、CJ(M111)は転送トランジスタM111 のソース接合容量、CGS(M211)はリセットトランジスタM211 のゲート−ソース間容量、CJ(M211)はリセットトランジスタM211 のソース接合容量、CGD(M311)は増幅トランジスタM311 のゲート−ドレイン間容量である。
また、フローティングディフュージョンFD21は増幅トランジスタM321 のゲート−ソース間容量CGS(M321)により垂直信号線V2と容量結合しているので、垂直信号線V2の上昇分ΔVGS(M321)により、フローティングディフュージョンFD21のリセット電位Vres(FD21)は、次式(16),(17)となる。
Vres(FD21)=VDD+ΔVGS(M321)
×{(CGS(M321))/(C(FD21))} ・・・・・(16)
C(FD21)=CGS(M121)+CJ(M121)+CGS(M221)+CJ(M221)
+CGD(M321)+CGS(M321) ・・・・・・・・・・(17)
ここで、C(FD21)はフローティングディフュージョンFD21に生じる容量成分の合計で、CGS(M121) CGS(M121)は転送トランジスタM121 のゲート−ソース間容量、CJ(M121)は転送トランジスタM121 のソース接合容量、、CGS(M221)はリセットトランジスタM221 のゲート−ソース間容量、CJ(M221)はリセットトランジスタM221 のソース接合容量、CGD(M321)は増幅トランジスタM321 のゲート−ドレイン間容量である。
したがって、光が殆ど入射していない画素Pixel11及び強い光が入射している画素Pixel21に対応する、垂直信号線V1とV2のリセット信号電位Vres(V1)とVres(V2)は、次式(18),(19)となる。
Vres(V1)=Vres(FD11)−VGS(M311)+ΔVGS(M311)
=VDD−VGS(M311)+ΔVGS(M311)+ΔVGS(M311)
×{CGS(M311)/C(FD11)} ・・・・・・・・・・(18)
Vres(V2)=Vres(FD21)−VGS(M321)+ΔVGS(M321)
=VDD−VGS(M321)+ΔVGS(M321)+ΔVGS(M321)
×{CGS(M321)/C(FD21)} ・・・・・・・・・・(19)
ここで、VGS(M311)は増幅トランジスタM311 にバイアス電流Ibiasが流れたときの増幅トランジスタM311 のゲート−ソース間電圧、VGS(M321)は増幅トランジスタM321 にバイアス電流Ibiasが流れたときの増幅トランジスタM321 のゲート−ソース間電圧とする。このとき、垂直信号線V1とV2のリセット信号電位Vres(V1)とVres(V2)は、ノイズ抑圧部6に一旦記憶される。
次に、画素Pixel11とPixel21のフォトダイオードPD11とPD12に蓄積された光信号出力を得る。まず、行選択制御信号φSEL1=Hを継続し1行目の画素行と垂直信号線V1とV2を接続させた状態で、転送制御信号φTX1=Hとすることで転送トランジスタM111 とM121 をオンさせ、フォトダイオードPD11とPD21に蓄積された電荷をフローティングディフュージョンFD11とFD21に転送する。その後、転送制御信号φTX1=Lと戻すことで、転送トランジスタM111 とM121 をオフさせる。このとき、バイアス用サンプル信号φCTL=Lは継続されているので、バイアス電流用トランジスタM41とM42はバイアス電流Ibias(φCTL=L)を発生し続ける。光が殆ど入射していない画素Pixel11のフローティングディフュージョンFD11の光信号電位Vsig(FD11)はリセットレベルである(18)式となる。
一方、強い光が入射している画素Pixel21のフローティングディフュージョンFD21の光信号電位Vsig(FD21)は、大幅な電位変化ΔVが発生し、ほぼグランドレベルまで低下する。そのため、増幅トランジスタM321 がオフし、次式(20)に示すように、垂直信号線V2の光信号電位Vsig(V2)はグランドレベルとなる。
Vsig(V2)=0 ・・・・・・・・・・・・・・・・(20)
これにより、バイアス電流用トランジスタM42がオフするため、バイアス電流用トランジスタM41のソースが接続されているグランド配線に流れる電流値が変化し、グランド配線に生じる抵抗成分の影響でバイアス電流用トランジスタM41のソース電位も変動する。しかしながら、バイアス電流用トランジスタM41のバイアス電流Ibias(φCTL=L)は、ソース−ゲート間に接続されているホールド容量C41の両端の電位差で決まっているため、ソース電位の変動の影響を受けない。つまり、ホールド容量C41のゲート側電位は、ソース側電位の変動に応じて変動するため、ホールド容量C41のソース側端子とゲート側端子の両端の電圧差は一定値となる。
そのため、光が殆ど入射していない画素Pixel11の垂直信号線V1の光信号電位Vsig(V1)は、画素Pixel21に強い光が入射している場合でも変動しない。これら、垂直信号線V1とV2の光信号電位Vsig(V1)とVsig(V2)は、ノイズ抑圧部6にて、リセット電位と差分処理が行われ、次式(21),(22)に示すような入射光に応じた差分信号Vsub(V1)とVsub(V2)が得られる。
Vsub(V1)=Vsig(V1)−Vres(V1)=0 ・・・・・・・・・・(21)
Vsub(V2)=Vsig(V2)−Vres(V2)
=−〔VDD−VGS(M321)+ΔVGS(M321)+ΔVGS(M321)
×{CGS(M321)/C(FD21)}〕 ・・・・・・・・・(22)
(21)式から明らかなように、画素Pixel21に強い光が入射し垂直信号線V2がグランドになる場合でも、バイアス電流用トランジスタM41のバイアス電流が一定値Ibias(φCTL=L)であるため、白い横スジの発生を抑圧することができる。その後、行選択制御信号φSEL1=Lとすることで行選択トランジスタM411 とM421 をオフとし、1行目の画素行と垂直信号線V1及びV2とを切り離す。同時に、バイアス用サンプル制御信号φCTL=Hとしホールド用容量C41とC42にバイアス設定電圧Vbiasを再びサンプルさせる。
このように、本実施例では、強い光が入射した画素列の垂直信号線がグランドレベルとなる場合でも、そのほかの画素列のバイアス電流は変化しないので、白い横スジの発生を抑圧できる。加えて、フローティングディフュージョンのリセット電位を上昇させることができるため、画素電源電圧VDDの一層の低電圧化に対応できる。なお、本実施例は、各種の変形が可能である。例えば、サンプルホールド型バイアス部9として、図4と図6及び図7に示す各種バイアス回路を利用することもできる。
本発明の回路構成及び駆動方式の変更は、請求項の範囲を逸脱しない範囲で広く行うことができる。例えば、単位画素の構成要素及び駆動方法が変わった場合も、垂直走査部やサンプルホールド型バイアス部の回路構成や駆動方法を変更することで対応可能である。
本発明に係る固体撮像装置の実施例1の概略構成を示すブロック図である。 図1に示した実施例1における画素部と垂直走査部とサンプルホールド型バイアス部と垂直信号線部分の構成を示す回路構成図である。 実施例1の動作を説明するための駆動タイミング図である。 図2に示した実施例1におけるサンプルホールド型バイアス部の変形例を示す回路構成図である。 実施例1におけるサンプルホールド型バイアス部における他のサンプル動作例を示す駆動タイミング図である。 実施例2におけるサンプルホールド型バイアス部の構成を示す回路構成図である。 図6に示した実施例2におけるサンプルホールド型バイアス部の変形例を示す回路構成図である。 実施例3の構成を示す回路構成図である。 実施例3の動作を説明するための駆動タイミング図である。 実施例3におけるサンプルホールド型バイアス部の他のサンプル動作例を示す駆動タイミング図である。 実施例4に係る固体撮像装置の動作を説明するための駆動タイミング図である。 従来の固体撮像装置の構成を示す回路構成図である。
符号の説明
1,10 画素セル
2 画素部
3,11 垂直走査部
6 ノイズ抑圧部
7 水平走査部
8 水平信号線
9 サンプルホールド型バイアス部
12 制御部

Claims (7)

  1. 光電変換手段と前記光電変換手段の信号電荷を増幅して画素信号を出力する増幅手段と前記増幅手段に蓄積された信号電荷をリセットするリセット手段とを含んだ画素を行方向及び列方向に2次元的に配置した画素部と、
    前記画素部の読み出し行を選択する垂直走査部と、
    前記画素部からの信号を出力する列単位に設けられている垂直信号線と、
    前記垂直信号線に接続され前記増幅手段に流れる電流を設定する少なくともホールド手段を含むサンプルホールド型バイアス部とを備え、
    前記サンプルホールド型バイアス部は、前記光電変換手段に蓄積された信号電荷を前記増幅手段から読み出す際に、前記ホールド手段に設定された電圧に対応した電流を発生させることを特徴とする固体撮像装置。
  2. 前記サンプルホールド型バイアス部の前記ホールド手段は、容量手段を有していることを特徴とする請求項1に係る固体撮像装置。
  3. 前記サンプルホールド型バイアス部は、第1の基準電圧と、該第1の基準電圧に第1の端子が接続されたサンプル手段と、前記サンプル手段の第2の端子と第1の端子が接続された前記容量手段と、前記容量手段の第1の端子にゲートが接続されソースが第2の基準電圧に接続されドレインがバイアス電流出力端子となるトランジスタとを備え、前記容量手段の第2の端子が前記トランジスタのソース又は前記第2の基準電圧に接続され、前記光電変換手段に蓄積された信号電荷を前記増幅手段からから読み出す際に、前記容量手段の第1と第2の端子間の電位差に応じて、前記トランジスタのドレイン電流が決定されることを特徴とする請求項2に係る固体撮像装置。
  4. 前記サンプルホールド型バイアス部は、第1の基準電圧と、該第1の基準電圧に第1の端子が接続されたサンプル手段と、前記サンプル手段の第2の端子と第1の端子が接続された前記容量手段と、前記容量手段の第1の端子にゲートが接続されソースが抵抗手段を介して第2の基準電圧に接続されドレインがバイアス電流出力端子となるトランジスタとを備え、前記容量手段の第2の端子が前記抵抗手段と前記第2の基準電圧の接続点の近くに接続され、前記光電変換手段に蓄積された信号電荷を前記増幅手段からから読み出す際に、前記容量手段の第1と第2の端子間の電位差に応じて、前記トランジスタのドレイン電流が決定されることを特徴とする請求項2に係る固体撮像装置。
  5. 前記サンプルホールド型バイアス部は、前記サンプル手段による前記第1の基準電圧と前記容量手段を接続するサンプル動作を、読み出し行の変更の都度行うことを特徴とする請求項3又は4に係る固体撮像装置。
  6. 前記サンプルホールド型バイアス部は、前記増幅手段に入力される信号電荷のリセット終了後に、前記サンプル手段による前記第1の基準電圧と前記容量手段を接続するサンプル動作を終えることを特徴とする請求項3〜5のいずれか1項に係る固体撮像装置。
  7. 前記サンプルホールド型バイアス部は、前記サンプル手段による前記第1の基準電圧と前記容量手段を接続するサンプル動作を、複数行の読み出し動作が終了した場合に行うことを特徴とする請求項3又は4に係る固体撮像装置。
JP2008141877A 2008-05-30 2008-05-30 固体撮像装置 Withdrawn JP2009290628A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008141877A JP2009290628A (ja) 2008-05-30 2008-05-30 固体撮像装置
US12/475,021 US8659682B2 (en) 2008-05-30 2009-05-29 Solid-state imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141877A JP2009290628A (ja) 2008-05-30 2008-05-30 固体撮像装置

Publications (1)

Publication Number Publication Date
JP2009290628A true JP2009290628A (ja) 2009-12-10

Family

ID=41459370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141877A Withdrawn JP2009290628A (ja) 2008-05-30 2008-05-30 固体撮像装置

Country Status (1)

Country Link
JP (1) JP2009290628A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109486A (ja) * 2009-11-19 2011-06-02 Sony Corp 固体撮像装置、負荷電流源回路
JP2013085110A (ja) * 2011-10-07 2013-05-09 Canon Inc 固体撮像装置及びその駆動方法
WO2013088644A1 (ja) * 2011-12-14 2013-06-20 パナソニック株式会社 固体撮像装置及び撮像装置
WO2014156028A1 (ja) * 2013-03-29 2014-10-02 パナソニック株式会社 固体撮像装置及び撮像装置
JPWO2017057382A1 (ja) * 2015-09-30 2018-07-19 株式会社ニコン 撮像素子および撮像装置
JPWO2017057373A1 (ja) * 2015-09-30 2018-07-19 株式会社ニコン 撮像素子、撮像装置、および電子機器
US10079988B2 (en) 2015-07-07 2018-09-18 Panasonic Intellectual Property Management Co., Ltd. Imaging device including pixel
WO2023181653A1 (ja) * 2022-03-24 2023-09-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び半導体装置の製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109486A (ja) * 2009-11-19 2011-06-02 Sony Corp 固体撮像装置、負荷電流源回路
JP2013085110A (ja) * 2011-10-07 2013-05-09 Canon Inc 固体撮像装置及びその駆動方法
WO2013088644A1 (ja) * 2011-12-14 2013-06-20 パナソニック株式会社 固体撮像装置及び撮像装置
JPWO2013088644A1 (ja) * 2011-12-14 2015-04-27 パナソニックIpマネジメント株式会社 固体撮像装置及び撮像装置
US9413993B2 (en) 2011-12-14 2016-08-09 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device for reducing noise, and imaging device for reducing noise having a multi-stage sample and hold circuit stabilizing voltage supplied to load transistors
WO2014156028A1 (ja) * 2013-03-29 2014-10-02 パナソニック株式会社 固体撮像装置及び撮像装置
US9549135B2 (en) 2013-03-29 2017-01-17 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and imaging apparatus
JPWO2014156028A1 (ja) * 2013-03-29 2017-02-16 パナソニックIpマネジメント株式会社 固体撮像装置及び撮像装置
US10079988B2 (en) 2015-07-07 2018-09-18 Panasonic Intellectual Property Management Co., Ltd. Imaging device including pixel
US10440302B2 (en) 2015-07-07 2019-10-08 Panasonic Intellectual Property Management Co., Ltd. Imaging device including pixel
JPWO2017057382A1 (ja) * 2015-09-30 2018-07-19 株式会社ニコン 撮像素子および撮像装置
JPWO2017057373A1 (ja) * 2015-09-30 2018-07-19 株式会社ニコン 撮像素子、撮像装置、および電子機器
JP2020114020A (ja) * 2015-09-30 2020-07-27 株式会社ニコン 撮像素子および撮像装置
US10965892B2 (en) 2015-09-30 2021-03-30 Nikon Corporation Image sensor and image-capturing device
US11012644B2 (en) 2015-09-30 2021-05-18 Nikon Corporation Image sensor and image-capturing device having holding circuit that holds voltage when signal is not read from pixel
US11696047B2 (en) 2015-09-30 2023-07-04 Nikon Corporation Image sensor and image-capturing device with electric current source units each including a storage unit, a supply unit, and an adjustment unit
WO2023181653A1 (ja) * 2022-03-24 2023-09-28 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び半導体装置の製造方法

Similar Documents

Publication Publication Date Title
US8928786B2 (en) Solid-state imaging apparatus and method of driving the same
US8659682B2 (en) Solid-state imaging apparatus
JP6351404B2 (ja) 撮像装置及び撮像システム
JP5127278B2 (ja) 熱型赤外線固体撮像素子及び赤外線カメラ
JP4144535B2 (ja) 固体撮像装置、画素信号読出方法
US8115847B2 (en) Solid-state imaging apparatus and driving method suppressing a pseudo signal originated from an amplifying transistor and having less fixed pattern noises and shading
US7884870B2 (en) Photoelectric conversion apparatus with current limiting units to limit excessive current to signal lines
US9007502B2 (en) Solid-state imaging device including a photodiode configured to photoelectrically convert incident light
US8068155B2 (en) Solid-state image sensor and driving method thereof, and image sensor
JP2009290628A (ja) 固体撮像装置
US9066031B2 (en) Solid-state imaging device and imaging apparatus
US20100079648A1 (en) Driving method of solid-state imaging apparatus
JP6172608B2 (ja) 固体撮像装置、その駆動方法及び撮影装置
US8599295B2 (en) Imaging element and imaging device with constant current source gate-to-source potential difference
US20110279720A1 (en) Solid-state imaging device and camera
JP2012199913A (ja) 信号受信部テスト回路、撮像装置、信号受信部テスト方法、撮像装置のテスト方法
US20090295966A1 (en) Solid-state imaging device and camera
JP2013051527A (ja) 固体撮像装置及び撮像装置
US9554069B2 (en) Solid-state imaging apparatus changing a gate voltage of a transfer transistor, driving method for the same, and imaging system
JP2011061270A (ja) 固体撮像装置
US9800810B2 (en) Imaging apparatus and imaging system
US9426391B2 (en) Solid-state imaging apparatus, method of controlling the same, and imaging system
JP2011091487A (ja) 固体撮像装置
US20130037696A1 (en) Imaging apparatus and driving method of the imaging apparatus
JP2011176762A (ja) 固体撮像装置およびカメラ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802