JP2009285154A - Peripheral nerve type flexible nerve electrode and its manufacturing method - Google Patents

Peripheral nerve type flexible nerve electrode and its manufacturing method Download PDF

Info

Publication number
JP2009285154A
JP2009285154A JP2008141041A JP2008141041A JP2009285154A JP 2009285154 A JP2009285154 A JP 2009285154A JP 2008141041 A JP2008141041 A JP 2008141041A JP 2008141041 A JP2008141041 A JP 2008141041A JP 2009285154 A JP2009285154 A JP 2009285154A
Authority
JP
Japan
Prior art keywords
insulating layer
electrode
nerve
peripheral nerve
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008141041A
Other languages
Japanese (ja)
Other versions
JP5075017B2 (en
Inventor
Yasuhiro Kato
康広 加藤
Makio Kayano
牧夫 柏野
Shigehito Furukawa
茂人 古川
Katsuhiro Maki
勝弘 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008141041A priority Critical patent/JP5075017B2/en
Publication of JP2009285154A publication Critical patent/JP2009285154A/en
Application granted granted Critical
Publication of JP5075017B2 publication Critical patent/JP5075017B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the enhancement of the productivity of a peripheral nerve type flexible nerve electrode and the enhancement of the affinity to a living body. <P>SOLUTION: The implantation type flexible nerve electrode is constituted by a first insulating layer 11 including a photosensitive flexible insulating material, a second insulating layer 12 including the photosensitive flexible insulating material, a second insulating layer 12 including the photosensitive flexible insulating material and a plurality of the electrode wires 13 formed on the first insulating layer 11 and covered with the second insulating layer 12. The respective electrode wires 13 are formed of the electrode part 14 exposed from the second insulating layer 12 and the wiring part 15 not exposed from the second insulating layer 12, and the first and second insulating layers 11 and 12 are modified so that the surfaces of them are made hydrophilic and have a plurality of common through-holes 16 at parts where a plurality of the electrode wires 13 are not present. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、感光性の柔軟絶縁材料を用いた末梢神経型柔軟神経電極およびその作製方法に関する。   The present invention relates to a peripheral nerve type flexible nerve electrode using a photosensitive flexible insulating material and a method for manufacturing the same.

体内各部の末梢神経細胞に電気的な刺激を与えたり電気的な活動を計測したりするために用いる代表的な末梢神経型神経電極として、シリコンなどの絶縁材料から微細加工技術を用いて作製されるもの(非特許文献1参照)が知られている。また、末梢神経型神経電極には、神経束に神経電極を刺し入れる刺入タイプ、神経束に神経電極を巻き付けるカフタイプ、切断した神経線維の自己再生機能を利用して再生経路に配置した電極穴に神経線維を通線する再生タイプなどがある。しかし、硬いシリコン等の材料で作製された末梢神経型神経電極を末梢神経に留置または固定した場合、末梢神経や留置部周囲の動きに追従できずに、生体組織を損傷させたり、計測または刺激対象である神経を死滅させたり、更には計測または刺激可能範囲外への移動が誘引されることにより、安定した計測や刺激を困難であるというような問題があった。そこで、末梢神経や留置部周囲の動きへの追従性を向上すべく、パリレンやポリイミドなどの柔軟絶縁材料を用いた末梢神経型柔軟神経電極(非特許文献2参照)が開発されてきた。
Tayfun Akin et al. "A Micromachined Silicon Sieve Electrode for Nerve Regeneration Applications", IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, APRIL 1994, VOL.41, No.4, p.305-313 Francisco J. Rodriguez et al. "Polyimide cuff electrodes for peripheral nerve stimulation", Journal of Neuroscience Methods, 2000, 98, p105-118
As a typical peripheral nerve type nerve electrode used to give electrical stimulation to peripheral nerve cells in various parts of the body and to measure electrical activity, it is made from an insulating material such as silicon using a microfabrication technology. (See Non-Patent Document 1) is known. Peripheral nerve-type nerve electrodes include an insertion type that inserts a nerve electrode into a nerve bundle, a cuff type that winds the nerve electrode around the nerve bundle, and an electrode hole arranged in the regeneration path using the self-regenerative function of a cut nerve fiber There is a regeneration type that passes nerve fibers. However, when a peripheral nerve type nerve electrode made of a material such as hard silicon is placed or fixed to the peripheral nerve, it cannot follow the movement of the peripheral nerve or the surrounding area of the peripheral nerve, damage the living tissue, or measure or stimulate There has been a problem that it is difficult to perform stable measurement or stimulation by killing the target nerve or by inviting movement outside the measurement or stimulation possible range. Therefore, peripheral nerve type flexible nerve electrodes (see Non-Patent Document 2) using a flexible insulating material such as parylene and polyimide have been developed in order to improve followability to movement around peripheral nerves and indwelling portions.
Tayfun Akin et al. "A Micromachined Silicon Sieve Electrode for Nerve Regeneration Applications", IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, APRIL 1994, VOL.41, No.4, p.305-313 Francisco J. Rodriguez et al. "Polyimide cuff electrodes for peripheral nerve stimulation", Journal of Neuroscience Methods, 2000, 98, p105-118

従来の末梢神経型柔軟神経電極及びその作製工程には、次のような問題点がある。
(1)作製工程が複雑で作製が容易ではない
図11A〜Cに従来の末梢神経型柔軟神経電極の製造工程を示す。この工程は基板に各種材料の積層、エッチング等を行うことを通じ、最終的にS120に示すような、金属からなる電極配線13が同一材料による2層の絶縁体(第1絶縁体11及び第2絶縁体12)に挟まれた完成物を得るまでを例にとったものであるが、図11からわかるように作製工程が非常に複雑であり作製は容易ではない。これは、電極を露出させるとともに電極を挟持する柔軟絶縁材料を所定の形状に形成するためには、プラズマエッチングやリアクティブイオンエッチング等のドライエッチングを行う工程(S108〜S119)が不可欠なためである。基板に各種材料の積層、エッチング等を行うことを通じて電極配線が2層の同一材料の絶縁体により挟まれた完成物を形成する場合、例えば、図12(a)の断面図に示すような状態(S107後の状態に対応)から、図12(b)の断面図に示すような外形でかつ電極14が露出している状態(S119後の状態に対応)に成型するにあたっては、同一材料による第1絶縁層11と第2絶縁層12に2つの膜厚x、yのエッチングを行う必要があるが、プラズマエッチングやリアクティブイオンエッチング等のドライエッチングでは、一度の工程で同一材料を異なる膜厚にドライエッチングすることは原理上できない。具体的には、第2絶縁層12から電極14を露出させるために除去すべき膜厚yと、両絶縁層の外形を所定の形状に形成するために除去すべき膜厚xとが異なるため、一度の工程でドライエッチングすることはできない。そのため、同一材料を異なる厚みにドライエッチングするためには複数回に分けたドライエッチング工程を経ることが不可欠であった。
The conventional peripheral nerve type flexible nerve electrode and its manufacturing process have the following problems.
(1) Manufacturing process is complicated and manufacturing is not easy FIGS. 11A to 11C show a manufacturing process of a conventional peripheral nerve type flexible nerve electrode. In this step, by laminating various materials on the substrate, etching, and the like, the electrode wiring 13 made of metal is finally formed of two layers of insulators (first insulator 11 and second insulator 11) as shown in S120. This is an example of obtaining a finished product sandwiched between the insulators 12). However, as can be seen from FIG. 11, the production process is very complicated and the production is not easy. This is because a step of performing dry etching such as plasma etching or reactive ion etching (S108 to S119) is indispensable for forming the flexible insulating material that exposes the electrode and sandwiches the electrode into a predetermined shape. is there. When forming a finished product in which the electrode wiring is sandwiched between two layers of insulators of the same material by laminating and etching various materials on the substrate, for example, the state as shown in the sectional view of FIG. When molding from (corresponding to the state after S107) to the outer shape as shown in the sectional view of FIG. 12B and the electrode 14 is exposed (corresponding to the state after S119), the same material is used. The first insulating layer 11 and the second insulating layer 12 need to be etched with two film thicknesses x and y. In dry etching such as plasma etching and reactive ion etching, different films are formed of the same material in one step. It is impossible in principle to perform dry etching to a thickness. Specifically, the film thickness y that should be removed to expose the electrode 14 from the second insulating layer 12 is different from the film thickness x that should be removed in order to form the outer shape of both insulating layers in a predetermined shape. However, dry etching cannot be performed in a single step. Therefore, in order to dry-etch the same material to different thicknesses, it has been indispensable to go through multiple dry etching steps.

(2)エッチング工程が多く、アラインメント誤差が大きい
従来の末梢神経型柔軟神経電極の製造工程では、ドライエッチング処理による影響でアライメントマークが変形し、その結果として生じるアライメント誤差が複数回のエッチング処理により累積的に増加するため、安定した微細加工が困難であった。
(3)ドライエッチング装置とその維持管理を含む製造コストが高く、廉価に作製することが難しい
パリレンやポリイミド等の柔軟絶縁材料を用いて電極を露出させるとともに末梢神経型柔軟神経電極を所定の形状に形成するためには、上記(1)で説明したようにドライエッチング工程が不可欠である。しかし、ドライエッチング工程に必要なエッチング装置とそれらの維持費は高価であり、廉価に作製することが困難であった。
(2) Many etching processes and large alignment errors In the conventional peripheral nerve type flexible nerve electrode manufacturing process, the alignment mark is deformed by the influence of the dry etching process, and the resulting alignment error is caused by multiple etching processes. Since it increases cumulatively, stable microfabrication is difficult.
(3) The manufacturing cost including the dry etching apparatus and its maintenance is high, and it is difficult to manufacture at low cost. The electrode is exposed using a flexible insulating material such as parylene or polyimide, and the peripheral nerve type flexible nerve electrode is formed in a predetermined shape. In order to form the film, a dry etching process is indispensable as described in the above (1). However, the etching apparatuses necessary for the dry etching process and their maintenance costs are expensive and difficult to manufacture at a low cost.

(4)電極配線の多層化が困難なため、電極のチャンネル数増加に伴い末梢神経型神経電極の面積が大きくなる
上記(1)で説明したように、従来の作製方法では同一材料を異なる膜厚に加工するためには作製工程が複雑になることから、末梢神経型柔軟神経電極を任意の形状に形成すること、例えば、電極部及び配線部を多層化することは実際のところ困難である。そのため、電極のチャンネル数を多くしたい場合には末梢神経型柔軟神経電極の面積を大きくせざるを得なかった。
(5)再生タイプの末梢神経型柔軟神経電極において、神経線維毎に不規則にランビエの絞輪が配置された神経束に対して、適切にランビエの絞輪の位置に神経電極を設置できない
(4) Since it is difficult to make the electrode wiring multi-layered, the area of the peripheral nerve type nerve electrode increases with an increase in the number of electrode channels. As described in (1) above, in the conventional manufacturing method, the same material is made of different films. Since the manufacturing process becomes complicated in order to process the thickness, it is actually difficult to form the peripheral nerve type flexible nerve electrode in an arbitrary shape, for example, to multilayer the electrode part and the wiring part. . Therefore, in order to increase the number of electrode channels, the area of the peripheral nerve type flexible nerve electrode has to be increased.
(5) In the regeneration type peripheral nerve type flexible nerve electrode, the nerve electrode cannot be properly placed at the position of the Lambier diaphragm for the nerve bundle in which the Lambier diaphragm is irregularly arranged for each nerve fiber.

図10に神経線維に配置された末梢神経型柔軟神経電極の電極部14のランビエの絞輪周辺での配置状態を示す。有髄神経線維を有する末梢神経の計測と刺激は、絶縁体である複数の髄鞘96それぞれの間にあるくびれ部分であるランビエの絞輪95を通じて行われるが、従来の末梢神経型柔軟神経電極の作製方法では上記(4)で説明したように、電極配線の多層化が困難であったため、スペースの関係上、電極部14を高密度に配置することができず、そのため神経繊維毎に不規則にランビエの絞輪95が配置された神経束に対し、ランビエの絞輪95の位置に適切に電極部14を配置することが困難であった。例えば、図10の例では電極部14とランビエの絞輪95の数が共に3つであるが、ランビエの絞輪95の配置の不規則性から、3つの電極部14のうち1つの電極部14aでしかランビエの絞輪95を捉えられておらず、残りの2つの電極部14bは捉えることができていない。   FIG. 10 shows the arrangement state of the electrode portion 14 of the peripheral nerve type flexible nerve electrode arranged in the nerve fiber around the diaphragm of the Lambier. Measurement and stimulation of peripheral nerves having myelinated nerve fibers are performed through a Lambier diaphragm 95 that is a constricted portion between each of a plurality of myelin sheaths 96 that are insulators. As described in (4) above, since it was difficult to make the electrode wiring multi-layered in this manufacturing method, the electrode portions 14 could not be arranged at a high density due to the space, so that each nerve fiber was not suitable. It has been difficult to appropriately arrange the electrode portion 14 at the position of the Lambier diaphragm ring 95 with respect to the nerve bundle in which the Lambier diaphragm ring 95 is regularly arranged. For example, in the example of FIG. 10, the number of the electrode portions 14 and the Lambier diaphragms 95 are both three, but due to the irregular arrangement of the Lambier diaphragms 95, one of the three electrode units 14. The Lambier diaphragm 95 can only be captured at 14a, and the remaining two electrode portions 14b cannot be captured.

(6)刺入タイプの末梢神経型柔軟神経電極の位置が末梢神経組織内で安定するような機構が無く、使用中に位置ずれが生じる
従来の末梢神経型柔軟神経電極は、末梢神経組織の動きに追従できずに、生体組織を損傷させたり、計測または刺激対象である末梢神経を死滅させたり、更には、計測または刺激可能範囲外への移動が誘引されることにより、安定した計測や刺激を行うことが困難であった。
(7)末梢神経組織との細胞接着性が低いため、留置または固定した末梢神経型柔軟神経電極周囲における末梢組織の瘢痕と炎症の軽減が困難である
従来の末梢神経型神経電極に用いられてきたシリコン、パリレン、ポリイミド等の絶縁材料は、その絶縁材料の硬さ如何にかかわらず細胞接着性が低く、生体の異物反応を促進するため、末梢神経に留置または固定した電極周囲に生じる瘢痕と炎症の軽減が困難であった。
(8)末梢神経型柔軟神経電極の刺入により損傷した末梢神経組織を回復する機構が無い
従来の末梢神経型柔軟神経電極は、刺入と留置により損傷した末梢神経組織を回復させる機構を有していない。
(6) There is no mechanism that stabilizes the position of the insertion type peripheral nerve type soft nerve electrode in the peripheral nerve tissue, and the position shift occurs during use. Inability to follow movement, damage to living tissue, kill peripheral nerves to be measured or stimulated, and induce movement outside of the measurement or stimulation possible range. It was difficult to stimulate.
(7) Because of low cell adhesion to peripheral nerve tissue, it is difficult to reduce scarring and inflammation of peripheral tissue around the placed or fixed peripheral nerve type flexible nerve electrode. Insulating materials such as silicon, parylene, and polyimide have low cell adhesion regardless of the hardness of the insulating material, and promote the foreign body reaction of the living body. It was difficult to reduce inflammation.
(8) No mechanism to recover peripheral nerve tissue damaged by insertion of peripheral nerve type flexible nerve electrode Conventional peripheral nerve type flexible nerve electrode has a mechanism to recover peripheral nerve tissue damaged by insertion and placement. Not done.

本発明の目的は、廉価かつ容易に作製が可能であり、かつ、適切な設計と機構により上記の従来の問題点を解消可能な、末梢神経型柔軟神経電極およびその作製方法を提供することにある。   An object of the present invention is to provide a peripheral nerve type flexible nerve electrode and a method for producing the same, which can be easily and inexpensively manufactured, and which can solve the above-described conventional problems by an appropriate design and mechanism. is there.

本発明の末梢神経型柔軟神経電極は、感光性の柔軟絶縁材料からなる第1絶縁層と、感光性の柔軟絶縁材料からなる第2絶縁層と、第1絶縁層上に形成され、第2絶縁層に覆われた複数の電極配線とから構成される。それぞれの電極配線は、第2絶縁層から露出している電極部と露出していない配線部とからなり、第1絶縁層と第2絶縁層は、表面が親水性に改質され、複数の電極配線が存在しない部分に複数の共通の貫通穴を有する。   The peripheral nerve type flexible nerve electrode of the present invention is formed on a first insulating layer made of a photosensitive flexible insulating material, a second insulating layer made of a photosensitive flexible insulating material, and a second insulating layer. And a plurality of electrode wirings covered with an insulating layer. Each electrode wiring is composed of an electrode portion exposed from the second insulating layer and a wiring portion not exposed, and the first insulating layer and the second insulating layer have a surface modified to be hydrophilic, A plurality of common through holes are provided in a portion where no electrode wiring exists.

本発明の末梢神経型柔軟神経電極およびその作製方法により、末梢神経型柔軟神経電極を廉価かつ容易に作製することができ、かつ、従来の末梢神経型柔軟神経電極の問題点を解消することができるため、従来のものより長期間安定した計測と刺激が可能となる。   According to the peripheral nerve type flexible nerve electrode and the manufacturing method thereof of the present invention, the peripheral nerve type flexible nerve electrode can be manufactured inexpensively and easily, and the problems of the conventional peripheral nerve type flexible nerve electrode can be solved. Therefore, stable measurement and stimulation can be performed for a longer period than conventional ones.

〔第1実施形態〕
本発明の刺入タイプの末梢神経型柔軟神経電極10の実施例について、上面図を図1(a)に、b−b断面図を図1(b)に、c−c断面図を図1(c)に、また使用イメージを図2に示す。
本発明の刺入タイプの末梢神経型柔軟神経電極10は、図1に示すように第1絶縁層11と、第2絶縁層12と、それぞれ電極部14と配線部15とからなる複数の電極配線13と、複数の貫通穴16と、から構成され、図2に示すように複数の神経線維92からなる神経束91に刺し入れることにより、電極部14と接触又は接近した神経線維92を電気的に刺激し、また、神経線維92の電気的な活動を計測する。
[First Embodiment]
FIG. 1 (a) is a top view, FIG. 1 (b) is a bb cross-sectional view, and FIG. 1 (b) is a cc cross-sectional view of an embodiment of the insertion type peripheral nerve type flexible nerve electrode 10 of the present invention. FIG. 2 (c) shows a usage image.
As shown in FIG. 1, the insertion type peripheral nerve type flexible nerve electrode 10 of the present invention includes a first insulating layer 11, a second insulating layer 12, and a plurality of electrodes each including an electrode portion 14 and a wiring portion 15. As shown in FIG. 2, the nerve fiber 92 that is in contact with or close to the electrode portion 14 is electrically connected by being inserted into a nerve bundle 91 including a plurality of nerve fibers 92 as shown in FIG. 2. The electrical activity of the nerve fiber 92 is measured.

第1絶縁層11及び第2絶縁層12は、同一の感光性の柔軟絶縁材料にて、図1に示すように同一の外形形状にて積層されている。刺入タイプの末梢神経型柔軟神経電極10は、神経束に刺し入れて使用するため、第1絶縁層11及び第2絶縁層12は神経束に刺し入れやすい外形形状、例えば長手方向の一端が先細りとなった形状を有する。第1絶縁層11及び第2絶縁層12の表面はアッシングやブラストにより親水性に改質されている。更に、第1絶縁層11と第2絶縁層12との間には複数の電極配線13が挟み込まれており、図1(a)(b)に示すように第1絶縁層11及び第2絶縁層12の電極配線13が無い部分には複数の貫通穴16が形成されている。   The first insulating layer 11 and the second insulating layer 12 are laminated with the same photosensitive flexible insulating material and the same outer shape as shown in FIG. Since the insertion type peripheral nerve type flexible nerve electrode 10 is used by being inserted into the nerve bundle, the first insulating layer 11 and the second insulating layer 12 have an outer shape that is easy to insert into the nerve bundle, for example, one end in the longitudinal direction. It has a tapered shape. The surfaces of the first insulating layer 11 and the second insulating layer 12 are modified to be hydrophilic by ashing or blasting. Further, a plurality of electrode wirings 13 are sandwiched between the first insulating layer 11 and the second insulating layer 12, and as shown in FIGS. 1A and 1B, the first insulating layer 11 and the second insulating layer 11 are interposed. A plurality of through holes 16 are formed in a portion of the layer 12 where the electrode wiring 13 is not provided.

感光性の柔軟絶縁材料を適用することで、柔軟絶縁材料に直接、露光・現像処理を行うだけで柔軟絶縁材料を所定の形状に成型できるため、複雑なドライエッチング工程を省略できる。その結果、末梢神経型柔軟神経電極の作製工程が簡略化され容易に作製することが可能となる。なお、具体的な作製工程は後述する。また、ドライエッチング工程の省略により、ドライエッチング装置とその維持費も不要となるため、製造コストの低減も図ることができる。適用する感光性の絶縁材料としては、感光性ポリイミド、感光性ポリアミド、感光性ポリエステル、感光性ベンゾシクロブテン、感光性パリレン、感光性エポキシ、感光性アクリレートなどが挙げられる。これらの中でも、加工の容易さと過去の使用実績が多いイミド系の材料である感光性ポリイミドを用いるのがより好ましい。   By applying the photosensitive flexible insulating material, the flexible insulating material can be molded into a predetermined shape by directly performing exposure and development processing on the flexible insulating material, so that a complicated dry etching process can be omitted. As a result, the manufacturing process of the peripheral nerve type flexible nerve electrode is simplified and can be easily manufactured. A specific manufacturing process will be described later. Further, the omission of the dry etching process eliminates the need for a dry etching apparatus and its maintenance cost, thereby reducing the manufacturing cost. Examples of the photosensitive insulating material to be applied include photosensitive polyimide, photosensitive polyamide, photosensitive polyester, photosensitive benzocyclobutene, photosensitive parylene, photosensitive epoxy, and photosensitive acrylate. Among these, it is more preferable to use photosensitive polyimide which is an imide-based material that is easy to process and has a long history of use.

また、第1絶縁体11及び第2絶縁体12の表面は作製時点では疎水性であり細胞との接着性が良くないため、表面をアッシングやブラストにより改質することによって親水性を高めることで、末梢神経型柔軟神経電極と細胞との接着性を良くすることができる。その結果、生体の異物反応を抑制することができることに加え、脳へ留置した刺入型柔軟神経電極周囲に生じる瘢痕と炎症の軽減をでき、よって生体適合性を向上して長時間の安定した計測と刺激が実現できる。   In addition, since the surfaces of the first insulator 11 and the second insulator 12 are hydrophobic at the time of production and have poor adhesion to cells, the hydrophilicity can be increased by modifying the surfaces by ashing or blasting. The adhesion between the peripheral nerve type flexible nerve electrode and the cell can be improved. As a result, in addition to suppressing the foreign body reaction of the living body, it can reduce scarring and inflammation around the implanted flexible nerve electrode placed in the brain, thus improving biocompatibility and stable for a long time Measurement and stimulation can be realized.

更に、第1絶縁体11及び第2絶縁体12に複数の貫通穴16を設けて末梢神経型柔軟神経電極を網目構造とすることにより、末梢神経型柔軟神経電極の脳への留置後、網目構造の空隙部に脳組織が侵入して脳組織と一体化し、脳組織の動きのずれによる損傷、計測又は刺激対象である神経の死滅、及び計測又は刺激可能範囲外への移動等を抑制することが可能となる。加えて貫通穴16の空隙部に、損傷した脳組織を回復させるような薬剤を刺入前に固着させておくことで、刺入後に徐放された薬剤によって損傷した脳組織の回復促進を図ることができる。なお、このように薬剤を固着させても薬剤徐放後には再び空隙部となり、その結果上記のように脳組織が侵入するため、末梢神経型柔軟神経電極と脳組織との一体化は実現される。なお、貫通穴16の数と大きさ・形状は末梢神経型柔軟神経電極が使用される場面ごとに要求される強度や剛性に応じて適宜設定すればよい。   Further, by providing a plurality of through holes 16 in the first insulator 11 and the second insulator 12 to form a peripheral nerve type flexible nerve electrode in a network structure, the mesh after the peripheral nerve type flexible nerve electrode is placed in the brain. Brain tissue penetrates into the voids of the structure and integrates with the brain tissue to suppress damage due to deviations in movement of the brain tissue, death of the nerve that is the object of measurement or stimulation, and movement outside the measurement or stimulation possible range It becomes possible. In addition, by fixing a drug that recovers damaged brain tissue in the space of the through hole 16 before insertion, the recovery of brain tissue damaged by the drug that is gradually released after insertion is promoted. be able to. Even if the drug is fixed in this way, it becomes a void again after the drug is slowly released, and as a result, the brain tissue enters as described above, so that the integration of the peripheral nerve type flexible nerve electrode and the brain tissue is realized. The The number, size, and shape of the through holes 16 may be appropriately set according to the strength and rigidity required for each scene where the peripheral nerve type flexible nerve electrode is used.

電極配線13は電極部14と配線部15とからなり、電極部14は図1(a)(c)に示すように、任意の形状にて第2絶縁層12から露出され、ここで測定・刺激対象である神経と接触する。露出していない配線部15は、他の配線と相互にショートしないように配置されている。電極の材料としては、白金(Pt)、金(Au)、二酸化チタン(TiO)、酸化銀(AgO)、タングステン(W)、スズ添加酸化インジウム(Indium Tin Oxide)、酸化スズ(SnO)、クロム(Cr)、銅(Cu)、ニッケル(Ni)、アルミニウム(Al)などが挙げられる。これらの中でも、微細加工が容易で、導電性の高さと柔軟性を有する白金又は金がより好ましい。 The electrode wiring 13 is composed of an electrode portion 14 and a wiring portion 15, and the electrode portion 14 is exposed from the second insulating layer 12 in an arbitrary shape as shown in FIGS. Contact with the nerve to be stimulated. The unexposed wiring portions 15 are arranged so as not to short-circuit each other. Examples of the electrode material include platinum (Pt), gold (Au), titanium dioxide (TiO 2 ), silver oxide (Ag 2 O), tungsten (W), tin-added indium oxide (Indium Tin Oxide), and tin oxide (SnO). 2 ), chromium (Cr), copper (Cu), nickel (Ni), aluminum (Al) and the like. Among these, platinum or gold is preferable because it is easy to finely process and has high conductivity and flexibility.

<作製方法>
図3A、図3Bに本発明の末梢神経型柔軟神経電極の作製工程を、図4にこのような作製工程を経て完成した刺入タイプの末梢神経型柔軟神経電極10の電極部14の直径と電極インピーダンスとの関係をそれぞれ示す。以下、図3に従い作製工程を説明する。なお、図3は感光素材がネガタイプである場合で記しているが状況に応じポジタイプを用いても構わない。
<Production method>
3A and 3B show the manufacturing process of the peripheral nerve type flexible nerve electrode of the present invention, and FIG. 4 shows the diameter of the electrode portion 14 of the insertion type peripheral nerve type flexible nerve electrode 10 completed through such a manufacturing process. The relationship with the electrode impedance is shown respectively. Hereinafter, the manufacturing process will be described with reference to FIG. Although FIG. 3 shows the case where the photosensitive material is a negative type, a positive type may be used depending on the situation.

S1:半導体又はガラス基板21上に第1絶縁層11を形成
S2:第1絶縁層11の外形形状が描画されたマスク27を用いて第1絶縁層11を露光・現像し、第1絶縁層11の形状を成型
S3:表面全面に金属層22を形成
S4:表面全面にフォトレジスト層23を形成
S5:電極配線13の形状が描画されたマスク24を用いてフォトレジスト層23を露光・現像
S1: The first insulating layer 11 is formed on the semiconductor or glass substrate 21. S2: The first insulating layer 11 is exposed and developed using the mask 27 on which the outer shape of the first insulating layer 11 is drawn. 11: S3: Metal layer 22 is formed on the entire surface S4: Photoresist layer 23 is formed on the entire surface S5: Photoresist layer 23 is exposed and developed using mask 24 on which the shape of electrode wiring 13 is drawn

S6:露光・現像により残存させたフォトレジスト層23により金属層22をエッチングして電極配線13の形状を成型
S7:フォトレジスト層23を除去
S8:表面全面に第2絶縁層12を形成
S9:第2絶縁層12の所定の形状が描画されたマスク29を用いて第2絶縁層12を露光・現像し、第2絶縁層12の形状を成型
S10:基板21から完成物を剥離
S6: The metal layer 22 is etched by the photoresist layer 23 left by exposure / development to form the shape of the electrode wiring 13 S7: The photoresist layer 23 is removed S8: The second insulating layer 12 is formed on the entire surface S9: The second insulating layer 12 is exposed and developed using a mask 29 on which a predetermined shape of the second insulating layer 12 is drawn, and the shape of the second insulating layer 12 is molded S10: the finished product is peeled from the substrate 21

以上のように、感光性の柔軟絶縁材料を用いることで、図11のS108〜S119に示すような複雑なドライエッチング工程を経ることなく、シンプルな製造工程で容易に末梢神経型柔軟神経電極を作製することができる。また、ドライエッチング工程を含まないことから、ドライエッチングの影響によるアライメントマークの変形が回避され、アライメント誤差を小さくすることができる。そのため、安定した微細加工による末梢神経型柔軟神経電極の作製が実現される。   As described above, by using a photosensitive flexible insulating material, a peripheral nerve type flexible nerve electrode can be easily formed by a simple manufacturing process without going through a complicated dry etching process as shown in S108 to S119 of FIG. Can be produced. Further, since the dry etching process is not included, deformation of the alignment mark due to the influence of dry etching is avoided, and the alignment error can be reduced. Therefore, it is possible to produce a peripheral nerve type flexible nerve electrode by stable microfabrication.

このように作製された刺入タイプの末梢神経型柔軟神経電極10は、図4に示すように電極部14の直径に相関して測定と刺激に適当な電極インピーダンスを有し、作製方法がシンプルであっても従来の作製方法と同等な性能を有する。   The insertion-type peripheral nerve type flexible nerve electrode 10 manufactured in this way has an electrode impedance suitable for measurement and stimulation in correlation with the diameter of the electrode part 14 as shown in FIG. Even so, it has the same performance as the conventional manufacturing method.

〔第2実施形態〕
第1実施形態においては、電極部を含む電極配線が1層の場合について実施形態を明らかにしたが、感光性の柔軟絶縁材料を用いることにより、工程が大幅に減少し、またアライメントマーク変形による誤差の問題も考慮する必要がなくなることから、従来の方法では難しかった電極配線の多層化も容易に実現することができる。厚さが許容できる範囲内で多層化を行うことで、複数の電極配線の配線部の輻輳による面積増大を抑制することができるため、単位面積あたりの電極数を増やすことができ、同じ電極数であれば面積を小さくすることができる。そして、厚さとのトータルで容積を小さくできれば、末梢神経組織への侵襲ダメージを従来のものより軽減することができる。なお、多層化しても、第1絶縁層以外は薄膜であり、測定・刺激対象と電極との密着性は高いため、測定や刺激への影響はほとんど無視できる。
[Second Embodiment]
In the first embodiment, the embodiment has been clarified in the case where the electrode wiring including the electrode portion is a single layer. However, by using a photosensitive flexible insulating material, the number of processes is greatly reduced, and the alignment mark is deformed. Since it is not necessary to consider the problem of error, it is possible to easily realize the multilayered electrode wiring, which is difficult with the conventional method. By increasing the number of layers within the allowable range, it is possible to suppress an increase in the area due to the congestion of the wiring parts of the plurality of electrode wirings, so the number of electrodes per unit area can be increased and the same number of electrodes. If so, the area can be reduced. If the volume can be reduced in total with the thickness, invasive damage to the peripheral nerve tissue can be reduced as compared with the conventional one. Even if the number of layers is increased, the first insulating layer is a thin film, and the adhesion between the measurement / stimulation target and the electrode is high. Therefore, the influence on measurement and stimulation can be almost ignored.

<作製方法>
図5に電極配線が1層の末梢神経型柔軟神経電極を2層にする工程の例を示す。3層以上についても同様の工程を繰り返すことで実現可能である。以下、図5に従い電極配線が2層の末梢神経型柔軟神経電極50の作製工程を説明する。
S51:表面全面に金属層51を形成
S52:表面全面にフォトレジスト層52を形成
S53:2層目の電極配線53及び1層目の電極部14の所定の形状が描画されたマスク54を用い、フォトレジスト層52を露光・現像
S54:残存させたフォトレジスト層52により金属層51をエッチングし、2層目の電極配線53を形成
S55:全面に2層目の第2絶縁層55を形成
S56:2層目の第2絶縁層55の所定の形状(外形及び2層目の電極部57)が描画されたマスク56を用い、2層目の第2絶縁層55を露光・現像
<Production method>
FIG. 5 shows an example of a process of forming a peripheral nerve type flexible nerve electrode having one layer of electrode wiring into two layers. It can be realized by repeating the same process for three or more layers. Hereinafter, a manufacturing process of the peripheral nerve type flexible nerve electrode 50 having two layers of electrode wiring will be described with reference to FIG.
S51: The metal layer 51 is formed on the entire surface. S52: The photoresist layer 52 is formed on the entire surface. S53: The mask 54 on which predetermined shapes of the second-layer electrode wiring 53 and the first-layer electrode portion 14 are drawn is used. Then, the photoresist layer 52 is exposed and developed S54: The metal layer 51 is etched by the remaining photoresist layer 52 to form the second electrode wiring 53 S55: The second insulating layer 55 of the second layer is formed on the entire surface. S56: Exposure / development of the second insulating layer 55 of the second layer using the mask 56 on which a predetermined shape (outer shape and electrode portion 57 of the second layer) of the second insulating layer 55 of the second layer is drawn.

〔第3実施形態〕
本発明のカフタイプの末梢神経型柔軟神経電極60の実施例について、上面図を図6(a)に、b−b断面図を図6(b)に、神経束への装着状態を図7に示す。
本発明のカフタイプの末梢神経型柔軟神経電極60は、第1絶縁層11と、第2絶縁層12と、それぞれ電極部14と配線部15とからなる複数の電極配線13と、から構成され、図7に示すように神経束91に巻きつけることにより、神経束91に接触又は接近した電極部14が神経束91を電気的に刺激し、また、神経束91の電気的な活動を計測する。なお、第1絶縁層11、第2絶縁層12、及び電極配線13の機能・材質等は第1実施形態の刺入タイプの末梢神経型柔軟神経電極10と共通であることから同じ符号を付し、説明が重複する部分については説明を省略する。以降の実施例についても同様とする。
[Third Embodiment]
FIG. 6 (a) is a top view, FIG. 6 (b) is a bb cross-sectional view, and FIG. 7 shows a state of attachment to a nerve bundle, for an embodiment of the cuff type peripheral nerve type flexible nerve electrode 60 of the present invention. Show.
The cuff type peripheral nerve type flexible nerve electrode 60 of the present invention is composed of a first insulating layer 11, a second insulating layer 12, and a plurality of electrode wirings 13 each including an electrode part 14 and a wiring part 15, As shown in FIG. 7, by wrapping around the nerve bundle 91, the electrode unit 14 in contact with or approaching the nerve bundle 91 electrically stimulates the nerve bundle 91, and measures the electrical activity of the nerve bundle 91. . The functions and materials of the first insulating layer 11, the second insulating layer 12, and the electrode wiring 13 are the same as those of the insertion type peripheral nerve type flexible nerve electrode 10 of the first embodiment, and thus the same reference numerals are given. However, the description of the overlapping parts is omitted. The same applies to the following embodiments.

カフタイプの末梢神経型柔軟神経電極60には、神経束91に巻きつけた際に固定できるよう、図6(a)に示すように、第1絶縁層11と第2絶縁層12の神経束に巻き付けた際に接する両端縁線部に突起部61と引掛穴62が対で設けられ、図7に示すように引掛穴62に突起部61を引っ掛けることにより固定可能となっている。
なお、カフタイプの末梢神経型柔軟神経電極60の作製方法は、第1実施形態にて示した刺入タイプの末梢神経型柔軟神経電極60の作製方法と同様であり、第2実施形態に示した電極配線の多層化方法についても同様に適用可能である。従って、複数の電極配線の配線部の輻輳による面積増大を抑制することができるため、単位面積あたりの電極数を増やすことができ、同じ電極数であれば面積を小さくすることができる。
As shown in FIG. 6A, the cuff-type peripheral nerve type flexible nerve electrode 60 is attached to the nerve bundles of the first insulating layer 11 and the second insulating layer 12 so as to be fixed when wound around the nerve bundle 91. A pair of protrusions 61 and hooking holes 62 are provided at both end edge line portions that are in contact with each other when wound, and can be fixed by hooking the protrusions 61 into the hooking holes 62 as shown in FIG.
The method for producing the cuff type peripheral nerve type flexible nerve electrode 60 is the same as the method for producing the insertion type peripheral nerve type flexible nerve electrode 60 shown in the first embodiment, and is shown in the second embodiment. The same method can be applied to the multilayered method of electrode wiring. Accordingly, an increase in area due to the congestion of the wiring portions of the plurality of electrode wirings can be suppressed, so that the number of electrodes per unit area can be increased, and the area can be reduced with the same number of electrodes.

〔第4実施形態〕
本発明の再生タイプの末梢神経型柔軟神経電極70の実施例について、上面図を図8(a)に、b−b断面図を図8(b)に、神経線維が電極部に通線された装着状態を図9に示す。
本発明の再生タイプの末梢神経型柔軟神経電極70は、第1絶縁層11と、第2絶縁層12と、それぞれ電極部14と配線部15とからなる複数の電極配線13と、から構成される。また、第1絶縁層11と第2絶縁層12と複数の電極配線13には、電極部14の中央部分に末梢神経線維92が通過可能な共通の貫通穴71が設けられる。再生タイプの末梢神経型柔軟神経電極70においては、切断された末梢神経線維92同士が自己再生機能により、再生経路にある当該貫通穴71を通じて再生・接続される。その結果、末梢神経線維92が当該貫通穴71にある電極部14に接触した状態となり、末梢神経線維92への電気的な刺激及び末梢神経線維92の電気的活動の計測が可能となる。なお、実際に使用する際には、図9に示すように複数の末梢神経線維92からなる神経束91を支えるためのガイドチューブ72が両側に取り付けられる。
[Fourth Embodiment]
FIG. 8 (a) is a top view, FIG. 8 (b) is a cross-sectional view taken along the line bb, and nerve fibers are connected to the electrode portion of the regeneration type peripheral nerve type flexible nerve electrode 70 of the present invention. The attached state is shown in FIG.
The regeneration-type peripheral nerve type flexible nerve electrode 70 of the present invention includes a first insulating layer 11, a second insulating layer 12, and a plurality of electrode wires 13 each including an electrode portion 14 and a wiring portion 15. The Further, the first insulating layer 11, the second insulating layer 12, and the plurality of electrode wirings 13 are provided with a common through hole 71 through which the peripheral nerve fiber 92 can pass in the central portion of the electrode portion 14. In the regeneration type peripheral nerve type flexible nerve electrode 70, the cut peripheral nerve fibers 92 are regenerated and connected through the through hole 71 in the regeneration path by the self regeneration function. As a result, the peripheral nerve fiber 92 is in contact with the electrode portion 14 in the through hole 71, and electrical stimulation to the peripheral nerve fiber 92 and measurement of the electrical activity of the peripheral nerve fiber 92 are possible. In actual use, as shown in FIG. 9, guide tubes 72 for supporting a nerve bundle 91 composed of a plurality of peripheral nerve fibers 92 are attached to both sides.

なお、再生タイプの末梢神経型柔軟神経電極70の作製方法についても、第1実施形態にて示した刺入タイプの末梢神経型柔軟神経電極60の作製方法と同様であり、第2実施形態に示した電極配線の多層化方法についても同様に適用可能である。従って、例えば図8(c)の断面図に示すように電極配線13と第2絶縁層12とを多数、円筒状に積層することにより、電極部と絶縁部位を適当な間隔で多数配置することが可能となる。そして、このように電極部を多数配置することが可能となることで、図10で示されるような有髄神経繊維毎に不規則にランビエの絞輪95が配置されている神経束に対しても、ランビエの絞輪95の位置に適切に電極部14を配置することが可能となり、よって、末梢神経の刺激と計測を適切に実現することができる。   The method for producing the regeneration-type peripheral nerve-type flexible nerve electrode 70 is also the same as the method for producing the insertion-type peripheral nerve-type flexible nerve electrode 60 shown in the first embodiment. The same method can be applied to the multilayered method of electrode wiring shown. Therefore, for example, as shown in the cross-sectional view of FIG. 8C, a large number of electrode wirings 13 and second insulating layers 12 are laminated in a cylindrical shape so that a large number of electrode portions and insulating portions are arranged at appropriate intervals. Is possible. In addition, since it is possible to arrange a large number of electrode parts in this way, the nerve bundle in which the Lambier's diaphragm 95 is irregularly arranged for each myelinated nerve fiber as shown in FIG. However, it is possible to appropriately arrange the electrode portion 14 at the position of the diaphragm of the Lambier 95, so that stimulation and measurement of the peripheral nerve can be realized appropriately.

体内各部の末梢神経に電気的な刺激を与えたり、末梢神経の電気的な活動を計測したりする作業を、安全かつ高精度に長期間行いたい場合に特に有用である。   This is particularly useful when it is desired to perform electrical stimulation on peripheral nerves in various parts of the body or measurement of electrical activity of peripheral nerves for a long period of time safely and accurately.

第1実施形態の末梢神経型柔軟神経電極10の構成例を示す図The figure which shows the structural example of the peripheral nerve type | mold flexible nerve electrode 10 of 1st Embodiment. 第1実施形態の末梢神経型柔軟神経電極10の使用イメージを示す図The figure which shows the use image of the peripheral nerve type | mold flexible nerve electrode 10 of 1st Embodiment. 本発明の末梢神経型柔軟神経電極の作製工程例を示す図(1/2)The figure which shows the example of a manufacturing process of the peripheral nerve type flexible nerve electrode of this invention (1/2) 本発明の末梢神経型柔軟神経電極の作製工程例を示す図(2/2)The figure which shows the manufacturing process example of the peripheral nerve type | mold flexible nerve electrode of this invention (2/2) 第1実施形態の末梢神経型柔軟神経電極10の電極部14の直径と電極インピーダンスとの関係の例を示す図The figure which shows the example of the relationship between the diameter of the electrode part 14 of the peripheral nerve type | mold flexible nerve electrode 10 of 1st Embodiment, and electrode impedance. 第2実施形態の末梢神経型柔軟神経電極50の作製工程例を示す図The figure which shows the production example of the peripheral nerve type | mold flexible nerve electrode 50 of 2nd Embodiment. 第3実施形態の末梢神経型柔軟神経電極60の構成例を示す図The figure which shows the structural example of the peripheral nerve type | mold flexible nerve electrode 60 of 3rd Embodiment. 第3実施形態の末梢神経型柔軟神経電極60の装着状態を示す図The figure which shows the mounting state of the peripheral nerve type flexible nerve electrode 60 of 3rd Embodiment. 第4実施形態の末梢神経型柔軟神経電極70の構成例を示す図The figure which shows the structural example of the peripheral nerve type | mold flexible nerve electrode 70 of 4th Embodiment. 第4実施形態の末梢神経型柔軟神経電極70の装着状態を示す図The figure which shows the mounting state of the peripheral nerve type | mold flexible nerve electrode 70 of 4th Embodiment. ランビエの絞輪周辺における電極部の配置状態を示す図The figure which shows the arrangement state of the electrode part around the diaphragm of Lambier 従来の末梢神経型柔軟神経電極の作製工程例を示す図(1/3)The figure which shows the example of a manufacturing process of the conventional peripheral nerve type soft nerve electrode (1/3) 従来の末梢神経型柔軟神経電極の作製工程例を示す図(2/3)The figure which shows the example of a manufacturing process of the conventional peripheral nerve type soft nerve electrode (2/3) 従来の末梢神経型柔軟神経電極の作製工程例を示す図(3/3)The figure which shows the example of a manufacturing process of the conventional peripheral nerve type soft nerve electrode (3/3) 同一材料を2つの膜厚でエッチングを行う必要性を示す図Diagram showing the need to etch the same material with two film thicknesses

Claims (6)

感光性の柔軟絶縁材料からなる第1絶縁層と、
感光性の柔軟絶縁材料からなる第2絶縁層と、
上記第1絶縁層上に形成され、上記第2絶縁層に覆われた複数の電極配線と、
から構成され、
それぞれの上記電極配線は、上記第2絶縁層から露出している電極部と露出していない配線部とからなり、
上記第1絶縁層と上記第2絶縁層は、外形の長手方向の一端が先細り形状であり、表面が親水性に改質され、複数の上記電極配線が存在しない部分に複数の共通の貫通穴を有する
末梢神経型柔軟神経電極。
A first insulating layer made of a photosensitive flexible insulating material;
A second insulating layer made of a photosensitive flexible insulating material;
A plurality of electrode wires formed on the first insulating layer and covered with the second insulating layer;
Consisting of
Each of the electrode wirings comprises an electrode part exposed from the second insulating layer and a wiring part not exposed,
The first insulating layer and the second insulating layer have a tapered shape at one end in the longitudinal direction of the outer shape, the surface is modified to be hydrophilic, and a plurality of common through holes are provided in a portion where the plurality of electrode wirings are not present. A peripheral nerve type flexible nerve electrode.
感光性の柔軟絶縁材料からなる第1絶縁層と、
感光性の柔軟絶縁材料からなる第2絶縁層と、
上記第1絶縁層上に形成され、上記第2絶縁層に覆われた複数の電極配線と、
から構成され、
それぞれの上記電極配線は、上記第2絶縁層から露出している電極部と露出していない配線部とからなり、
上記第1絶縁層と上記第2絶縁層は、神経束に巻き付けた際に接する両端縁線部が相互に固定可能な形状であり、表面が親水性に改質されている
末梢神経型柔軟神経電極。
A first insulating layer made of a photosensitive flexible insulating material;
A second insulating layer made of a photosensitive flexible insulating material;
A plurality of electrode wires formed on the first insulating layer and covered with the second insulating layer;
Consisting of
Each of the electrode wirings comprises an electrode part exposed from the second insulating layer and a wiring part not exposed,
Peripheral nerve type flexible nerves in which the first insulating layer and the second insulating layer have a shape in which both end edge line portions in contact with each other when wound around a nerve bundle can be fixed to each other and the surfaces are modified to be hydrophilic electrode.
感光性の柔軟絶縁材料からなる第1絶縁層と、
感光性の柔軟絶縁材料からなる第2絶縁層と、
上記第1絶縁層上に形成され、上記第2絶縁層に覆われた複数の電極配線と、
から構成され、
それぞれの上記電極配線は、上記第2絶縁層から露出している電極部と露出していない配線部とからなり、
上記第1絶縁層と上記第2絶縁層と上記電極配線は、それぞれの上記電極部の中央部分に、末梢神経線維が通過可能な共通の貫通穴を有することを特徴とする末梢神経型柔軟神経電極。
A first insulating layer made of a photosensitive flexible insulating material;
A second insulating layer made of a photosensitive flexible insulating material;
A plurality of electrode wires formed on the first insulating layer and covered with the second insulating layer;
Consisting of
Each of the electrode wirings comprises an electrode part exposed from the second insulating layer and a wiring part not exposed,
The peripheral nerve type flexible nerve, wherein the first insulating layer, the second insulating layer, and the electrode wiring have a common through hole through which a peripheral nerve fiber can pass in a central portion of each of the electrode portions. electrode.
請求項1乃至3のいずれかに記載の末梢神経型柔軟神経電極において、
上記複数の電極配線が多層化されていることを特徴とする末梢神経型柔軟神経電極。
The peripheral nerve type flexible nerve electrode according to any one of claims 1 to 3,
A peripheral nerve type flexible nerve electrode, wherein the plurality of electrode wirings are multi-layered.
基板上に感光性の第1絶縁層を形成する第1絶縁層形成ステップと、
上記第1絶縁層における所定の形状が描画されたマスクを用いて、第1絶縁層を露光・現像して第1絶縁層を所定の形状に加工する第1絶縁層加工ステップと、
第1絶縁層加工ステップで形成された表面全体に金属層を形成する金属層形成ステップと、
金属層形成ステップで形成された表面全体にフォトレジスト層を形成するフォトレジスト層形成ステップと、
上記電極配線の所定の形状が描画されたマスクを用いて上記フォトレジスト層を露光・現像する電極配線描画ステップと、
電極配線描画ステップで露光・現像された上記フォトレジスト層により上記金属層をエッチングして電極配線の所定の形状に加工する電極配線加工ステップと、
上記フォトレジスト層を除去するフォトレジスト除去ステップと、
上記各ステップにより形成された表面全体に感光性の第2絶縁層を形成する第2絶縁層形成ステップと、
上記第2絶縁層における所定の形状が描画されたマスクを用いて、第2絶縁層を露光・現像して第2絶縁層を所定の形状に加工する第2絶縁層加工ステップと、
上記各ステップの実行により形成された末梢神経型柔軟神経電極を上記基板から剥離する基板剥離ステップと、
を実行する末梢神経型柔軟神経電極作製方法。
A first insulating layer forming step of forming a photosensitive first insulating layer on the substrate;
A first insulating layer processing step of processing the first insulating layer into a predetermined shape by exposing and developing the first insulating layer using a mask on which the predetermined shape of the first insulating layer is drawn;
A metal layer forming step of forming a metal layer on the entire surface formed in the first insulating layer processing step;
A photoresist layer forming step for forming a photoresist layer over the entire surface formed in the metal layer forming step;
An electrode wiring drawing step of exposing and developing the photoresist layer using a mask on which a predetermined shape of the electrode wiring is drawn;
An electrode wiring processing step for etching the metal layer with the photoresist layer exposed and developed in the electrode wiring drawing step to process it into a predetermined shape of the electrode wiring;
A photoresist removal step to remove the photoresist layer;
A second insulating layer forming step of forming a photosensitive second insulating layer on the entire surface formed by the above steps;
A second insulating layer processing step of processing the second insulating layer into a predetermined shape by exposing and developing the second insulating layer using a mask on which the predetermined shape of the second insulating layer is drawn;
A substrate peeling step for peeling the peripheral nerve type flexible nerve electrode formed by the execution of each step from the substrate;
Peripheral nerve type flexible nerve electrode manufacturing method.
請求項5に記載の末梢神経型柔軟神経電極作製方法において、
上記第2絶縁層加工ステップと上記基板剥離ステップとの間に、上記電極配線の所望の階層数分、上記金属層形成ステップから上記第2絶縁層加工ステップまでの各ステップを各層の所定の形状で繰り返し実行することを特徴とする末梢神経型柔軟神経電極作製方法。
In the method for producing a peripheral nerve type flexible nerve electrode according to claim 5,
Between the second insulating layer processing step and the substrate peeling step, each step from the metal layer forming step to the second insulating layer processing step is performed for a desired number of layers of the electrode wiring. A method for producing a peripheral nerve type flexible nerve electrode, characterized in that the method is repeatedly performed in step S1.
JP2008141041A 2008-05-29 2008-05-29 Peripheral nerve type flexible nerve electrode and manufacturing method thereof Expired - Fee Related JP5075017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141041A JP5075017B2 (en) 2008-05-29 2008-05-29 Peripheral nerve type flexible nerve electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141041A JP5075017B2 (en) 2008-05-29 2008-05-29 Peripheral nerve type flexible nerve electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009285154A true JP2009285154A (en) 2009-12-10
JP5075017B2 JP5075017B2 (en) 2012-11-14

Family

ID=41454943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141041A Expired - Fee Related JP5075017B2 (en) 2008-05-29 2008-05-29 Peripheral nerve type flexible nerve electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5075017B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341385A1 (en) 2009-12-16 2011-07-06 Sony Corporation Image processing system, image processing apparatus, image pickup apparatus, method, and computer-readable medium
JP2011217984A (en) * 2010-04-12 2011-11-04 Nippon Telegr & Teleph Corp <Ntt> Electroconductive cushioning material, electrode tool, electrode mechanism, method for using electrode mechanism
US20110295347A1 (en) * 2010-05-28 2011-12-01 Lockheed Martin Corporation Nerve-penetrating apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
WO2016185525A1 (en) * 2015-05-15 2016-11-24 合同会社プロモベオ Brain electrode
JP2018187434A (en) * 2014-05-28 2018-11-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method of manufacturing flexible conductive track arrangement, flexible conductive track arrangement, and neurostimulation system
JP2020025510A (en) * 2018-08-14 2020-02-20 日本電信電話株式会社 Electrode, method of manufacturing the same, and laminate
CN112386262A (en) * 2020-11-18 2021-02-23 中国科学院半导体研究所 U-shaped flexible electrode implantation system and preparation method thereof
CN115054258A (en) * 2022-06-17 2022-09-16 中国科学院脑科学与智能技术卓越创新中心 Flexible electrode for peripheral nerve and manufacturing method thereof
CN115054824A (en) * 2022-06-17 2022-09-16 中国科学院脑科学与智能技术卓越创新中心 Linear flexible electrode for peripheral nerves and manufacturing method thereof
WO2023240697A1 (en) * 2022-06-17 2023-12-21 中国科学院脑科学与智能技术卓越创新中心 Surface flexible electrode for central nervious system and method for preparing said electrode

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161618A (en) * 1991-12-10 1993-06-29 Terumo Corp Conductive tacky adhesive for medical purpose
JPH06296595A (en) * 1993-04-16 1994-10-25 Matsushita Electric Ind Co Ltd Unified complex electrode
JP2000311962A (en) * 1999-04-27 2000-11-07 Dainippon Printing Co Ltd Semiconductor device circuit member and its manufacture
JP2004141462A (en) * 2002-10-25 2004-05-20 Hitachi Ltd Semiconductor device and nerve interface system
JP2004195052A (en) * 2002-12-20 2004-07-15 Hokkaido Univ Multipoint microelectrode, biopotential measuring device, manufacturing method of multipoint microelectrode, and manufacturing method of biopotential measuring device
JP2004237077A (en) * 2003-01-17 2004-08-26 Foundation For The Promotion Of Industrial Science Flexible nerve probe, its manufacturing method and its using method
JP2005033153A (en) * 2003-06-20 2005-02-03 National Institute Of Advanced Industrial & Technology Multilayer fine wiring interposer and its manufacturing method
JP2007205756A (en) * 2006-01-31 2007-08-16 Nippon Telegr & Teleph Corp <Ntt> Extracellular electrode
JP2009288080A (en) * 2008-05-29 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Extracellular micro electrode and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161618A (en) * 1991-12-10 1993-06-29 Terumo Corp Conductive tacky adhesive for medical purpose
JPH06296595A (en) * 1993-04-16 1994-10-25 Matsushita Electric Ind Co Ltd Unified complex electrode
JP2000311962A (en) * 1999-04-27 2000-11-07 Dainippon Printing Co Ltd Semiconductor device circuit member and its manufacture
JP2004141462A (en) * 2002-10-25 2004-05-20 Hitachi Ltd Semiconductor device and nerve interface system
JP2004195052A (en) * 2002-12-20 2004-07-15 Hokkaido Univ Multipoint microelectrode, biopotential measuring device, manufacturing method of multipoint microelectrode, and manufacturing method of biopotential measuring device
JP2004237077A (en) * 2003-01-17 2004-08-26 Foundation For The Promotion Of Industrial Science Flexible nerve probe, its manufacturing method and its using method
JP2005033153A (en) * 2003-06-20 2005-02-03 National Institute Of Advanced Industrial & Technology Multilayer fine wiring interposer and its manufacturing method
JP2007205756A (en) * 2006-01-31 2007-08-16 Nippon Telegr & Teleph Corp <Ntt> Extracellular electrode
JP2009288080A (en) * 2008-05-29 2009-12-10 Nippon Telegr & Teleph Corp <Ntt> Extracellular micro electrode and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341385A1 (en) 2009-12-16 2011-07-06 Sony Corporation Image processing system, image processing apparatus, image pickup apparatus, method, and computer-readable medium
JP2011217984A (en) * 2010-04-12 2011-11-04 Nippon Telegr & Teleph Corp <Ntt> Electroconductive cushioning material, electrode tool, electrode mechanism, method for using electrode mechanism
US20110295347A1 (en) * 2010-05-28 2011-12-01 Lockheed Martin Corporation Nerve-penetrating apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
US8968376B2 (en) * 2010-05-28 2015-03-03 Lockheed Martin Corporation Nerve-penetrating apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves
JP2018187434A (en) * 2014-05-28 2018-11-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Method of manufacturing flexible conductive track arrangement, flexible conductive track arrangement, and neurostimulation system
WO2016185525A1 (en) * 2015-05-15 2016-11-24 合同会社プロモベオ Brain electrode
JP2020025510A (en) * 2018-08-14 2020-02-20 日本電信電話株式会社 Electrode, method of manufacturing the same, and laminate
WO2020036104A1 (en) * 2018-08-14 2020-02-20 日本電信電話株式会社 Electrode, production method thereof, and laminate
JP7065433B2 (en) 2018-08-14 2022-05-12 日本電信電話株式会社 Electrodes, their manufacturing methods, and laminates
CN112386262A (en) * 2020-11-18 2021-02-23 中国科学院半导体研究所 U-shaped flexible electrode implantation system and preparation method thereof
CN115054258A (en) * 2022-06-17 2022-09-16 中国科学院脑科学与智能技术卓越创新中心 Flexible electrode for peripheral nerve and manufacturing method thereof
CN115054824A (en) * 2022-06-17 2022-09-16 中国科学院脑科学与智能技术卓越创新中心 Linear flexible electrode for peripheral nerves and manufacturing method thereof
WO2023240691A1 (en) * 2022-06-17 2023-12-21 中国科学院脑科学与智能技术卓越创新中心 Linear flexible electrode for peripheral nerve and method for manufacturing same
WO2023240693A1 (en) * 2022-06-17 2023-12-21 中国科学院脑科学与智能技术卓越创新中心 Flexible electrode for phripheral nerve and method for manufacturing same
WO2023240697A1 (en) * 2022-06-17 2023-12-21 中国科学院脑科学与智能技术卓越创新中心 Surface flexible electrode for central nervious system and method for preparing said electrode

Also Published As

Publication number Publication date
JP5075017B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP5075017B2 (en) Peripheral nerve type flexible nerve electrode and manufacturing method thereof
JP5075016B2 (en) Penetration type flexible nerve electrode and manufacturing method thereof
CN208492977U (en) Multilayered structure flexibility artificial hearing Neural stimulation electrodes
KR101368554B1 (en) A method of manufacturing a gas electron multiplier
US20030195601A1 (en) High-density array of micro-machined electrodes for neural stimulation
EP2980278B1 (en) Electroformed component production method
US20140257052A1 (en) Monolithically integrated implantable flexible antenna for electrocorticography and related biotelemetry devices
CN113724920B (en) Flexible conductive soft board and manufacturing method thereof, stimulation electrode and manufacturing method thereof
JP4828124B2 (en) Electrode support guide, cochlear implant including the guide, and manufacturing method thereof
JP2018053335A (en) Method for manufacturing fine structure, electronic component, circuit module, and electronic equipment
JP2009223010A (en) Metal plate for wire grid, self-supported wire grid, and method of manufacturing metal plate for wire grid
JP5038979B2 (en) Brain surface electrode and method for producing and using the same
KR20210060272A (en) Neural electrode with 3d structure of flexible substrate, and method for manufacturing the same
JP4221357B2 (en) Electrode structure, manufacturing method and use thereof
CN116744585B (en) Ultrathin medium-thickness substrate, manufacturing method thereof and voice coil motor
JP4914403B2 (en) Extracellular microelectrode and method for producing the same
US20220033952A1 (en) Methods For Making Probe Devices And Related Devices
CN112657053B (en) Implanted double-sided electrode and preparation method thereof
JP3845372B2 (en) Method for producing hydrogen separation member
JP6713154B1 (en) Ball array mask
JP3491886B2 (en) Processing method of ultrathin shape memory alloy sheet
JP2010042569A (en) Method of manufacturing suspend metal mask, and suspend metal mask
DK2004278T3 (en) Method of preparing implant structures for connection or electrostimulation of living tissue cells or nerves.
JP5502664B2 (en) Manufacturing method of connector device
JP2017034094A (en) Semiconductor element mounting substrate, semiconductor device and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120824

R150 Certificate of patent or registration of utility model

Ref document number: 5075017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees