JP2009275473A - Seismic response control device - Google Patents

Seismic response control device Download PDF

Info

Publication number
JP2009275473A
JP2009275473A JP2008130300A JP2008130300A JP2009275473A JP 2009275473 A JP2009275473 A JP 2009275473A JP 2008130300 A JP2008130300 A JP 2008130300A JP 2008130300 A JP2008130300 A JP 2008130300A JP 2009275473 A JP2009275473 A JP 2009275473A
Authority
JP
Japan
Prior art keywords
frame
bent
bending
building
vibration control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008130300A
Other languages
Japanese (ja)
Other versions
JP5269475B2 (en
JP2009275473A5 (en
Inventor
Tsutomu Okawa
力 大川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Domusu Sekkei Jimusho Kk
Sato Corp
Original Assignee
Domusu Sekkei Jimusho Kk
Sato Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Domusu Sekkei Jimusho Kk, Sato Corp filed Critical Domusu Sekkei Jimusho Kk
Priority to JP2008130300A priority Critical patent/JP5269475B2/en
Publication of JP2009275473A publication Critical patent/JP2009275473A/en
Publication of JP2009275473A5 publication Critical patent/JP2009275473A5/ja
Application granted granted Critical
Publication of JP5269475B2 publication Critical patent/JP5269475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lowcost seismic response control device which can sufficiently suppress the deformation of a building structural frame by earthquake force, and prevent the destruction of the building structural frame. <P>SOLUTION: The seismic response control device 1 is made by diagonally fixing seismic response control elements 6 made of a band steel plate consisting of low yield point steel and attached to the middle of vertical members 3 facing each other of the building structural frame 2, and the corners of the building structural frame 2 with diagonal members 5. The seismic response control element 6 is formed in a shape comprising frame mounting surface portions 8 on both ends for attaching the element 6 to the vertical member 3 of the building structural frame 2, a pair of rise portions 9 each formed through a first bent portion 11 bent toward the inside of the building structural frame 2 from the frame mounting surface portion 8, an upper side surface portion 10 formed through a second bent portion 12 bent parallel to the frame mounting surface portions 8 from the rise portions 9, and a diagonal member mounting plate 16 integrally formed so as to rise from the upper side surface portion 10 and attached with one end of each diagonal member 5. Through hole 17 are bored in the vicinity of at least one of bending starting points 11A, 12A of the bent portions 11, 12 in the rise portions 9. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄骨構造或いは木構造の建家の構造枠に取り付けられ、建家の制震機能を有する制震デバイスに関するものである。   The present invention relates to a vibration control device that is attached to a structural frame of a steel structure or wooden structure building and has a vibration control function of the building.

比較的小規模の建家は一般に軽量であって、弾性体による振動の吸収が難しく、従来から様々な材料やその作用機構が試みられており、それらの従来例がたとえば特許文献1、非特許文献1、2に記載されている。
特開2006−307527号公報 カタログ類 「i2s2 CORPORATED PROFILE」 株式会社i2s2 平成15年11月発行 騒音制御誌 Vol.23 No.6 社団法人 日本騒音制御工学会 1999年12月発行(第398頁左欄)
Relatively small-scale buildings are generally lightweight, and it is difficult to absorb vibrations by an elastic body. Various materials and their working mechanisms have been tried, and those conventional examples are disclosed in Patent Document 1, for example. Documents 1 and 2 are described.
JP 2006-307527 A Catalog “i2s2 CORPORATED PROFILE” i2s2 Co., Ltd. issued in November 2003 Noise control magazine Vol. 23 No. 6 Japan Society for Noise Control Engineering December 1999 (Left column on page 398)

特許文献1には、略Ω形状を呈した金属製の弾性湾曲ばねを用いる技術が記載されており、載荷時において三次元方向の振動にも適応するように、弾性湾曲ばねの湾曲部の領域を含み、かつ立上り面の上下の湾曲部間を繋ぐ形で縦方向にスリットを設ける旨記載されている。   Patent Document 1 describes a technique using a metal elastic bending spring having a substantially Ω shape, and the area of the bending portion of the elastic bending spring so as to adapt to vibration in a three-dimensional direction at the time of loading. And a slit is provided in the vertical direction so as to connect the upper and lower curved portions of the rising surface.

このスリットを有する弾性湾曲ばねの小規模実験では所定の成果が得られたが、静的実大実験では屈曲部の付け根に変形が繰返し集中して、図11に示すように屈曲部12の付け根が破断しやすいという問題が確認された。   In the small-scale experiment of the elastic curved spring having the slit, a predetermined result was obtained, but in the static full-scale experiment, deformation repeatedly concentrated on the root of the bent portion, and the root of the bent portion 12 as shown in FIG. Has been confirmed to be easily broken.

本発明は、動的振動実験においても安定した変形と震動吸収性能を有する制震デバイスを提供することを目的する。   An object of the present invention is to provide a vibration control device having stable deformation and vibration absorption performance even in a dynamic vibration experiment.

本発明においては、前記課題を解決するため、建家構造枠の対向する縦材の中間部に取り付けられる低降伏点鋼からなる帯状鋼板製の制震素子と、建家構造枠の隅角部とを斜材で対角線上に固定してなる制震デバイスであって、前記制震素子は、建家構造枠の縦材に取り付けるための両端の枠取付面部と、各枠取付面部から建家構造枠の内側に向けて折曲げてなる、第1曲げ部を経て形成される一対の立上り部と、立上り部から枠取付面部に平行に折曲げてなる、第2曲げ部を経て形成される上辺面部と、上辺面部から一体に立上がり形成され、斜材の一端が取り付けられる斜材取付板と、を有した形状からなり、立上り部において前記両曲げ部の曲げ起点近傍の少なくとも一方に貫通孔が穿設されていることを特徴とする制震デバイスとした。   In the present invention, in order to solve the above-mentioned problem, a vibration control element made of a strip steel plate made of a low yield point steel attached to an intermediate portion of opposing vertical members of a building structure frame, and a corner portion of the building structure frame Is a diagonal device that is diagonally fixed with diagonal materials, wherein the vibration control element includes frame mounting surface portions at both ends for mounting on the vertical members of the building structural frame, and each frame mounting surface portion from the building. It is formed through a pair of rising parts formed through the first bending part, which is bent toward the inside of the structural frame, and a second bending part which is bent in parallel from the rising part to the frame mounting surface part. It has a shape having an upper side surface part and an oblique material mounting plate formed integrally rising from the upper side surface part and to which one end of the diagonal material is attached, and a through-hole is formed in at least one of the rising parts in the vicinity of the bending start points of the two bending parts. A seismic control device characterized in that .

本発明は、従来技術とは異なり弾性ばねの反発力を利用せず、低降伏点鋼板製の上記制震デバイス(制震素子)の塑性曲げ変形によって、建家構造枠に作用する地震力を吸収するものである。
「特許文献1」の技術は、鋼板、ばね鋼板製のΩ型形状断面を有する金属性弾性ばねの反発力を利用した建家の緩衝装置であって、上下の屈曲面には縦長スリットが切刻されて三次元方向の加力に対して有効に作用する。
ばねの作用は錘とばねの振動系の原理に支配されており、錘(建物の重量)が軽いとばねの力を弱く、柔らかくしないとばねが効かず、地震時の震動を和らげることができない。また、ばねを柔らかくしたうえ、縦長スリットが切刻されているので、金属性弾性ばねの横断面の断面欠損のため、図11に示すように屈曲部12の有害変形によるヘタリが原因で破断・圧壊してしまうことがある。これは金属性弾性ばねの建家の緩衝による制震の限界でもある。
Unlike the prior art, the present invention does not use the repulsive force of the elastic spring, and the seismic force acting on the building structure frame by the plastic bending deformation of the above-mentioned damping device (seismic element) made of a low yield point steel plate. Absorb.
The technology of “Patent Document 1” is a shock absorber for a building that uses the repulsive force of a metal elastic spring having a Ω-shaped cross section made of a steel plate or a spring steel plate. It is engraved and acts effectively on the force applied in the three-dimensional direction.
The action of the spring is governed by the principle of the vibration system of the weight and the spring. If the weight (weight of the building) is light, the spring force will be weak, and if it is not soft, the spring will not work, and it will not be possible to moderate the vibration during an earthquake. . Further, since the spring is softened and the longitudinal slit is cut, the cross section of the cross section of the metallic elastic spring is broken, so that it is broken due to the settling due to harmful deformation of the bent portion 12 as shown in FIG. It can be crushed. This is also the limit of seismic control by metallic elastic springs.

このような従来技術の課題を解決するため、本発明においては従来技術に代えて、低降伏点鋼帯状板製の略溝型形状の弾塑性型鋼板ダンパー(「非特許文献2」参照)による制震デバイスを新たに開発するとともに、水平力によって横断面に発生する曲げモーメントを検討した図9(a)、(b)の曲げモーメント図をもとに、前記課題を解決するのに最適な断面形を求めた。
図9(a)、(b)から、水平加力によってΩ形状或いはハット形鋼形状等の弾性湾曲ばねの溝形断面に発生する曲げモーメントは、立上り部の上下の屈曲部に集中しており、立上り部の中央付近では殆ど発生していないことが判る。
本発明においては、従来技術の縦長スリットを切刻した弾性ばねの反発力ではなく、低降伏点鋼の塑性曲げ変形性を応用した制震素子を開発し、上記曲げモーメントの検討をもとに、最も曲げモーメントの大きい曲げ部が圧壊するのを避けて、前記制震素子の立上り部の屈曲部の曲げ起点近傍に貫通孔を穿設した。該貫通孔は例えば図1の立上げ部9において、第1曲げ部11の曲げ起点11A或いは第2曲げ部12の第2曲げ起点12Aの少なくとも一方の近傍にピンポイントとして穿設することにより、この部分の横断面積を緩やかに減らして曲げ変形を誘導し、曲げ応力の集中による各曲げ部の有害な変形を防止すると共に、地震動を効果的に吸収させることができる。
In order to solve such problems of the prior art, in the present invention, instead of the prior art, a substantially groove-shaped elasto-plastic steel plate damper (refer to “Non-patent Document 2”) made of a low-yield-point steel strip. A new seismic control device is developed, and based on the bending moment diagrams in Figs. 9 (a) and 9 (b), which examine the bending moment generated in the cross-section by horizontal force, it is optimal for solving the above problems. The cross-sectional shape was determined.
9 (a) and 9 (b), the bending moment generated in the groove-shaped cross section of the elastic curved spring such as Ω shape or hat-shaped steel shape due to the horizontal force is concentrated on the upper and lower bent parts of the rising part. It can be seen that almost no occurrence occurred in the vicinity of the center of the rising portion.
In the present invention, instead of the repulsive force of the elastic spring with the longitudinal slit of the prior art, we developed a vibration control element that applied the plastic bending deformability of the low yield point steel, and based on the study of the bending moment. A through-hole was formed in the vicinity of the bending start point of the bent portion of the rising portion of the vibration damping element while avoiding the collapse of the bent portion having the largest bending moment. The through hole is formed as a pin point in the vicinity of at least one of the bending start point 11A of the first bending part 11 or the second bending start point 12A of the second bending part 12 in the rising part 9 of FIG. It is possible to induce a bending deformation by gently reducing the cross-sectional area of this portion, prevent harmful deformation of each bending portion due to the concentration of bending stress, and effectively absorb seismic motion.

また本発明においては、前記制震素子は、前記第1曲げ部と第2曲げ部との間に前記枠取付面部に対し傾斜した平面部が形成されて、側面視の全体形状が略Ω形状を呈していることを特徴とする制震デバイスとした。   Further, in the present invention, the vibration control element is formed with a flat portion inclined with respect to the frame mounting surface portion between the first bent portion and the second bent portion, and the overall shape in a side view is substantially Ω shape. A seismic control device characterized by

この制震デバイスによれば、略Ω形状を呈した制震素子において、低降伏点鋼を予め湾曲させておくことにより一様な曲げ歪みが得られ、大きなエネルギー吸収機能を持たせることができる。   According to this vibration control device, in the vibration control element having a substantially Ω shape, a uniform bending strain can be obtained by bending the low yield point steel in advance, and a large energy absorption function can be provided. .

また本発明においては、前記制震素子は、前記第1曲げ部と第2曲げ部との間に前記枠取付面部と直交する平面部が形成されて、側面視の全体形状がハット形鋼形状を呈していることを特徴とする制震デバイスとした。   Further, in the present invention, the vibration control element is formed with a flat portion perpendicular to the frame mounting surface portion between the first bent portion and the second bent portion, and the overall shape in a side view is a hat-shaped steel shape. A seismic control device characterized by

この制震デバイスによれば、ハット形鋼形状を呈するように前記第1曲げ部と第2曲げ部により予め低降伏点鋼を曲げ加工しておくことにより大きなエネルギー吸収機能を持たせることができる。   According to this vibration control device, a large energy absorbing function can be provided by bending the low yield point steel in advance with the first bent portion and the second bent portion so as to exhibit a hat-shaped steel shape. .

また本発明においては、前記制震素子の枠取付面部の下面に取り付けられるベース板と、該ベース板の長手方向に延設して建家構造枠に取り付けられるせん断補強ベース板とを介設したことを特徴とする制震デバイスとした。   In the present invention, a base plate attached to the lower surface of the frame attachment surface portion of the vibration control element and a shear reinforcement base plate extending in the longitudinal direction of the base plate and attached to the building structure frame are interposed. The vibration control device is characterized by this.

制震素子の枠取付面部を建家構造枠にボルトを用いて直接固定した場合、地震により制震素子が長手方向に摺動した際、ボルトが緩んで制震デバイスの剛性が低下してエネルギー吸収性能が減少する。また、枠取付面部が建家構造枠から浮き上がり、枠取付面部寄りの第1曲げ部の曲げ起点辺りの破断を誘発するおそれがある。
これに対して、ベース板およびせん断補強ベース板を介設したことにより、前記ボルトの緩みを制限して、全体の取付剛性が増し、地震エネルギーの吸収効率がさらに向上し、加震時の応答加速度の低減が可能となる。
If the frame mounting surface of the vibration control element is directly fixed to the building structure frame using bolts, when the vibration control element slides in the longitudinal direction due to an earthquake, the bolt loosens and the rigidity of the vibration control device decreases and energy is reduced. Absorption performance is reduced. In addition, the frame mounting surface portion may be lifted from the building structure frame and may induce breakage around the bending start point of the first bending portion near the frame mounting surface portion.
On the other hand, the installation of the base plate and the shear reinforcement base plate restricts the loosening of the bolts, increases the overall mounting rigidity, further improves the absorption efficiency of the seismic energy, and the response during the earthquake The acceleration can be reduced.

また本発明においては、前記斜材は鋼管からなり、その中間部以外の箇所の鋼管を切断して中抜き部を設け、切断面に対向した一組のナットと逆ねじナットを溶着したうえ、両者をターンバックル式に緊結用グリップを設けた長ボルトで連結することを特徴とする制震デバイスとした。   Further, in the present invention, the diagonal member is made of a steel pipe, cuts the steel pipe at a portion other than the intermediate portion to provide a hollow portion, and welds a set of nuts and a reverse screw nut facing the cut surface, Both were connected with a long bolt with a grip for tightening in a turnbuckle style.

この制震デバイスによれば、斜材の取付けの際の緊張強度調節が容易なものとなり、ボルトのアローアンスを減少させることができるので、取付け剛性が増し、地震エネルギーの吸収効率が向上する。   According to this seismic control device, the tension strength can be easily adjusted when the diagonal member is attached, and the bolt allowance can be reduced, so that the attachment rigidity is increased and the absorption efficiency of the earthquake energy is improved.

本発明によれば、制震デバイスの摺動による地震エネルギーの吸収性能が大きいので、地震時の建家構造枠の変形を抑制し、制震対策の難しい木造建家にも適用できるローコストの制震デバイスを可能にした。   According to the present invention, since the seismic energy absorption performance due to the sliding of the seismic control device is large, the deformation of the building structural frame at the time of the earthquake is suppressed, and the low-cost control that can be applied to a wooden building where seismic control is difficult. Made the seismic device possible.

図5は本発明に係る制震デバイス1と建家構造枠2とのレイアウト例を示す側面図である。建家構造枠2は、例えば低層家屋の壁体に使用される木造軸組であって、各一対の縦材3、横材4から構成された矩形枠からなる。具体的には縦材3は柱などであり、横材4は梁や土台などである。   FIG. 5 is a side view showing a layout example of the vibration control device 1 and the building structure frame 2 according to the present invention. The building structure frame 2 is a wooden frame used for a wall of a low-rise house, for example, and includes a rectangular frame composed of a pair of vertical members 3 and horizontal members 4. Specifically, the vertical member 3 is a pillar or the like, and the horizontal member 4 is a beam or a base.

制震デバイス1は、建家構造枠2の縦材3の中間部と斜材5との間に介設される帯状鋼板製の制震素子6を備えた構成からなる。図5では、建家構造枠2の各縦材3の中間部に制震素子6を取り付けるとともに、建家構造枠2の隅角部に固定金具7を取り付け、4本の斜材5を制震素子6と固定金具7とに掛け渡した態様を示している。つまり、斜材4は、建家構造枠1内の上部と下部においてそれぞれX字状に交差するように架設される。固定金具7としては、一般に斜材5の端部を釘打ちや螺子締結などによって直接固定する公知の金具が適用される。   The vibration control device 1 has a configuration including a band-shaped steel plate vibration control element 6 interposed between an intermediate portion of the vertical member 3 of the building structure frame 2 and the diagonal member 5. In FIG. 5, the vibration control element 6 is attached to the middle part of each vertical member 3 of the building structure frame 2, and the fixing bracket 7 is attached to the corner of the building structure frame 2 to control the four diagonal members 5. A mode in which the seismic element 6 and the fixing bracket 7 are spanned is shown. That is, the diagonal member 4 is constructed so as to cross in an X shape at the upper part and the lower part in the building structure frame 1. As the fixing bracket 7, a known bracket that directly fixes the end portion of the diagonal member 5 by nailing or screw fastening is generally used.

なお図示はしないが、建家構造枠2に対する制震デバイス1のレイアウト変形例としては、左右の縦材2の中間部に加えて上下の横材4の中間部にも制震素子6を取り付けて、4本の斜材5をこれら4つの制震素子6に掛け渡して、建家構造枠2内で菱形状となるように架設することもできる。   Although not shown, as a modification of the layout of the vibration control device 1 with respect to the building structure frame 2, the vibration control elements 6 are attached to the middle part of the upper and lower cross members 4 in addition to the middle part of the left and right vertical members 2 Then, the four diagonal members 5 can be stretched over the four damping elements 6 so as to have a rhombus shape in the building structure frame 2.

斜材5は、例えば鋼管からなり、その中間部以外の箇所を切断して夫々の切断面に螺切方向を逆にした一組のナットを溶着し、これらの間を長ボルトで連結し、ボルトに緊結用のグリップ部材をもうけてなるいわゆるターンバックル式のものである。   The diagonal member 5 is made of, for example, a steel pipe, cuts a portion other than the middle portion, welds a set of nuts in which the threading direction is reversed on each cut surface, and connects these with long bolts, This is a so-called turnbuckle type in which a fastening member is provided on a bolt.

以下、制震素子6について2つの実施例を示して説明する。
「第1実施例」
図1は第1実施例の制震素子6を用いた場合の制震デバイス1の要部斜視図である。
制震素子6は、帯状鋼板の長手方向の両端部を平坦としたうえで、中央部を突状に曲げてその頂部を平坦に形成したいわゆる溝形の形状を呈しており、具体的には、建家構造枠2の縦材3に取り付けられる互いに平行な両端の枠取付面部8と、各枠取付面部8から第1曲げ部11を経て建家構造枠2の内側に向けて折曲げられた一対の立上り部9と、各立上り部9から第2曲げ部12を経て枠取付面部8と平行に折り曲げられる中央の上辺面部10と、この上辺面部10から一体に立ち上げられ、斜材5の一端が取り付けられる斜材取付板16と、を有した形状からなる。
Hereinafter, the vibration control element 6 will be described by showing two embodiments.
“First Example”
FIG. 1 is a perspective view of an essential part of a vibration control device 1 when the vibration control element 6 of the first embodiment is used.
The damping element 6 has a so-called groove shape in which both end portions in the longitudinal direction of the strip steel plate are flattened and the central portion is bent in a projecting shape so that the top portion is flattened. The frame attachment surface portions 8 attached to the longitudinal members 3 of the building structure frame 2 are bent toward the inner side of the building structure frame 2 from the frame attachment surface portions 8 through the first bending portions 11. A pair of rising portions 9, a central upper side surface portion 10 that is bent in parallel with the frame mounting surface portion 8 from each rising portion 9 through the second bending portion 12, and the upper side surface portion 10 are integrally raised, and the diagonal member 5 It has a shape having an oblique member mounting plate 16 to which one end thereof is mounted.

第1実施例の制震素子6は、帯状鋼を折曲げる際のR部分をなす第1曲げ部11と第2曲げ部12との間に枠取付面部8に対し傾斜した平面部13が形成されて、側面視の全体形状が略Ω形状となっている。第1曲げ部11、第2曲げ部12の最小曲げ半径は鋼板の略板厚寸法程度であるが、それ以上の曲げ半径でもよい。   In the damping element 6 of the first embodiment, a flat surface portion 13 inclined with respect to the frame mounting surface portion 8 is formed between the first bent portion 11 and the second bent portion 12 that form an R portion when the strip steel is bent. Thus, the overall shape in a side view is a substantially Ω shape. The minimum bending radius of the first bending portion 11 and the second bending portion 12 is approximately the thickness of the steel plate, but may be a bending radius larger than that.

枠取付面部8は例えば複数のスクリューボルト14などにより建家構造枠2の縦材3に取り付けられる。この際、枠取付面部8を建家構造枠2に直接取り付けてもよいが、枠取付面部8と建家構造枠2との間に、制震素子6の長手方向に延設されるベース板15を介設することができる。これは、制震デバイス1を縦材3に装着した場合の枠取付面部8を補強して、縦材3の剛性をさらに高めるためのものである。   The frame attachment surface portion 8 is attached to the vertical member 3 of the building structure frame 2 by, for example, a plurality of screw bolts 14 or the like. At this time, the frame attachment surface portion 8 may be directly attached to the building structure frame 2, but the base plate extends in the longitudinal direction of the vibration control element 6 between the frame attachment surface portion 8 and the building structure frame 2. 15 can be interposed. This is to reinforce the frame attachment surface portion 8 when the seismic control device 1 is mounted on the vertical member 3 to further increase the rigidity of the vertical member 3.

木材は材質が柔らかいため、これに硬度の高い鋼製の制震デバイス1を取り付けると、スクリューボルト14を強固に締め付けても加力時に枠取付面部8が木材にめり込み、スクリューボルト14に繰返し加力がかかると緩みが生じて制震デバイス1の剛性が低下する。
いま、ベース板15を介設することなく、厚さ6ミリの低降伏点鋼帯鋼板製の制震素子6に水平加力した場合、荷重とスクリューボルト14の引抜き力の関係を計算によって求めると図10のような関係が得られる。図10においてグラフの水平部は、スクリューボルト14の引抜き力がそれぞれ最大となって横に滑った状況を示し、もはやスクリューボルト14による制震デバイス1の保持力が失われた状態を示している。
Since wood is made of a soft material, if the steel damping device 1 made of high hardness is attached thereto, the frame mounting surface portion 8 will sink into the wood when it is applied even if the screw bolt 14 is tightened firmly, and repeatedly applied to the screw bolt 14. When force is applied, loosening occurs and the rigidity of the vibration control device 1 decreases.
Now, when a horizontal force is applied to the vibration control element 6 made of a steel plate having a low yield point of 6 mm without using the base plate 15, the relationship between the load and the pulling force of the screw bolt 14 is obtained by calculation. And the relationship shown in FIG. 10 is obtained. In FIG. 10, the horizontal part of the graph shows a situation where the pulling force of the screw bolt 14 is maximized and slips to the side, and the holding force of the damping device 1 by the screw bolt 14 is no longer lost. .

この問題に対して、枠取付面部8の下面に矩形平板状の鋼板からなるベース板15を固着すれば、加力時の枠取付面部8のめり込みが防止され、さらにベース板15の延長として、ベース板15の長手方向両縁部に当接するようにせん断補強ベース板15´を介設すれば、スクリューボルト14の緩みを制限して、全体の取付剛性が増し、地震エネルギの吸収効率がさらに向上し、加震時の応答加速度の低減が可能となる。ベース板15は、制震素子6の枠取付面部8に溶接等により予め固設される場合の他に、例えばベース板15を制震素子6と別体にしておき、螺子18でベース板15を縦材3に取り付けたうえで複数のスクリューボルト14により枠取付面部8と共締めすることで、枠取付面部8と建家構造枠2との間に介設させる構造とすることもできる。さらに、せん断補強ベース板15´も矩形平板状の鋼板からなり、螺子などを用いて縦材3に締結固定される。   To fix this problem, if the base plate 15 made of a rectangular flat steel plate is fixed to the lower surface of the frame mounting surface portion 8, the frame mounting surface portion 8 is prevented from being sunk into the base plate 15 during application. If the shear reinforcement base plate 15 ′ is provided so as to abut on both edges in the longitudinal direction of the plate 15, the looseness of the screw bolt 14 is limited, the entire mounting rigidity is increased, and the seismic energy absorption efficiency is further improved. In addition, it is possible to reduce the response acceleration during the shaking. In addition to the case where the base plate 15 is fixed in advance to the frame mounting surface portion 8 of the vibration control element 6 by welding or the like, for example, the base plate 15 is separated from the vibration control element 6, and the base plate 15 is secured by a screw 18. It can also be set as the structure inserted between the frame attachment surface part 8 and the building structure frame 2 by fastening together with the frame attachment surface part 8 with the some screw volt | bolt 14 after attaching to the vertical member 3. FIG. Furthermore, the shear reinforcement base plate 15 'is also made of a rectangular flat plate-like steel plate, and is fastened and fixed to the longitudinal member 3 using screws or the like.

なお、本実施例の制震素子6では、第1曲げ部11の根元辺りで幅方向に関して段差を設け、立上り部9および上辺面部10の幅寸法に対して枠取付面部8の幅寸法を大きくしている。これは主に建家構造枠2に対する枠取付面部8の取付面積を大きくとることによる。場合によっては制震素子6の長手方向全体にわたり一定幅寸法にしてもよい。   In the vibration control element 6 of the present embodiment, a step is provided in the width direction around the base of the first bent portion 11, and the width dimension of the frame mounting surface portion 8 is larger than the width dimension of the rising portion 9 and the upper side surface portion 10. is doing. This is mainly due to a large mounting area of the frame mounting surface portion 8 with respect to the building structure frame 2. In some cases, a constant width dimension may be provided over the entire longitudinal direction of the vibration control element 6.

上辺面部10の長手方向中央には、上辺面部10と直交して立ち上がり、制震素子6の長手方向に延設される斜材取付板16が溶接等により固設されている。斜材取付板16には、斜材5を固定する螺子、釘等を通す孔16Aが穿設されており、上方側、下方側に取り付けられる各斜材5の一端が斜材取付板16にあてがわれ、図示しない螺子等により固定される。   At the center in the longitudinal direction of the upper side surface portion 10, an oblique material mounting plate 16 that rises orthogonal to the upper side surface portion 10 and extends in the longitudinal direction of the vibration control element 6 is fixed by welding or the like. The diagonal member mounting plate 16 has holes 16A through which screws, nails, etc. for fixing the diagonal member 5 are passed, and one end of each diagonal member 5 mounted on the upper side and the lower side is formed on the diagonal member mounting plate 16. It is applied and fixed by a screw or the like (not shown).

立上り部9において折曲げ部の曲げ起点近傍の少なくとも一方には、すなわち、立上り部9寄りに位置する第1曲げ部11の第1曲げ起点11Aおよび第2曲げ部12の第2曲げ起点12Aの少なくとも一方の近傍には貫通孔17が穿設される。図1では、第1曲げ起点11Aと第2曲げ起点12Aの近傍の両方に貫通孔17を穿設した場合を示している。場合によっては、第1曲げ部11の第1曲げ起点11Aの近傍のみに、或いは、第2曲げ部12の第2曲げ起点12Aの近傍のみに貫通孔17を穿設してもよい。貫通孔17は、第1曲げ部11、第2曲げ部12の各曲面にかかることなく、第1曲げ起点11A、第2曲げ起点12Aの近傍の平面部13に穿設されることが好ましい。   In the rising portion 9, at least one of the vicinity of the bending start point of the bent portion, that is, the first bending starting point 11A of the first bending portion 11 and the second bending starting point 12A of the second bending portion 12 which are located closer to the rising portion 9. A through-hole 17 is formed in the vicinity of at least one. In FIG. 1, the case where the through-hole 17 was drilled both in the vicinity of the first bending start point 11A and the second bending start point 12A is shown. Depending on the case, the through hole 17 may be formed only in the vicinity of the first bending start point 11A of the first bending part 11 or only in the vicinity of the second bending start point 12A of the second bending part 12. The through-hole 17 is preferably formed in the flat portion 13 in the vicinity of the first bending start point 11A and the second bending start point 12A without applying to the curved surfaces of the first bending portion 11 and the second bending portion 12.

貫通孔17の形状や孔径寸法、制震素子6の幅方向における孔数は適宜に設定される。図2において、(a)は一方の立上り部9周りの側面図、(b)〜(e)は(a)において平面部13と直交するA方向から見たときの貫通孔17の各態様を示す説明図であり、第1曲げ起点11A、第2曲げ起点12Aは仮想線で示してある。(b)〜(e)ではいずれも、前記したように貫通孔17を第1曲げ部11、第2曲げ部12の各曲面にかかることなく、第1曲げ起点11A、第2曲げ起点12Aの近傍の平面部13に穿設した場合を示している。   The shape and hole diameter of the through hole 17 and the number of holes in the width direction of the vibration control element 6 are appropriately set. In FIG. 2, (a) is a side view around one rising part 9, and (b) to (e) show each aspect of the through-hole 17 when viewed from the A direction orthogonal to the plane part 13 in (a). The first bending start point 11A and the second bending start point 12A are indicated by imaginary lines. In any of (b) to (e), the first bending start point 11 </ b> A and the second bending start point 12 </ b> A are not applied to the through holes 17 on the curved surfaces of the first bending part 11 and the second bending part 12 as described above. The case where it drilled in the plane part 13 of the vicinity is shown.

(b)は第1曲げ起点11A、第2曲げ起点12Aの近傍において、立上り部9の幅方向中央に略真円の貫通孔17を穿設した場合を示す。なお、貫通孔17の穿設後に第1曲げ部11、第2曲げ部12の曲げ加工を行った場合には、曲げの外側面寄りの孔形状が曲げの引っ張りを受けて若干縦長楕円形に変形する。(c)は立上り部9の幅寸法が大きい場合を示す例であり、第1曲げ起点11A、第2曲げ起点12Aの近傍において、真円の貫通孔17を立上り部9の幅方向に複数列(図では3列)穿設した場合を示す。(d)は第1曲げ起点11A、第2曲げ起点12Aの近傍における立上り部9の幅方向中央において、幅方向に長手の楕円の貫通孔17を穿設した場合を示す。(e)は立上り部9の幅方向中央において第1曲げ起点11Aの近傍から第2曲げ起点12Aの近傍までにわたり連続して穿設されたスリット状の貫通孔17とした場合を示す。(d)、(e)の各例においても、立上り部9の幅寸法が大きい場合には貫通孔17を立上り部9の幅方向に複数列穿設すればよく、総じて立上り部9の幅寸法が大きい場合、孔径の大きい単独の貫通孔17とするよりも、各貫通孔17の孔径を小さく設定して複数列穿設した方が強度的に有効となる。   (B) shows a case where a substantially perfect through-hole 17 is formed in the center in the width direction of the rising portion 9 in the vicinity of the first bending start point 11A and the second bending start point 12A. When the first bending portion 11 and the second bending portion 12 are bent after the through-hole 17 is formed, the hole shape near the outer surface of the bending is slightly elongated oval due to bending tension. Deform. (C) is an example showing a case where the width of the rising portion 9 is large. In the vicinity of the first bending start point 11A and the second bending starting point 12A, a plurality of rows of through holes 17 having a perfect circle are arranged in the width direction of the rising portion 9. The case of drilling (3 rows in the figure) is shown. (D) shows the case where a long elliptical through hole 17 is formed in the width direction at the center of the rising portion 9 in the vicinity of the first bending start point 11A and the second bending start point 12A. (E) shows the case where the slit-like through-hole 17 is continuously drilled from the vicinity of the first bending start point 11A to the vicinity of the second bending start point 12A at the center in the width direction of the rising portion 9. Also in each example of (d) and (e), when the width of the rising portion 9 is large, the through holes 17 may be formed in a plurality of rows in the width direction of the rising portion 9, and the width of the rising portion 9 as a whole. Is larger, it is more effective in terms of strength to set a through hole 17 with a small hole diameter than to make a single through hole 17 with a large hole diameter.

貫通孔17の穿設方法は特に限定されないが、レーザ光により穿設すれば制震素子6の製造が簡易で済み、かつ熱の発生が抑えられ制震素子6の製造コストを抑えることができる。レーザ光による穿設の場合、帯状鋼板の曲げ加工前に穿設しておくことが好ましい。   The method of drilling the through-hole 17 is not particularly limited, but if the laser beam is drilled, the manufacture of the vibration control element 6 can be simplified, the generation of heat can be suppressed, and the manufacturing cost of the vibration control element 6 can be reduced. . In the case of drilling with laser light, it is preferable to drill before bending the strip steel plate.

また、制震素子6の帯状鋼板としては、本願発明で使用している低降伏点鋼のほか、弾塑性履歴鋼板、焼鈍し鋼板などが好ましい。   In addition to the low yield point steel used in the present invention, an elastic-plastic hysteresis steel sheet, an annealed steel sheet, and the like are preferable as the strip-shaped steel sheet of the damping element 6.

本願発明の作用を説明すると、図5において、建家構造枠2の上部の横材4に地震水平力Hが作用した場合、上部筋違と下部筋違にはそれぞれH/2の水平力が作用し、斜材5への分力をS、水平分力をP、垂直分力をVとし、斜材5と構材4のなす角をQとした場合、P=ScosQ、V=SsinQとなる。このとき、建家構造枠2の縦材3と垂直な方向に作用するPは互いに打消し合って、制震デバイス1は縦材3と平行な方向に2Vの分力が作用することになる。そうすると、この2Vの分力が、図1において、制震素子6の斜材取付板16から上辺面部10にスムーズに作用し、これに伴って立上り部9に穿設された貫通孔17部分に曲げ変形が誘導され、上辺面部10は縦材3の面と同方向に摺動を繰返し、建家構造枠2に作用する地震エネルギーを吸収する。
制震素子6の帯状鋼板として低降伏点鋼を用いたことにより、ダンパー性能の優れた制震素子6となり、十分な弾性変形量が確保される。
The operation of the present invention will be explained. In FIG. 5, when the horizontal earthquake force H acts on the cross member 4 on the upper part of the building structure frame 2, the horizontal force of H / 2 is applied to the upper and lower struts, respectively. When the component force to the diagonal member 5 is S, the horizontal component force is P, the vertical component force is V, and the angle between the diagonal member 5 and the structural member 4 is Q, P = ScosQ, V = SsinQ Become. At this time, P acting in a direction perpendicular to the vertical member 3 of the building structure frame 2 cancels each other, and the vibration control device 1 is applied with a component force of 2 V in a direction parallel to the vertical member 3. . Then, the 2V component force acts smoothly on the upper side surface portion 10 from the diagonal member mounting plate 16 of the vibration control element 6 in FIG. 1, and accordingly, in the through hole 17 portion drilled in the rising portion 9. The bending deformation is induced, and the upper side surface portion 10 repeatedly slides in the same direction as the surface of the longitudinal member 3 to absorb the seismic energy acting on the building structure frame 2.
By using the low yield point steel as the strip steel plate of the damping element 6, the damping element 6 having excellent damper performance is obtained, and a sufficient amount of elastic deformation is ensured.

そして、立上り部9に貫通孔17を設けたことにより、建家構造枠2から斜材5を通じて地震荷重が加わったときの制震素子6の変形量を大きくとることができるので振動吸収作用が向上し、所定の制震効果が発揮される。   And by providing the through-hole 17 in the rising part 9, since the deformation amount of the damping element 6 when a seismic load is applied from the building structure frame 2 through the diagonal member 5, the vibration absorbing action can be taken. It will improve and exhibit the prescribed seismic control effect.

ここで、貫通孔17を屈曲部(第1曲げ部11、第2曲げ部12の各曲面)に穿孔すれば有害変形が生じやすくなり、また、立上り部9の平面部13の長手方向中央辺りに穿孔しても、この中央辺りは図9から判るように曲げモーメント分布の反転部にあたるため、所定の曲げ変形の効果はさほど期待できない。   Here, if the through-hole 17 is drilled in the bent portion (the curved surfaces of the first bent portion 11 and the second bent portion 12), harmful deformation is likely to occur, and the center portion in the longitudinal direction of the flat portion 13 of the rising portion 9 is likely to occur. Even if the perforations are perforated, since the center area corresponds to the inversion portion of the bending moment distribution as can be seen from FIG. 9, the effect of the predetermined bending deformation cannot be expected so much.

これに対して、本願発明のように、貫通孔17を第1曲げ起点11A、第2曲げ起点12Aの少なくとも一方の近傍、好ましくは、第1曲げ部11、第2曲げ部12の各曲面にかかることなく、第1曲げ起点11A、第2曲げ起点12Aの少なくとも一方の近傍にピンポイントとして穿設することにより、第1曲げ起点11A、第2曲げ起点12Aにおける立上り部9の横断面積に緩やかなギャップを持たせることができ、曲げ応力の集中する第1曲げ部11或いは第2曲げ部12の各曲面での破断を防止することができる。   On the other hand, as in the present invention, the through-hole 17 is formed in the vicinity of at least one of the first bending start point 11A and the second bending start point 12A, preferably each curved surface of the first bending part 11 and the second bending part 12. Without this, by drilling as a pin point in the vicinity of at least one of the first bending start point 11A and the second bending start point 12A, the cross-sectional area of the rising portion 9 at the first bending start point 11A and the second bending start point 12A is moderated. Therefore, it is possible to prevent breakage at each curved surface of the first bending portion 11 or the second bending portion 12 where bending stress is concentrated.

図6において(a)は木造の試験体軸組21の構面図、(b)は試験体妻側立面図である。本発明者は、第1実施例の制震素子6をこの試験体軸組21に適用して振動台による実大試験を行い、試験体軸組21の構面の左右に形成される各建家構造枠22において、それぞれ図5に示した態様で、すなわち建家構造枠22内の上部と下部においてX字状に交差するように斜材5を架設した。制震素子6の低降伏点鋼製帯状鋼板としては、建築構造用弾塑性履歴型ダンパー用鋼板を用いた。板厚は6ミリ、立上り部9の幅寸法は30ミリとし、貫通孔17としては、図2(b)に示すように、第1曲げ起点11A、第2曲げ起点12Aの近傍における平面部13において、立上り部9の幅方向中央に孔径5ミリの貫通孔17を2箇所穿設した。   In FIG. 6, (a) is a structural view of the wooden specimen frame assembly 21, and (b) is an elevation view of the specimen body side. The present inventor applied the damping element 6 of the first embodiment to the test body shaft assembly 21 to perform a full-scale test using a vibration table, and each building formed on the left and right sides of the construction surface of the test body shaft assembly 21. In the house structure frame 22, the diagonal member 5 is installed in the form shown in FIG. 5, that is, so as to cross in an X shape at the upper part and the lower part in the house structure frame 22. As the low yield point steel strip steel plate for the damping element 6, an elastic-plastic hysteretic damper steel plate for building structures was used. The plate thickness is 6 mm, and the width of the rising portion 9 is 30 mm. As shown in FIG. 2B, the planar portion 13 in the vicinity of the first bending start point 11A and the second bending start point 12A is used as the through hole 17. 2, two through holes 17 having a hole diameter of 5 mm were formed in the center of the rising portion 9 in the width direction.

試験体軸組21の屋根部に5.6トンの錘23を載荷したうえで地震波を負荷したときの荷重(層間せん断力)−層間変位曲線のグラフを図7、図8に示す。図7は小千谷波(入力100%)を負荷したグラフ、図8はエルセントロ波(入力200%)を負荷したグラフであり、細実線(Bで示す曲線群)は比較従来例として各建家構造枠22に厚さ9ミリの合板耐力壁を取り付けたときの曲線を示し、太実線(Aで示す曲線群)はこれに本願発明による制震デバイス1を取付けた場合の曲線を示している。図7、図8から判るように、両地震波共に本願発明を適用したときの変位は比較従来例の変位の約1/2以内に収まることと、制震デバイス1を外した従来の載荷試験体では2例とも合板耐力壁の剥離が確認された。   FIGS. 7 and 8 show graphs of a load (interlaminar shear force) -interlayer displacement curve when a 5.6-ton weight 23 is loaded on the roof portion of the specimen frame 21 and an earthquake wave is loaded. FIG. 7 is a graph loaded with Ojiya waves (input 100%), FIG. 8 is a graph loaded with El Centro waves (input 200%), and thin solid lines (curve groups indicated by B) are each building structure as a comparative example. A curve when a 9 mm thick plywood bearing wall is attached to the frame 22 is shown, and a thick solid line (a group of curves indicated by A) shows a curve when the vibration control device 1 according to the present invention is attached thereto. As can be seen from FIGS. 7 and 8, the displacement when the present invention is applied to both seismic waves is within about half of the displacement of the comparative conventional example, and the conventional loading test body with the seismic control device 1 removed. In both cases, peeling of the plywood bearing wall was confirmed.

「第2実施例」
図3は第2実施例の制震素子6を用いた場合の制震デバイス1の要部斜視図である。
第1実施例の制震素子6が側面視の全体形状が略Ω形状を呈しているのに対し、第2実施例の制震素子6は、第1曲げ部11と第2曲げ部12との間に枠取付面部8と直交する平面部13が形成されることにより、側面視の全体形状がハット形鋼形状を呈している。第2実施例の制震素子6においても、第1曲げ部11、第2曲げ部12の曲げ半径は鋼板の略板厚寸法程度が好ましいが、それ以上の曲げ半径でもよい。
"Second Example"
FIG. 3 is a perspective view of an essential part of the vibration control device 1 when the vibration control element 6 of the second embodiment is used.
Whereas the overall shape of the vibration control element 6 of the first embodiment in a side view is substantially Ω shape, the vibration control element 6 of the second embodiment includes the first bending portion 11, the second bending portion 12, and the like. By forming the plane portion 13 orthogonal to the frame attachment surface portion 8 between the two, the overall shape in a side view is a hat-shaped steel shape. Also in the vibration control element 6 of the second embodiment, the bending radii of the first bending portion 11 and the second bending portion 12 are preferably about the plate thickness dimension of the steel plate, but may be a bending radius larger than that.

図4において、(a)は一方の立上り部9周りの側面図、(b)〜(e)は(a)において平面部13と直交するB方向から見たときの貫通孔17の各態様を示す説明図であり、第1実施例の場合と同様に、貫通孔17を第1曲げ部11、第2曲げ部12の各曲面にかかることなく、第1曲げ起点11A、第2曲げ起点12Aの近傍の平面部13に穿設した場合を示している。(b)〜(e)の各貫通孔17の説明は第1実施例で述べたので、ここでは省略する。また、その他の構成要素についても第1実施例の制震素子6の場合と同一であるので、同じ符号を付してその説明は省略する。
この第2実施例の制震素子6を用いても第1実施例と同様の効果が奏される。
In FIG. 4, (a) is a side view around one rising portion 9, and (b) to (e) show each aspect of the through-hole 17 when viewed from the B direction orthogonal to the plane portion 13 in (a). As in the case of the first embodiment, the first bending start point 11A and the second bending start point 12A are not affected by the through holes 17 being applied to the curved surfaces of the first bending part 11 and the second bending part 12, respectively. The case where it perforates in the plane part 13 near is shown. Since the description of each through hole 17 of (b) to (e) has been given in the first embodiment, it is omitted here. The other components are also the same as those in the case of the vibration control element 6 of the first embodiment, so the same reference numerals are given and the description thereof is omitted.
Even when the vibration control element 6 of the second embodiment is used, the same effect as that of the first embodiment can be obtained.

以上、本発明について好適な実施形態を説明した。本発明は説明した実施形態に限られず、その趣旨を逸脱しない範囲で様々な設計変更が可能である。   The preferred embodiments of the present invention have been described above. The present invention is not limited to the described embodiment, and various design changes can be made without departing from the spirit of the present invention.

第1実施例の制震素子を用いた場合の制震デバイスの要部斜視図である。It is a principal part perspective view of the damping device at the time of using the damping element of 1st Example. (a)は第1実施例の制震素子の立上り部周りの側面図、(b)〜(e)は(a)において平面部と直交するA方向から見たときの貫通孔の各態様を示す説明図である。(A) is a side view around the rising portion of the vibration damping element of the first embodiment, and (b) to (e) show each aspect of the through-hole when viewed from the A direction orthogonal to the plane portion in (a). It is explanatory drawing shown. 第2実施例の制震素子を用いた場合の制震デバイスの要部斜視図である。It is a principal part perspective view of the damping device at the time of using the damping element of 2nd Example. (a)は第2実施例の制震素子の立上り部周りの側面図、(b)〜(e)は(a)において平面部と直交するB方向から見たときの貫通孔の各態様を示す説明図である。(A) is a side view around the rising portion of the vibration control element of the second embodiment, and (b) to (e) show each aspect of the through-hole when viewed from the B direction orthogonal to the plane portion in (a). It is explanatory drawing shown. 本発明に係る制震デバイスと建家構造枠とのレイアウト例を示す側面図である。It is a side view which shows the example of a layout of the damping device and building structure frame which concern on this invention. (a)は木造の試験体軸組の構面図、(b)は試験体妻側立面図である。(A) is a structural drawing of a wooden specimen frame assembly, and (b) is an elevation view of a specimen body side. 試験体軸組に小千谷波(入力100%)を負荷したときの荷重(層間せん断力)−層間変位曲線のグラフである。It is a graph of a load (interlaminar shear force)-interlaminar displacement curve when Ojiya wave (input 100%) is loaded on the test body axis group. 試験体軸組にエルセントロ波(入力200%)を負荷したときの荷重(層間せん断力)−層間変位曲線のグラフである。It is a graph of a load (interlaminar shear force)-an interlaminar displacement curve when an El Centro wave (input 200%) is applied to a specimen axis group. (a)、(b)はそれぞれΩ形状、ハット形鋼形状の制震素子における加力時の曲げモーメント図である。(A), (b) is a bending-moment figure at the time of applying force in the damping element of omega shape and hat-shaped steel shape, respectively. 制震素子に水平加力した場合の荷重とスクリューボルトの引抜き力の関係を示すグラフである。It is a graph which shows the relationship between the load at the time of applying horizontal force to a damping element, and the extraction force of a screw bolt. 従来の湾曲ばねの破断状態を示す図である。It is a figure which shows the fracture | rupture state of the conventional curved spring.

符号の説明Explanation of symbols

1 制震デバイス
2 建家構造枠
3 縦材
4 横材
5 斜材
6 制震素子
7 (斜材の)固定金具
8 枠取付面部
9 立上り部
10 上辺面部
11 第1曲げ部
11A 第1曲げ起点
12 第2曲げ部
12A 第2曲げ起点
13 (立上り部の)平面部
15 ベース板
15´ せん断補強ベース板
16 斜材取付板
17 貫通孔
21 試験体軸組
22 建家構造枠
23 錘
DESCRIPTION OF SYMBOLS 1 Seismic control device 2 Building structure frame 3 Longitudinal material 4 Lateral material 5 Diagonal material 6 Damping element 7 (of diagonal material) fixing bracket 8 Frame attachment surface part 9 Rising part 10 Upper side surface part 11 1st bending part 11A 1st bending origin 12 2nd bending part 12A 2nd bending origin 13 Flat part 15 (rising part) Base plate 15 'Shear reinforcement base plate 16 Diagonal material mounting plate 17 Through hole 21 Specimen frame 22 Building structure frame 23 Weight

Claims (5)

建家構造枠の対向する縦材の中間部に取り付けられる低降伏点鋼からなる帯状鋼板製の制震素子と、建家構造枠の隅角部とを斜材で対角線上に固定してなる制震デバイスであって、
前記制震素子は、
建家構造枠の縦材に取り付けるための両端の枠取付面部と、
各枠取付面部から建家構造枠の内側に向けて折曲げてなる、第1曲げ部を経て形成される一対の立上り部と、
立上り部から枠取付面部に平行に折曲げてなる、第2曲げ部を経て形成される上辺面部と、
上辺面部から一体に立上がり形成され、斜材の一端が取り付けられる斜材取付板と、
を有した形状からなり、
立上り部において前記両曲げ部の曲げ起点近傍の少なくとも一方に貫通孔が穿設されていることを特徴とする制震デバイス。
It is formed by fixing the damping element made of strip steel plate made of low yield point steel attached to the middle part of the vertical members facing the building structure frame and the corners of the building structure frame diagonally with diagonal materials A vibration control device,
The vibration control element is
Frame mounting surface portions at both ends for mounting on the vertical members of the building structure frame,
A pair of rising parts formed through the first bent part, which is bent toward the inside of the building structure frame from each frame mounting surface part,
An upper side surface portion formed through a second bent portion, which is bent in parallel to the frame mounting surface portion from the rising portion;
An oblique material mounting plate that is integrally formed from the upper side surface part and to which one end of the diagonal material is attached,
It has a shape with
A through-hole is formed in at least one of the rising portions in the vicinity of the bending start points of the two bending portions.
前記制震素子は、前記第1曲げ部と第2曲げ部との間に前記枠取付面部に対し傾斜した平面部が形成されて、側面視の全体形状が略Ω形状を呈していることを特徴とする請求項1に記載の制震デバイス。   The vibration control element has a flat portion inclined with respect to the frame mounting surface portion between the first bent portion and the second bent portion, and the overall shape in a side view is substantially Ω-shaped. The seismic control device according to claim 1, wherein the device is a seismic control device. 前記制震素子は、前記第1曲げ部と第2曲げ部との間に前記枠取付面部と直交する平面部が形成されて、側面視の全体形状がハット形鋼形状を呈していることを特徴とする請求項1に記載の制震デバイス。   The vibration control element has a flat portion perpendicular to the frame mounting surface portion formed between the first bent portion and the second bent portion, and the overall shape in a side view is a hat-shaped steel shape. The seismic control device according to claim 1, wherein 前記制震素子の枠取付面部の下面に取り付けられるベース板と、該ベース板の長手方向に延設して建家構造枠に取り付けられるせん断補強ベース板とを介設したことを特徴とする請求項1ないし請求項3のいずれか一項に記載の制震デバイス。   The base plate attached to the lower surface of the frame attachment surface portion of the seismic control element, and the shear reinforcement base plate extending in the longitudinal direction of the base plate and attached to the building structure frame are interposed. The vibration control device according to any one of claims 1 to 3. 前記斜材は鋼管からなり、その中間部以外の箇所の鋼管を切断して中抜き部を設け、切断面に対向した一組のナットと逆ねじナットを溶着したうえ、両者をターンバックル式に緊結用グリップを設けた長ボルトで連結することを特徴とする請求項1ないし請求項4のいずれか一項に記載の制震デバイス。   The diagonal material consists of a steel pipe, cuts the steel pipe at a portion other than the middle part to provide a hollow part, welds a set of nuts and a reverse screw nut facing the cut surface, and turns them into a turnbuckle type. The vibration control device according to any one of claims 1 to 4, wherein the vibration control device is connected by a long bolt provided with a grip for binding.
JP2008130300A 2008-05-19 2008-05-19 Vibration control device Active JP5269475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130300A JP5269475B2 (en) 2008-05-19 2008-05-19 Vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130300A JP5269475B2 (en) 2008-05-19 2008-05-19 Vibration control device

Publications (3)

Publication Number Publication Date
JP2009275473A true JP2009275473A (en) 2009-11-26
JP2009275473A5 JP2009275473A5 (en) 2011-05-26
JP5269475B2 JP5269475B2 (en) 2013-08-21

Family

ID=41441162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130300A Active JP5269475B2 (en) 2008-05-19 2008-05-19 Vibration control device

Country Status (1)

Country Link
JP (1) JP5269475B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729134B1 (en) * 2010-06-16 2011-07-20 新日本製鐵株式会社 Metal plate for vibration control and building structure
JP2013019233A (en) * 2011-07-14 2013-01-31 Satou:Kk Framework structure for vibration control wall
JP2013028944A (en) * 2011-07-28 2013-02-07 Sumitomo Forestry Co Ltd Load-bearing wall and connection fitting
TWI424112B (en) * 2010-06-17 2014-01-21 Nippon Steel & Sumitomo Metal Corp Vibration-damping metal plate and architecture
JP2015143417A (en) * 2014-01-31 2015-08-06 株式会社サトウ Reinforcement vibration control device
US9145701B2 (en) 2013-07-30 2015-09-29 Satoh Co., Ltd. Earthquake resistant reinforcement apparatus, earthquake resistant building, and an earthquake resistant reinforcing method
JP2016014301A (en) * 2014-07-03 2016-01-28 旭化成ホームズ株式会社 Earthquake resistant construction and building panel
JP2016125335A (en) * 2014-12-26 2016-07-11 宮澤 健二 Earthquake-proof wall surface structure and earthquake-proof device connection method
CN111601938A (en) * 2017-10-03 2020-08-28 帕特克有限公司 Seismic yield joint

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296512A (en) * 1996-04-30 1997-11-18 Kunimoto Shokai:Kk Bracing device for wooden building
JP2000110400A (en) * 1998-10-07 2000-04-18 Arai Gumi Ltd Vibration-control damper device
JP2000179182A (en) * 1998-10-07 2000-06-27 Menseihin Sogo Kikaku:Kk Structure with antiseismic member
JP2003041799A (en) * 2001-07-26 2003-02-13 Masa Kenchiku Kozo Sekkeishitsu:Kk Earthquake resistant structure
JP2003106006A (en) * 2001-09-28 2003-04-09 Ohbayashi Corp Vibration control structure
JP2005023596A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Unit building having building unit having vibration control device
JP2005171646A (en) * 2003-12-12 2005-06-30 Sumitomo Metal Mining Co Ltd Brace structure of building
JP2006125081A (en) * 2004-10-29 2006-05-18 Shinsaku Kamikawa Brace structure
JP2006307527A (en) * 2005-04-28 2006-11-09 Satou:Kk Base isolation device
JP2008308911A (en) * 2007-06-15 2008-12-25 Satou:Kk Diagonal support device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09296512A (en) * 1996-04-30 1997-11-18 Kunimoto Shokai:Kk Bracing device for wooden building
JP2000110400A (en) * 1998-10-07 2000-04-18 Arai Gumi Ltd Vibration-control damper device
JP2000179182A (en) * 1998-10-07 2000-06-27 Menseihin Sogo Kikaku:Kk Structure with antiseismic member
JP2003041799A (en) * 2001-07-26 2003-02-13 Masa Kenchiku Kozo Sekkeishitsu:Kk Earthquake resistant structure
JP2003106006A (en) * 2001-09-28 2003-04-09 Ohbayashi Corp Vibration control structure
JP2005023596A (en) * 2003-06-30 2005-01-27 Sekisui Chem Co Ltd Unit building having building unit having vibration control device
JP2005171646A (en) * 2003-12-12 2005-06-30 Sumitomo Metal Mining Co Ltd Brace structure of building
JP2006125081A (en) * 2004-10-29 2006-05-18 Shinsaku Kamikawa Brace structure
JP2006307527A (en) * 2005-04-28 2006-11-09 Satou:Kk Base isolation device
JP2008308911A (en) * 2007-06-15 2008-12-25 Satou:Kk Diagonal support device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729134B1 (en) * 2010-06-16 2011-07-20 新日本製鐵株式会社 Metal plate for vibration control and building structure
WO2011158289A1 (en) * 2010-06-16 2011-12-22 新日本製鐵株式会社 Seismic damping metal plate and building structure
US8875452B2 (en) 2010-06-16 2014-11-04 Nippon Steel & Sumitomo Metal Corporation Energy dissipating metal plate and building structure
TWI424112B (en) * 2010-06-17 2014-01-21 Nippon Steel & Sumitomo Metal Corp Vibration-damping metal plate and architecture
JP2013019233A (en) * 2011-07-14 2013-01-31 Satou:Kk Framework structure for vibration control wall
JP2013028944A (en) * 2011-07-28 2013-02-07 Sumitomo Forestry Co Ltd Load-bearing wall and connection fitting
US9145701B2 (en) 2013-07-30 2015-09-29 Satoh Co., Ltd. Earthquake resistant reinforcement apparatus, earthquake resistant building, and an earthquake resistant reinforcing method
JP2015143417A (en) * 2014-01-31 2015-08-06 株式会社サトウ Reinforcement vibration control device
JP2016014301A (en) * 2014-07-03 2016-01-28 旭化成ホームズ株式会社 Earthquake resistant construction and building panel
JP2016125335A (en) * 2014-12-26 2016-07-11 宮澤 健二 Earthquake-proof wall surface structure and earthquake-proof device connection method
US9567763B2 (en) 2014-12-26 2017-02-14 Kenji Miyazawa Vibration damping wall structure and a method of connecting vibration damping devices
CN111601938A (en) * 2017-10-03 2020-08-28 帕特克有限公司 Seismic yield joint

Also Published As

Publication number Publication date
JP5269475B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5269475B2 (en) Vibration control device
JP4139901B2 (en) Damping structure of wooden building and damping method of wooden building
US8511025B2 (en) Metal joint and building comprising the same
JP4729134B1 (en) Metal plate for vibration control and building structure
JP2008088641A (en) Reinforcing member of building or structure
KR101319698B1 (en) Steel damper using cantilever behavior
JP6941467B2 (en) Damper and how to make the damper
JP2010090650A (en) Folding plate panel structure and building structure
JP2018162602A (en) Joint metal and joint structure of wall
JP2011157728A (en) Damper and wood construction using the same
JPH11153194A (en) Damping member integrating elasto-plastic and visco-elastic damper
JP2018145676A (en) Buckling restraining brace
JP2010117015A (en) Fixture and wall structure using the same
JP2010024656A (en) Joint damper and structure of joint portion
JP2006257688A (en) Vibration damping type bolt connection structure
JP6411297B2 (en) Damping damper
JP2009115276A (en) Hysteretic damper and vibration control structure
JP5305756B2 (en) Damping wall using corrugated steel
JP6074773B2 (en) Reinforcement structure for wooden structures
JP2006104834A (en) Seismic response control remodeling method of existing building and seismic response control remodeling structure
JP4112728B2 (en) Elastic-plastic damper and earthquake-resistant structure
JP3215235U (en) Vibration control panel
JP2000120299A (en) Vibration control device for structure
JP3209800U7 (en)
JP3147013U (en) Composite vibration brace

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121016

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5269475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350