JP2009267858A - 波長経路選択システム、及び、波長経路選択方法 - Google Patents

波長経路選択システム、及び、波長経路選択方法 Download PDF

Info

Publication number
JP2009267858A
JP2009267858A JP2008116328A JP2008116328A JP2009267858A JP 2009267858 A JP2009267858 A JP 2009267858A JP 2008116328 A JP2008116328 A JP 2008116328A JP 2008116328 A JP2008116328 A JP 2008116328A JP 2009267858 A JP2009267858 A JP 2009267858A
Authority
JP
Japan
Prior art keywords
span
wavelength
path
reliability
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008116328A
Other languages
English (en)
Inventor
Hiroaki Tanaka
宏明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008116328A priority Critical patent/JP2009267858A/ja
Priority to US12/428,956 priority patent/US20090269057A1/en
Publication of JP2009267858A publication Critical patent/JP2009267858A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0268Restoration of optical paths, e.g. p-cycles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】波長分割多重伝送ネットワークにおいて、既存のシステムに対し手間や各種装置の追加、入替えを伴うことなく障害の少ない経路選択処理を実現する波長経路選択システム、波長経路選択方法の提供。
【解決手段】波長分割多重ネットワークNが備えるノード1−1〜n−kと接続する波長経路選択システムAは、スパン状況情報をノード1−1〜n−kから受信し、受信したスパン状況情報に基づき、スパンごとのスパン信頼度値を算出し、算出したスパン信頼度値が信頼度値上限閾値を超えるか否かをスパンごとに判定し、始点となるノード装置から終点となるノード装置までの全ての波長経路のうち、スパン信頼度値が上限値を超えないスパンによって構成される経路を抽出し、抽出した波長経路ごとに、波長経路信頼度値を算出し、算出した波長経路信頼度値が最小値となる波長経路を選択し、選択した波長経路を複数のノード1−1〜n−kに設定する。
【選択図】図1

Description

本発明は、他のノード装置に接続する複数のノード装置を備える波長分割多重伝送ネットワークにおいて、2つのノード装置間の経路を選択する波長経路選択システム、及び、波長経路選択方法に関する。
近年、光信号の経路の切り換えを行う波長クロスコネクト機能を有する波長分割多重伝送ネットワークの分野において、重要度の高い波長パスを設定する際、可能な限り障害が少ない経路を選択することが求められている。一方、光伝送の分野において経路を選択する技術として、特許文献1に示すように、モニタ信号を付加することにより、光信号対雑音比であるOSNR(optical signal-to-noise ratio)を評価値に用いて経路選択を行う技術がある。また、主信号の誤り率や、パケットエラーレートなどに基づき経路の品質評価を行う技術がある(例えば、特許文献2)。
特開2007−082086号公報 特開平08−191308号公報
しかしながら、波長クロスコネクト機能を有する中継ノードは、入力された光信号を光信号のまま中継するため、光信号を電気信号に変換しなければ得られないモニタ信号によるOSNRや、主信号の誤り率、パケットエラーレートを評価値として経路選択に用いることができないという問題がある。
本発明は、このような事情を考慮し、上記の問題を解決すべくなされたもので、その目的は、波長分割多重伝送ネットワークにおいて、既存のシステムに対し手間や各種装置の追加、入替えを伴うことなく、障害の少ない経路選択処理を実現する波長経路選択システム、波長経路選択方法を提供することにある。
上記問題を解決するために、本発明は、波長分割多重方式の通信において、波長クロスコネクト処理を行い、少なくとも2つの他のノード装置に接続され、当該他のノード装置と自身とを接続するスパンの状況を示すスパン状況情報をそれぞれの前記スパンについて出力する複数のノード装置と、当該複数のノード装置に接続し、当該複数のノード装置のうち、始点となるノード装置から終点となるノード装置までの第1波長経路の選択処理を実行する波長経路選択システムが、スパンの信頼度を示すスパン信頼度値の上限値と、スパン状況情報ごとの重み付け値とを記憶する記憶手段と、スパン状況情報をノード装置から受信するデータ収集部と、データ収集部が受信するスパン状況情報に基づき、スパンごとに、当該スパンのスパン信頼度値を算出するスパン信頼度計算部と、スパン信頼度計算部が算出するスパン信頼度値が記憶手段が記憶する上限値を超えるか否かをスパンごとに判定し、始点となるノード装置から終点となるノード装置までの波長経路のうち、スパン信頼度値が上限値を超えないと判定したスパンによって構成される経路を第2波長経路として抽出する禁止経路設定部と、禁止経路設定部が抽出する第2波長経路ごとに、スパン信頼度計算部により算出される当該第2波長経路に含まれる全てのスパンのスパン信頼度値を加算することにより、経路ごとの第2波長経路の信頼度を示す波長経路信頼度値を算出する経路信頼度計算部と、第2波長経路のうち、経路信頼度計算部により算出される波長経路信頼度値が最も小さい値となる第2波長経路を第1波長経路として選択する経路選択部と、経路選択部により選択される第1波長経路を複数のノード装置に設定する設定部とを備えることを特徴とする波長経路選択システムである。
また、本発明のスパン状況情報は、波長多重信号の警報と、波長多重信号の品質監視情報と、監視制御信号の警報と、監視制御信号の品質監視情報とであることを特徴とする。
また、本発明の波長経路選択システムのスパン信頼度計算部は、スパン状況情報のうち、現在のスパン状況情報と、過去のスパン状況情報とに基づき、スパン信頼度値を算出することを特徴とする。
また、本発明の波長経路選択方法は、波長分割多重方式の通信において、波長クロスコネクト処理を行い、少なくとも2つの他のノード装置に接続され、当該他のノード装置と自身とを接続するスパンの状況を示すスパン状況情報をそれぞれの前記スパンについて出力する複数のノード装置と、当該複数のノード装置に接続し、当該複数のノード装置のうち、始点となるノード装置から終点となるノード装置までの第1波長経路の選択処理を実行する波長経路選択システムにおける波長経路選択方法であって、波長経路選択システムが、スパンの信頼度を示すスパン信頼度値の上限値と、スパン状況情報ごとの重み付け値とを記憶手段に記憶させ、スパン状況情報をノード装置から受信し、受信したスパン状況情報と、記憶手段が記憶したスパン状況情報ごとの重み付け値とに基づき、スパンごとに、当該スパンのスパン信頼度値を算出し、算出したスパン信頼度値が記憶手段が記憶する上限値を超えるか否かをスパンごとに判定し、始点となるノード装置から終点となるノード装置までの波長経路のうち、スパン信頼度値が上限値を超えないと判定したスパンによって構成される経路を第2波長経路として抽出し、抽出した第2波長経路ごとに、当該第2波長経路に含まれる全てのスパンのスパン信頼度値を加算することにより、経路ごとの第2波長経路の信頼度を示す波長経路信頼度値を算出し、第2波長経路のうち、算出した波長経路信頼度値が最も小さい値となる第2波長経路を第1波長経路として選択し、選択した第1波長経路を複数のノード装置に設定することを特徴とする波長経路選択方法である。
本発明はノード間の各スパンの信頼性情報として、既存システムが具備している波長多重光及びSV信号の警報及び品質監視情報を利用することで、既存システムからの拡張が容易、かつ自動的に信頼性の高い波長パスの経路を選択する機能を提供することを特徴とする。
本発明によれば、複数のノード装置を備える波長分割多重伝送ネットワークにおいて、ノード装置間を接続するスパンの信頼性情報であるスパン状況情報をノード装置から取得し、取得するスパン状況情報に基づき、スパンごとのスパン信頼度値を算出し、スパン信頼度値が上限値を超えるスパンを除いたスパンによる波長経路の候補を抽出することにより、候補経路の絞込みを行うようにしたので、経路選択処理の規模を小さく抑えることが可能になるという効果がある。
また、この発明によれば、各スパンの信頼性情報であるスパン状況情報として、既存システムにおける波長分割多重伝送ネットワークのノード装置が具備している波長多重光の品質監視情報、警報、監視制御信号の品質監視情報、警報を用いるようにしたので、既存システムに装置の追加などの大幅な変更を加えることなく信頼性の高い波長パスを選択する経路選択システムを提供することが可能になるという効果がある。
また、この発明によれば、スパン状況情報として、現在のスパン状況情報と、過去のスパン状況情報とに基づきスパン信頼度計算部がスパン信頼度値を算出するようにしたので、現在のスパン状況情報のみに比して、より多くのスパン状況情報数となる現在と過去とのスパン状況情報からスパン信頼度計算部がスパン信頼度値を算出することができ、スパン信頼度値の精度が向上するという効果がある。
以下、本発明の一実施形態による波長経路選択システムAを図面を参照して説明する。
図1は、本実施形態による波長経路選択システムAと、波長経路選択システムAに接続される波長分割多重ネットワークNとを示す概略ブロック図である。波長分割多重ネットワークNは、波長クロスコネクト機能を有する複数のノード装置として、例えば、縦にk個、横にn個の格子状に配置したノード1−1〜n−kを備える。ノード1−1〜n−kは、隣接するノード装置に接続し、入力される光信号の波長ごとにこの光信号の出力先を切り換えることにより、波長クロスコネクト処理を行うノード装置である。なお、以下では、ノード1−1〜n−kにおけるノード装置間の接続をスパンとして説明し、光信号の出力先を切り換えることをスパンを切り換える、あるいは、スパンを選択することとして説明する。
波長分割多重ネットワークNにおいて、ノード1−1〜n−kは、波長クロスコネクト機能と、自ノード装置と接続される他のノード装置との間のスパンの状態情報を出力する機能とを有する。ここで、スパンの状態情報は、警報、品質監視情報などの信頼性情報であり、具体的には、例えば、現在、及び、過去の波長多重光のレベル(強度)などに関する波長多重光の警報、波長多重光の品質監視状態情報、信号のエラー率などに関する監視制御信号(SV信号(Supervision))の警報、SV信号の品質監視状態情報の8つの状態情報を含む情報である。なお、過去の状態情報、すなわち、状態情報の履歴は、例えば、数日間など、所定の期間において検出された状態情報である。
波長経路選択システムAは、条件設定入力部A−1、パス設定部A−2、データ収集部A−3、スパン信頼度計算部A−4、禁止経路設定部A−5、経路信頼度計算部A−6、経路選択/設定部A−7を備え、波長分割多重ネットワークNにおける波長経路選択処理を行う。また、波長経路選択システムAは、波長分割多重ネットワークNのノード1−1〜n−kのそれぞれに制御信号線により接続され、それぞれとの通信を行う。なお、図1において、波長経路選択システムAとノード1−1〜n−kのそれぞれとを接続する制御信号線については、図面の見易さのため、波長経路選択システムAと波長分割多重ネットワークNとを接続する接続線として示している。
波長経路選択システムAにおいて、条件設定入力部A−1は、キーボード、マウス、タッチパネル、ボタンやキーなどの入力装置と、各種メモリなどによる記憶手段とを備え、オペレータによる入力装置に対する操作を検出し、検出結果をオペレータ入力に基づく経路選択条件情報として記憶手段に記憶する。この経路選択条件情報は、経路選択を行う際の制約事項を示す情報である。経路選択条件情報における制約事項の内容は、例えば、経路選択処理に用いる後述する信頼度値上限閾値α、及び信頼度の重み付け値などの情報を含む。
図2は、条件設定入力部A−1が記憶する状態情報ごとの信頼度の重み付け値の例である。ノード1−1〜n−kにおいて検出される状態情報について、警報の発生、及び、品質監視情報の異常があることを示す状態情報に対し、信頼度の重み付け値が付される。
パス設定部A−2は、キーボード、マウス、タッチパネル、ボタンやキーなどの入力装置と、各種メモリなどによる記憶手段とを備え、オペレータによる入力装置に対する操作を検出し、検出結果をオペレータ入力に基づく波長パス情報として記憶手段に記憶する。この波長パス情報は、波長経路選択対象となる波長パスの始点ノードの識別情報と終点ノードの識別情報とを含む情報である。
データ収集部A−3は、内部に各種メモリなどによる記憶手段を備え、また、制御信号線を介して、ノード1−1〜n−kに接続され、ノード1−1〜n−kからスパンの状態情報を取得し、取得した状態情報をノード装置ごとの識別情報と対応付けて記憶手段に記憶する。
なお、データ収集部A−3がノード1−1〜n−kから取得する状態情報は、データ収集部A−3が状態情報の出力要求をノード1−1〜n−kに送信し、当該出力要求の応答信号により取得することでもよいし、状態情報が変化した場合にノード1−1〜n−kがデータ収集部A−3に変化した状態情報を出力することにより、データ収集部A−3が状態情報を取得することでもよい。
スパン信頼度計算部A−4は、データ収集部A−3が記憶する状態情報を読み出し、条件設定入力部A−1が記憶する重み付け値を読み出し、状態情報と重み付け値とに基づき、スパンごとにスパン信頼度値Rを算出する。本実施形態において、スパン信頼度計算部A−4は、信頼度の重み付け値を加算することにより、各スパンのスパン信頼度値Rを算出する。したがって、各スパンの信頼性は、スパン信頼度値Rの値が低いほど高信頼であることを示し、スパン信頼度値Rの値が高いほど信頼性が低いことを示す。
スパン信頼度計算部A−4は、算出したスパンごとのスパン信頼度値Rを含む禁止スパン除外/経路抽出要求を禁止経路設定部A−5に出力する。
禁止経路設定部A−5は、禁止スパン除外/経路抽出要求が入力されると、条件設定入力部A−1が記憶する信頼度値上限閾値αを読み出し、スパン信頼度値Rが信頼度値上限閾値αを超えるスパンを禁止スパンとして判定する。また、禁止経路設定部A−5は、パス設定部A−2から始点ノード装置と、終点ノード装置との識別情報を読み出し、始点ノード装置から終点ノード装置までの経路として、判定した禁止スパンを除くスパンによる経路を抽出する。禁止経路設定部A−5は、抽出した経路の情報と、スパンごとのスパン信頼度値Rとを含む経路信頼度値R’算出要求を経路信頼度計算部A−6に出力する。
経路信頼度計算部A−6は、経路信頼度値R’算出要求に基づき、経路ごとに当該経路に含まれるスパンのスパン信頼度値Rを加算することにより経路信頼度値R’を算出し、算出した経路ごとの経路信頼度値R’を含む経路選択/設定要求を経路選択/設定部A−7に出力する。
経路選択/設定部A−7は、経路選択/設定要求に基づき、経路信頼度値R’が最小値となる経路を始点ノード装置から終点ノード装置までの高信頼な波長パスとして判定する。また、経路選択/設定部A−7は、ノード1−1〜n−kと制御信号線を介して接続しており、波長パスの判定結果に基づき、ノード1−1〜n−kに経路設定要求を出力する。
次に、本実施形態における波長経路選択システムAの処理の流れを図面を用いて説明する。図3は、波長経路選択システムAにおける処理の流れを示すフローチャートである。
波長経路選択システムAにおいて、条件設定入力部A−1は、オペレータによる入力手段の操作に基づき、経路選択条件情報の入力を受け付け、入力された経路選択条件情報を内部に備える記憶手段に記憶する。ここで、経路選択条件情報は、経路選択を行う際の制約事項であり、この制約事項の内容は、経路選択時の信頼度上限閾値α、及び図2の状態情報ごとの重み付け値などである。
また、パス設定部A−2は、オペレータによる入力手段の操作に基づき、経路パス情報の入力を受け付け、入力された経路パス情報を内部に備える記憶手段に記憶する(ステップS1)。ここで、経路パス情報は、上述したように、経路の選択対象となる波長パスの始点ノードの識別情報と終点ノードの識別情報とを含む情報である。
データ収集部A−3は、ノード1−1〜n−kの状態情報を取得し、ノード装置ごとの識別情報と対応付けて内部の記憶手段に記憶する(ステップS2)。
スパン信頼度計算部A−4は、ノード装置ごとの状態情報データをデータ収集部A−3から読み出し、条件設定入力部A−1が記憶する重み付け値を読み出し、読み出した重み付け値に基づき、各スパンの信頼度Rを算出する。スパン信頼度計算部A−4は、算出したスパン信頼度値Rを含む禁止スパン除外/経路抽出要求を禁止経路設定部A−5に出力する(ステップS3)。
ここで、各スパンの信頼度Rの値は、図2における全項目の信頼度の重み付け値を加算した値である。なお、図2の各項目の重み付け値は一例であり、オペレータが条件設定入力部A−1に重み付けの値を変更する入力を行うことにより、設定変更が可能である。
禁止経路設定部A−5は、条件設定入力部A−1から信頼度値上限閾値αを読み出し、スパン信頼度計算部A−4が算出した各スパンのスパン信頼度値Rと読み出した信頼度値上限閾値αとを比較し、R>αとなるスパンを禁止スパンとして判定する。禁止経路設定部A−5は、パス設定部A−2から始点ノード装置と、終点ノード装置との識別情報を読み出し、始点ノード装置から終点ノード装置までの経路として、判定した禁止スパンを除くスパンによる経路を抽出する。禁止経路設定部A−5は、抽出した経路の情報と、スパンごとのスパン信頼度値Rとを含む経路信頼度値R’算出要求を経路信頼度計算部A−6に出力する(ステップS4)。
経路信頼度計算部A−6は、禁止経路設定部A−5が抽出する経路ごとに経路信頼度値R’を算出する。ここで、経路信頼度値R’は、算出対象の経路に含まれる全てのスパンのスパン信頼度値Rを加算することにより算出する、経路内のスパンのスパン信頼度値Rの合計値である。経路信頼度計算部A−6は、算出した経路ごとのスパン信頼度値Rと、禁止経路設定部A−5から入力された経路の情報とを含む経路選択/設定要求を経路選択/設定部A−7に出力する(ステップS5)。
経路選択/設定部A−7は、全ての経路の経路信頼度R’の値を比較し、経路信頼度R’の値が最小値となる経路を始点ノード装置から終点ノード装置までの高信頼な波長パスとして選択する。さらに、経路選択/設定部A−7は、波長分割多重ネットワークN内の各ノード1−1〜n−kが備える波長クロスコネクト機能に対し、設定情報を含む設定情報更新要求の送信を行うことにより、ノード1−1〜n−kに設定情報を更新させ、波長パスの経路設定が完了する。
次に、波長経路選択システムAによる図3のステップS2の警報/品質監視データ収集後のステップS3〜S6の処理について、経路を選択する具体的な処理例を図面を参照して説明する。図4は、経路選択対象のネットワークである波長分割多重ネットワークN−2の構成の概略を示す図である。同図において、波長分割多重ネットワークN−2は、9個のノード装置を格子状に縦に3個、横に3個配置したノード1〜9と、各ノード装置間を接続する12本のスパン1−2、1−4、2−3、3−6、4−5、4−7、5−6、5−8、6−9、7−8、8−9とを備える。また、ノード1〜9は、それぞれ図示しない制御信号線により波長経路選択システムAと接続される。
波長分割多重ネットワークN−2において、ノード1〜9は、図1のノード1−1〜n−kと同様に、波長クロスコネクト機能と状態情報の出力機能とを備えるノード装置である。また、同図において、例えば、ノード1とノード2とを接続するスパン1−2のように、スパンが接続する2つのノード装置の符号を組み合わせた符号を各スパンの符号として付している。
また、図4の波長分割多重ネットワークN−2の経路選択について、以下に示す条件に基づき、波長経路選択システムAが経路選択処理を行う場合を例として説明する。
パス設定部A−2は、オペレータからの入力に基づき、波長パス情報として、始点ノード「ノード1」と終点ノード「ノード9」とを記憶している。
条件設定入力部A−1は、オペレータからの入力に基づき、信頼度値上限閾値αの値「α=10」と、図2に示す信頼度重み付け値とを記憶している。
すなわち、禁止経路設定部A−5による選択対象の波長経路は、ノード1からノード9までの経路のうち、スパン信頼度値Rが信頼度値上限閾値α=10を超えるスパンを含まない経路となる。
次に、図4におけるスパン信頼度値Rの算出例として、スパン1−4のスパン信頼度値Rの算出を例に説明する。図5は、波長経路選択システムAのデータ収集部A−3により収集されたスパン1−4の状況情報と、各状況情報ごとの図2の信頼度重み付け値とを対応付けた表である。同図に示すように、スパン1−4は、現状と履歴とにおいて、波長多重光の警報、品質監視異常、SV信号の警報、品質監視異常の全てが「有」となる。スパン信頼度計算部A−4は、スパン1−4の状況情報ごとの信頼度重み付け値を加算し、算出結果をスパン1−4のスパン信頼度値Rとして出力する。ここでは、
スパン信頼度値R=4+3+3+2+3+2+2+1=20
となるため、スパン信頼度計算部A−4は、スパン1−4におけるスパン信頼度値R「20」を得る。
同様にしてスパン信頼度計算部A−4により算出された波長分割多重ネットワークN−2の全てのスパン信頼度値Rを図4に示す。図3のステップS2のスパン信頼度計算部A−4におけるスパン信頼度値Rの算出処理後スパン信頼度計算部A−4は、スパンごとのスパン信頼度値Rを含む禁止スパン除外/経路抽出要求を禁止経路設定部A−5に出力する。
ステップS3において、禁止経路設定部A−5は、入力される禁止スパン除外/経路抽出要求に基づき、条件設定入力部A−1が記憶する信頼度値上限閾値αを読み出し、読み出した信頼度値上限閾値α「10」を超えるスパン信頼度値Rとなるとなるスパンを禁止スパンと判定する。ここでは、スパン信頼度値R「20」となるスパン1−4と、スパン信頼度値R「11」となるスパン8−9とが禁止スパンとして判定されることとなる。
次に、禁止経路設定部A−5によるノード1からノード9までの経路抽出について、始点ノードであるノード1から終点ノードまでのノード9までの禁止スパンを含まない経路の抽出手順について、その一例を説明する。
図6は、ノード1〜8のノード装置について、禁止スパン以外によって接続される接続先のノード装置と、当該接続におけるスパン信頼度値Rとを示す表である。
同図に示すように、ノード1の接続先は、ノード2、ノード2の接続先は、ノード1とノード3とノード5、ノード3の接続先は、ノード2とノード6、ノード4の接続先は、ノード5とノード7、ノード5の接続先は、ノード2とノード4とノード6とノード8、ノード6の接続先は、ノード3とノード5とノード9、ノード7の接続先は、ノード4とノード8、ノード8の接続先は、ノード5とノード7となる。
禁止経路設定部A−5による経路抽出は、始点ノードを基点として、各ノード装置ごとに接続先ノードをノード装置ごとの識別番号の昇順に次々にたどり、終点ノードにたどり着く、又は、現在抽出中の経路に含まれるノード装置と、接続先ノード装置が重複する場合、当該経路の抽出処理を終了し、次の別の経路の抽出処理に移行する。したがって、経路選択処理は、図7に示すように、樹形図状にノード装置をたどることとなる。
図7は、図6に基づき、禁止経路設定部A−5が、図4の波長分割多重ネットワークN−2におけるノード1からノード9までの経路選択処理を行う場合にたどる経路の模式図である。ノード1は、ノード2のみに接続され、このノード2は、ノード1とノード3とノード5とに接続される。
禁止経路設定部A−5は、1番目の経路として、ノード1→ノード2をたどり、ノード2の接続先ノード装置のうち最も識別番号が小さいノード1をたどる。ここで、ノード1が重複しているため、2回目のノード1の接続先をたどることなく、次の経路の抽出処理に移行することにより、ループを回避する。
したがって、2番目の経路は、ノード1→ノード2→ノード3→ノード2となる。ここで、ノード2が重複しているため、2回目のノード2の接続先をたどることなく、次の経路の抽出処理に移行する。このように、ノード1を基点に各ノード装置の接続先ノード装置を全てたどり、経路中に重複したノード装置が存在する経路を排除していくことにより、ループのないノード1からノード9までの経路を抽出することが可能になる。図7に示すように、図4の波長分割多重ネットワークN−2におけるノード1からノード9まで到達する禁止スパンを含まない経路は、第1経路「ノード1→ノード2→ノード3→ノード6→ノード9」と、第2経路「ノード1→ノード2→ノード5→ノード6→ノード9」との2経路となる。
禁止経路設定部A−5は、経路抽出処理を完了すると、抽出した経路の情報と、スパン信頼度計算部A−4による全スパンのスパン信頼度値Rとを含む経路信頼度値R’算出要求を経路信頼度計算部A−6に出力する。図3のステップS5において、経路信頼度計算部A−6は、禁止経路設定部A−5から入力される第1経路と第2経路との情報と、スパン信頼度値Rとに基づき、経路に含まれるスパンのスパン信頼度値Rを加算することにより経路信頼度値R’を算出する。
ここでは、第1経路に、スパン1−2、スパン2−3、スパン3−6、スパン6−9が含まれる。すなわち、第1経路に含まれるスパンのスパン信頼度値Rは、それぞれ、スパン信頼度値R=1、スパン信頼度値R=2、スパン信頼度値R=7、スパン信頼度値R=3となる。したがって、経路信頼度計算部A−6により算出される第1経路の経路信頼度値R’は、
経路信頼度値R’=1+2+7+3=13
となる。
同様に、第2経路に、スパン1−2、スパン2−5、スパン5−6、スパン6−9が含まれ、それぞれ、スパン信頼度値R=1、スパン信頼度値R=0、スパン信頼度値R=0、スパン信頼度値R=3となる。したがって、経路信頼度計算部A−6により算出される第1経路の経路信頼度値R’は、
経路信頼度値R’=1+0+0+3=4
となる。経路信頼度計算部A−6は、経路信頼度値R’の算出処理を完了すると、禁止経路設定部A−5が抽出した経路の情報と、算出した当該経路の経路信頼度値R’とを対応付けた経路の情報を含む経路選択/設定要求を経路選択/設定部A−7に出力する。
図2のステップS6の処理として、経路選択/設定部A−7は、入力された経路ごとの経路信頼度値R’を比較し、経路信頼度値R’が最小値となる経路をノード1からノード9までの波長パスとして選択する。ここでは、経路選択/設定部A−7は、第1経路の経路信頼度値R’「13」>第2経路の経路信頼度値R’「4」であるため、ノード1からノード9までの波長パスとして、第2経路を選択することとなる。
上述した実施形態によれば、波長経路選択システムAは、既存のシステムに用いられているノード装置が備える波長多重光とSV信号との信頼性情報の出力により、出力される信頼性情報を波長パスの経路選択における判断要因として用いることとなる。
信頼性情報に基づき、経路選択を行うことにより、波長経路選択システムAは、経路選択対象のネットワークにおいて、信頼性の高い波長パスを選択することが可能になるという効果がある。
また、本実施形態によれば、既存のシステムにおけるノード装置が備える信頼性情報の出力に基づき経路選択を行うことにより、各スパンの状態を計測する装置等の新たな装置を設置することなく、経路選択を行うことができる。したがって、波長経路選択システムAは、既存のシステムからの拡張が容易であり、低コストで経路選択対象となるネットワークにおける信頼性の高い波長パスを選択することが可能になるという効果がある。
また、波長経路選択システムAにおいて、禁止経路設定部A−5が、スパン信頼度値Rの上限閾値となる信頼度値上限閾値αを用い、禁止スパンの判定を行うことにより、候補経路の絞込みを行うことができ、経路選択処理の計算量を抑制することが可能になるという効果がある。
具体的には、例えば、図4において、禁止スパンを除外しない場合、図8に示すように、ノード1とノード4とノード8とにおいて、それぞれ接続先ノード装置が増えることとなる。ここで、図9、10は、図8に示す接続関係となるノード1〜9に対し、ノード1からノード9までの経路の抽出処理を適用した場合における、禁止経路設定部A−5がたどる経路を模式的に示す樹形図である。図9は、始点ノードのノード1→ノード2の経路抽出における模式図であり、図10は、始点ノードのノード1→ノード4の経路抽出における模式図である。
禁止スパンを除外した場合の図7に比して、禁止スパンを除外しない場合の図9及び図10は、抽出する際の経路数が多くなる。また、ノード1からノード9までの経路についても、本実施形態においては2経路であったが、全てのスパンを用いた場合、12経路存在することとなり、これらの12経路のうちから信頼性の高い波長パスを選択することとなるため、計算量が増大する。
このように、本実施形態によれば、波長経路選択システムAにおいて、信頼度値上限閾値αに基づき禁止スパンを除外することにより、経路抽出の計算量、抽出した経路から信頼性の高い波長パスの選択処理の計算量を抑制することができ、処理時間を短縮することにより遅延を抑制することが可能になるという効果がある。
また、本実施形態によれば、波長多重信号の信頼性情報である警報と品質監視情報と、SV信号の信頼性情報である警報と品質監視情報との両方の情報を用いて、波長パスを選択することとした。中継するノード装置における中継処理において、入力された光信号を電気信号に変換することなく光信号のまま中継するため、各スパンにおける波長多重信号の信頼性情報は、信号断を示すLOS(Loss of Signal)の警報、又は、レベル低下などの光信号のレベル変動や、光信号のレベルの安定性のみとなり、始点ノードから終点ノードまで測定可能な信号の誤り率は測定することができない。一方、SV信号は、スパンごとに光信号に挿入され、分岐されるため、LOSの警報の他、誤り率を検出することが可能となる。したがって、波長多重信号の信頼性情報と、SV信号の信頼性情報とを組み合わせて、スパン信頼度値Rを算出することにより、スパンごとの信頼性の評価となる品質評価の精度を向上させることが可能になるという効果がある。
なお、上述した実施形態において、状態情報のうち、過去の履歴において警報や異常の有無に基づき、重み付け値を与えることとして説明したが、これに限られず、例えば、過去の警報回数を重み付け値とするなど、過去の履歴における警報、異常の回数に応じて大きな値となるように異なる値を重み付け値として設定することや、警報、異常の所定時間ごとの発生頻度に基づき、発生頻度が上昇している場合により大きな値を重み付け値として設定することでもよい。
なお、本発明に記載のスパン状況情報は、波長多重信号の信頼性情報と、SV信号の信頼性情報とに対応する。また、本発明に記載のスパン信頼度値の上限値は、信頼度値上限閾値αに対応し、本発明に記載の監視制御信号は、SV信号に対応する。
なお、上述の波長経路選択システムAは、内部にコンピュータシステムを有している。そして、波長経路選択システムAの条件設定入力部A−1、パス設定部A−2、データ収集部A−3、スパン信頼度計算部A−4、禁止経路設定部A−5、経路信頼度計算部A−6、経路選択/設定部A−7の動作の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータシステムが読み出して実行することによって、上記処理が行われる。ここでいう「コンピュータシステム」とは、CPU及び各種メモリやOS、周辺機器等のハードウェアを含むものである。
また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
また、図3に示す各ステップを実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、また、図1に示す波長経路選択システムAの機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録してこの記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、波長分割多重伝送ネットワークにおいて重要度の高い波長パスとして、高信頼の経路を選択し、設定する処理を行ってもよい。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムに既に記録されているプログラムとの組合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
本発明の一実施形態による波長経路選択システムAと波長分割多重ネットワークNの全体構成を示す図である。 同実施形態における条件設定入力部A−1が記憶する状態情報ごとの信頼度の重み付け値の一例である。 同実施形態における波長経路選択システムAの動作フローを示す図である。 同実施形態における波長分割多重ネットワークN−2の構成を示す図である。 同実施形態におけるスパン1−4の状態情報と、当該状態情報ごとの重み付け値を示す図である。 同実施形態における各ノード装置の禁止スパン以外で接続されるノード装置と、そのスパンのスパン信頼度値Rとの対応を示す図である。 同実施形態における禁止経路設定部A−5の経路抽出処理の概念図である。 同実施形態における各ノード装置の禁止スパン以外を含む全スパンで接続されるノード装置と、そのスパンのスパン信頼度値Rとの対応を示す図である。 同実施形態における禁止スパンを除外しない場合の経路抽出処理の概念図である。 同実施形態における禁止スパンを除外しない場合の経路抽出処理の概念図である。
符号の説明
A 波長経路選択システム
A−1 条件設定入力部
A−2 パス設定部
A−3 データ収集部
A−4 スパン信頼度計算部
A−5 禁止経路設定部
A−6 経路信頼度計算部
A−7 経路選択/設定部
N、N−2 波長分割多重ネットワーク
1−2、1−4、2−3、2−5、3−6、4−5、4−7、5−6、5−8、6−9、7−8、8−9 スパン
1−1〜n−k、1、2、3、4、5、6、7、8、9 ノード

Claims (4)

  1. 波長分割多重方式の通信において、波長クロスコネクト処理を行い、少なくとも2つの他のノード装置に接続され、当該他のノード装置と自身とを接続するスパンの状況を示すスパン状況情報をそれぞれの前記スパンについて出力する複数のノード装置と、当該複数のノード装置に接続し、当該複数のノード装置のうち、始点となるノード装置から終点となるノード装置までの第1波長経路の選択処理を実行する波長経路選択システムであって、
    前記スパンの信頼度を示す前記スパン信頼度値の上限値と、前記スパン状況情報ごとの重み付け値とを記憶する記憶手段と、
    前記スパン状況情報を前記ノード装置から受信するデータ収集部と、
    前記データ収集部が受信する前記スパン状況情報に基づき、前記スパンごとに、当該スパンのスパン信頼度値を算出するスパン信頼度計算部と、
    前記スパン信頼度計算部が算出する前記スパン信頼度値が前記記憶手段が記憶する上限値を超えるか否かを前記スパンごとに判定し、前記始点となるノード装置から前記終点となるノード装置までの波長経路のうち、前記スパン信頼度値が前記上限値を超えないと判定したスパンによって構成される経路を第2波長経路として抽出する禁止経路設定部と、
    前記禁止経路設定部が抽出する第2波長経路ごとに、前記スパン信頼度計算部により算出される当該第2波長経路に含まれる全てのスパンのスパン信頼度値を加算することにより、経路ごとの前記第2波長経路の信頼度を示す波長経路信頼度値を算出する経路信頼度計算部と、
    前記第2波長経路のうち、前記経路信頼度計算部により算出される波長経路信頼度値が最も小さい値となる第2波長経路を前記第1波長経路として選択する経路選択部と、
    前記経路選択部により選択される前記第1波長経路を前記複数のノード装置に設定する設定部と
    を備えることを特徴とする波長経路選択システム。
  2. 前記スパン状況情報は、波長多重信号の警報と、波長多重信号の品質監視情報と、監視制御信号の警報と、監視制御信号の品質監視情報とである
    ことを特徴とする請求項1に記載の波長経路選択システム。
  3. 前記波長経路選択システムの前記スパン信頼度計算部は、
    前記スパン状況情報のうち、現在のスパン状況情報と、過去のスパン状況情報とに基づき、スパン信頼度値を算出する
    ことを特徴とする請求項1又は2のいずれかに記載の波長経路選択システム。
  4. 波長分割多重方式の通信において、波長クロスコネクト処理を行い、少なくとも2つの他のノード装置に接続され、当該他のノード装置と自身とを接続するスパンの状況を示すスパン状況情報をそれぞれの前記スパンについて出力する複数のノード装置と、当該複数のノード装置に接続し、当該複数のノード装置のうち、始点となるノード装置から終点となるノード装置までの第1波長経路の選択処理を実行する波長経路選択システムにおける波長経路選択方法であって、
    前記波長経路選択システムは、
    前記スパンの信頼度を示すスパン信頼度値の上限値と、前記スパン状況情報ごとの重み付け値とを記憶手段に記憶させる記憶過程と、
    前記スパン状況情報を前記ノード装置から受信するデータ収集過程と、
    受信した前記スパン状況情報と、前記記憶手段が記憶したスパン状況情報ごとの重み付け値とに基づき、前記スパンごとに、当該スパンのスパン信頼度値を算出するスパン信頼度計算過程と、
    算出した前記スパン信頼度値が前記記憶手段が記憶する前記上限値を超えるか否かを前記スパンごとに判定し、前記始点となるノード装置から前記終点となるノード装置までの波長経路のうち、前記スパン信頼度値が前記上限値を超えないと判定したスパンによって構成される経路を第2波長経路として抽出する禁止経路設定過程と、
    抽出した第2波長経路ごとに、当該第2波長経路に含まれる全てのスパンのスパン信頼度値を加算することにより、経路ごとの前記第2波長経路の信頼度を示す波長経路信頼度値を算出する経路信頼度計算過程と、
    前記第2波長経路のうち、算出した波長経路信頼度値が最も小さい値となる第2波長経路を前記第1波長経路として選択する経路選択過程と、
    選択した前記第1波長経路を前記複数のノード装置に設定する設定過程と
    を有することを特徴とする波長経路選択方法。
JP2008116328A 2008-04-25 2008-04-25 波長経路選択システム、及び、波長経路選択方法 Pending JP2009267858A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008116328A JP2009267858A (ja) 2008-04-25 2008-04-25 波長経路選択システム、及び、波長経路選択方法
US12/428,956 US20090269057A1 (en) 2008-04-25 2009-04-23 Wavelength route selection system and wavelength route selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116328A JP2009267858A (ja) 2008-04-25 2008-04-25 波長経路選択システム、及び、波長経路選択方法

Publications (1)

Publication Number Publication Date
JP2009267858A true JP2009267858A (ja) 2009-11-12

Family

ID=41215109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116328A Pending JP2009267858A (ja) 2008-04-25 2008-04-25 波長経路選択システム、及び、波長経路選択方法

Country Status (2)

Country Link
US (1) US20090269057A1 (ja)
JP (1) JP2009267858A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219594A (ja) * 2009-03-13 2010-09-30 Nec Corp 光伝送システム
JP2016001835A (ja) * 2014-06-12 2016-01-07 富士通株式会社 波長選択方法、波長選択装置および波長選択システム
JP2017011506A (ja) * 2015-06-22 2017-01-12 富士通株式会社 ネットワーク制御装置及び信号品質推定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011063834A1 (en) * 2009-11-25 2011-06-03 Telefonaktiebolaget Lm Ericsson (Publ) Optical transport network alarms
CN102201972B (zh) * 2010-03-25 2015-05-20 中兴通讯股份有限公司 一种基于g.709的多级复用路由计算方法和路径计算装置
US10284290B2 (en) * 2015-09-30 2019-05-07 Juniper Networks, Inc. Packet routing using optical supervisory channel data for an optical transport system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219594A (ja) * 2009-03-13 2010-09-30 Nec Corp 光伝送システム
JP2016001835A (ja) * 2014-06-12 2016-01-07 富士通株式会社 波長選択方法、波長選択装置および波長選択システム
JP2017011506A (ja) * 2015-06-22 2017-01-12 富士通株式会社 ネットワーク制御装置及び信号品質推定方法

Also Published As

Publication number Publication date
US20090269057A1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP2009267858A (ja) 波長経路選択システム、及び、波長経路選択方法
US9524223B2 (en) Performance metrics of a computer system
JP7031743B2 (ja) 異常検知装置
JP2009218913A (ja) ネットワーク条件判定装置及びネットワーク条件判定プログラム
US20100185762A1 (en) Abnormal point locating apparatus, method, and storage medium
EP3232620B1 (en) Data center based fault analysis method and device
CA2743466C (en) Path calculation order deciding method, program and calculating apparatus
JP6245006B2 (ja) テストケース生成装置、方法、及びプログラム
JP2012186667A (ja) ネットワーク障害検出装置、ネットワーク障害検出装置のネットワーク障害検出方法およびネットワーク障害検出プログラム
JP6586067B2 (ja) 故障位置特定装置、故障位置特定方法、および、故障位置特定プログラム
CN111954855B (zh) 确定异常设备的装置、方法和计算机设备
JP2018007058A (ja) ネットワーク制御装置、光伝送システムおよび障害判定方法
JP2011176660A (ja) ネットワーク設計装置、ネットワーク設計方法およびネットワーク設計プログラム
US20220255840A1 (en) Route control device, route control method, program, and network system
JP2012015837A (ja) 経路計算装置、データ転送装置、経路計算方法、データ転送方法およびプログラム
WO2011033650A1 (ja) 経路検索方法及びノード装置
Delezoide et al. Streamlined failure localization method and application to network health monitoring
WO2024034082A1 (ja) 故障予測装置、故障予測方法、および、故障予測プログラム
JP5187278B2 (ja) 異常箇所特定プログラム、異常箇所特定装置、異常箇所特定方法
KR100950842B1 (ko) 헬스 케어 기반의 센서 네트워크에서 데이터 전송 경로설정 방법
JP2017168881A (ja) 通信経路制御装置、方法およびプログラム
KR20190049896A (ko) 통신 장치 및 통신 네트워크
JP5068774B2 (ja) ネットワーク監視装置
JP2011077586A (ja) 異常予知回路、方法、及び、プログラム
JP4479601B2 (ja) マルチキャスト経路計算方法及び装置およびプログラム及びプログラムを格納した記憶媒体

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100702