JP2009266697A - Cleaning device and cleaning method of vacuum device - Google Patents

Cleaning device and cleaning method of vacuum device Download PDF

Info

Publication number
JP2009266697A
JP2009266697A JP2008116283A JP2008116283A JP2009266697A JP 2009266697 A JP2009266697 A JP 2009266697A JP 2008116283 A JP2008116283 A JP 2008116283A JP 2008116283 A JP2008116283 A JP 2008116283A JP 2009266697 A JP2009266697 A JP 2009266697A
Authority
JP
Japan
Prior art keywords
vacuum
active oxygen
cleaning
path
oxygen radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008116283A
Other languages
Japanese (ja)
Inventor
Shin Horiuchi
伸 堀内
Kazuhiro Yamamoto
和弘 山本
Takeshi Hanada
剛 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CZI KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
CZI KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CZI KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical CZI KK
Priority to JP2008116283A priority Critical patent/JP2009266697A/en
Publication of JP2009266697A publication Critical patent/JP2009266697A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device cleaning a vacuum device having a narrow vacuum passage such as a transmission type electron microscope and a scanning transmission type electron microscope by chemical cleaning action of an active oxygen radical without disassembling the vacuum device. <P>SOLUTION: This cleaning device is used for cleaning a vacuum passage of a vacuum device having an electron beam passing route having an inner diameter of 1-10 mm. The cleaning device of a vacuum device is characterized by including: an active oxygen radical generator; a plasma stabilization device keeping the inside of the vacuum passage in the degree of vacuum of 0.1-1.0 hPa; an active oxygen radical forced discharge device for obtaining a flow rate of the active oxygen radical not smaller than 1×10<SP>-4</SP>Pa m<SP>3</SP>/sec at 0°C; and a vacuum pipe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、透過型電子顕微鏡など狭い真空経路を有する真空装置の真空経路を非破壊でクリーニングし、試料へのコンタミネーションを防ぐ装置および方法に関する。   The present invention relates to an apparatus and method for cleaning a vacuum path of a vacuum apparatus having a narrow vacuum path such as a transmission electron microscope in a non-destructive manner and preventing contamination on a sample.

透過型電子顕微鏡(TEM)において、装置性能向上による原理的分析能力の向上が図られているにも拘らず、現在のニーズに十分対応できる成果が得られない事例が非常に多い。これらの多く問題は、電子顕微鏡装置そのものに起因するのではなく、観察しようとする試料、および、観察領域(数十nm)において、試料にコンタミネーション(汚れ、非観察対象物)が不可逆的に試料に付着する事により、観察能力(実効分解能)、化学分析能力(最小検出限界)が実効的に大きく低下することに起因する。コンタミネーションは、透過型電子顕微鏡体内の10−5〜10−6Paの高真空中に浮遊するハイドロカーボンに由来する分子に電子線が照射、励起され、試料表面に蒸着されることが要因と考えられている。コンタミネーションは、主に真空ポンプのオイル、試料、真空リークなどによる残留ガスが真空チャンバー内壁に付着した有機系汚染物である。これらの有機汚染物から発生するハイドロカーボン系の浮遊物が電子ビームによって分解され、試料表面に付着し、観察および分析性能に深刻な問題を及ぼす。コンタミネーションを押さえるためには、電子顕微鏡をクリーニングする必要があるが、このような汚染物を除去するために、装置を分解し、洗浄することは、容易でなく、コストがかかり、現実的でない。そのため、装置を非破壊かつ簡便にクリーニングする方法が望まれているが、有効なクリーニング方法および装置はこれまで開発されていなかった。 In transmission electron microscopes (TEMs), there are many cases in which results that can sufficiently meet the current needs are not obtained despite improvement of the principle analysis ability by improving the performance of the apparatus. Many of these problems are not caused by the electron microscope apparatus itself, but in the sample to be observed and in the observation region (several tens of nm), contamination (dirt, non-observed object) is irreversibly in the sample. This is due to the fact that the observation ability (effective resolution) and chemical analysis ability (minimum detection limit) are effectively greatly reduced by adhering to the sample. Contamination is caused by the fact that electrons derived from hydrocarbons floating in a high vacuum of 10 −5 to 10 −6 Pa in the transmission electron microscope are irradiated with an electron beam, excited, and deposited on the sample surface. It is considered. Contamination is organic contaminants in which residual gas mainly due to vacuum pump oil, sample, and vacuum leak adheres to the inner wall of the vacuum chamber. The hydrocarbon-based suspended matter generated from these organic contaminants is decomposed by the electron beam and adheres to the sample surface, causing serious problems in observation and analysis performance. In order to suppress contamination, it is necessary to clean the electron microscope, but it is not easy, costly and impractical to disassemble and clean the device to remove such contaminants. . Therefore, there is a demand for a nondestructive and simple cleaning method for the apparatus, but an effective cleaning method and apparatus have not been developed so far.

透過型電子顕微鏡に関わらず、半導体製造装置等や走査型電子顕微鏡等の真空装置全般において、真空チャンバーの内壁にコンタミネーションが堆積し、装置の性能を著しく損なうことが問題となっている。上記の問題を解決する方法として、活性酸素ラジカルなど、コンタミネーションに対して化学的なクリーニング作用を有するガスを真空チャンバー内に流し、コンタミネーションを除去する方法が、電子線縮小転写装置(特許文献1参照)、半導体製造装置(特許文献2参照)、製膜装置(特許文献3参照)に対して用いられている。また、活性酸素ラジカルを走査型電子顕微鏡体内に循環させ、炭素由来のコンタミネーションを除去することが可能であることは、特許文献4に記載されている。走査型電子顕微鏡では、試料室の体積は、3L以上と大きいため、プラズマ発生装置を装置に接続し、装置本体の排気ポンプにより活性酸素ラジカルを装置内部に循環させることが容易である。これら方法は、走査型電子顕微鏡、電子線リソグラフィー装置、イオンビーム加工装置、真空蒸着装置など、大きな真空チャンバーから構成される装置では有効であるが、透過型電子顕微鏡のように、試料室や真空状態で用いられる管状の真空経路がきわめて狭い真空装置ではコンタミネーションを有効に除去することができない。   Regardless of the transmission electron microscope, in general vacuum apparatuses such as semiconductor manufacturing apparatuses and scanning electron microscopes, contamination is deposited on the inner wall of the vacuum chamber, which significantly impairs the performance of the apparatus. As a method for solving the above problem, a method for removing contamination by flowing a gas having a chemical cleaning action against contamination such as active oxygen radicals into a vacuum chamber is known as an electron beam reduction transfer device (Patent Document). 1), a semiconductor manufacturing apparatus (see Patent Document 2), and a film forming apparatus (see Patent Document 3). Patent Document 4 describes that active oxygen radicals can be circulated in a scanning electron microscope to remove carbon-derived contamination. In the scanning electron microscope, since the volume of the sample chamber is as large as 3 L or more, it is easy to connect the plasma generator to the apparatus and circulate the active oxygen radicals inside the apparatus by the exhaust pump of the apparatus body. These methods are effective for apparatuses composed of large vacuum chambers, such as scanning electron microscopes, electron beam lithography apparatuses, ion beam processing apparatuses, and vacuum deposition apparatuses, but like transmission electron microscopes, sample chambers and vacuum Contamination cannot be effectively removed with a vacuum apparatus having a very narrow tubular vacuum path used in the state.

透過型電子顕微鏡もしくは走査透過型電子顕微鏡は、他の真空装置と比較し、真空経路、試料室がきわめて狭く、活性酸素ラジカルを安定に発生させる低い真空度を維持しつつ、高濃度の活性酸素ラジカルを経路内に循環させることが従来困難であった。
特開2000−231897号公報 特許第3253675号公報 特開2004−277799公報 米国特許第6,105,589号明細書
The transmission electron microscope or scanning transmission electron microscope has a very narrow vacuum path and sample chamber compared to other vacuum devices, and maintains a low degree of vacuum that stably generates active oxygen radicals while maintaining a high concentration of active oxygen. It has been difficult in the past to circulate radicals in the pathway.
JP 2000-231897 A Japanese Patent No. 3253675 JP 2004-277799 A US Pat. No. 6,105,589

本発明の目的は、透過型電子顕微鏡および走査透過型電子顕微鏡など、狭い真空経路を有する真空装置を、活性酸素ラジカルの化学的クリーニング作用により、非破壊クリーニングを行う装置および方法を提供することにある。   An object of the present invention is to provide an apparatus and method for performing nondestructive cleaning of a vacuum apparatus having a narrow vacuum path, such as a transmission electron microscope and a scanning transmission electron microscope, by a chemical cleaning action of active oxygen radicals. is there.

本発明は、
(1)内径1〜10mmの電子線通過経路を備えた真空装置の真空経路をクリーニングするクリーニング装置であって、活性酸素ラジカル発生装置と、前記真空経路内を10〜100Paの真空度に維持するプラズマ安定化装置と、0℃において1×10−4Pa・m/sec以上の活性酸素ラジカル流量を得るための活性酸素ラジカル強制排気装置と、真空配管とを備えた真空装置のクリーニング装置、
(2)前記電子線通過経路の長さが30cm以下であることを特徴とする(1)項記載の真空装置のクリーニング装置、
(3)前記電子線通過経路の少なくとも1部が、前記真空配管の少なくとも1部として利用されることを特徴とする(1)項記載の真空装置のクリーニング装置、
(4)前記プラズマ安定化装置が3L以上の容積を有することを特徴とする(1)〜(3)のいずれか1項に記載の真空装置のクリーニング装置、
(5)活性酸素ラジカル経路長が60cm以内であることを特徴とする(1)〜(4)のいずれか1項に記載の真空装置のクリーニング装置、
(6)前記真空装置が透過型電子顕微鏡または走査透過型電子顕微鏡であることを特徴とする(1)〜(5)のいずれか1項に記載の真空装置、
(7)プラズマを用いて活性酸素ラジカルを発生させ、真空配管を介して該活性酸素ラジカルを、内径1〜10mmの電子線通過経路を備えた真空装置の10〜100Paの真空度に維持した真空経路に0℃において1×10−4Pa・m/sec以上の流量で導入後強制排気し、前記真空経路内をクリーニングすることを特徴とする真空装置のクリーニング方法、および
(8)前記真空装置が透過型電子顕微鏡または走査透過型電子顕微鏡であることを特徴とする真空装置のクリーニング方法。
本発明において「真空経路」とは、真空状態で用いられる空間からなる経路を意味し、電子線通過経路が含まれる。
The present invention
(1) A cleaning device for cleaning a vacuum path of a vacuum apparatus having an electron beam passage having an inner diameter of 1 to 10 mm, and maintaining the active oxygen radical generator and the vacuum path at a degree of vacuum of 10 to 100 Pa. A vacuum apparatus cleaning apparatus comprising: a plasma stabilization apparatus; an active oxygen radical forced exhaust apparatus for obtaining an active oxygen radical flow rate of 1 × 10 −4 Pa · m 3 / sec or more at 0 ° C .; and a vacuum pipe;
(2) The cleaning device for a vacuum device according to (1), wherein the length of the electron beam passage path is 30 cm or less,
(3) At least one part of the electron beam passage path is used as at least one part of the vacuum pipe, The vacuum device cleaning device according to (1),
(4) The cleaning device for a vacuum device according to any one of (1) to (3), wherein the plasma stabilizing device has a volume of 3 L or more.
(5) The cleaning device for a vacuum apparatus according to any one of (1) to (4), wherein the active oxygen radical path length is within 60 cm,
(6) The vacuum apparatus according to any one of (1) to (5), wherein the vacuum apparatus is a transmission electron microscope or a scanning transmission electron microscope.
(7) A vacuum in which active oxygen radicals are generated using plasma, and the active oxygen radicals are maintained at a vacuum degree of 10 to 100 Pa of a vacuum apparatus having an electron beam passage having an inner diameter of 1 to 10 mm through a vacuum pipe. A vacuum apparatus cleaning method, wherein the vacuum path is forcedly exhausted after being introduced into the path at a flow rate of 1 × 10 −4 Pa · m 3 / sec or more at 0 ° C., and (8) the vacuum A vacuum apparatus cleaning method, wherein the apparatus is a transmission electron microscope or a scanning transmission electron microscope.
In the present invention, the “vacuum path” means a path composed of a space used in a vacuum state, and includes an electron beam passage path.

本発明により、透過型電子顕微鏡などの真空装置を分解することなくによりクリーニングすることが可能であり、試料へのコンタミネーションを防ぐことが可能となり、長時間電子線露光が必要な分析である、EDS(X線元素分析)、EELS(電子エネルギー損失スペクトル)、電子線トモグラフィー、ナノビーム電子回折、走査電子顕微鏡観察などのデータの質、信頼性の向上がもたらされる。さらに、古い透過型電子顕微鏡の機能回復にも効果がある。   According to the present invention, it is possible to clean without disassembling a vacuum device such as a transmission electron microscope, it becomes possible to prevent contamination to the sample, and analysis that requires electron beam exposure for a long time. Data quality and reliability such as EDS (X-ray elemental analysis), EELS (electron energy loss spectrum), electron beam tomography, nanobeam electron diffraction, and scanning electron microscope observation are improved. Furthermore, it is effective in restoring the functions of the old transmission electron microscope.

図1は本発明の真空装置のクリーニング装置の一例の構成を示す説明図である。図1では、このクリーニング装置を、透過型電子顕微鏡の試料室のクリーニング用に用いた状態を示している。図示される真空装置のクリーニング装置は、活性酸素ラジカル発生装置1と、真空経路内を10〜100Paの真空度に維持するプラズマ安定化装置2と、0℃において2×10−4Pa・m/sec(0.1sccm)以上の活性酸素ラジカル流量を得るための活性酸素ラジカル強制排気装置3を備えている。なお、図1において、透過型電子顕微鏡の試料室部分は断面図により示している。 FIG. 1 is an explanatory view showing the structure of an example of a vacuum device cleaning device of the present invention. FIG. 1 shows a state where this cleaning device is used for cleaning a sample chamber of a transmission electron microscope. The vacuum device cleaning device shown in the figure includes an active oxygen radical generator 1, a plasma stabilization device 2 that maintains a vacuum degree of 10 to 100 Pa in the vacuum path, and 2 × 10 −4 Pa · m 3 at 0 ° C. An active oxygen radical forced exhaust device 3 for obtaining an active oxygen radical flow rate of at least / sec (0.1 sccm) is provided. In FIG. 1, the sample chamber portion of the transmission electron microscope is shown in a sectional view.

透過型電子顕微鏡の試料室は、円錐状の対物レンズポールピース4a、4bが向き合っており、その中心に電子線の経路となる内径1〜10mmの管(電子線通過経路5)が貫通している。
対物レンズ6周辺および上下の電子線通過経路5をクリーニングするためには、活性酸素ラジカル発生装置1を対物レンズ6の周囲の鏡体外壁7に設けられているポート8に真空配管9によって接続し、さらに、活性酸素ラジカル発生装置1と鏡体外壁7の間に体積3L以上のサブチャンバーを有するプラズマ発生安定化装置2を設置する。
そして、活性酸素ラジカル発生装置1から発生した活性酸素ラジカルを、真空経路内に大きな流量で流すために、コンデンサ絞りの設置ポート10に活性酸素ラジカル強制排気装置3を接続し、強制的に活性酸素ラジカルを排気する。このような構成により、活性酸素ラジカル発生装置1をプラズマ発生のための100Pa以下の低真空に維持しつつ、大量の活性酸素ラジカルをクリーニング対象となる真空経路に流すことが可能となる。
本発明の装置により、真空経路の内壁および真空中に浮遊する有機系汚染物が活性酸素ラジカルにより分解され,除去され、クリーニングされる。
In the sample chamber of the transmission electron microscope, conical objective lens pole pieces 4a and 4b are opposed to each other, and a tube (electron beam passage path 5) having an inner diameter of 1 to 10 mm serving as an electron beam path passes through the center. Yes.
In order to clean the periphery of the objective lens 6 and the upper and lower electron beam passages 5, the active oxygen radical generator 1 is connected to a port 8 provided on the outer wall 7 of the mirror around the objective lens 6 by a vacuum pipe 9. Furthermore, a plasma generation stabilizing device 2 having a sub-chamber having a volume of 3 L or more is installed between the active oxygen radical generating device 1 and the outer wall 7 of the mirror body.
Then, in order to allow the active oxygen radicals generated from the active oxygen radical generating device 1 to flow in the vacuum path at a large flow rate, the active oxygen radical forced exhaust device 3 is connected to the condenser throttle installation port 10 to force the active oxygen radicals. Exhaust radicals. With such a configuration, it is possible to flow a large amount of active oxygen radicals through a vacuum path to be cleaned while maintaining the active oxygen radical generator 1 in a low vacuum of 100 Pa or less for generating plasma.
With the apparatus of the present invention, the organic wall contaminants floating in the inner wall of the vacuum path and the vacuum are decomposed, removed and cleaned by the active oxygen radicals.

図1に示す装置では、活性酸素ラジカル発生装置1は、ガス供給源11から、バルブ12を有する真空配管13を介して、空気または酸素が送り込まれる。活性酸素ラジカル発生装置1としては、市販のプラズマ発生装置を用いることができる。   In the apparatus shown in FIG. 1, the active oxygen radical generator 1 is supplied with air or oxygen from a gas supply source 11 through a vacuum pipe 13 having a valve 12. As the active oxygen radical generator 1, a commercially available plasma generator can be used.

プラズマ安定化装置2は、真空経路内を10〜100Paの真空度に維持することができる装置であれば特に限定することなく用いることができるが、例えばステンレス製真空容器からなるサブチャンバーを用いることができる。サブチャンバーの容積は3L以上であることが好ましく、5L以上であることがさらに好ましい。100Paを超える真空度では活性酸素ラジカル発生装置1でプラズマの発生が起きにくくなり、活性酸素ラジカルを安定に発生できなくなる。   The plasma stabilization device 2 can be used without any particular limitation as long as it can maintain a vacuum degree of 10 to 100 Pa in the vacuum path. For example, a sub-chamber made of a stainless steel vacuum vessel is used. Can do. The volume of the sub chamber is preferably 3L or more, and more preferably 5L or more. When the degree of vacuum exceeds 100 Pa, it is difficult for the active oxygen radical generator 1 to generate plasma, and active oxygen radicals cannot be generated stably.

活性酸素ラジカル強制排気装置3としては、例えば、ドライスクロールポンプ,ロータリーポンプのようなポンプを用いることができる。図示されるものでは、コンデンサ絞りの設置ポート10に、バルブ14有する真空配管15を介して接続されている。
活性酸素ラジカル強制排気装置3により、活性酸素ラジカル流量を0℃において1×10−4・m/sec以上とすることができるものであり、好ましくは2×10−4Pa・m/sec以上とするものである。
As the active oxygen radical forced exhaust device 3, for example, a pump such as a dry scroll pump or a rotary pump can be used. In the figure, the condenser throttle installation port 10 is connected via a vacuum pipe 15 having a valve 14.
The active oxygen radical forced exhaust device 3 can set the active oxygen radical flow rate to 1 × 10 −4 · m 3 / sec or more at 0 ° C., preferably 2 × 10 −4 Pa · m 3 / sec. That is all.

本発明に用いられる真空配管は、内部が10〜100Paの真空度で活性酸素ラジカルが流れる部材であり、通常のフレキシブルチューブや各種フランジ等を用いることができ、好ましくは、上記の電子線通過経路5などの真空経路の少なくとも1部が、真空配管の少なくとも1部として利用されものである。   The vacuum pipe used in the present invention is a member through which active oxygen radicals flow with a vacuum degree of 10 to 100 Pa inside, and an ordinary flexible tube or various flanges can be used. Preferably, the above electron beam passage path is used. At least a part of the vacuum path such as 5 is used as at least a part of the vacuum pipe.

図1に示す装置において、活性酸素ラジカル発生装置1のプラズマ排出口aから、地点b、cを経て活性酸素ラジカル強制排気装置3に接続された真空配管15の入口dまでが活性酸素ラジカルの流路となるが、その活性酸素ラジカル経路長(a−b−c−dを直線で結んだ距離の合計)は60cm以下であることが好ましく、30cm以下であることがさらに好ましい。活性酸素ラジカルの経路長が長すぎると活性酸素ラジカルの流量が低くなり、コンタミネーションの除去が困難となる。   In the apparatus shown in FIG. 1, the flow of active oxygen radicals from the plasma discharge port a of the active oxygen radical generator 1 to the inlet d of the vacuum pipe 15 connected to the active oxygen radical forced exhaust device 3 via points b and c. Although it becomes a path | route, it is preferable that it is 60 cm or less, and, as for the active oxygen radical path length (the sum total of the distance which connected the abcd with the straight line), it is more preferable that it is 30 cm or less. If the path length of the active oxygen radical is too long, the flow rate of the active oxygen radical becomes low, and it becomes difficult to remove contamination.

本発明の別の実施態様は、プラズマを用いて活性酸素ラジカルを発生させ、真空配管を介して該活性酸素ラジカルを、内径1〜10mmの電子線通過経路を備えた真空装置の10〜100Paの真空度に維持した真空経路を0℃において1×10−4Pa・m/sec以上の流量で導入してその後強制排気し、前記真空経路内をクリーニングする真空装置のクリーニング方法である。 According to another embodiment of the present invention, active oxygen radicals are generated using plasma, and the active oxygen radicals are generated via a vacuum pipe, and the vacuum apparatus having an electron beam passage having an inner diameter of 1 to 10 mm has a pressure of 10 to 100 Pa. This is a vacuum device cleaning method in which a vacuum path maintained at a degree of vacuum is introduced at 0 ° C. at a flow rate of 1 × 10 −4 Pa · m 3 / sec or more and then forcibly exhausted to clean the inside of the vacuum path.

本発明の装置および方法によりクリーニングされる真空装置は、内径1〜10mmの電子線通過経路を備えた真空装置であれば特に限定されないが、電子線通過経路の長さが30cm以下である真空装置にも好適に用いることができる。このような真空装置として、透過型電子顕微鏡または走査透過型電子顕微鏡に本発明の装置および方法を好適に適用することができる。さらに、これらの透過型電子顕微鏡には、通常いくつかのポートを有しているが、そのポートを利用して、本発明のクリーニング装置を構成する各部材(装置)を、真空配管を用いて接続し、真空装置の真空経路をクリーニングすることができる。
なお、本発明において、真空経路の長さとは、例えば、図1に示す態様では、上下の対物レンズポールピース4a,4bのそれぞれに形成された個々の経路の長さのことを言う。本発明において、クリーニングの対象となる真空装置の電子線通過経路の長さは30cm以下であることがより好ましく,15cm以下であることがさらに好ましい。
The vacuum apparatus to be cleaned by the apparatus and method of the present invention is not particularly limited as long as it is a vacuum apparatus having an electron beam passage path having an inner diameter of 1 to 10 mm, but the length of the electron beam passage path is 30 cm or less. Also, it can be suitably used. As such a vacuum apparatus, the apparatus and method of the present invention can be suitably applied to a transmission electron microscope or a scanning transmission electron microscope. In addition, these transmission electron microscopes usually have several ports. By using these ports, each member (device) constituting the cleaning device of the present invention is made by using a vacuum pipe. Connect and clean the vacuum path of the vacuum device.
In the present invention, the length of the vacuum path means, for example, the length of each path formed in each of the upper and lower objective lens pole pieces 4a and 4b in the embodiment shown in FIG. In the present invention, the length of the electron beam passage path of the vacuum apparatus to be cleaned is more preferably 30 cm or less, and further preferably 15 cm or less.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

実施例1
3Lの容積を有するチャンバーからなるプラズマ安定化装置と活性酸素ラジカル発生源であるプラズマ発生装置(Evactron45、XEI Scientific製)とを備えたプラズマチャンバー21と、活性酸素ラジカル強制排気装置である排気ポンプ(エドワーズ社製,商品名XDS35i)22を、図2の断面図による説明図に示すように、透過型電子顕微鏡の対物レンズ23周囲の対物絞りの装着ポート24に接続した。活性酸素ラジカル強制排気装置である排気ポンプ22を作動させながら、プラズマ発生装置に空気を導入し、真空経路25の真空度を50Paに維持し、プラズマ発生(50Pa、3分間)とNパージ(120Pa、3分間)のサイクルを20回繰り返し、活性酸素ラジカルを矢印に示すように流量2×10−4Pa・m/sec(20℃)で流した。この時、プラズマ発生装置のプラズマ排出口から活性酸素ラジカル強制排気装置である排気ポンプに接続した真空配管25の入り口までの経路長は25cmであった。なお、図2中、26は内径6mm、長さ12cmの電子線通過経路、27は対物レンズポールピース、28は鏡体外壁、29はコンデンサレンズ、30はコンデンサレンズの装着ポートを示す。
Example 1
A plasma chamber 21 having a plasma stabilizing device comprising a chamber having a volume of 3 L and a plasma generator (Evactron 45, manufactured by XEI Scientific) which is an active oxygen radical generating source, and an exhaust pump (active oxygen radical forced exhaust device) Edwards, product name XDS35i) 22 was connected to the objective aperture mounting port 24 around the objective lens 23 of the transmission electron microscope, as shown in the explanatory view of the sectional view of FIG. While operating the exhaust pump 22 which is an active oxygen radical forced exhaust device, air is introduced into the plasma generator, the vacuum degree of the vacuum path 25 is maintained at 50 Pa, plasma generation (50 Pa, 3 minutes) and N 2 purge ( The cycle of 120 Pa, 3 minutes) was repeated 20 times, and active oxygen radicals were flowed at a flow rate of 2 × 10 −4 Pa · m 3 / sec (20 ° C.) as indicated by arrows. At this time, the path length from the plasma discharge port of the plasma generator to the inlet of the vacuum pipe 25 connected to the exhaust pump as the active oxygen radical forced exhaust device was 25 cm. In FIG. 2, 26 is an electron beam passage having an inner diameter of 6 mm and a length of 12 cm, 27 is an objective lens pole piece, 28 is a mirror outer wall, 29 is a condenser lens, and 30 is a condenser lens mounting port.

図3は、5年間使用したTEM(LEO社製、LEO922)において、厚さ10nmのカーボン膜に5.6×10el/nmsの電子線を3分間照射することにより発生したコンタミネーションを示す電子顕微鏡写真である。プラズマ発生装置からの活性酸素ラジカルを鏡体内で循環させることにより、図4に示すように、コンタミネーションが明らかに低減され、3分間の電子線照射ではコンタミネーションは全く発生せず、5分、10分と長時間の照射では、徐々にコンタミネーションの付着が確認されるが、クリーニング前と比べ試料へのコンタミネーションの付着は減少した。EELSによりコンタミネーション層の厚みを見積もると、10分間照射では、クリーニング前は500nmであるのに対し、クリーニング後では130nmであった。 FIG. 3 shows contamination generated by irradiating a carbon film having a thickness of 10 nm with an electron beam of 5.6 × 10 4 el / nm 2 s for 3 minutes in a TEM (LEO 922, manufactured by LEO) used for 5 years. It is an electron micrograph which shows. By circulating the active oxygen radicals from the plasma generator in the lens body, as shown in FIG. 4, the contamination is clearly reduced, and no contamination is generated by the electron beam irradiation for 3 minutes. In the case of irradiation for a long time of 10 minutes, the adhesion of contamination was gradually confirmed, but the adhesion of contamination to the sample decreased compared to before the cleaning. When the thickness of the contamination layer was estimated by EELS, it was 500 nm before cleaning and 130 nm after cleaning when irradiated for 10 minutes.

実施例2
図5の断面図に基づく説明図に示すように、プラズマチャンバー21を対物絞りの装着ポート24に、排気ポンプ22をコンデンサレンズの装着ポート30に接続した以外は、実施例1と同じ条件でクリーニングを行った。活性酸素ラジカルを矢印に示すように流量1.5×10−4Pa・m/sec(21℃)で流した。また、活性酸素ラジカル経路長は30cmであった。
図6は、クリーニング後に実施例1と同様の条件による電子線照射により、カーボン膜に付着したコンタミネーションを示す電子顕微鏡写真である。3分間の照射では全くコンタミネーションは発生せず、5分間の照射においても付着したコンタミネーションはきわめて少ない。また、対物レンズポールピースを目視すると、クリーニング前では、対物レンズは汚染物の堆積により、黒色となっているが、クリーニング後には、コンタミネーションが除去され、金属光沢となっていた。
Example 2
As shown in the explanatory view based on the cross-sectional view of FIG. 5, cleaning is performed under the same conditions as in Example 1 except that the plasma chamber 21 is connected to the mounting port 24 of the objective diaphragm and the exhaust pump 22 is connected to the mounting port 30 of the condenser lens. Went. Active oxygen radicals were allowed to flow at a flow rate of 1.5 × 10 −4 Pa · m 3 / sec (21 ° C.) as indicated by arrows. The active oxygen radical path length was 30 cm.
FIG. 6 is an electron micrograph showing contamination adhered to the carbon film by electron beam irradiation under the same conditions as in Example 1 after cleaning. Contamination does not occur at all after 3 minutes of irradiation, and very little contamination adheres even after 5 minutes of irradiation. Further, when the objective lens pole piece was visually observed, the objective lens was black due to the accumulation of contaminants before cleaning, but after cleaning, contamination was removed and it became metallic luster.

比較例1
プラズマ安定化装置を設置しない以外は、実施例1と同様の構成の場合は、真空経路を100Pa以下に安定に維持することができず、プラズマを発生させることができなかった。
Comparative Example 1
In the case of the same configuration as in Example 1 except that no plasma stabilizing device was installed, the vacuum path could not be stably maintained at 100 Pa or less, and plasma could not be generated.

比較例2
実施例1において、活性酸素ラジカル強制排気装置を設置せず、透過型電子顕微鏡の真空排気装置により活性酸素ラジカルを排気した場合は、全体の真空経路長は50cmとなり、活性酸素ラジカルの流量が1.0×10−4Pa・m/sec(21℃)以下となり、8時間のプラズマ発生装置の連続運転後もコンタミネーションが除去されなかった。
Comparative Example 2
In Example 1, when the active oxygen radical forced exhaust device was not installed and the active oxygen radical was exhausted by the vacuum exhaust device of the transmission electron microscope, the entire vacuum path length was 50 cm, and the flow rate of the active oxygen radical was 1. 0.0 × 10 −4 Pa · m 3 / sec (21 ° C.) or less, and contamination was not removed even after continuous operation of the plasma generator for 8 hours.

本発明の真空配管クリーニング装置の一例の説明図である。It is explanatory drawing of an example of the vacuum piping cleaning apparatus of this invention. 実施例1の説明図である。2 is an explanatory diagram of Embodiment 1. FIG. 実施例1におけるコンタミネーションを示す電子顕微鏡写真である。2 is an electron micrograph showing contamination in Example 1. FIG. 実施例1におけるコンタミネーションを示す電子顕微鏡写真である。2 is an electron micrograph showing contamination in Example 1. FIG. 実施例2の説明図である。FIG. 6 is an explanatory diagram of Example 2. 実施例2におけるコンタミネーションを示す電子顕微鏡写真である。6 is an electron micrograph showing contamination in Example 2. FIG.

符号の説明Explanation of symbols

1 活性酸素ラジカル発生装置
2 プラズマ安定化装置
3 活性酸素ラジカル強制排気装置
4 対物レンズポールピース
5 電子線通過経路
6 対物レンズ
7 鏡体外壁
8 真空配管
11 ガス供給源
12 バルブ
13 真空配管
14 バルブ
15 真空配管
21 プラズマチャンバー
22 排気ポンプ
23 対物レンズ
24 対物絞りの装着ポート
25 真空配管
26 電子線通過経路
27 対物レンズポールピース
28 鏡体外壁
29 コンデンサレンズ
30 コンデンサレンズの装着ポート
DESCRIPTION OF SYMBOLS 1 Active oxygen radical generator 2 Plasma stabilization apparatus 3 Active oxygen radical forced exhaust apparatus 4 Objective lens pole piece 5 Electron beam passage path 6 Objective lens 7 Mirror body outer wall 8 Vacuum piping 11 Gas supply source 12 Valve 13 Vacuum piping 14 Valve 15 Vacuum piping 21 Plasma chamber 22 Exhaust pump 23 Objective lens 24 Objective diaphragm mounting port 25 Vacuum piping 26 Electron beam passage path 27 Objective lens pole piece 28 Mirror outer wall 29 Condenser lens 30 Condenser lens mounting port

Claims (8)

内径1〜10mmの電子線通過経路を備えた真空装置の真空経路をクリーニングするクリーニング装置であって、活性酸素ラジカル発生装置と、前記真空経路内を10〜100Paの真空度に維持するプラズマ安定化装置と、0℃において1×10−4Pa・m/sec以上の活性酸素ラジカル流量を得るための活性酸素ラジカル強制排気装置と、真空配管とを備えたことを特徴とする真空装置のクリーニング装置。 A cleaning apparatus for cleaning a vacuum path of a vacuum apparatus having an electron beam passage having an inner diameter of 1 to 10 mm, comprising an active oxygen radical generator and plasma stabilization for maintaining a vacuum degree of 10 to 100 Pa in the vacuum path A vacuum apparatus cleaning comprising: an apparatus; an active oxygen radical forced exhaust apparatus for obtaining an active oxygen radical flow rate of 1 × 10 −4 Pa · m 3 / sec or more at 0 ° C .; and a vacuum pipe. apparatus. 前記電子線通過経路の長さが30cm以下であることを特徴とする請求項1記載の真空装置のクリーニング装置。   2. The cleaning device for a vacuum apparatus according to claim 1, wherein the length of the electron beam passage path is 30 cm or less. 前記電子線通過経路の少なくとも1部が、前記真空配管の少なくとも1部として利用されることを特徴とする請求項1記載の真空装置のクリーニング装置。   2. The cleaning device for a vacuum apparatus according to claim 1, wherein at least a part of the electron beam passage path is used as at least a part of the vacuum pipe. 前記プラズマ安定化装置が3L以上の容積を有することを特徴とする請求項1〜3のいずれか1項に記載の真空装置のクリーニング装置。   The vacuum apparatus cleaning apparatus according to claim 1, wherein the plasma stabilization apparatus has a volume of 3 L or more. 活性酸素ラジカル経路長が60cm以内であることを特徴とする請求項1〜4のいずれか1項に記載の真空装置のクリーニング装置。   The cleaning device for a vacuum apparatus according to any one of claims 1 to 4, wherein the active oxygen radical path length is within 60 cm. 前記真空装置が透過型電子顕微鏡または走査透過型電子顕微鏡であることを特徴とする請求項1〜5のいずれか1項に記載の真空装置。   The vacuum apparatus according to claim 1, wherein the vacuum apparatus is a transmission electron microscope or a scanning transmission electron microscope. プラズマを用いて活性酸素ラジカルを発生させ、真空配管を介して該活性酸素ラジカルを、内径1〜10mmの電子線通過経路を備えた真空装置の10〜100Paの真空度に維持した真空経路に0℃において1×10−4Pa・m/sec以上の流量で導入後強制排気し、前記真空経路内をクリーニングすることを特徴とする真空装置のクリーニング方法。 Active oxygen radicals are generated using plasma, and the active oxygen radicals are transmitted through a vacuum pipe to a vacuum path maintained at a vacuum degree of 10 to 100 Pa of a vacuum apparatus having an electron beam passage having an inner diameter of 1 to 10 mm. A method for cleaning a vacuum apparatus, comprising: forcibly exhausting air after introduction at a flow rate of 1 × 10 −4 Pa · m 3 / sec or more at a temperature to clean the inside of the vacuum path. 前記真空装置が透過型電子顕微鏡または走査透過型電子顕微鏡であることを特徴とする真空装置のクリーニング方法。   A vacuum device cleaning method, wherein the vacuum device is a transmission electron microscope or a scanning transmission electron microscope.
JP2008116283A 2008-04-25 2008-04-25 Cleaning device and cleaning method of vacuum device Pending JP2009266697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116283A JP2009266697A (en) 2008-04-25 2008-04-25 Cleaning device and cleaning method of vacuum device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116283A JP2009266697A (en) 2008-04-25 2008-04-25 Cleaning device and cleaning method of vacuum device

Publications (1)

Publication Number Publication Date
JP2009266697A true JP2009266697A (en) 2009-11-12

Family

ID=41392257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116283A Pending JP2009266697A (en) 2008-04-25 2008-04-25 Cleaning device and cleaning method of vacuum device

Country Status (1)

Country Link
JP (1) JP2009266697A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165169A (en) * 2013-02-26 2014-09-08 Applied Materials Israel Ltd Method and system for cleaning vacuum chamber
JP2016054136A (en) * 2014-09-03 2016-04-14 日立ハイテクノロジーズコリア株式会社 Electron microscope plasma cleaner and electron microscope cleaning method
US9881768B2 (en) 2015-08-12 2018-01-30 Jeol Ltd. Charged Particle Beam System With Receptacle Chamber For Cleaning Sample and Sample Stage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547331A (en) * 1991-08-20 1993-02-26 Nikon Corp Scanning electron microscope
JPH08124821A (en) * 1994-10-19 1996-05-17 Fujitsu Ltd Electrostatic deflector and charged particle beam exposure device equipped therewith
JPH08139010A (en) * 1993-12-29 1996-05-31 Toshiba Corp Charged beam apparatus with cleaning function and method of cleaning charged beam apparatus
JP2001144000A (en) * 1999-11-16 2001-05-25 Nikon Corp Charged particle beam transferring apparatus, cleaning method thereof and device manufacturing method using same
JP2002093696A (en) * 1991-07-04 2002-03-29 Toshiba Corp Charged beam irradiating method
JP2004134379A (en) * 2002-07-19 2004-04-30 Leo Elektronenmikroskopie Gmbh Objective lens for electron microscope system, and electron microscope system
JP2004253374A (en) * 2003-01-28 2004-09-09 Hitachi Ltd Electron microscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093696A (en) * 1991-07-04 2002-03-29 Toshiba Corp Charged beam irradiating method
JPH0547331A (en) * 1991-08-20 1993-02-26 Nikon Corp Scanning electron microscope
JPH08139010A (en) * 1993-12-29 1996-05-31 Toshiba Corp Charged beam apparatus with cleaning function and method of cleaning charged beam apparatus
JPH08124821A (en) * 1994-10-19 1996-05-17 Fujitsu Ltd Electrostatic deflector and charged particle beam exposure device equipped therewith
JP2001144000A (en) * 1999-11-16 2001-05-25 Nikon Corp Charged particle beam transferring apparatus, cleaning method thereof and device manufacturing method using same
JP2004134379A (en) * 2002-07-19 2004-04-30 Leo Elektronenmikroskopie Gmbh Objective lens for electron microscope system, and electron microscope system
JP2004253374A (en) * 2003-01-28 2004-09-09 Hitachi Ltd Electron microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165169A (en) * 2013-02-26 2014-09-08 Applied Materials Israel Ltd Method and system for cleaning vacuum chamber
JP2016054136A (en) * 2014-09-03 2016-04-14 日立ハイテクノロジーズコリア株式会社 Electron microscope plasma cleaner and electron microscope cleaning method
US9881768B2 (en) 2015-08-12 2018-01-30 Jeol Ltd. Charged Particle Beam System With Receptacle Chamber For Cleaning Sample and Sample Stage

Similar Documents

Publication Publication Date Title
US9150965B2 (en) Processing apparatus
JP2009188257A (en) Plasma etching method, plasma etching apparatus, and storage medium
EP2969272B1 (en) Apparatus for providing a local clean micro-environment near optical surfaces of an extreme ultraviolet optical system
JP4282650B2 (en) Plasma processing equipment
US20150323862A1 (en) Particle removal system and method thereof
US9327324B2 (en) Method and system for cleaning a vacuum chamber
JP2020065079A (en) Plasma processing device and method for exposure to atmosphere
JP2015514236A (en) System and method for cleaning surfaces and parts of mask and wafer inspection systems based on positive column of glow discharge plasma
JP2009266697A (en) Cleaning device and cleaning method of vacuum device
KR20170070175A (en) Corrosion resistant abatement system
TW202125704A (en) Methods and apparatuses for forming interconnection structures
JP2008177479A (en) Component used for plasma processing apparatus and its manufacturing method
JP5704192B2 (en) Plasma etching method, plasma etching apparatus, and storage medium
TWI759183B (en) Methods for cleaning a vacuum chamber, method for cleaning a vacuum system, method for vacuum processing of a substrate, and apparatuses for vacuum processing a substrate
JP6291403B2 (en) Method for cleaning phase plate for transmission electron microscope
JP6183965B2 (en) Silicon oxide film, manufacturing method thereof, and silicon oxide film manufacturing apparatus
JP5539302B2 (en) Carbon film removal method
JP5250209B2 (en) Cleaning method for plasma CVD apparatus
JP2015161498A (en) Bearing device, scraper with bearing device installed and detoxification device
TWI550134B (en) Method for plasma process and photomask plate
JP2004141803A (en) Plasma process apparatus and its chamber seal method
KR20070071950A (en) Apparatus for manufacturing semiconductor device
JP2009146791A (en) Electron beam inspection device
JP2015099778A5 (en)
Singh et al. Effect of cleaning chemistry on MegaSonic damage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130416