JP2009255073A - Exhaust gas cleaning catalyst - Google Patents

Exhaust gas cleaning catalyst Download PDF

Info

Publication number
JP2009255073A
JP2009255073A JP2009077153A JP2009077153A JP2009255073A JP 2009255073 A JP2009255073 A JP 2009255073A JP 2009077153 A JP2009077153 A JP 2009077153A JP 2009077153 A JP2009077153 A JP 2009077153A JP 2009255073 A JP2009255073 A JP 2009255073A
Authority
JP
Japan
Prior art keywords
catalyst layer
catalyst
exhaust gas
oxide
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009077153A
Other languages
Japanese (ja)
Inventor
Masaki Nakamura
雅紀 中村
Hiroto Kikuchi
博人 菊地
Hironori Wakamatsu
広憲 若松
Kazuyuki Shiratori
一幸 白鳥
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009077153A priority Critical patent/JP2009255073A/en
Publication of JP2009255073A publication Critical patent/JP2009255073A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • B01J35/393
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To enhance the durability of an exhaust gas cleaning catalyst containing rhodium. <P>SOLUTION: The exhaust gas cleaning catalyst 10 formed by laminating at least two layers of catalyst includes a catalyst layer 11 containing at least Rh, and a catalyst layer 12 containing at least one kind of oxides selected from Fe, Mn, Ni, Co. The catalyst layer 12 containing at least one kind of oxides selected from Fe, Mn, Ni, Co is disposed on the upper layer of the catalyst layer 11 containing at least Rh. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関から排出される排気ガスを浄化する処理に適用して好適な排気ガス浄化触媒に関する。   The present invention relates to an exhaust gas purification catalyst suitable for being applied to a process for purifying exhaust gas discharged from an internal combustion engine.

近年、内燃機関から排出される排気ガス中に含まれる炭化水素系化合物(HC),一酸化炭素(CO)、窒素酸化物(NO)等の有害物質を除去するために、アルミナ(Al)等の金属酸化物担体に白金(Pt)やロジウム(Rh)等の貴金属粒子を担持した排気ガス浄化触媒が広く利用されるようになっている。従来の排気ガス浄化触媒では、周囲の雰囲気変動に対する貴金属粒子の耐久性を向上させるために、貴金属粒子が多量に用いられている。しかしながら、貴金属粒子を多量に用いることは地球資源保護の観点から見ると望ましくない。 In recent years, in order to remove harmful substances such as hydrocarbon compounds (HC), carbon monoxide (CO), and nitrogen oxides (NO x ) contained in exhaust gas discharged from an internal combustion engine, alumina (Al 2 Exhaust gas purification catalysts in which noble metal particles such as platinum (Pt) and rhodium (Rh) are supported on a metal oxide carrier such as O 3 ) are widely used. In conventional exhaust gas purification catalysts, a large amount of noble metal particles is used in order to improve the durability of the noble metal particles against ambient fluctuations. However, using a large amount of noble metal particles is not desirable from the viewpoint of protecting earth resources.

このような背景から、最近では、含浸法によってOSC(Oxygen Storage Component:酸素吸蔵物質)材として機能するセリウム(Ce)やマンガン(Mn)等の遷移金属又は遷移金属化合物を貴金属粒子近傍に配置し、貴金属粒子周囲の雰囲気変動を遷移金属又は遷移金属化合物によって抑制することにより、貴金属粒子の耐久性を向上させる試みがなされている(特許文献1〜4参照)。なお、このような方法によれば、貴金属粒子の耐久性向上に加えて、貴金属粒子の活性向上も期待することができる。   Against this background, recently, transition metals or transition metal compounds such as cerium (Ce) and manganese (Mn), which function as OSC (Oxygen Storage Component) materials, are disposed in the vicinity of noble metal particles by an impregnation method. Attempts have been made to improve the durability of noble metal particles by suppressing changes in the atmosphere around the noble metal particles with a transition metal or a transition metal compound (see Patent Documents 1 to 4). In addition, according to such a method, in addition to the improvement in durability of the noble metal particles, an improvement in the activity of the noble metal particles can be expected.

特開平8−131830号公報JP-A-8-131830 特開2005−000829号公報JP-A-2005-000829 特開2005−000830号公報Japanese Patent Laid-Open No. 2005-000830 特開2003−117393号公報JP 2003-117393 A

排気ガス浄化触媒に用いられる貴金属粒子のうち、Rh(ロジウム)は、排気ガスの浄化に有効な貴金属であるが、ロジウムは、貴金属資源量が少なく、かつ、コストが高い。したがって、ロジウムを含む排気ガス浄化触媒においては、ロジウムの使用量を少なくすることが求められる。   Of the noble metal particles used in the exhaust gas purification catalyst, Rh (rhodium) is a noble metal effective for purification of exhaust gas, but rhodium has a small amount of noble metal resources and high cost. Therefore, in the exhaust gas purification catalyst containing rhodium, it is required to reduce the amount of rhodium used.

排気ガスを浄化する性能を一定以上保持しつつ、ロジウムの使用量を少なくするための一つの方策は、ロジウム貴金属粒子の粒径を小さくすることである。ロジウム貴金属粒子の粒径を小さくすれば、比表面積が増加するので、排気ガスを浄化する性能を一定以上保持しつつ、ロジウムの使用量を少なくすることが可能である。   One measure for reducing the amount of rhodium used while maintaining the performance of purifying exhaust gas above a certain level is to reduce the particle size of the rhodium noble metal particles. If the particle diameter of the rhodium noble metal particles is reduced, the specific surface area is increased, so that it is possible to reduce the amount of rhodium used while maintaining the performance of purifying exhaust gas at a certain level or more.

しかしながら、粒子径が小さいロジウムを含む触媒は、高温や長時間での排気ガス浄化後は触媒浄化性能の低下を招くことがあり、結局のところ、ロジウム使用量は、この性能低下を補うように増加させる必要があった。したがって、ロジウムを含む排気ガス浄化触媒の耐久性を高め、ひいてはロジウムの使用量を減少させた排気ガス浄化触媒が求められている。   However, a catalyst containing rhodium with a small particle size may cause a reduction in catalyst purification performance after exhaust gas purification at a high temperature or for a long time, and as a result, the amount of rhodium used is to compensate for this performance reduction. There was a need to increase. Accordingly, there is a need for an exhaust gas purification catalyst that improves the durability of an exhaust gas purification catalyst containing rhodium, and consequently reduces the amount of rhodium used.

上記課題を解決するために、本発明に係る排気ガス浄化触媒は、少なくとも2層の触媒層を積層してなり、触媒層が、少なくともRhを含む触媒層と、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層と、を含み、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、少なくともRhを含む触媒層よりも上層側にあることを要旨とする。   In order to solve the above-described problems, an exhaust gas purification catalyst according to the present invention is formed by laminating at least two catalyst layers, and the catalyst layer includes a catalyst layer containing at least Rh, {Fe, Mn, Ni, Co And a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} than a catalyst layer containing at least Rh. Is also on the upper layer side.

本発明に係る排気ガス浄化触媒によれば、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、少なくともRhを含む触媒層よりも上層側にあるので、このRhを含む触媒層が排気ガスに直接的に接触することが回避される。これにより、ロジウムを含む排気ガス浄化触媒において、耐久性を向上させることができ、よってロジウム使用量を一層低下させることが可能となる。   According to the exhaust gas purification catalyst of the present invention, the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is on the upper layer side than the catalyst layer containing at least Rh. This catalyst layer containing Rh is prevented from coming into direct contact with the exhaust gas. Thereby, in the exhaust gas purification catalyst containing rhodium, it is possible to improve the durability, and thus it is possible to further reduce the amount of rhodium used.

本発明の一実施形態となる排気ガス浄化触媒が担持された担体の模式的な斜視図である。It is a typical perspective view of the support | carrier with which the exhaust-gas purification catalyst used as one Embodiment of this invention was carry | supported. 図1の担体における一つの細孔について、その貫通方向に垂直な断面における拡大断面図である。It is an expanded sectional view in a section perpendicular to the penetration direction about one pore in a career of Drawing 1. 本発明の別の実施形態となる排気ガス浄化触媒を示す、担体における一つの細孔について、その貫通方向に垂直な断面における拡大断面図である。It is an expanded sectional view in a section perpendicular to the penetration direction about one pore in a career showing an exhaust gas purification catalyst which becomes another embodiment of the present invention. 実施例における触媒担体上に積層された触媒層の積層構造の模式図である。It is a schematic diagram of the laminated structure of the catalyst layer laminated | stacked on the catalyst support | carrier in an Example. 実施例5の排気ガス浄化触媒の積層構造を示す顕微鏡写真である。6 is a photomicrograph showing a laminated structure of an exhaust gas purification catalyst of Example 5. FIG. 図5の排気ガス浄化触媒の積層構造の概略図である。FIG. 6 is a schematic view of a laminated structure of the exhaust gas purification catalyst of FIG. 5. 実施例における耐久後の貴金属粒子径とHC50%転化率温度との関係について示すグラフである。3 is a graph showing the relationship between the noble metal particle diameter after durability and the HC50% conversion temperature in Examples. 実施例における触媒層の厚さとHC50%転化率温度との関係について示すグラフである。It is a graph which shows about the relationship between the thickness of the catalyst layer in Example, and HC50% conversion rate temperature. 実施例における触媒層中の遷移全素の酸化物の平均粒子径とHC50%転化率温度との関係について示すグラフである。3 is a graph showing the relationship between the average particle diameter of transition oxides in the catalyst layer and the HC50% conversion temperature in the examples.

以下、本発明の排気ガス浄化触媒の実施形態について、図面を用いつつ説明する。   Hereinafter, embodiments of an exhaust gas purification catalyst of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態となる排気ガス浄化触媒が担持された担体の模式的な斜視図である。図1に示された担体1は、耐熱性材料からなり、概略円柱形状を有し、一方の端面から他方の端面との間を貫通する多数の細孔1aを有している。なお、図1では、発明の理解を容易にするよう細孔1aを模式的に描いている。そのため、細孔1aの形状、寸法及び個数は現実の担体細孔とは相違している。   FIG. 1 is a schematic perspective view of a carrier carrying an exhaust gas purification catalyst according to an embodiment of the present invention. The carrier 1 shown in FIG. 1 is made of a heat-resistant material, has a substantially cylindrical shape, and has a large number of pores 1a penetrating from one end surface to the other end surface. In addition, in FIG. 1, the pore 1a is typically drawn so that an understanding of invention may be made easy. Therefore, the shape, size and number of the pores 1a are different from the actual carrier pores.

図2に、図1の担体1における一つの細孔1aについて、その貫通方向に垂直な断面における拡大断面図を示す。図2の拡大断面図に示されるように、本発明の一実施形態となる排気ガス浄化触媒10が担持されている。図2に示す排気ガス浄化触媒10は、担体1の内面上に、第1の触媒層11及び第2の触媒層12の合計2層の触媒層が積層されてなる。そして、これらの2層の触媒層のうち、第1の触媒層11が少なくともRhを含む触媒層であり、第2の触媒層12が{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層である。しかも、この第2の触媒層12が第1の触媒層11よりも上層側、すなわち、担体の内壁からみて上側に位置している。   FIG. 2 shows an enlarged cross-sectional view of one pore 1a in the carrier 1 of FIG. 1 in a cross section perpendicular to the penetrating direction. As shown in the enlarged sectional view of FIG. 2, an exhaust gas purification catalyst 10 according to an embodiment of the present invention is carried. The exhaust gas purification catalyst 10 shown in FIG. 2 is formed by laminating a total of two catalyst layers, a first catalyst layer 11 and a second catalyst layer 12, on the inner surface of the carrier 1. Of these two catalyst layers, the first catalyst layer 11 is a catalyst layer containing at least Rh, and the second catalyst layer 12 is at least one selected from {Fe, Mn, Ni, Co}. It is a catalyst layer containing the oxide of. Moreover, the second catalyst layer 12 is located on the upper layer side of the first catalyst layer 11, that is, on the upper side when viewed from the inner wall of the carrier.

図3は、本発明の別の実施形態となる排気ガス浄化触媒を示す、担体1における一つの細孔1aについて、その貫通方向に垂直な断面における拡大断面図である。図2に示す排気ガス浄化触媒20は、担体1の内面上に、第1の触媒層11、第2の触媒層12及び第3の触媒層13の合計3層の触媒層が積層されてなる。そして、これらの3層の触媒層のうち、いずれか一層が、少なくともRhを含む触媒層であり、いずれか一層が{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層であり、かつ、この{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、この少なくともRhを含む触媒層よりも上層側にあるように構成されている。一例としては、第1の触媒層11が少なくともRhを含む触媒層であり、第2の触媒層12が{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層であり、第3の触媒層が、第1の触媒層11及び第2の触媒層12とは異なる触媒層とすることができる。   FIG. 3 is an enlarged cross-sectional view in a cross section perpendicular to the penetrating direction of one pore 1a in the carrier 1, showing an exhaust gas purification catalyst according to another embodiment of the present invention. An exhaust gas purification catalyst 20 shown in FIG. 2 is formed by laminating a total of three catalyst layers, a first catalyst layer 11, a second catalyst layer 12, and a third catalyst layer 13, on the inner surface of the carrier 1. . Of these three catalyst layers, any one layer is a catalyst layer containing at least Rh, and any one layer contains at least one oxide selected from {Fe, Mn, Ni, Co}. The catalyst layer is configured such that the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is on the upper layer side than the catalyst layer containing at least Rh. Yes. As an example, the first catalyst layer 11 is a catalyst layer containing at least Rh, and the second catalyst layer 12 is a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co}. Yes, the third catalyst layer can be a catalyst layer different from the first catalyst layer 11 and the second catalyst layer 12.

Rhを含む触媒層は、排気ガスの浄化に有効な触媒層であるが、このRhを含む触媒層が、高温や高濃度の排気ガスに直接触れると劣化してしまう。そこで、本発明の排気ガス浄化触媒では、Rhを含む触媒層の他に{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層を備えることとし、この{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、Rhを含む触媒層よりも上層側に位置するようにしている。このことにより、本発明の排気ガス浄化触媒は、担体に担持されて排気ガスの浄化に供されたとき、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、Rhを含む触媒層よりも優先的に排気ガスに触れることになる。このことにより、高濃度の排気ガスが直接的にRhに当たることを防ぐことができ、これによりRhが高温や長時間での排気ガス浄化により劣化することを抑制することができ、よってRhを有効に利用することができる。また、本発明の排気ガス浄化触媒は、排気ガス中における分子量の大きなHCが、Rhを含む触媒層よりも上層側に設けられた{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む層によって部分酸化される。このことによってもRhが高温や長時間での排気ガス浄化した場合にHCにより劣化することを抑制することができる。そのため、Rhをいっそう有効に利用することができる。   The catalyst layer containing Rh is an effective catalyst layer for purifying exhaust gas. However, when the catalyst layer containing Rh directly touches exhaust gas having a high temperature or high concentration, the catalyst layer deteriorates. Therefore, the exhaust gas purification catalyst of the present invention is provided with a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} in addition to the catalyst layer containing Rh, and this {Fe, The catalyst layer containing at least one oxide selected from Mn, Ni, Co} is positioned above the catalyst layer containing Rh. Thus, the exhaust gas purifying catalyst of the present invention is a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} when supported on a carrier and used for purifying exhaust gas. However, it comes into contact with the exhaust gas preferentially over the catalyst layer containing Rh. This prevents high-concentration exhaust gas from directly hitting Rh, which can prevent Rh from deteriorating due to exhaust gas purification at high temperatures or for long periods of time, thus making Rh effective. Can be used. Further, the exhaust gas purification catalyst of the present invention has at least one HC selected from {Fe, Mn, Ni, Co} in which HC having a large molecular weight in the exhaust gas is provided on the upper layer side of the catalyst layer containing Rh. Partial oxidation is performed by the oxide-containing layer. This also suppresses the deterioration of Rh due to HC when the exhaust gas is purified at a high temperature or for a long time. Therefore, Rh can be used more effectively.

以上のことから、本発明の排気ガス浄化触媒においては、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の遷移元素の酸化物を含む層とRhを含む層とがそれぞれ触媒層としてなり、積層されていることが必要である。かつ、この{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の遷移元素の酸化物を含む層が、Rhを含む層よりも上層側にあることが必要である。   From the above, in the exhaust gas purification catalyst of the present invention, each of the layer containing an oxide of at least one transition element selected from {Fe, Mn, Ni, Co} and the layer containing Rh serves as a catalyst layer. It is necessary to be laminated. In addition, it is necessary that the layer containing an oxide of at least one transition element selected from {Fe, Mn, Ni, Co} be on the upper layer side than the layer containing Rh.

Rhを含む層は、好ましい態様を後述するが、排気ガス浄化に優れた性能を有するRhを、貴金属粒子の形態で少なくとも有している層である。   The layer containing Rh will be described later in a preferred embodiment, but is a layer having at least Rh having a performance excellent in exhaust gas purification in the form of noble metal particles.

Rhを含む層よりも上層側にある触媒層が、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の遷移元素の酸化物を含む層であるのは、{Fe, Mn, Ni, Co}の遷移元素の酸化物が、いずれも、排気ガス触媒作用を有する化合物であり、特に排気ガス中のHCを部分酸化して無害化することができる化合物であるからである。具体例は、酸化鉄、酸化マンガン、酸化ニッケル、酸化コバルトである。この触媒層中には、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含んでいれば良いが、2種以上の酸化物を含んでいても良く、また、これらの遷移元素を含む複合酸化物を含んでいてもよい。   The catalyst layer on the upper layer side of the layer containing Rh is a layer containing an oxide of at least one transition element selected from {Fe, Mn, Ni, Co}, {Fe, Mn, Ni, This is because any of the oxides of the transition element of Co} is a compound having an exhaust gas catalytic action, and in particular, a compound that can be rendered harmless by partially oxidizing HC in the exhaust gas. Specific examples are iron oxide, manganese oxide, nickel oxide, and cobalt oxide. This catalyst layer only needs to contain at least one oxide selected from {Fe, Mn, Ni, Co}, but may contain two or more oxides. A composite oxide containing a transition element may be included.

Rhを含む層よりも上層側に位置する{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の遷移元素の酸化物を含む層は、担体の細孔の内においてRhを含む触媒層の全面を覆っても良いが、触媒層の一部、より詳しくは担体の細孔内における排気ガス流の上流側だけを覆うように形成されてでも効果を発揮する。この場合、担体における細孔の貫通方向の長さの三分の一以上を覆うことが好ましい。   The layer containing an oxide of at least one transition element selected from {Fe, Mn, Ni, Co} located on the upper layer side of the layer containing Rh is a catalyst layer containing Rh in the pores of the support. The entire surface may be covered, but even if it is formed so as to cover only a part of the catalyst layer, more specifically, the upstream side of the exhaust gas flow in the pores of the carrier, the effect is exhibited. In this case, it is preferable to cover at least one third of the length of the carrier in the penetration direction of the pores.

なお、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の遷移元素の酸化物を含む層が、Rhを含む触媒層よりも優先的に排気ガスに触れるという観点からは、本発明に従い触媒層の厚さ方向に複数の触媒層を積層させたものとは異なる排気ガス浄化触媒の構成として、担体における細孔の貫通方向にて、排気ガス流の上流側に{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の遷移元素の酸化物を含む層を形成し、下流側にRhを含む触媒層を形成した排気ガス浄化触媒の構造も考えられる。しかしながら、このような構造では、排気ガス浄化性能を十分に発揮できない。これは、Rhを含む触媒層が、担体における細孔の貫通方向にて、排気ガス流の下流側に形成されている場合には、排気ガス温度が低温になるために触媒活性が低下し、十分な浄化性能を発揮できないためである。そのため、本発明の排気ガス浄化触媒では、担体の内壁から触媒層の厚さ方向にRhを含む触媒層と、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の遷移元素の酸化物を含む層とを積層させた構成とする。   From the viewpoint that the layer containing an oxide of at least one transition element selected from {Fe, Mn, Ni, Co} comes into contact with the exhaust gas preferentially over the catalyst layer containing Rh, according to the present invention. The structure of the exhaust gas purification catalyst is different from that in which a plurality of catalyst layers are stacked in the thickness direction of the catalyst layer, and {Fe, Mn, Ni on the upstream side of the exhaust gas flow in the penetration direction of the pores in the carrier , Co}, an exhaust gas purifying catalyst structure in which a layer containing an oxide of at least one transition element selected from the group consisting of oxides of Rh is formed on the downstream side is also conceivable. However, with such a structure, exhaust gas purification performance cannot be sufficiently exhibited. This is because when the catalyst layer containing Rh is formed on the downstream side of the exhaust gas flow in the direction of penetration of the pores in the carrier, the exhaust gas temperature becomes low, so the catalytic activity decreases, This is because sufficient purification performance cannot be exhibited. Therefore, in the exhaust gas purification catalyst of the present invention, a catalyst layer containing Rh in the thickness direction of the catalyst layer from the inner wall of the carrier, and an oxide of at least one transition element selected from {Fe, Mn, Ni, Co} A layer including a layer including

触媒層が3層以上を積層されてなる場合には、少なくともRhを含む触媒層と、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層との位置関係については、この{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、少なくともRhを含む触媒層よりも上層側にありさえすれば、特に限定されない。   When three or more catalyst layers are laminated, the positional relationship between the catalyst layer containing at least Rh and the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} Is not particularly limited as long as the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is on the upper layer side than the catalyst layer containing at least Rh.

より好ましくは、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、最表層に位置することが好ましい。Rhの耐久劣化を考えた場合に、本発明に従い、これらの遷移元素の酸化物を含む触媒層がRhを含む触媒層よりも上層側に位置することによって、Rhを含む触媒層には高濃度の排気ガスが直接に当たらず、これによりRhの劣化を抑制できる。そして、図3に示したような3層からなる触媒の場合又はそれ以上の数の触媒層からなる触媒の場合には、これらの遷移元素の酸化物を含む触媒層が最表層に位置することにより、性能向上を図ることができる。これは、遷移元素の酸化物を含む触媒層が最表層に位置することにより、Rhを含む触媒層のみならず、その他の触媒層の劣化抑制もできるからだと考えられる。なお、図2に示した2層からなる触媒の場合には、当然に遷移元素の酸化物を含む触媒層が最表層に位置することになる。   More preferably, the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is preferably located in the outermost layer. When considering the durability deterioration of Rh, according to the present invention, the catalyst layer containing oxides of these transition elements is positioned higher than the catalyst layer containing Rh, so that the catalyst layer containing Rh has a high concentration. Exhaust gas is not directly hit, thereby suppressing the deterioration of Rh. In the case of a catalyst composed of three layers as shown in FIG. 3 or a catalyst composed of a larger number of catalyst layers, the catalyst layer containing oxides of these transition elements is located on the outermost layer. As a result, performance can be improved. This is presumably because the deterioration of not only the catalyst layer containing Rh but also the other catalyst layers can be suppressed by positioning the catalyst layer containing the oxide of the transition element as the outermost layer. In the case of the two-layer catalyst shown in FIG. 2, the catalyst layer containing the transition element oxide is naturally located in the outermost layer.

本発明の排気ガス浄化触媒が3層の触媒層を積層してなり、少なくともRhを含む触媒層と、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層と、その他の触媒層とを具備する場合に、当該少なくともRhを含む触媒層をA層とし、当該{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層をB層とし、それら以外の触媒層をC層とすると、表層側から担体の内壁に向けた触媒層の積層構造の好ましい例としては、
(1) B層−A層−C層の順、
(2) B層−C層−A層の順、
(3) C層−B層−A層の順、
がある。これらの3例のうち、性能向上が図られるために上記(1)の例が最も好ましく、次に(2)の例が好ましい。なお、本発明の排気ガス浄化触媒は、上記(1)〜(3)の例に限られるものではない。
The exhaust gas purifying catalyst of the present invention is formed by laminating three catalyst layers, a catalyst layer containing at least Rh, and a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} When the catalyst layer comprises other catalyst layers, the catalyst layer containing at least Rh is defined as layer A, and the catalyst layer including at least one oxide selected from {Fe, Mn, Ni, Co} is defined as layer B. Assuming that the catalyst layer other than them is a C layer, as a preferable example of the laminated structure of the catalyst layer from the surface layer side toward the inner wall of the carrier,
(1) B layer-A layer-C layer order
(2) B layer-C layer-A layer in this order,
(3) C layer-B layer-A layer order
There is. Among these three examples, the example of (1) is most preferable because the performance is improved, and then the example of (2) is preferable. The exhaust gas purification catalyst of the present invention is not limited to the examples (1) to (3) above.

少なくともRhを含む触媒層と、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層とは、互いに接していることが、より好ましい。{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が最表層に位置する場合に、この最表層の触媒層の直下に、すなわち、この最表層の触媒層に接して、Rhを含む触媒層が位置することにより、Rhを含む触媒層への排気ガスの拡散性が十分に確保されるので、触媒性能を向上させることができる。逆に、最表層の触媒層とRhを含む触媒層との間に、1又は2以上の他の触媒層がある場合には、Rhを含む触媒層への排気ガスの拡散性に十分でなく、排気ガス浄化性能の向上が十分に図れない可能性がある。なお、排気ガス浄化触媒が2層の触媒層からなる場合には、少なくともRhを含む触媒層と、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層とが、互いに接しているのは当然である。   More preferably, the catalyst layer containing at least Rh and the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} are in contact with each other. When the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is located in the outermost layer, it is directly below the outermost catalyst layer, that is, in the outermost catalyst layer. In contact with the Rh-containing catalyst layer, exhaust gas diffusibility to the Rh-containing catalyst layer is sufficiently secured, so that the catalyst performance can be improved. Conversely, if there is one or more other catalyst layers between the outermost catalyst layer and the catalyst layer containing Rh, the diffusibility of the exhaust gas to the catalyst layer containing Rh is not sufficient. There is a possibility that exhaust gas purification performance cannot be sufficiently improved. When the exhaust gas purification catalyst is composed of two catalyst layers, a catalyst layer containing at least Rh and a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} are provided. Of course, they are in contact with each other.

{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層は、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物同士を接着する効果のある化合物を更に含むことが好ましい。{Fe, Mn, Ni, Co}から選ばれる遷移元素は、そのままでは触媒層として成立させることは難しく、バインダと呼ばれる材料が必要になる。バインダがなければ、担体に形成された触媒層が剥離し易い。そのため、バインダとして、これらの遷移元素の酸化物同士を接着する効果のある化合物を含むことが好ましい。このバインダには、一般にAl2O3ゾルやZrO2ゾルがあり、Al2O3ゾルやZrO2ゾルは、いずれも本発明の排気ガス浄化触媒において適用することができる。もっとも、Al2O3ゾルを用いた場合には、遷移元素がAl2O3に固溶し、その結果、遷移元素の触媒としての効果が十分に発揮できない場合がある。そのため、バインダは遷移元素と固溶し難いゾルを使うことが好ましく、そのためにZrO2ゾルが、より好適である。 The catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} has an effect of adhering at least one oxide selected from {Fe, Mn, Ni, Co} to each other It is preferable that it is further included. A transition element selected from {Fe, Mn, Ni, Co} is difficult to be formed as a catalyst layer as it is, and a material called a binder is required. Without the binder, the catalyst layer formed on the carrier is easy to peel off. Therefore, it is preferable that the binder contains a compound having an effect of adhering oxides of these transition elements. The binder generally includes Al 2 O 3 sol and ZrO 2 sol, and both Al 2 O 3 sol and ZrO 2 sol can be applied to the exhaust gas purification catalyst of the present invention. However, when Al 2 O 3 sol is used, the transition element is dissolved in Al 2 O 3, and as a result, the effect of the transition element as a catalyst may not be sufficiently exhibited. Therefore, it is preferable to use a sol that hardly dissolves with the transition element as the binder. For this reason, a ZrO 2 sol is more preferable.

本発明の排気ガス浄化触媒が、3層以上の触媒層からなる場合に、Rhを含む触媒層及び{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層以外の触媒層は、Pt及びPdの少なくとも1種を含む触媒層であることが好ましい。Pt及びPdはいずれも、排気ガス浄化性能を有する貴金属であり、これらの貴金属の少なくとも1種を有する触媒層を具備することにより、本発明の排気ガス浄化触媒としての機能が高まる。Pt及びPdの少なくとも含む触媒層は、Ptを含む触媒層、Pdを含む触媒層、Pt及びPdの両方を含む触媒層のいずれの場合であっても良い。また、これらの貴金属を含む触媒層を複数層で具備する構成とすることもできる。さらに、本発明の排気ガス浄化触媒において貴金属を含む触媒層の位置は問わない。もっとも、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層は最表層が好ましく、Rhを含む触媒層が、この最表層の遷移元素の酸化物を含む触媒層と互いに接していることが好ましいことを考慮すると、上記Pt及びPdの少なくとも1種を含む触媒層は、Rhを含む触媒層よりも下層側(担体の側壁側)に位置することが好ましい。   When the exhaust gas purifying catalyst of the present invention is composed of three or more catalyst layers, a catalyst layer other than a catalyst layer containing Rh and a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co}. The catalyst layer is preferably a catalyst layer containing at least one of Pt and Pd. Pt and Pd are both noble metals having exhaust gas purification performance, and the function as the exhaust gas purification catalyst of the present invention is enhanced by providing a catalyst layer having at least one of these noble metals. The catalyst layer containing at least Pt and Pd may be any of a catalyst layer containing Pt, a catalyst layer containing Pd, and a catalyst layer containing both Pt and Pd. Moreover, it can also be set as the structure which comprises the catalyst layer containing these noble metals in multiple layers. Furthermore, the position of the catalyst layer containing the noble metal in the exhaust gas purification catalyst of the present invention is not limited. However, the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is preferably the outermost layer, and the catalyst layer containing Rh contains the oxide of the transition element of the outermost layer. The catalyst layer containing at least one of Pt and Pd is preferably located on the lower layer side (side wall side of the carrier) than the catalyst layer containing Rh.

{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層は、更に酸素吸放出能を持つ酸化物を含むことができる。酸素吸放出能をもつ材料、例えばCeO2、Ce-Zr-Ox、Pr6O11等が上述した遷移元素と同じ層に存在することにより、遷移元素上での酸素授受がより効率よくできるようになり、本発明の効果が高まる。 The catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} can further contain an oxide having an oxygen storage / release capability. The presence and absence of oxygen-absorbing / releasing materials such as CeO 2 , Ce-Zr-Ox, Pr 6 O 11 and the like in the same layer as the above-mentioned transition element enables more efficient oxygen transfer on the transition element. Thus, the effect of the present invention is enhanced.

この酸素吸放出能を持つ酸化物は、{Ce, Pr, Nd, Y}から選ばれる少なくとも一種の酸化物からなるものが好ましい。これらちの酸化物は、優れた酸素吸放出能を具備しているからである。具体的には、CeO2、Ce-Zr-Ox、Pr6O11、Ce-Zr-Nd-Ox、Ce-Zr-Y-Oxなどがある。 The oxide having the ability to absorb and release oxygen is preferably composed of at least one oxide selected from {Ce, Pr, Nd, Y}. This is because these oxides have an excellent oxygen storage / release capability. Specific examples include CeO 2 , Ce—Zr—Ox, Pr 6 O 11 , Ce—Zr—Nd—Ox, and Ce—Zr—Y—Ox.

本発明の排気ガス浄化触媒は、更に{Ba,Mg,Ca,Na,Cs}から選ばれる少なくとも一種の化合物を含むことができる。Ba等の化合物は、リーン条件でNOxを吸着することができることから、排気ガス浄化触媒が、{Ba,Mg,Ca,Na,Cs}から選ばれる少なくとも一種の化合物を含むことにより、リーン条件でNOxを吸着し、リッチ条件でこの吸着したNOxを浄化する触媒として機能することができる。これらのNOxを吸着する化合物は、積層された全ての触媒層中に含ませることが製造プロセス有利であるが、複数層の触媒層のうちの一部の触媒層に含ませることもできる。   The exhaust gas purification catalyst of the present invention can further contain at least one compound selected from {Ba, Mg, Ca, Na, Cs}. Since compounds such as Ba can adsorb NOx under lean conditions, the exhaust gas purification catalyst contains at least one compound selected from {Ba, Mg, Ca, Na, Cs}. It can function as a catalyst that adsorbs NOx and purifies the adsorbed NOx under rich conditions. These NOx-adsorbing compounds are advantageous in the production process to be contained in all the laminated catalyst layers, but they can also be contained in a part of the catalyst layers of the plurality of catalyst layers.

本発明の排気ガス浄化触媒において、貴金属の平均粒子径が20nm以下であることが好ましい。Rhを含む触媒層中のRh並びにそれら以外の触媒層中に含まれることのあるPt及び/又はPdについて、平均粒子径が20nmを超える触媒、例えば劣化後の触媒では、本発明の効果が少ない。平均粒子径が20nm以下、特に10nm以下の領域では、貴金属粒子径に対する表面積増大効果が高く、Rhが表面に露出することになる。このような平均粒子径が20nm以下の微粒子の貴金属粒子は、一般に高温や長期間の排気ガス浄化によって劣化し易い。これに対し、本発明の排気ガス浄化触媒の構成によれば、このような平均粒子径が20nm以下の微粒子の貴金属粒子である場合であっても耐久性を向上させることができる。よって本発明は、耐久後に平均粒子径が20nm以下であるもの、又は初期のもの(平均粒子径1nm以下のもの)である場合に、特に効果が高い。なお、貴金属の平均粒子径の下限は特に限定されない。工業的に生産する場合には製造プロセスにより実施できる貴金属の平均粒子径の下限があり得るが、そのような下限値に限られない。   In the exhaust gas purification catalyst of the present invention, the average particle diameter of the noble metal is preferably 20 nm or less. For Rh in the catalyst layer containing Rh and Pt and / or Pd that may be contained in the other catalyst layers, the catalyst having an average particle diameter exceeding 20 nm, for example, a catalyst after deterioration, has little effect of the present invention. . In the region where the average particle size is 20 nm or less, particularly 10 nm or less, the effect of increasing the surface area with respect to the noble metal particle size is high, and Rh is exposed on the surface. Such fine noble metal particles having an average particle diameter of 20 nm or less are generally easily deteriorated by high temperature or long-term exhaust gas purification. On the other hand, according to the configuration of the exhaust gas purification catalyst of the present invention, durability can be improved even in the case of such fine noble metal particles having an average particle diameter of 20 nm or less. Therefore, the present invention is particularly effective when the average particle diameter is 20 nm or less after endurance or the initial one (average particle diameter is 1 nm or less). In addition, the minimum of the average particle diameter of a noble metal is not specifically limited. In the case of industrial production, there can be a lower limit of the average particle diameter of the noble metal that can be carried out by the manufacturing process, but it is not limited to such a lower limit.

貴金属を含む触媒層を構成する触媒粉末は、貴金属と、該貴金属と接触し貴金属の移動を抑制する働きを持つ化合物と、該貴金属と該化合物を覆い該貴金属の移動を抑制し、かつ、化合物同士の接触による凝集を抑制する酸化物と、からなることが好ましい。排気ガス浄化能を有する貴金属粒子を、この貴金属粒子と接触し貴金属の移動を抑制する働きを持つ化合物に担持させることにより、この化合物が化学的結合のアンカー材として作用し、貴金属粒子の移動を化学的に抑制する。そして、この貴金属粒子を担持した化合物を覆って酸化物を形成することにより、この酸化物が貴金属の移動を物理的に抑制する。更に、この酸化物が、貴金属粒子を担持した化合物の間に介在するので、その化合物同士はこの酸化物によって隔てられる。これにより、貴金属粒子を担持した化合物が相互に接触して凝集するのを抑制する。貴金属粒子を担持した化合物の凝集抑制は、貴金属粒子の凝集抑制に寄与する。これらのことから、このような化合物と酸化物とを有する触媒粉末は、耐久後も貴金属粒子の凝集を抑制して、貴金属粒子の平均粒子径を5〜15nm程度に抑制することができ、本発明の効果が特に高い。   The catalyst powder constituting the catalyst layer containing the noble metal includes a noble metal, a compound that contacts the noble metal and has a function of suppressing the movement of the noble metal, covers the noble metal and the compound, suppresses the movement of the noble metal, and a compound. It is preferable to comprise an oxide that suppresses aggregation due to mutual contact. By supporting the precious metal particles having exhaust gas purifying ability on a compound that comes into contact with the precious metal particles and suppresses the movement of the precious metal, the compound acts as an anchor material for chemical bonding, and the movement of the precious metal particles is suppressed. Chemically suppressed. Then, by forming an oxide covering the compound carrying the noble metal particles, the oxide physically suppresses the movement of the noble metal. Further, since the oxide is interposed between the compounds supporting the noble metal particles, the compounds are separated from each other by the oxide. As a result, the compounds carrying the noble metal particles are prevented from contacting and aggregating with each other. The suppression of aggregation of the compound supporting the noble metal particles contributes to suppression of aggregation of the noble metal particles. From these facts, the catalyst powder having such a compound and an oxide can suppress the aggregation of the noble metal particles even after durability, and can suppress the average particle diameter of the noble metal particles to about 5 to 15 nm. The effect of the invention is particularly high.

{ Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層の厚さは、20μm以下であることが好ましい。Rh触媒層上に積層する、遷移元素の酸化物を含む触媒層が厚すぎると、ガス拡散性が損なわれるため、かかる遷移元素の酸化物を含む触媒層の厚さをコントロールする必要がある。発明者らが鋭意検討した結果、遷移元素の酸化物を含む触媒層を積層させる場合に、厚さが20μm以下であると、効果が大きくそれ以上であると効果が小さくなることを見出した。よって、かかる触媒層の厚さは20μm以下であることが好ましい。触媒層の厚さの下限値は特に限定されない。もっとも、あまりに厚さが薄いと担体上に触媒層を形成したときにこの触媒層の剥離を生じるおそれがあるので、剥離を生じない工業的な生産上の観点からの下限値があり得るが、そのような下限値に限られない。   The thickness of the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is preferably 20 μm or less. If the catalyst layer containing the transition element oxide laminated on the Rh catalyst layer is too thick, the gas diffusibility is impaired. Therefore, it is necessary to control the thickness of the catalyst layer containing the transition element oxide. As a result of intensive studies by the inventors, it has been found that when a catalyst layer containing an oxide of a transition element is laminated, if the thickness is 20 μm or less, the effect is large and if it is more, the effect is small. Therefore, the thickness of the catalyst layer is preferably 20 μm or less. The lower limit value of the thickness of the catalyst layer is not particularly limited. However, if the thickness is too thin, there is a possibility that the catalyst layer may be peeled off when the catalyst layer is formed on the support. Therefore, there may be a lower limit from the viewpoint of industrial production that does not cause peeling. It is not restricted to such a lower limit.

前記{Fe,Mn,Ni,Co}から選ばれる少なくとも1種の酸化物の粒子径は2μm以下であることが好ましい。遷移元素の酸化物粒子径が2μm以下になると更に本発明効果が促進されるからである。これは、酸化物粒子が小さくなることにより、比表面積が向上し、排気ガスとの接触が良くなるためであると考える。   The particle diameter of at least one oxide selected from {Fe, Mn, Ni, Co} is preferably 2 μm or less. This is because the effect of the present invention is further promoted when the oxide particle diameter of the transition element is 2 μm or less. This is considered to be because the specific surface area is improved and the contact with the exhaust gas is improved by reducing the oxide particles.

本発明の排気ガス触媒を製造する際は、少なくともRhを含む触媒層用の触媒スラリーと、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層用の触媒用スラリーと、必要に応じてその他の触媒層用のスラリーとを夫々準備し、担体に順次に付着させ乾燥、焼成して夫々の触媒層を形成する。各触媒層用のスラリーの調製法は、特に限定されず、公知の方法により実施することができる。また、{Ba,Mg,Ca,Na,Cs}から選ばれる少なくとも一種の化合物を含む場合は、担体に各触媒層を積層したのちに、これらの化合物又はその原料のスラリー又は溶液中に担体を含浸させた後、乾燥、焼成することにより、これらの化合物を触媒層中に含ませることができる。   When producing the exhaust gas catalyst of the present invention, the catalyst slurry for the catalyst layer containing at least Rh and the catalyst for the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} A slurry and, if necessary, a slurry for another catalyst layer are prepared, and are sequentially attached to a carrier, dried and fired to form each catalyst layer. The method for preparing the slurry for each catalyst layer is not particularly limited, and can be carried out by a known method. In addition, when at least one compound selected from {Ba, Mg, Ca, Na, Cs} is included, after laminating each catalyst layer on the carrier, the carrier is placed in a slurry or solution of these compounds or their raw materials. After impregnation, these compounds can be included in the catalyst layer by drying and firing.

以下、本発明を実施例に基づいて具体的に説明する。以下に述べる各実施例は、図4に、触媒担体上に積層された触媒層の積層構造の模式図を示すように、触媒層の積層構造に関して、担体1の内面上に合計2層の触媒層を積層した例(図4(a))及び合計3層の触媒層を積層した例(図4(b)及び(c))とした。担体1の細孔中を通過する排気ガスの流動方向を図中の矢印Gで示した。図4(a)は、触媒層1(図中の符号11)と触媒層2(図中の符号12)の合計2層の触媒層を積層した積層構造、図4(b)は、触媒層1(図中の符号11)と触媒層2(図中の符号12)と触媒層3(図中の符号13)の合計3層の触媒層を積層した積層構造、図4(c)は、合計3層の触媒層を積層した積層構造であって、最表層の触媒層3A(図中の符号13A)が、その直下の触媒層2の一部を覆うように形成されたもの、図4(d)は比較例であって、担体の細孔における排気ガス流の上流側と下流側とで異なる触媒層2及び触媒層1をそれぞれ1層形成した構造である。   Hereinafter, the present invention will be specifically described based on examples. In each example described below, as shown in FIG. 4, a schematic diagram of the laminated structure of the catalyst layers laminated on the catalyst carrier, the catalyst layer laminated structure has a total of two layers of catalyst on the inner surface of the carrier 1. An example in which the layers were laminated (FIG. 4A) and an example in which a total of three catalyst layers were laminated (FIGS. 4B and 4C) were used. The flow direction of the exhaust gas passing through the pores of the carrier 1 is indicated by an arrow G in the figure. 4A shows a laminated structure in which a total of two catalyst layers of catalyst layer 1 (reference numeral 11 in the figure) and catalyst layer 2 (reference numeral 12 in the figure) are laminated, and FIG. 4B shows the catalyst layer. 1 (reference numeral 11 in the figure), catalyst layer 2 (reference numeral 12 in the figure) and catalyst layer 3 (reference numeral 13 in the figure), a laminated structure in which a total of three catalyst layers are laminated, FIG. 4. A laminated structure in which a total of three catalyst layers are laminated, and the outermost catalyst layer 3A (reference numeral 13A in the figure) is formed so as to cover a part of the catalyst layer 2 immediately below, FIG. (D) is a comparative example, which has a structure in which one different catalyst layer 2 and one catalyst layer 1 are formed on the upstream side and the downstream side of the exhaust gas flow in the pores of the carrier.

なお、以下の全ての実施例、比較例とも、担体1(図中の符号1)と触媒層1(図中の符号11)との間に、下地にアルミナの層14が形成されている。   In all of the following Examples and Comparative Examples, an alumina layer 14 is formed on the base between the carrier 1 (reference numeral 1 in the figure) and the catalyst layer 1 (reference numeral 11 in the figure).

まず、図4(a)の触媒層に相当する、積層された触媒層が合計2層からなる排気ガス浄化触媒として、実施例1〜4及び比較例1〜2の排気ガス浄化触媒を、以下の工程により作成した。   First, as the exhaust gas purification catalyst corresponding to the catalyst layer in FIG. 4A, the exhausted gas purification catalysts of Examples 1 to 4 and Comparative Examples 1 and 2 are as follows. It was created by the process.

(実施例1)
実施例1は、触媒層1がRhを含む触媒層、触媒層2がFeの酸化物を含む触媒層の例である。
Example 1
Example 1 is an example of a catalyst layer in which the catalyst layer 1 contains Rh, and a catalyst layer in which the catalyst layer 2 contains an oxide of Fe.

比表面積70[m2/g]のLa含有ZrO2に硝酸Rh溶液を含浸し、担持濃度が0.1[wt%]となるように担持した。これを150[℃]で一昼夜乾燥後、400[℃]で1時間焼成し粉末Aを得た。この粉末Aを225[g]、アルミナゾル25[g]、水240[g]及び硝酸10[g]を、磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。得られたスラリーをコーディエライト質モノリス担体(0.12[L]、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層100[g/L]の触媒層1を得た。 La-containing ZrO 2 having a specific surface area of 70 [m 2 / g] was impregnated with an Rh nitrate solution and supported so that the supported concentration was 0.1 [wt%]. This was dried at 150 [° C.] for a whole day and night and then calcined at 400 [° C.] for 1 hour to obtain powder A. This powder A was charged with 225 [g], alumina sol 25 [g], water 240 [g] and nitric acid 10 [g] in a magnetic ball mill, and mixed and ground to obtain a catalyst slurry. The obtained slurry was attached to a cordierite monolith support (0.12 [L], 400 cells), and the excess slurry in the cells was removed by air flow and dried at 150 [° C.], and then 400 [° C.]. Was fired for 1 hour to obtain a catalyst layer 1 having a coat layer of 100 [g / L].

また、酸化鉄225[g]、ジルコニアゾル25[g]、水240[g]及び硝酸10[g]を、磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。得られたスラリーを触媒層1上に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層[30g/L]の触媒層2を得た。   Further, iron oxide 225 [g], zirconia sol 25 [g], water 240 [g] and nitric acid 10 [g] were charged into a magnetic ball mill, mixed and ground to obtain a catalyst slurry. The obtained slurry was deposited on the catalyst layer 1, the excess slurry in the cell was removed with an air stream, dried at 150 [° C.], and then fired at 400 [° C.] for 1 hour, and the coating layer [30 g / L] catalyst layer 2 was obtained.

(実施例2)
実施例2は、触媒層1がRhを含む触媒層、触媒層2がMnの酸化物を含む触媒層の例である。
(Example 2)
Example 2 is an example of a catalyst layer in which the catalyst layer 1 contains Rh, and a catalyst layer in which the catalyst layer 2 contains an oxide of Mn.

工程は、実施例1の酸化鉄を酸化マンガンに変えた以外は実施例1と同じである。   The process is the same as that of Example 1 except that the iron oxide of Example 1 is changed to manganese oxide.

(実施例3)
実施例3は、触媒層1がRhを含む触媒層、触媒層2がNiの酸化物を含む触媒層の例である。
(Example 3)
Example 3 is an example of a catalyst layer in which the catalyst layer 1 includes Rh, and a catalyst layer in which the catalyst layer 2 includes an oxide of Ni.

工程は、実施例1の酸化鉄を酸化ニッケルに変えた以外は実施例1と同じである。   The process is the same as that of Example 1 except that the iron oxide of Example 1 is changed to nickel oxide.

(実施例4)
実施例4は、触媒層1がRhを含む触媒層、触媒層2がCoの酸化物を含む触媒層の例である。
Example 4
Example 4 is an example of a catalyst layer in which the catalyst layer 1 includes Rh, and a catalyst layer in which the catalyst layer 2 includes an oxide of Co.

工程は、実施例1の酸化鉄を酸化コバルトに変えた以外は実施例1と同じである。   The process is the same as that of Example 1 except that the iron oxide of Example 1 is changed to cobalt oxide.

(比較例1)
比較例1は、複数の触媒層が積層されてなく、触媒層1のみを有する例である。
(Comparative Example 1)
Comparative Example 1 is an example in which a plurality of catalyst layers are not stacked and only the catalyst layer 1 is provided.

工程は、実施例1における触媒層1の作成過程で得た触媒をそのまま使った以外は実施例1と同じである。   The process is the same as that of Example 1 except that the catalyst obtained in the preparation process of the catalyst layer 1 in Example 1 is used as it is.

(比較例2)
比較例2は、図4(d)の触媒層に相当する、担体の細孔における排気ガス流の上流側と下流側とで異なる触媒層2及び触媒層1をそれぞれ1層形成した例である。
(Comparative Example 2)
Comparative Example 2 is an example in which one catalyst layer 2 and one catalyst layer 1 corresponding to the catalyst layer in FIG. 4D are formed on the upstream and downstream sides of the exhaust gas flow in the pores of the carrier. .

酸化鉄225[g]、ジルコニアゾル25[g]、水240[g]、硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。得られたスラリーをコーディエライト質モノリス担体(0.12[L]、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層100g/Lの触媒層2を得た。   Iron oxide 225 [g], zirconia sol 25 [g], water 240 [g], and nitric acid 10 [g] were charged into a magnetic ball mill, mixed and ground to obtain a catalyst slurry. The obtained slurry was attached to a cordierite monolith support (0.12 [L], 400 cells), and the excess slurry in the cells was removed by air flow and dried at 150 [° C.], and then 400 [° C.]. Was fired for 1 hour to obtain a catalyst layer 2 having a coat layer of 100 g / L.

かくして得た触媒を、0.04[L]となるように切断し、これを比較例1の触媒の前段に配置した。   The catalyst thus obtained was cut so as to be 0.04 [L], and this was placed in front of the catalyst of Comparative Example 1.

以上述べた実施例1〜4及び比較例1〜2の排気ガス浄化触媒について、排気ガス浄化性能を調べた。この排気ガス浄化性能の評価は、排気量3500[cc]のガソリンエンジンの排気系に、各実施例又は各比較例の排気ガス浄化触媒を担持した担体を装着し、触媒入口温度を150[℃]から500[℃]で昇温速度10[℃/分]で昇温し、その昇温過程にわたって転化率を測定した。転化率の計算は、次式による。   Exhaust gas purification performance was examined for the exhaust gas purification catalysts of Examples 1 to 4 and Comparative Examples 1 and 2 described above. This exhaust gas purification performance was evaluated by mounting a carrier carrying the exhaust gas purification catalyst of each Example or each Comparative Example on the exhaust system of a 3500 [cc] gasoline engine and setting the catalyst inlet temperature to 150 [° C. The temperature was raised at 500 [° C.] at a temperature raising rate of 10 [° C./min], and the conversion rate was measured over the temperature raising process. The conversion rate is calculated according to the following formula.

HC転化率(%)=[(触媒入口HC濃度)−(触媒出口HC濃度)]/(触媒入口HC濃度)×100
CO転化率(%)=[(触媒入口CO濃度)−(触媒出口CO濃度)] /(触媒入口CO濃度)×100
NOx転化率(%)=[(触媒入口NOx濃度)−(触媒出口NOx濃度)/(触媒入口NOx濃度)×100
上記式により計算される転化率が50%となる温度を50%転化率温度と定義して、この50%転化率温度によって排気ガス浄化性能を評価した。この50%転化率温度が低いほうが低温活性が良い、優れた触媒と言える。
HC conversion rate (%) = [(Catalyst inlet HC concentration)-(Catalyst outlet HC concentration)] / (Catalyst inlet HC concentration) x 100
CO conversion rate (%) = [(catalyst inlet CO concentration)-(catalyst outlet CO concentration)] / (catalyst inlet CO concentration) x 100
NOx conversion rate (%) = [(NOx concentration at catalyst inlet)-(NOx concentration at catalyst outlet) / (NOx concentration at catalyst inlet) x 100
The temperature at which the conversion calculated by the above formula becomes 50% was defined as the 50% conversion temperature, and the exhaust gas purification performance was evaluated based on this 50% conversion temperature. It can be said that the lower the 50% conversion temperature, the better the low temperature activity and the better the catalyst.

上記実施例1〜4及び比較例1〜2の排気ガス浄化触媒の50%転化率温度を、各実施例及び各比較例の排気ガス浄化触媒における各触媒層の貴金属種又は酸化物の金属種と共に表1に示す。表1から、実施例1〜4は、低温活性に優れており、優れた排気ガス浄化性能を有していた。これに対して、比較例1は、触媒層2を積層してないため、各実施例よりも50%転化率温度が高かった。また排気ガス流の上流側に触媒層2を下流側に触媒層1を設けた比較例2は、比較例1と同程度の50%転化率温度であった。この比較例2と実施例1との比較から、複数の触媒層を積層させた実施例1のほうが、複数の触媒層を排気ガス流の上流側、下流側に設けた比較例2よりも低温活性が良い、優れた触媒であった。
The 50% conversion temperature of the exhaust gas purifying catalysts of Examples 1 to 4 and Comparative Examples 1 and 2 is defined as the noble metal species or oxide metal species of each catalyst layer in the exhaust gas purifying catalysts of the respective Examples and Comparative Examples. Together with Table 1. From Table 1, Examples 1-4 were excellent in low-temperature activity, and had the outstanding exhaust gas purification performance. In contrast, Comparative Example 1 had a 50% conversion temperature higher than that of each Example because the catalyst layer 2 was not laminated. Further, Comparative Example 2 in which the catalyst layer 2 was provided on the upstream side of the exhaust gas flow and the catalyst layer 1 was provided on the downstream side had a 50% conversion temperature similar to that of Comparative Example 1. From the comparison between Comparative Example 2 and Example 1, Example 1 in which a plurality of catalyst layers are laminated has a lower temperature than Comparative Example 2 in which a plurality of catalyst layers are provided upstream and downstream of the exhaust gas flow. It was an excellent catalyst with good activity.

次に、図4(b)又は図4(c)の触媒層に相当する、積層された触媒層が合計3層からなる排気ガス浄化触媒として、実施例5〜9及び比較例3〜5の排気ガス浄化触媒を以下の工程により作成した。また、図4(a)の積層構造になるが、本発明の要件を満たさない比較例6〜7の排気ガス浄化触媒を以下の工程により作成した。   Next, as the exhaust gas purification catalyst corresponding to the catalyst layer of FIG. 4B or FIG. 4C, the stacked catalyst layers are composed of a total of three layers, Examples 5 to 9 and Comparative Examples 3 to 5 An exhaust gas purification catalyst was prepared by the following steps. Moreover, although it became the laminated structure of Fig.4 (a), the exhaust-gas purification catalyst of the comparative examples 6-7 which does not satisfy | fill the requirements of this invention was created with the following processes.

(実施例5)
実施例5は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例である。
(Example 5)
Example 5 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer in which the catalyst layer 2 contains Rh, and a catalyst layer in which the catalyst layer 3 contains an oxide of Fe.

比表面積70[m2/g]のLa含有ZrO2に硝酸Rh溶液を含浸し、担持濃度が0.4[wt%]となるように担持した。これを150[℃]で一昼夜乾燥後、400[℃]で1時間焼成し粉末Bを得た。この粉末Bを225[g]、アルミナゾル25[g]、水240[g]及び硝酸10[g]を、磁性ボールミルに投入し、混合粉砕し触媒スラリーAを得た。 La-containing ZrO 2 having a specific surface area of 70 [m 2 / g] was impregnated with an Rh nitrate solution and supported so that the supported concentration was 0.4 [wt%]. This was dried at 150 [° C.] for a whole day and night and then calcined at 400 [° C.] for 1 hour to obtain powder B. The powder B was charged with 225 [g], alumina sol 25 [g], water 240 [g] and nitric acid 10 [g] in a magnetic ball mill, and mixed and ground to obtain catalyst slurry A.

また、比表面積80[m2/g]のCe、La含有ZrO2に硝酸Pd溶液を含浸し、担持濃度が1.6[wt%]となるように担持した。これを150[℃]で一昼夜乾燥後、400[℃]で1時間焼成し粉末Cを得た。この粉末Cを225[g]、アルミナゾル25[g]、水240[g]及び硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーBを得た。 Further, Ce and La-containing ZrO 2 having a specific surface area of 80 [m 2 / g] was impregnated with a Pd nitrate solution and supported so that the supported concentration was 1.6 [wt%]. This was dried at 150 [° C.] for a whole day and night, and calcined at 400 [° C.] for 1 hour to obtain powder C. This powder C was charged with 225 [g], alumina sol 25 [g], water 240 [g] and nitric acid 10 [g] in a magnetic ball mill, mixed and ground to obtain catalyst slurry B.

また、酸化鉄225[g]、ジルコニアゾル25[g]、水240[g]及び硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーCを得た。   Further, iron oxide 225 [g], zirconia sol 25 [g], water 240 [g] and nitric acid 10 [g] were charged into a magnetic ball mill, mixed and ground, and catalyst slurry C was obtained.

次に、上記スラリーBをコーディエライト質モノリス担体(0.12[L]、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層150[g/L]の触媒層1を得た。   Next, the slurry B was attached to a cordierite monolith support (0.12 [L], 400 cells), excess slurry in the cells was removed with an air flow and dried at 150 [° C.], and then 400 [ The catalyst layer 1 having a coat layer of 150 [g / L] was obtained.

次に、上記スラリーAをこの触媒層1の上に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層50[g/L]の触媒層2を得た。   Next, the slurry A is deposited on the catalyst layer 1, the excess slurry in the cell is removed with an air flow, dried at 150 [° C.], and then baked at 400 [° C.] for 1 hour. A catalyst layer 2 having a layer of 50 [g / L] was obtained.

次に、上記スラリーCを触媒層2の上に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層30[g/L]の触媒層3を得た。   Next, the slurry C is deposited on the catalyst layer 2, the excess slurry in the cell is removed with an air flow, dried at 150 [° C.], and then fired at 400 [° C.] for 1 hour, and the coating layer 30 [g / L] catalyst layer 3 was obtained.

(実施例6)
実施例6は、触媒層1がRhを含む触媒層、触媒層2がFeの酸化物を含む触媒層、触媒層3がPdを含む触媒層の例である。
(Example 6)
Example 6 is an example of a catalyst layer in which the catalyst layer 1 contains Rh, a catalyst layer in which the catalyst layer 2 contains an oxide of Fe, and a catalyst layer in which the catalyst layer 3 contains Pd.

工程は、実施例5における触媒層の積層のさせ方を担体に近い側からスラリーA、スラリーC、スラリーBの順にした以外は実施例5と同じである。   The process is the same as that of Example 5 except that the method of laminating the catalyst layers in Example 5 is the order of slurry A, slurry C, and slurry B from the side closer to the carrier.

(実施例7)
実施例7は、触媒層1がRhを含む触媒層、触媒層2がPdを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例である。
(Example 7)
Example 7 is an example of a catalyst layer in which the catalyst layer 1 includes Rh, a catalyst layer in which the catalyst layer 2 includes Pd, and a catalyst layer in which the catalyst layer 3 includes an oxide of Fe.

工程は、実施例5における積層のさせ方を担体に近い側からスラリーA、スラリーB、スラリーCの順にした以外は実施例5と同じである。   The process is the same as that of Example 5 except that the way of stacking in Example 5 is the order of slurry A, slurry B, and slurry C from the side closer to the carrier.

(実施例8)
実施例8は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、図4(c)に示すような、最表層の触媒層3が、担体の細孔における排気ガス流の上流側のみに形成されている例である。
(Example 8)
Example 8 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer 2 in which the catalyst layer 2 contains Rh, and a catalyst layer 3 in which the oxide of Fe contains an oxide of Fe, as shown in FIG. In this example, the outermost catalyst layer 3 is formed only on the upstream side of the exhaust gas flow in the pores of the carrier.

工程は、実施例5における積層のさせ方を担体に近い側からスラリーB、スラリーAの順にした後、容器に収容されたスラリーC中に触媒層1及び触媒層2が形成された担体における排気ガス流の上流側に相当する部分(貫通孔の貫通方向の二分の一の長さの範囲)のみを浸漬させることにより、スラリーCを触媒層の上に部分的に付着させた以外は実施例5と同じである。   In the process, the stacking in Example 5 was performed in the order of slurry B and slurry A from the side closer to the carrier, and then exhausted in the carrier in which the catalyst layer 1 and the catalyst layer 2 were formed in the slurry C accommodated in the container. Example except that slurry C was partially adhered on the catalyst layer by immersing only the portion corresponding to the upstream side of the gas flow (the range of the length of one half of the through-hole penetration direction). Same as 5.

(実施例9)
実施例9は、触媒層1がPtを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例である。
Example 9
Example 9 is an example of a catalyst layer in which the catalyst layer 1 contains Pt, a catalyst layer in which the catalyst layer 2 contains Rh, and a catalyst layer in which the catalyst layer 3 contains an oxide of Fe.

比表面積70[m2/g]のLa含有ZrO2に硝酸Rh溶液を含浸し、担持濃度が0.2[wt%]となるように担持した。これを150[℃]で一昼夜乾燥後、400[℃]で1時間焼成し粉末Dを得た。この粉末Dを225g、アルミナゾル25g、水240g、硝酸10gを磁性ボールミルに投入し、混合粉砕し触媒スラリーDを得た。 La-containing ZrO 2 having a specific surface area of 70 [m 2 / g] was impregnated with a Rh nitrate solution and supported so that the supported concentration was 0.2 [wt%]. This was dried at 150 [° C.] for a whole day and night and then calcined at 400 [° C.] for 1 hour to obtain powder D. 225 g of this powder D, 25 g of alumina sol, 240 g of water, and 10 g of nitric acid were put into a magnetic ball mill, mixed and ground, and catalyst slurry D was obtained.

また、比表面積160[m2/g]のLa、Ce及びZr含有Al2O3にジニトロジアミンPt溶液を含浸し、担持濃度が0.2[wt%]となるように担持した。これを150[℃]で一昼夜乾燥後、400[℃]で1時間焼成し粉末Eを得た。この粉末Eを225[g]、アルミナゾル25[g]、水240[g]及び硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーEを得た。 Further, La, Ce and Zr-containing Al 2 O 3 having a specific surface area of 160 [m 2 / g] was impregnated with a dinitrodiamine Pt solution and supported so that the supported concentration was 0.2 [wt%]. This was dried at 150 [° C.] for a whole day and night, and calcined at 400 [° C.] for 1 hour to obtain powder E. This powder E was charged with 225 [g], alumina sol 25 [g], water 240 [g] and nitric acid 10 [g] in a magnetic ball mill, and mixed and ground to obtain catalyst slurry E.

また、酸化鉄225[g]、アルミナゾル25[g]、水240[g]及び硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーFを得た。   Further, iron oxide 225 [g], alumina sol 25 [g], water 240 [g] and nitric acid 10 [g] were put into a magnetic ball mill, mixed and ground, and catalyst slurry F was obtained.

次に、上記スラリーEをコーディエライト質モノリス担体(0.12[L]、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層150[g/L]の触媒層1を得た。   Next, the slurry E was attached to a cordierite monolith support (0.12 [L], 400 cells), excess slurry in the cells was removed by air flow, and the slurry E was dried at 150 [° C.], and then 400 [ The catalyst layer 1 having a coat layer of 150 [g / L] was obtained.

次に、上記スラリーDをこの触媒層1の上に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層50[g/L]の触媒層2を得た。   Next, the slurry D is deposited on the catalyst layer 1, the excess slurry in the cell is removed by air flow, dried at 150 [° C.], and then fired at 400 [° C.] for 1 hour, A catalyst layer 2 having a layer of 50 [g / L] was obtained.

次に、上記スラリーFを触媒層2の上に付着させ、空気流にてセル内の余剰のスラリーを取り除いて150[℃]で乾燥した後、400[℃]で1時間焼成し、コート層30[g/L]の触媒層3を得た。   Next, the slurry F is deposited on the catalyst layer 2, the excess slurry in the cell is removed with an air flow, dried at 150 [° C.], and then fired at 400 [° C.] for 1 hour, and the coating layer 30 [g / L] catalyst layer 3 was obtained.

(比較例3)
比較例3は、酸化鉄層が図4(b)の触媒層2であり、Rh層が触媒層3である例である。
(Comparative Example 3)
In Comparative Example 3, the iron oxide layer is the catalyst layer 2 in FIG. 4B and the Rh layer is the catalyst layer 3.

工程は、実施例5の積層のさせ方を担体に近い側からスラリーB、スラリーC、スラリーAの順にした以外は実施例5と同じである。   The process is the same as that of Example 5 except that the stacking method of Example 5 is changed to the order of slurry B, slurry C, and slurry A from the side closer to the carrier.

(比較例4)
比較例4は、酸化鉄層が図4(b)の触媒層1であり、Rh層が触媒層3である例である。
(Comparative Example 4)
In Comparative Example 4, the iron oxide layer is the catalyst layer 1 in FIG. 4B and the Rh layer is the catalyst layer 3.

工程は、実施例5の積層のさせ方を担体に近い側からスラリーC、スラリーB、スラリーAの順にした以外は実施例5と同じである。   The process is the same as that of Example 5 except that the stacking method of Example 5 is changed in the order of slurry C, slurry B, and slurry A from the side close to the carrier.

(比較例5)
比較例5は、酸化鉄層が図4(b)の触媒層1であり、Rh層が触媒層2である例である。
(Comparative Example 5)
In Comparative Example 5, the iron oxide layer is the catalyst layer 1 in FIG. 4B and the Rh layer is the catalyst layer 2.

工程は、実施例5の積層のさせ方を担体に近い側からスラリーC、スラリーA、スラリーBの順にした以外は実施例5と同じである。   The process is the same as that of Example 5 except that the stacking of Example 5 is performed in the order of slurry C, slurry A, and slurry B from the side closer to the carrier.

(比較例6)
比較例6は、酸化鉄層を有しないで2層を積層した例であり、かつ、貴金属を含む触媒層がPdを含む触媒層である例である。
(Comparative Example 6)
Comparative Example 6 is an example in which two layers are laminated without having an iron oxide layer, and the catalyst layer containing a noble metal is a catalyst layer containing Pd.

工程は、実施例5の積層のさせ方を担体に近い側からスラリーB、スラリーAの順にした以外は実施例5と同じである。   The process is the same as that of Example 5 except that the way of stacking in Example 5 is changed to the order of slurry B and slurry A from the side closer to the carrier.

(比較例7)
比較例7は、酸化鉄層を有しないで2層を積層した例であり、かつ、貴金属を含む触媒層がPtを含む触媒層である例である。
(Comparative Example 7)
Comparative Example 7 is an example in which two layers are laminated without having an iron oxide layer, and the catalyst layer containing a noble metal is an example of a catalyst layer containing Pt.

工程は、実施例9の積層のさせ方を担体に近い側からスラリーE、スラリーDの順にし以外は実施例9と同じである。   The process is the same as that of Example 9 except that the stacking of Example 9 is performed in the order of slurry E and slurry D from the side closer to the carrier.

以上述べた実施例5〜9及び比較例3〜7の排気ガス浄化触媒について、排気ガス浄化性能を、耐久試験の前後でそれぞれ調べた。耐久試験は、排気量3500[cc]のガソリンエンジンの排気系に各実施例又は各比較例の排気ガス浄化触媒を担持した担体を装着し、触媒入口温度を700℃とし、50時間運転した。また、排気ガス浄化性能の評価は、前述した50%転化率温度により行った。   Regarding the exhaust gas purification catalysts of Examples 5 to 9 and Comparative Examples 3 to 7 described above, the exhaust gas purification performance was examined before and after the durability test. In the endurance test, a carrier carrying the exhaust gas purification catalyst of each Example or each Comparative Example was mounted on the exhaust system of a gasoline engine having a displacement of 3500 [cc], and the catalyst inlet temperature was set to 700 ° C. and the system was operated for 50 hours. The exhaust gas purification performance was evaluated based on the 50% conversion temperature described above.

上記実施例5〜9及び比較例3〜7の排気ガス浄化触媒の耐久試験前後の50%転化率温度を、各実施例及び各比較例の排気ガス浄化触媒における各触媒層の貴金属種又は酸化物の金属種と共に表2に示す。表2から、実施例5〜9は、表1に示した実施例1〜4と比べて更に低温活性に優れており、優れた排気ガス浄化性能を有していた。実施例5〜7の対比により、遷移元素であるFeの酸化物を含む触媒層が最表層にあり、かつRh層と接している実施例5が最も優れた排気ガス浄化性能を有していた。また、実施例8のように、Feの酸化物を含む触媒層が、Rhを含む触媒層の一部を覆っている場合であっても本発明の効果が得られた。さらに、実施例9のように、Rh以外の貴金属を含む触媒層が、Ptである場合であっても本発明の効果が得られた。これに対して、比較例3〜5は、Feの酸化物を含む触媒層が、Rhを含む触媒層よりも担体に近い側に位置していたため、実施例5〜7よりも耐久前後での50%転化率温度が高かった。また、比較例6、7は、Feの酸化物を含む触媒層を有していなかったため、特に耐久後の50%転化率温度が高く、排気ガス浄化性能が実施例5〜7よりも劣っていた。   The 50% conversion temperature before and after the endurance test of the exhaust gas purifying catalysts of Examples 5 to 9 and Comparative Examples 3 to 7 is the noble metal species or oxidation of each catalyst layer in the exhaust gas purifying catalysts of each Example and each Comparative Example. It shows in Table 2 with the metal kind of a thing. From Table 2, Examples 5 to 9 were more excellent in low-temperature activity than Examples 1 to 4 shown in Table 1, and had excellent exhaust gas purification performance. By comparison with Examples 5 to 7, Example 5 in which the catalyst layer containing an oxide of Fe as a transition element was in the outermost layer and was in contact with the Rh layer had the best exhaust gas purification performance. . In addition, the effect of the present invention was obtained even when the catalyst layer containing Fe oxide covered a part of the catalyst layer containing Rh as in Example 8. Furthermore, the effect of the present invention was obtained even when the catalyst layer containing a noble metal other than Rh was Pt as in Example 9. On the other hand, in Comparative Examples 3 to 5, the catalyst layer containing the oxide of Fe was positioned closer to the support than the catalyst layer containing Rh. The 50% conversion temperature was high. Moreover, since Comparative Examples 6 and 7 did not have a catalyst layer containing an oxide of Fe, the 50% conversion temperature after durability was particularly high, and the exhaust gas purification performance was inferior to Examples 5 to 7. It was.

図5に実施例5の排気ガス浄化触媒の積層構造を示す顕微鏡写真を示す。図5(a)、(b)は、同一箇所についての顕微鏡写真であり、図5(a)が日立ハイテク社製 走査型顕微鏡(FE-SEM) S-4000を用いた写真、図5(b)は島津製作所製 電子線マイクロアナライザー(EPMA) EPMA-1600を用いて成分分析を行った図5(a)と同じ試料の同じ部分についての同じ倍率での写真である。図5(b)では、触媒層3中に含まれるFeによって触媒層3の部分が白く見えている。すなわち、図5(b)で白く見える部分が触媒層3の部分である。また、図6に、図5(a)の排気ガス浄化触媒の積層構造を概略的に描写して示す。図6において、担体1の内面上に、触媒層1(図中の符号11)、触媒層2(符号12)、触媒層3(符号13)の順に形成されている。なお触媒層1の下地にアルミナの層14が形成されている。
FIG. 5 shows a photomicrograph showing the laminated structure of the exhaust gas purifying catalyst of Example 5. 5 (a) and 5 (b) are micrographs of the same part, and FIG. 5 (a) is a photograph using a scanning microscope (FE-SEM) S-4000 manufactured by Hitachi High-Tech, FIG. 5 (b). ) Is a photograph at the same magnification of the same part of the same sample as FIG. 5 (a), which was subjected to component analysis using an electron beam microanalyzer (EPMA) EPMA-1600 manufactured by Shimadzu Corporation. In FIG. 5B, the portion of the catalyst layer 3 appears white due to Fe contained in the catalyst layer 3. That is, the portion that looks white in FIG. 5B is the portion of the catalyst layer 3. FIG. 6 is a schematic depiction of the stack structure of the exhaust gas purification catalyst shown in FIG. In FIG. 6, the catalyst layer 1 (reference numeral 11 in the figure), the catalyst layer 2 (reference numeral 12), and the catalyst layer 3 (reference numeral 13) are formed on the inner surface of the carrier 1 in this order. An alumina layer 14 is formed on the base of the catalyst layer 1.

次に、図4(b)の触媒層に相当する、積層された触媒層が合計3層からなる排気ガス浄化触媒として、実施例10及び11の排気ガス浄化触媒を以下の工程により作成した。   Next, exhaust gas purification catalysts of Examples 10 and 11 were prepared by the following steps as exhaust gas purification catalysts having a total of three stacked catalyst layers corresponding to the catalyst layer of FIG.

(実施例10)
実施例10は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、この触媒層3に含まれるバインダがアルミナである。
(Example 10)
Example 10 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer 2 in which the catalyst layer 2 contains Rh, and a catalyst layer 3 in which the oxide of Fe is contained. The binder is alumina.

工程は、実施例5のスラリーC中のジルコニアゾルをアルミナゾルに変えた以外は実施例5と同じである。   The process is the same as that of Example 5 except that the zirconia sol in the slurry C of Example 5 is changed to alumina sol.

(実施例11)
実施例11は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、この触媒層3にバインダを含まないものである。
(Example 11)
Example 11 is an example where the catalyst layer 1 includes a catalyst layer containing Pd, the catalyst layer 2 includes a catalyst layer including Rh, and the catalyst layer 3 includes an oxide of Fe. It is not included.

工程は、実施例5のスラリーC中のジルコニアゾルを無くした以外は実施例5と同じである。   The process is the same as that of Example 5 except that the zirconia sol in the slurry C of Example 5 is eliminated.

以上述べた実施例10及び11の排気ガス浄化触媒について、排気ガス浄化性能を、耐久試験の前後でそれぞれ調べた。耐久試験及び排気ガス浄化性能の評価は、前述したのと同じである。   Regarding the exhaust gas purification catalysts of Examples 10 and 11 described above, the exhaust gas purification performance was examined before and after the durability test, respectively. The durability test and the evaluation of the exhaust gas purification performance are the same as described above.

上記実施例10及び11の排気ガス浄化触媒の耐久試験前後の50%転化率温度を、これらの実施例との対比のために示す前述の実施例5及び比較例6と、各実施例及び比較例の排気ガス浄化触媒における各触媒層の貴金属種又は酸化物の金属種と、各実施例の触媒層3のバインダの種類と共に表3に示す。表3から、Feの酸化物を含む触媒層中にバインダを含まない実施例11は、Feの酸化物を含む触媒層を有しない比較例6よりは優れるが、比較例6とあまり変わらない性能であった。これは、耐久後はバインダがないと剥離するため、転化率が低かったものである。また、バインダがアルミナである実施例10は、比較例6よりも優れた性能が得られた。この実施例10と実施例5と対比すると、バインダがAl2O3である実施例10よりもバインダがZrO2である実施例5のほうが効果が高かった。これは、バインダがAl2O3である実施例10は、遷移元素がAl2O3に固溶するため実施例5よりも効果が低かったものである。
The above-mentioned Example 5 and Comparative Example 6 showing the 50% conversion temperature before and after the endurance test of the exhaust gas purification catalysts of Examples 10 and 11 above for comparison with these Examples, each Example and Comparison Table 3 shows the noble metal species or oxide metal species of each catalyst layer in the exhaust gas purifying catalyst of the example and the binder type of the catalyst layer 3 of each example. From Table 3, Example 11, which does not contain a binder in the catalyst layer containing Fe oxide, is superior to Comparative Example 6 that does not have a catalyst layer containing Fe oxide, but is not much different from Comparative Example 6. Met. This is a low conversion rate because it peels off after the endurance without a binder. Further, in Example 10 in which the binder was alumina, performance superior to that of Comparative Example 6 was obtained. In contrast to Example 10 and Example 5, Example 5 in which the binder was ZrO 2 was more effective than Example 10 in which the binder was Al 2 O 3 . This is because Example 10 in which the binder was Al 2 O 3 was less effective than Example 5 because the transition element was dissolved in Al 2 O 3 .

次に、図4(b)の触媒層に相当する、積層された触媒層が合計3層からなる排気ガス浄化触媒として、実施例12〜16の排気ガス浄化触媒を以下の工程により作成した。   Next, the exhaust gas purification catalysts of Examples 12 to 16 were prepared by the following steps as exhaust gas purification catalysts corresponding to the catalyst layer of FIG.

(実施例12)
実施例12は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3に酸素吸放出材としてCeO2が含まれる例である。
(Example 12)
Example 12 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer 2 in which the catalyst layer 2 contains Rh, and a catalyst layer 3 in which the oxide of Fe is contained. This is an example in which CeO 2 is contained as an oxygen storage / release material.

工程は、実施例5の触媒スラリーCについて、酸化鉄175[g]、セリア50[g]、ジルコニアゾル25[g]、水240[g]、硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーCを得た以外は実施例5と同じである。   In the process, for catalyst slurry C of Example 5, iron oxide 175 [g], ceria 50 [g], zirconia sol 25 [g], water 240 [g], and nitric acid 10 [g] were charged into a magnetic ball mill, Example 5 is the same as Example 5 except that the catalyst slurry C is obtained by mixing and grinding.

(実施例13)
実施例13は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3に酸素吸放出材としてCe−Zr−Oxが含まれる例である。
(Example 13)
Example 13 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer in which the catalyst layer 2 contains Rh, and a catalyst layer in which the catalyst layer 3 contains an oxide of Fe. This is an example in which Ce—Zr—Ox is included as an oxygen storage / release material.

工程は、実施例12のCeO2をCe−Zr−Oxと変えた以外は実施例12と同じである。 The process is the same as that of Example 12 except that CeO 2 of Example 12 is changed to Ce—Zr—Ox.

(実施例14)
実施例14は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3に酸素吸放出材としてCe−Pr−Oxが含まれる例である。
(Example 14)
Example 14 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer in which the catalyst layer 2 contains Rh, a catalyst layer in which the catalyst layer 3 contains an oxide of Fe, and the catalyst layer 3 includes In this example, Ce—Pr—Ox is included as the oxygen storage / release material.

工程は、実施例12のCeO2をCe−Pr−Oxと変えた以外は実施例12と同じである。 The process is the same as that of Example 12 except that CeO 2 of Example 12 is changed to Ce—Pr—Ox.

(実施例15)
実施例15は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3に酸素吸放出材としてCe−Zr−Nd−Oxが含まれる例である。
(Example 15)
Example 15 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer 2 in which the catalyst layer 2 contains Rh, and a catalyst layer 3 in which the oxide of Fe is contained. This is an example in which Ce—Zr—Nd—Ox is contained as an oxygen storage / release material.

工程は、実施例12のCeO2をCe−Zr−Nd−Oxと変えた以外は実施例12と同じである。 The process is the same as that of Example 12 except that CeO 2 of Example 12 is changed to Ce—Zr—Nd—Ox.

(実施例16)
実施例16は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3に酸素吸放出材としてCe−Zr−Y−Oxが含まれる例である。
(Example 16)
Example 16 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer 2 in which the catalyst layer 2 contains Rh, and a catalyst layer 3 in which the oxide of Fe is contained. This is an example in which Ce—Zr—Y—Ox is contained as an oxygen storage / release material.

工程は、実施例12のCeO2をCe−Zr−Y−Oxと変えた以外は実施例12と同じである。 The process is the same as that of Example 12 except that CeO 2 of Example 12 is changed to Ce—Zr—Y—Ox.

以上述べた実施例10及び11の排気ガス浄化触媒について、排気ガス浄化性能を、耐久試験の前後でそれぞれ調べた。耐久試験及び排気ガス浄化性能の評価は、前述したのと同じである。   Regarding the exhaust gas purification catalysts of Examples 10 and 11 described above, the exhaust gas purification performance was examined before and after the durability test, respectively. The durability test and the evaluation of the exhaust gas purification performance are the same as described above.

上記実施例12〜16の排気ガス浄化触媒の耐久試験前後の50%転化率温度を、これらの実施例との対比のために示す前述の実施例5と、各実施例の排気ガス浄化触媒における各触媒層の貴金属種又は酸化物の金属種と、各実施例の触媒層3中の酸素吸放出材の種類と共に表4に示す。表4から、Feの酸化物を含む触媒層中に酸素吸放出材を含む実施例12〜16は、酸素吸放出材を含まない実施例5よりも優れた転化率を示した。
In the exhaust gas purification catalyst of each of the above-mentioned Examples 5 and 10 showing the 50% conversion temperatures before and after the endurance test of the exhaust gas purification catalysts of Examples 12 to 16 above for comparison with these Examples. Table 4 shows the noble metal species or oxide metal species of each catalyst layer and the types of oxygen storage / release materials in the catalyst layer 3 of each example. From Table 4, Examples 12-16 which contain an oxygen absorption-release material in the catalyst layer containing the oxide of Fe showed the conversion rate superior to Example 5 which does not contain an oxygen absorption-release material.

次に、図4(b)の触媒層に相当する、積層された触媒層が合計3層からなる排気ガス浄化触媒として、実施例17の排気ガス浄化触媒を以下の工程により作成した。   Next, an exhaust gas purification catalyst of Example 17 was prepared by the following steps as an exhaust gas purification catalyst corresponding to the catalyst layer of FIG.

(実施例17)
実施例17は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であり、この触媒層1及び触媒層2に用いられる粉末が、貴金属と、該貴金属と接触し貴金属の移動を抑制する働きを持つ化合物と、該貴金属と該化合物を覆い該貴金属の移動を抑制し、かつ、化合物同士の接触による凝集を抑制する酸化物と、からなる例である。
(Example 17)
Example 17 is an example of a catalyst layer in which the catalyst layer 1 includes Pd, a catalyst layer in which the catalyst layer 2 includes Rh, and a catalyst layer in which the catalyst layer 3 includes an oxide of Fe. The powder used in the above is a precious metal, a compound that comes into contact with the precious metal and has a function of suppressing the movement of the precious metal, covers the precious metal and the compound, suppresses the movement of the precious metal, and aggregates due to contact between the compounds. It is an example which consists of the oxide to suppress.

比表面積80[m2/g]のCe、La含有ZrO2粉末に硝酸Pd溶液を担持濃度がPdとして3.2[wt%]となるように担持した。これを150[℃]で一昼夜乾燥後、400[℃]で1時間焼成して、Pd(3.2[wt%])/Ce、Zr含有ZrO2粉末Gを得た。この粉末Gを粉砕し、平均粒子径(D50)200nmのPd/Ce、La−ZrO2粉末とした。一方、ベーマイトと硝酸と水とを混合し、1[hr]撹拌した。この中に上記Pd/Ce、La−ZrO2粉末をゆっくりと投入し、更に2[hr]撹拌した。次いで、減圧下、80[℃]で3[hr]乾燥した後、550[℃]で3[hr]、空気中で焼成し、粉末Hを得た。この粉末H中の粉末GとAl2O3との比は50:50である。 A Ce and La-containing ZrO 2 powder having a specific surface area of 80 [m 2 / g] was loaded with a Pd nitrate solution so that the loading concentration was 3.2 wt% as Pd. This was dried at 150 [° C.] for a whole day and night and then calcined at 400 [° C.] for 1 hour to obtain Pd (3.2 [wt%]) / Ce, Zr-containing ZrO 2 powder G. This powder G was pulverized to obtain a Pd / Ce, La-ZrO 2 powder having an average particle diameter (D 50 ) of 200 nm. On the other hand, boehmite, nitric acid and water were mixed and stirred for 1 [hr]. The Pd / Ce and La-ZrO 2 powders were slowly put into this and further stirred for 2 [hr]. Next, after drying for 3 [hr] at 80 [° C.] under reduced pressure, the powder was baked in air at 550 [° C.] for 3 [hr] to obtain powder H. The ratio of powder G to Al 2 O 3 in this powder H is 50:50.

この粉末Hを225[g]、アルミナゾル25[g]、水240[g]、硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。得られたスラリーをコーディエライト質モノリス担体(0.12[L]、400セル)に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130[℃]で乾燥した後、400[℃]で1時間焼成し、コート層150[g/L]の触媒層1を得た。   This powder H was charged with 225 [g], alumina sol 25 [g], water 240 [g], and nitric acid 10 [g] into a magnetic ball mill, and mixed and ground to obtain a catalyst slurry. The obtained slurry was attached to a cordierite monolith support (0.12 [L], 400 cells), and the excess slurry in the cells was removed by air flow and dried at 130 [° C.], and then 400 [° C.]. Was fired for 1 hour to obtain a catalyst layer 1 having a coat layer of 150 [g / L].

次に、比表面積70[m2/g]のLa含有ZrO2粉末に硝酸Rh液を担持濃度がRhとして0.8wt%となるように担持した。これを150[℃]で一昼夜乾燥後、400[℃]で1時間焼成して、Rh(0.8wt%)/La−ZrO2x粉末Iを得た。この粉末Iを粉砕し、平均粒子径(D50)160nmのRh/La−ZrO2粉末とした。一方、ベーマイトと水とを混合し、1[hr]撹拌した。この中に上記粉末Iをゆっくりと投入し、更に2[hr]撹拌した。次いで減圧下、80[℃]で3[hr]乾燥した後、550[℃]で3[hr]、空気中で焼成し、粉末Jを得た。この粉末J中の粉末IとAl2O3との比は50:50である。 Next, a Rh nitrate solution was supported on La-containing ZrO 2 powder having a specific surface area of 70 [m 2 / g] so that the supported concentration was 0.8 wt% as Rh. This was dried at 150 [° C.] for a whole day and night and then calcined at 400 [° C.] for 1 hour to obtain Rh (0.8 wt%) / La—ZrO 2 x powder I. This powder I was pulverized into Rh / La-ZrO 2 powder having an average particle diameter (D 50 ) of 160 nm. On the other hand, boehmite and water were mixed and stirred for 1 [hr]. The powder I was slowly put into this and further stirred for 2 [hr]. Subsequently, after drying for 3 [hr] at 80 [° C.] under reduced pressure, the powder was fired at 550 [° C.] for 3 [hr] in air to obtain powder J. The ratio of the powder I in this powder J to Al 2 O 3 is 50:50.

この粉末Jを225[g]、アルミナゾル25[g]、水240[g]、硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。この触媒スラリーを触媒層1上に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130[℃]で乾燥した後、400[℃]で1時間焼成し、コート層50[g/L]の触媒層2を得た。   This powder J was charged with 225 [g], alumina sol 25 [g], water 240 [g], and nitric acid 10 [g] in a magnetic ball mill, and mixed and ground to obtain a catalyst slurry. This catalyst slurry was deposited on the catalyst layer 1, the excess slurry in the cell was removed by air flow, dried at 130 [° C.], and then calcined at 400 [° C.] for 1 hour, and the coating layer 50 [g / L] catalyst layer 2 was obtained.

次に、酸化鉄225[g]、ジルコニアゾル25[g]、水240[g]、硝酸10[g]を磁性ボールミルに投入し、混合粉砕し触媒スラリーを得た。この触媒スラリーを触媒層2上に付着させ、空気流にてセル内の余剰のスラリーを取り除いて130[℃]で乾燥した後、400[℃]で1時間焼成し、コート層30[g/L]の触媒層を得た。   Next, iron oxide 225 [g], zirconia sol 25 [g], water 240 [g], and nitric acid 10 [g] were charged into a magnetic ball mill, mixed and ground to obtain a catalyst slurry. This catalyst slurry was deposited on the catalyst layer 2, the excess slurry in the cell was removed by air flow, dried at 130 [° C.], and then calcined at 400 [° C.] for 1 hour, and the coating layer 30 [g / L] catalyst layer was obtained.

上記実施例17の排気ガス浄化触媒の耐久試験前後の50%転化率温度及び耐久試験前後の貴金属粒子径を、これらの実施例との対比のために示す前述の実施例5についての耐久温度を種々に変えて耐久試験を行い、貴金属粒子径を変化させた例と、各実施例の排気ガス浄化触媒における各触媒層の貴金属種又は酸化物の金属種と、各実施例の耐久温度と、各実施例の耐久後の貴金属粒子径と共に表5に示す。また、表5の結果に基づく、耐久後の貴金属粒子径とHC50%転化率温度との関係について図7にグラフで示す。貴金属粒子径はTEMにより測定した粒子径の平均値とした。   The endurance temperature of Example 5 is shown in order to compare the 50% conversion temperature before and after the endurance test of the exhaust gas purification catalyst of Example 17 and the noble metal particle diameter before and after the endurance test. Various examples of endurance tests were performed, the noble metal particle diameter was changed, the noble metal species or oxide metal species of each catalyst layer in the exhaust gas purification catalyst of each example, the durability temperature of each example, It shows in Table 5 with the noble metal particle diameter after durability of each Example. FIG. 7 is a graph showing the relationship between the noble metal particle diameter after durability and the HC50% conversion temperature based on the results in Table 5. The noble metal particle diameter was an average value of the particle diameter measured by TEM.

表5から、この触媒層1及び触媒層2に用いられる粉末が、貴金属と、該貴金属と接触し貴金属の移動を抑制する働きを持つ化合物と、該貴金属と該化合物を覆い該貴金属の移動を抑制し、かつ、化合物同士の接触による凝集を抑制する酸化物とからなる実施例17は、実施例5と比べると耐久試験後の貴金属粒子径が小さく維持されていて、耐久後においても実施例5よりも優れた転化率を示した。また、図7のグラフより、貴金属の平均粒子径が20[nm]以下であることにより、特に優れた排気ガス浄化性能を示すことが明らかとなった。
From Table 5, the powder used for the catalyst layer 1 and the catalyst layer 2 is a noble metal, a compound that comes into contact with the noble metal and has a function of suppressing the movement of the noble metal, and the movement of the noble metal covering the noble metal and the compound. In Example 17, consisting of an oxide that suppresses and suppresses aggregation due to contact between compounds, the noble metal particle diameter after the durability test is kept small compared to Example 5, and even after the endurance example A conversion better than 5 was shown. Further, from the graph of FIG. 7, it was revealed that particularly excellent exhaust gas purification performance is exhibited when the average particle diameter of the noble metal is 20 [nm] or less.

次に、図4(b)の触媒層に相当する、積層された触媒層が合計3層からなる排気ガス浄化触媒として、実施例18〜20の排気ガス浄化触媒を以下の工程により作成した。   Next, exhaust gas purification catalysts of Examples 18 to 20 were prepared by the following steps as exhaust gas purification catalysts corresponding to the catalyst layer of FIG.

(実施例18)
実施例18は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3の厚さが15[μm]である例である。
(Example 18)
Example 18 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer in which the catalyst layer 2 contains Rh, a catalyst layer in which the catalyst layer 3 contains an oxide of Fe, and In this example, the thickness is 15 [μm].

工程は、実施例5におけるスラリーCの付着量を変え、コート層25[g/L]の触媒層を得た以外は実施例5と同じである。   The process is the same as that of Example 5 except that the adhesion amount of slurry C in Example 5 was changed and a catalyst layer of coat layer 25 [g / L] was obtained.

(実施例19)
実施例19は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3の厚さが25[μm]である例である。
(Example 19)
Example 19 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer in which the catalyst layer 2 contains Rh, and a catalyst layer in which the catalyst layer 3 contains an oxide of Fe. In this example, the thickness is 25 [μm].

工程は、実施例5のスラリーCの付着量を変え、コート層40[g/L]の触媒層を得た以外は実施例5と同じである。   The process is the same as that of Example 5 except that the amount of the slurry C of Example 5 is changed and a catalyst layer of the coat layer 40 [g / L] is obtained.

(実施例20)
実施例20は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3の厚さが30[μm]である例である。
(Example 20)
Example 20 is an example of a catalyst layer in which the catalyst layer 1 includes Pd, a catalyst layer in which the catalyst layer 2 includes Rh, a catalyst layer in which the catalyst layer 3 includes an oxide of Fe, and In this example, the thickness is 30 [μm].

工程は、実施例5のスラリーCの付着量を変え、コート層50[g/L]の触媒層を得た以外は実施例5と同じである。   The process is the same as that of Example 5 except that the amount of the slurry C deposited in Example 5 was changed and a catalyst layer of a coat layer 50 [g / L] was obtained.

上記実施例18〜20の排気ガス浄化触媒の耐久試験前の50%転化率温度を、これらの実施例との対比のために示す前述の実施例5についての耐久試験前50%転化率と、各実施例の排気ガス浄化触媒における各触媒層の貴金属種又は酸化物の金属種と、各実施例の触媒層3の厚さと共に表6に示す。また、表6の結果に基づく、触媒層3の厚さとHC50%転化率温度との関係について図8にグラフで示す。   The 50% conversion rate temperature before the endurance test of the exhaust gas purifying catalysts of the above Examples 18 to 20 is shown for comparison with these examples, and the 50% conversion rate before the endurance test for Example 5 described above, Table 6 shows the noble metal species or oxide metal species of each catalyst layer in the exhaust gas purifying catalyst of each example and the thickness of the catalyst layer 3 of each example. Further, the relationship between the thickness of the catalyst layer 3 and the HC50% conversion temperature based on the results of Table 6 is shown in a graph in FIG.

表6から、この触媒層3の厚さが20[μm]以下である実施例5及び実施例18は、触媒層3の厚さが20[μm]を超える実施例19及び実施例20よりも、50%転化率温度が低かった。また、図8のグラフより、触媒層3の厚さが20[μm]以下であることにより、特に優れた排気ガス浄化性能を示すことが明らかとなった。
From Table 6, Example 5 and Example 18 in which the thickness of the catalyst layer 3 is 20 [μm] or less are more than Examples 19 and 20 in which the thickness of the catalyst layer 3 exceeds 20 [μm]. 50% conversion temperature was low. Further, from the graph of FIG. 8, it became clear that particularly excellent exhaust gas purification performance is exhibited when the thickness of the catalyst layer 3 is 20 [μm] or less.

次に、図4(b)の触媒層に相当する、積層された触媒層が合計3層からなる排気ガス浄化触媒として、実施例21〜23の排気ガス浄化触媒を以下の工程により作成した。   Next, exhaust gas purification catalysts of Examples 21 to 23 were prepared by the following steps as exhaust gas purification catalysts corresponding to the catalyst layer of FIG.

(実施例21)
実施例21は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3に含まれるFeの酸化物の平均粒径が1.5[μm]である例である。
(Example 21)
Example 21 is an example in which the catalyst layer 1 contains Pd, the catalyst layer 2 contains Rh, the catalyst layer 3 contains Fe oxide, and the catalyst layer 3 includes This is an example in which the average particle size of the contained Fe oxide is 1.5 [μm].

工程は、混合粉砕条件を変えることにより実施例5のスラリーCのスラリー平均粒子径を0.7[μm]から1.5[μm]に変えた以外は実施例5と同じである。   The process is the same as that of Example 5 except that the slurry average particle size of the slurry C of Example 5 was changed from 0.7 [μm] to 1.5 [μm] by changing the mixing and grinding conditions.

(実施例22)
実施例22は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3に含まれるFeの酸化物の平均粒径が2[μm]である例である。
(Example 22)
Example 22 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer in which the catalyst layer 2 contains Rh, and a catalyst layer in which the catalyst layer 3 contains an oxide of Fe. This is an example in which the average particle size of the contained oxide of Fe is 2 [μm].

工程は、混合粉砕条件を変えることにより実施例5のスラリーCのスラリー平均粒子径を0.7[μm]から2[μm]に変えた以外は実施例5と同じである。   The process is the same as that of Example 5 except that the slurry average particle size of the slurry C of Example 5 was changed from 0.7 [μm] to 2 [μm] by changing the mixing and grinding conditions.

(実施例23)
実施例23は、触媒層1がPdを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であって、かつ、この触媒層3に含まれるFeの酸化物の平均粒径が2.8[μm]である例である。
(Example 23)
Example 23 is an example of a catalyst layer in which the catalyst layer 1 contains Pd, a catalyst layer 2 in which the catalyst layer 2 contains Rh, and a catalyst layer 3 in which the oxide of Fe is contained. This is an example in which the average particle diameter of the oxide of Fe contained is 2.8 [μm].

工程は、混合粉砕条件を変えることにより実施例5のスラリーCのスラリー平均粒子径を0.7[μm]から2.8[μm]に変えた以外は実施例5と同じである
上記実施例21〜23の排気ガス浄化触媒の耐久試験前の50%転化率温度を、これらの実施例との対比のために示す前述の実施例5についての耐久試験前50%転化率と、各実施例の排気ガス浄化触媒における各触媒層の貴金属種又は酸化物の金属種と、各実施例の触媒層3中の酸化物の平均粒子径と共に表7に示す。また、表7の結果に基づく、触媒層3中の遷移全素の酸化物の平均粒子径とHC50%転化率温度との関係について図9にグラフで示す。
The process is the same as Example 5 except that the average particle size of slurry C of Example 5 was changed from 0.7 [μm] to 2.8 [μm] by changing the mixing and grinding conditions. The 50% conversion temperature before the endurance test of the exhaust gas purification catalyst is shown for comparison with these examples, and the 50% conversion before the endurance test for the above-mentioned Example 5 and the exhaust gas purification of each example Table 7 shows the noble metal species or oxide metal species of each catalyst layer in the catalyst and the average particle diameter of the oxide in the catalyst layer 3 of each Example. FIG. 9 is a graph showing the relationship between the average particle diameter of the transition oxide in the catalyst layer 3 and the HC50% conversion temperature based on the results in Table 7.

表7から、この触媒層3中の遷移元素の酸化物の平均粒子径が2[μm]以下である実施例5、実施例21及び実施例22は、その平均粒子径が2[μm]を超える実施例23よりも、50%転化率温度が低かった。また、図9のグラフより、触媒層3の厚さが20[μm]以下であることにより、特に優れた排気ガス浄化性能を示すことが明らかとなった。
From Table 7, Example 5, Example 21 and Example 22 in which the average particle diameter of the oxide of the transition element in the catalyst layer 3 is 2 [μm] or less are 2 [μm]. More than Example 23, the 50% conversion temperature was lower. Further, from the graph of FIG. 9, it became clear that particularly excellent exhaust gas purification performance is exhibited when the thickness of the catalyst layer 3 is 20 μm or less.

次に、空燃比を変化させた条件の下での本発明の排気ガス浄化触媒の性能を評価するために、実施例24〜29及び比較例8の排気ガス浄化触媒を、以下の工程により作成した。   Next, in order to evaluate the performance of the exhaust gas purification catalyst of the present invention under the condition where the air-fuel ratio is changed, the exhaust gas purification catalysts of Examples 24-29 and Comparative Example 8 are prepared by the following steps. did.

(実施例24)
実施例24は、触媒層1がPtを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であり、かつ、NOxを吸着する化合物としてCaを触媒層中に含む例である。
(Example 24)
Example 24 is an example of a catalyst layer in which the catalyst layer 1 contains Pt, a catalyst layer 2 in which the catalyst layer 2 contains Rh, a catalyst layer 3 in which the catalyst layer 3 contains Fe oxide, and a compound that adsorbs NOx. In this example, Ca is contained in the catalyst layer.

工程は、実施例9で得た、担体上に合計3層の触媒層を有する触媒に、酢酸BaをBaOとして25[g/L]となるように含浸した。これを130[℃]で乾燥した後、400[℃]で1時間焼成し、実施例24の触媒を得た。   In the step, the catalyst obtained in Example 9 and having a total of three catalyst layers on the support was impregnated with Ba acetate as BaO to 25 [g / L]. This was dried at 130 [° C.] and then calcined at 400 [° C.] for 1 hour to obtain a catalyst of Example 24.

(実施例25)
実施例25は、触媒層1がPtを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であり、かつ、NOxを吸着する化合物としてMgを触媒層中に含む例である。
(Example 25)
Example 25 is an example in which the catalyst layer 1 is a catalyst layer containing Pt, the catalyst layer 2 is a catalyst layer containing Rh, the catalyst layer 3 is a catalyst layer containing Fe oxide, and a compound that adsorbs NOx. In this example, Mg is contained in the catalyst layer.

工程は、実施例9で得た、担体上に合計3層の触媒層を有する触媒に、酢酸MgをMgOとして5[g/L]となるように含浸した。これを130[℃]で乾燥した後、400[℃]で1時間焼成し、実施例25の触媒を得た。   In the step, the catalyst obtained in Example 9 and having a total of three catalyst layers on the support was impregnated with Mg acetate as MgO so as to be 5 [g / L]. This was dried at 130 [° C.] and then calcined at 400 [° C.] for 1 hour to obtain a catalyst of Example 25.

(実施例26)
実施例26は、触媒層1がPtを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であり、かつ、NOxを吸着する化合物としてCaを触媒層中に含む例である。
(Example 26)
Example 26 is an example of a catalyst layer in which the catalyst layer 1 contains Pt, a catalyst layer 2 in which the catalyst layer 2 contains Rh, a catalyst layer 3 in which the catalyst layer 3 contains Fe oxide, and a compound that adsorbs NOx. In this example, Ca is contained in the catalyst layer.

工程は、実施例9で得た、担体上に合計3層の触媒層を有する触媒に、酢酸CaをCaOとして25[g/L]となるように含浸した。これを130[℃]で乾燥した後、400[℃]で1時間焼成し、実施例26の触媒を得た。   In the process, the catalyst obtained in Example 9 and having a total of three catalyst layers on the support was impregnated with Ca acetate as CaO so as to be 25 [g / L]. This was dried at 130 [° C.] and then calcined at 400 [° C.] for 1 hour to obtain a catalyst of Example 26.

(実施例27)
実施例27は、触媒層1がPtを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であり、かつ、NOxを吸着する化合物としてNaを触媒層中に含む例である。
(Example 27)
Example 27 is an example of a catalyst layer in which the catalyst layer 1 contains Pt, a catalyst layer 2 in which the catalyst layer 2 contains Rh, a catalyst layer 3 in which the catalyst layer 3 contains Fe oxide, and a compound that adsorbs NOx. In this example, Na is contained in the catalyst layer.

工程は、実施例9で得た、担体上に合計3層の触媒層を有する触媒に、酢酸NaをNa2Oとして5[g/L]となるように含浸した。これを130[℃]で乾燥した後、400[℃]で1時間焼成し、実施例27の触媒を得た。 In the step, the catalyst having a total of three catalyst layers on the support obtained in Example 9 was impregnated with Na acetate as Na 2 O so as to be 5 [g / L]. This was dried at 130 [° C.] and calcined at 400 [° C.] for 1 hour to obtain a catalyst of Example 27.

(実施例28)
実施例28は、触媒層1がPtを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であり、かつ、NOxを吸着する化合物としてCsを触媒層中に含む例である。
(Example 28)
Example 28 is an example of a catalyst layer in which the catalyst layer 1 contains Pt, a catalyst layer 2 in which the catalyst layer 2 contains Rh, a catalyst layer 3 in which the catalyst layer 3 contains Fe oxide, and a compound that adsorbs NOx. In this example, Cs is contained in the catalyst layer.

工程は、実施例9で得た、担体上に合計3層の触媒層を有する触媒に、酢酸CsをCs2Oとして20[g/L]となるように含浸した。これを130[℃]で乾燥した後、400[℃]で1時間焼成し、実施例28の触媒を得た。 In the process, the catalyst obtained in Example 9 and having a total of three catalyst layers on the support was impregnated with Cs acetate as Cs 2 O to 20 [g / L]. This was dried at 130 [° C.] and then calcined at 400 [° C.] for 1 hour to obtain a catalyst of Example 28.

(実施例29)
実施例29は、触媒層1がPtを含む触媒層、触媒層2がRhを含む触媒層、触媒層3がFeの酸化物を含む触媒層の例であり、かつ、NOxを吸着する化合物としてBa及びMgを触媒層中に含む例である。
(Example 29)
Example 29 is an example of a catalyst layer in which the catalyst layer 1 contains Pt, a catalyst layer 2 in which the catalyst layer 2 contains Rh, a catalyst layer 3 in which the oxide of Fe is present, and a compound that adsorbs NOx. In this example, Ba and Mg are included in the catalyst layer.

工程は、実施例9で得た、担体上に合計3層の触媒層を有する触媒に、酢酸Baと酢酸Mgの混合溶液をBaOとして20[g/L]、MgOとして5[g/L]となるように含浸した。これを130[℃]で乾燥した後、400[℃]で1時間焼成し、実施例29の触媒を得た。   In the process, the catalyst having a total of three catalyst layers on the support obtained in Example 9, a mixed solution of Ba acetate and Mg acetate as BaO was 20 [g / L], and MgO was 5 [g / L]. Impregnation was performed. This was dried at 130 [° C.] and then calcined at 400 [° C.] for 1 hour to obtain a catalyst of Example 29.

(比較例8)
比較例8は、触媒層1がPtを含む触媒層、触媒層2がRhを含む触媒層であり、かつ、NOxを吸着する化合物としてBa及びMgを触媒層中に含んでいる。しかし、Feの酸化物を含む触媒層を有していない例である。
(Comparative Example 8)
In Comparative Example 8, the catalyst layer 1 is a catalyst layer containing Pt, the catalyst layer 2 is a catalyst layer containing Rh, and Ba and Mg are contained in the catalyst layer as compounds that adsorb NOx. However, this is an example that does not have a catalyst layer containing an oxide of Fe.

工程は、比較例7で得た、担体上に合計2層の触媒層を有する触媒に、酢酸BaをBaOとして25[g/L]となるように含浸した。これを130[℃]で乾燥した後、400[℃]で1時間焼成し、比較例8の触媒を得た。   In the process, the catalyst obtained in Comparative Example 7 having a total of two catalyst layers on the support was impregnated with Ba acetate as BaO to 25 [g / L]. This was dried at 130 [° C.] and then calcined at 400 [° C.] for 1 hour to obtain a catalyst of Comparative Example 8.

上記実施例24〜29及び比較例8の排気ガス浄化触媒について、排気ガス浄化性能を調べた。この排気ガス浄化性能の評価は、排気量3500[cc]のガソリンエンジンの排気系に触媒を担持した担体を装着し、触媒入口温度を700℃とし、50時間運転する耐久試験を行った後に、排気量2000[cc]のガソリンエンジンの排気系に当該触媒を担持した担体を装着して、温度:300[℃]〜350[℃]で、リーン条件(A/F=25)で40[sec]後にリッチ条件で(A/F=11)2secの運転を行い、この区間におけるNOxの排気浄化率を求めた。   With respect to the exhaust gas purification catalysts of Examples 24 to 29 and Comparative Example 8, the exhaust gas purification performance was examined. The exhaust gas purification performance was evaluated by attaching a carrier carrying a catalyst to the exhaust system of a gasoline engine with a displacement of 3500 [cc], setting the catalyst inlet temperature to 700 ° C., and conducting a durability test for 50 hours. A carrier carrying the catalyst is mounted on the exhaust system of a 2000 cc gasoline engine, and the temperature is 300 [° C] to 350 [° C] and the lean condition (A / F = 25) is 40 [sec. After that, operation was performed for 2 seconds under rich conditions (A / F = 11), and the NOx exhaust purification rate in this section was obtained.

上記実施例24〜29及び比較例8のNOxの排気浄化率を、各実施例及び比較例の排気ガス浄化触媒における各触媒層の貴金属種又は酸化物の金属種と、各実施例及び比較例の触媒層3中の酸化物の平均粒子径と、各実施例及び比較例の排気ガス浄化触媒中に含まれるNOx吸収材種と共に表8に示す。表8から、NOx吸着剤である化合物を含む実施例24〜29は、リーン条件においても優れた排気ガス浄化性能を有していた。これに対して、NOx吸着剤である化合物を含むものの、遷移元素の酸化物を含む触媒層を有していない比較例8は、実施例24〜29よりもNOx浄化率が劣っていた。
The exhaust gas purification rates of NOx in Examples 24 to 29 and Comparative Example 8 are the same as the noble metal species or oxide metal species of each catalyst layer in the exhaust gas purification catalysts of each Example and Comparative Example, and each Example and Comparative Example. Table 8 shows the average particle diameter of the oxide in the catalyst layer 3 and the NOx absorbent material types contained in the exhaust gas purifying catalysts of the examples and comparative examples. From Table 8, Examples 24-29 containing the compound which is a NOx adsorbent had excellent exhaust gas purification performance even under lean conditions. On the other hand, although the compound which is a NOx adsorbent was included, the comparative example 8 which did not have the catalyst layer containing the oxide of the transition element was inferior in the NOx purification rate than Examples 24-29.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、この実施の形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、上記実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。   As mentioned above, although the embodiment to which the invention made by the present inventors was applied has been described, the present invention is not limited by the description and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it should be added that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above embodiments are all included in the scope of the present invention.

1 担体
1a 細孔
10 排気ガス浄化触媒
11 第1の触媒層
12 第2の触媒層
13 第3の触媒層
DESCRIPTION OF SYMBOLS 1 Support | carrier 1a Pore 10 Exhaust-gas purification catalyst 11 1st catalyst layer 12 2nd catalyst layer 13 3rd catalyst layer

Claims (13)

少なくとも2層の触媒層を積層してなり、前記触媒層が、少なくともRhを含む触媒層と、{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層と、を含み、前記{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、前記少なくともRhを含む触媒層よりも上層側にあることを特徴とする排気ガス浄化触媒。   At least two catalyst layers are stacked, and the catalyst layer includes a catalyst layer containing at least Rh, and a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co}. An exhaust gas purification catalyst comprising: a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} on an upper layer side than the catalyst layer containing at least Rh. 前記{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が最表層にあることを特徴とする請求項1に記載の排気ガス浄化触媒。   2. The exhaust gas purification catalyst according to claim 1, wherein a catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is in an outermost layer. 前記少なくともRhを含む触媒層と前記{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層とが互いに接していることを特徴とする請求項2に記載の排気ガス浄化触媒。   The exhaust gas according to claim 2, wherein the catalyst layer containing at least Rh and the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} are in contact with each other. Purification catalyst. 前記{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、当該触媒層に含まれる{Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物同士を接着する効果のある化合物を更に含むことを特徴とする請求項1〜3のいずれか1項に記載の排気ガス浄化触媒。   The catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is at least one oxide selected from {Fe, Mn, Ni, Co} included in the catalyst layer. The exhaust gas purification catalyst according to any one of claims 1 to 3, further comprising a compound having an effect of adhering to the catalyst. 前記{Fe,Mn,Ni,Co}から選ばれる少なくとも1種の酸化物同士を接着する効果のある化合物が、ZrO2であることを特徴とする請求項4に記載の排気ガス浄化触媒。 The exhaust gas purification catalyst according to claim 4, wherein the compound having an effect of adhering at least one oxide selected from {Fe, Mn, Ni, Co} is ZrO 2 . 前記少なくともRhを含む触媒層及び前記{ Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層以外の触媒層が、Pt及びPdの少なくとも1種を含む触媒層であることを特徴とする請求項1〜5のいずれか1項に記載の排気ガス浄化触媒。   The catalyst layer other than the catalyst layer containing at least Rh and the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is a catalyst layer containing at least one of Pt and Pd. The exhaust gas purification catalyst according to any one of claims 1 to 5, wherein 前記{ Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層が、更に酸素吸放出能を持つ酸化物を含むことを特徴とする請求項1〜6のいずれ1項に記載の排気ガス浄化触媒。   The catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} further contains an oxide having an oxygen absorption / release capability. The exhaust gas purification catalyst according to 1. 前記酸素吸放出能を持つ酸化物が、{Ce, Pr, Nd, Y}から選ばれる少なくとも一種の酸化物からなることを特徴とする請求項7に記載の排気ガス浄化触媒。   The exhaust gas purifying catalyst according to claim 7, wherein the oxide having oxygen absorbing / releasing ability comprises at least one oxide selected from {Ce, Pr, Nd, Y}. 更に{Ba,Mg,Ca,Na,Cs}から選ばれる少なくとも一種の化合物を含むことを特徴とする請求項1〜8のいずれか1項に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to any one of claims 1 to 8, further comprising at least one compound selected from {Ba, Mg, Ca, Na, Cs}. 排気ガス浄化触媒において、貴金属の平均粒子径が20nm以下であることを特徴とする請求項1〜9のいずれか1項に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to any one of claims 1 to 9, wherein an average particle diameter of the noble metal is 20 nm or less in the exhaust gas purification catalyst. 貴金属を含む粉末が、貴金属と、該貴金属と接触し貴金属の移動を抑制する働きを持つ化合物と、該貴金属と該化合物を覆い該貴金属の移動を抑制し、かつ、化合物同士の接触による凝集を抑制する酸化物と、からなることを特徴とする請求項10に記載の排気ガス浄化触媒。   The noble metal-containing powder is in contact with the noble metal and the compound having a function of suppressing the movement of the noble metal, the noble metal and the compound are covered, the movement of the noble metal is suppressed, and aggregation due to contact between the compounds is performed. The exhaust gas purification catalyst according to claim 10, comprising an oxide to be suppressed. 前記{ Fe, Mn, Ni, Co}から選ばれる少なくとも1種の酸化物を含む触媒層の厚さが20μm以下であることを特徴とする請求項3に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to claim 3, wherein a thickness of the catalyst layer containing at least one oxide selected from {Fe, Mn, Ni, Co} is 20 µm or less. 前記{Fe,Mn,Ni,Co}から選ばれる少なくとも1種の酸化物の粒子径が2μm以下であることを特徴とする請求項1〜12のいずれか1項に記載の排気ガス浄化触媒。   The exhaust gas purification catalyst according to any one of claims 1 to 12, wherein a particle diameter of at least one oxide selected from {Fe, Mn, Ni, Co} is 2 µm or less.
JP2009077153A 2008-03-28 2009-03-26 Exhaust gas cleaning catalyst Pending JP2009255073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077153A JP2009255073A (en) 2008-03-28 2009-03-26 Exhaust gas cleaning catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008087636 2008-03-28
JP2009077153A JP2009255073A (en) 2008-03-28 2009-03-26 Exhaust gas cleaning catalyst

Publications (1)

Publication Number Publication Date
JP2009255073A true JP2009255073A (en) 2009-11-05

Family

ID=41113654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077153A Pending JP2009255073A (en) 2008-03-28 2009-03-26 Exhaust gas cleaning catalyst

Country Status (2)

Country Link
JP (1) JP2009255073A (en)
WO (1) WO2009119459A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230096A (en) * 2011-04-13 2012-11-22 Eiko:Kk Method of adsorbing radioactive cesium
WO2020067000A1 (en) * 2018-09-28 2020-04-02 ユミコア日本触媒株式会社 Exhaust gas cleaning catalyst, exhaust gas cleaning method, and method for producing exhaust gas cleaning catalyst
WO2023047892A1 (en) * 2021-09-21 2023-03-30 株式会社キャタラー Exhaust gas purification catalyst device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197446A (en) * 1990-11-29 1992-07-17 Toyota Motor Corp Catalyst for exhaust purification
JPH05285388A (en) * 1992-04-09 1993-11-02 Nissan Motor Co Ltd Catalyst for purification of exhaust gas
JPH06190279A (en) * 1992-12-24 1994-07-12 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst
JPH06198178A (en) * 1992-12-28 1994-07-19 Nissan Motor Co Ltd Catalyst for purification of exhaust gas
JPH09925A (en) * 1995-06-23 1997-01-07 Hino Motors Ltd Nox catalyst for purification of exhaust and its production
JPH10338A (en) * 1996-06-14 1998-01-06 Hitachi Ltd Purifying method for exhaust gas and catalyst
JP2000054825A (en) * 1998-08-07 2000-02-22 Nissan Motor Co Ltd SULFUR POISONING RESISTANT NOx OCCLUDING MATERIAL, AND EXHAUST GAS PURIFYING CATALYST AND EMISSION CONTROL SYSTEM USING THIS
JP2006326554A (en) * 2005-05-30 2006-12-07 Nissan Motor Co Ltd Catalyst for purifying exhaust gas, and method for producing it
JP2007229641A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and its manufacturing method
JP2007313486A (en) * 2006-05-29 2007-12-06 Cataler Corp NOx REDUCTION CATALYST, NOx REDUCTION CATALYST SYSTEM, AND NOx REDUCTION METHOD
JP2008062235A (en) * 2003-11-11 2008-03-21 Valtion Teknillinen Tutkimuskeskus Method for catalytically reducing nitrogen oxide and catalyst therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197446A (en) * 1990-11-29 1992-07-17 Toyota Motor Corp Catalyst for exhaust purification
JPH05285388A (en) * 1992-04-09 1993-11-02 Nissan Motor Co Ltd Catalyst for purification of exhaust gas
JPH06190279A (en) * 1992-12-24 1994-07-12 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst
JPH06198178A (en) * 1992-12-28 1994-07-19 Nissan Motor Co Ltd Catalyst for purification of exhaust gas
JPH09925A (en) * 1995-06-23 1997-01-07 Hino Motors Ltd Nox catalyst for purification of exhaust and its production
JPH10338A (en) * 1996-06-14 1998-01-06 Hitachi Ltd Purifying method for exhaust gas and catalyst
JP2000054825A (en) * 1998-08-07 2000-02-22 Nissan Motor Co Ltd SULFUR POISONING RESISTANT NOx OCCLUDING MATERIAL, AND EXHAUST GAS PURIFYING CATALYST AND EMISSION CONTROL SYSTEM USING THIS
JP2008062235A (en) * 2003-11-11 2008-03-21 Valtion Teknillinen Tutkimuskeskus Method for catalytically reducing nitrogen oxide and catalyst therefor
JP2006326554A (en) * 2005-05-30 2006-12-07 Nissan Motor Co Ltd Catalyst for purifying exhaust gas, and method for producing it
JP2007229641A (en) * 2006-03-01 2007-09-13 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and its manufacturing method
JP2007313486A (en) * 2006-05-29 2007-12-06 Cataler Corp NOx REDUCTION CATALYST, NOx REDUCTION CATALYST SYSTEM, AND NOx REDUCTION METHOD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230096A (en) * 2011-04-13 2012-11-22 Eiko:Kk Method of adsorbing radioactive cesium
WO2020067000A1 (en) * 2018-09-28 2020-04-02 ユミコア日本触媒株式会社 Exhaust gas cleaning catalyst, exhaust gas cleaning method, and method for producing exhaust gas cleaning catalyst
US11446639B2 (en) 2018-09-28 2022-09-20 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst, exhaust gas purification method, and production method for exhaust gas purification catalyst
WO2023047892A1 (en) * 2021-09-21 2023-03-30 株式会社キャタラー Exhaust gas purification catalyst device
JP2023045081A (en) * 2021-09-21 2023-04-03 株式会社キャタラー Exhaust gas purification catalyst device
JP7295188B2 (en) 2021-09-21 2023-06-20 株式会社キャタラー Exhaust gas purification catalyst device

Also Published As

Publication number Publication date
WO2009119459A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP3795871B2 (en) Exhaust gas purification catalyst system
KR100918336B1 (en) Exhaust gas purifying catalyst and producing method thereof
US8609578B2 (en) Exhaust gas purifying catalyst
US7816300B2 (en) Catalyst for purifying exhaust gas
JP5173180B2 (en) Exhaust gas purification catalyst
JP5176727B2 (en) Exhaust gas purification catalyst material manufacturing method and exhaust gas purification catalyst
WO2008013169A1 (en) Catalyst for exhaust gas purification
JP4631230B2 (en) Exhaust gas purification catalyst
JPWO2006103781A1 (en) Exhaust gas purification device and exhaust gas purification catalyst
JP5157068B2 (en) Hydrogen sulfide production inhibitor and exhaust gas purification catalyst
JP4573993B2 (en) Exhaust gas purification catalyst and method for producing the same
WO2009119459A1 (en) Catalyst for purification of exhaust gas
JP5391664B2 (en) Exhaust gas purification catalyst
JP4797838B2 (en) Gas purification catalyst
JP5094049B2 (en) Exhaust gas purification catalyst
JP2005279437A (en) Catalyst for purifying exhaust gas
JP2008272745A (en) Catalyst for purifying exhaust gas
JP4306625B2 (en) Catalyst for purifying automobile exhaust gas and method for producing the same
JP4980987B2 (en) Exhaust gas purification catalyst
JP2006320863A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP7228451B2 (en) Exhaust gas purification catalyst for automobiles
JP5831083B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2006110402A (en) Composite material for easily releasing carbon dioxide and catalyst for cleaning exhaust gas
JP5540521B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007090223A (en) Exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029