JP2009253632A - Image processing apparatus, image processing method, and program - Google Patents

Image processing apparatus, image processing method, and program Download PDF

Info

Publication number
JP2009253632A
JP2009253632A JP2008098614A JP2008098614A JP2009253632A JP 2009253632 A JP2009253632 A JP 2009253632A JP 2008098614 A JP2008098614 A JP 2008098614A JP 2008098614 A JP2008098614 A JP 2008098614A JP 2009253632 A JP2009253632 A JP 2009253632A
Authority
JP
Japan
Prior art keywords
color
signal
cross
vector
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008098614A
Other languages
Japanese (ja)
Inventor
Koji Nishida
幸司 西田
Mitsuyasu Asano
光康 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2008098614A priority Critical patent/JP2009253632A/en
Publication of JP2009253632A publication Critical patent/JP2009253632A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Processing Of Color Television Signals (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image processing apparatus capable of detecting up-converted cross-color interference, relating to Y/C separation, on the basis of input image signals, and to provide an image processing method and a program. <P>SOLUTION: The image processor includes: a color vector deriving part for deriving a color vector, on the basis of input color signals; a color vector holding part for holding the color vector derived by the color vector deriving part; an inner product deriving part for deriving the inner product value of the color vector, on the basis of a first color vector corresponding to a present frame derived by the color vector deriving part and a second color vector corresponding to a previous frame held in the color vector holding part; and a cross-color interference decision part for deriving the degree of occurrence of the cross-color interference, on the basis of the first vector, the second vector and the inner product value derived by the inner product deriving part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、画像処理装置、画像処理方法、およびプログラムに関する。   The present invention relates to an image processing device, an image processing method, and a program.

近年、アナログテレビジョン方式のテレビジョン放送(以下、「アナログ放送」という。)に替わるテレビジョン放送として、デジタルテレビジョン方式のテレビジョン放送(以下、「デジタル放送」という。)が開始され、デジタル放送を受信可能な表示装置の普及が進んでいる。   In recent years, digital television television broadcasting (hereinafter referred to as “digital broadcasting”) has been started as a television broadcasting that replaces analog television television broadcasting (hereinafter referred to as “analog broadcasting”). Display devices capable of receiving broadcasts are becoming widespread.

アナログ放送では、画像信号の伝送効率を高めるために輝度信号(Y)と色信号(C)とが合成されたいわゆるコンポジット信号(composite signal)が用いられる。そのため、アナログ放送では、表示装置などの受像機側において、受信した画像信号をY/C分離(Y/C separation)させることによって輝度信号(Y)と色信号(C)とに分離させ、受信した画像信号に応じた画像を表示画面に表示させている。ここで、上記受像機におけるY/C分離の性能が低い場合には、輝度信号(Y)に色信号(C)が混入することにより「ドット妨害」が発生したり、または、色信号(C)に輝度信号(Y)が混入することにより「クロスカラー妨害」が発生してしまう。ドット妨害やクロスカラー妨害は一種のノイズであるため、これらが発生した場合には画質を損ねてしまう。   In analog broadcasting, a so-called composite signal in which a luminance signal (Y) and a color signal (C) are combined is used to increase the transmission efficiency of an image signal. Therefore, in analog broadcasting, the received image signal is separated into a luminance signal (Y) and a color signal (C) by performing Y / C separation on the side of the receiver such as a display device. An image corresponding to the received image signal is displayed on the display screen. Here, when the performance of Y / C separation in the receiver is low, the color signal (C) is mixed into the luminance signal (Y), thereby causing “dot interference” or the color signal (C ) Mixed with the luminance signal (Y) causes “cross color interference”. Since dot interference and cross color interference are a kind of noise, if they occur, the image quality is impaired.

このような中、Y/C分離をより確実に行う技術が開発されている。1次元フィルタ、2次元フィルタ、および3次元フィルタを用いてY/C分離を行う技術としては、例えば、特許文献1が挙げられる。   Under such circumstances, a technique for performing Y / C separation more reliably has been developed. As a technique for performing Y / C separation using a one-dimensional filter, a two-dimensional filter, and a three-dimensional filter, for example, Patent Document 1 can be cited.

特許第3240711号明細書Japanese Patent No. 3240711

コンポジット信号が送信され受像機側においてY/C分離が行われるアナログ放送に対して、デジタル放送では、輝度信号(Y)および色信号(C)それぞれが、例えば放送局などから送信される。また、デジタル放送では、アナログ放送で用いられてきたSD(Standard Definition)解像度の画像信号ではなく、より高精細なHD(High Definition)解像度の画像信号が放送局などから送信される。ここで、デジタル放送において放送局などから送信される画像信号は、全てがHD解像度の画像信号ではなく、従来のアナログ放送で用いられてきたSD解像度の画像信号をHD解像度へとアップコンバートさせた擬似的なHD解像度の画像信号(スケーリングされた画像信号。以下、「擬似HD解像度の画像信号」とよぶ場合もある。)が含まれる場合がある。   In contrast to the analog broadcast in which the composite signal is transmitted and Y / C separation is performed on the receiver side, in the digital broadcast, each of the luminance signal (Y) and the color signal (C) is transmitted from a broadcast station or the like. In digital broadcasting, a higher definition HD (High Definition) resolution image signal is transmitted from a broadcasting station or the like instead of an SD (Standard Definition) resolution image signal used in analog broadcasting. Here, the image signals transmitted from a broadcasting station or the like in digital broadcasting are not all HD resolution image signals, but the SD resolution image signals used in conventional analog broadcasting are up-converted to HD resolution. In some cases, a pseudo HD resolution image signal (scaled image signal; hereinafter, also referred to as “pseudo HD resolution image signal”) may be included.

擬似HD解像度の画像信号が送信される場合には、放送局などの画像信号の供給元において、Y/C分離と、SD解像度の画像信号からHD解像度の画像信号へのアップコンバート、そして信号形式の変換が行われる。そして、輝度信号(Y)および色差信号(UV)それぞれが、例えば放送局などから送信される。ここで、放送局などの画像信号の供給元では、Y/C分離をより確実に行う従来の技術を用いてY/C分離が行われるとは限らない。そのため、例えばデジタル放送を受信する受像機では、クロスカラー妨害が既に発生しかつ当該発生したクロスカラー妨害が拡大によって悪化した(すなわち、より画質が低下した)画像信号が受信される可能性がある。ここで、クロスカラー妨害とは、色信号に輝度信号成分が混入することによって生じるノイズであり、例えば、虹模様のノイズ(色つきモアレ)として画像上に表れるものである。   When a pseudo HD resolution image signal is transmitted, Y / C separation, up-conversion from an SD resolution image signal to an HD resolution image signal, and a signal format at the image signal supply source such as a broadcasting station Conversion is performed. Then, each of the luminance signal (Y) and the color difference signal (UV) is transmitted from, for example, a broadcasting station. Here, Y / C separation is not always performed using a conventional technique that performs Y / C separation more reliably at an image signal supplier such as a broadcasting station. Therefore, for example, in a receiver that receives a digital broadcast, there is a possibility that a cross color interference has already occurred and an image signal in which the generated cross color interference has deteriorated due to enlargement (that is, the image quality has deteriorated) may be received. . Here, the cross color interference is noise generated when a luminance signal component is mixed into a color signal, and appears on the image as, for example, rainbow pattern noise (colored moire).

また、クロスカラー妨害が発生している擬似HD解像度の画像信号では、例えばアップコンバートに起因して、クロスカラー妨害の発生に係る画像信号の性質が、SD解像度の画像信号から変化する。上記クロスカラー妨害の発生に係る画像信号の性質の変化としては、例えば、「1ラインごとにクロスカラー妨害成分が反転する性質が失われること」や、「クロスカラー妨害成分が有する空間周波数が変化すること」が挙げられる。そのため、擬似HD解像度の画像信号に対しては、SD解像度の画像信号において有効なクロスカラー妨害の検出方法であった「1ラインごとにクロスカラー妨害成分が反転する性質を用いた検出方法(例えば、垂直方向にフィルタリングする方法)」を用いたとしても、“Y/C分離に係るアップコンバートされたクロスカラー妨害”の発生を検出することができない。また、同様に、擬似HD解像度の画像信号に対しては、「所定の空間周波数成分に基づいてクロスカラー妨害を検出する検出方法(例えば、バンドパス・フィルタ(Band-Pass Filter)を用いる方法)」を用いたとしても、“Y/C分離に係るアップコンバートされたクロスカラー妨害”の発生を検出することができない。   In addition, in the pseudo HD resolution image signal in which the cross color interference occurs, the nature of the image signal related to the occurrence of the cross color interference changes from the SD resolution image signal due to, for example, up-conversion. Examples of the change in the property of the image signal related to the occurrence of the cross color interference include, for example, “the property that the cross color interference component is inverted for each line is lost” or “the spatial frequency of the cross color interference component is changed. To do ". Therefore, for the pseudo HD resolution image signal, “a detection method using the property that the cross color interference component is inverted for each line”, which is an effective detection method of cross color interference in the SD resolution image signal (for example, Even if the method of “filtering in the vertical direction)” is used, the occurrence of “up-converted cross-color interference related to Y / C separation” cannot be detected. Similarly, for a pseudo HD resolution image signal, “a detection method for detecting cross color interference based on a predetermined spatial frequency component (for example, a method using a band-pass filter)”. "Cannot be used to detect the occurrence of" up-converted cross-color interference related to Y / C separation ".

ここで、“Y/C分離に係るアップコンバートされたクロスカラー妨害”が検出できない場合には、例えば、当該クロスカラー妨害を低減することができず、画質の低下などが生じてしまう。したがって、“Y/C分離に係るアップコンバートされたクロスカラー妨害”を検出する方法が希求されていた。   Here, when “up-converted cross-color interference related to Y / C separation” cannot be detected, for example, the cross-color interference cannot be reduced, and image quality is deteriorated. Therefore, a method for detecting “upconverted cross-color interference associated with Y / C separation” has been desired.

本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を検出することが可能な、新規かつ改良された画像処理装置、画像処理方法、およびプログラムを提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to detect up-converted cross color interference related to Y / C separation based on an input image signal. An object is to provide a new and improved image processing apparatus, an image processing method, and a program that are possible.

上記目的を達成するために、本発明の第1の観点によれば、入力された入力色信号に基づいて色ベクトルを導出する色ベクトル導出部と、上記色ベクトル導出部が導出した色ベクトルを保持する色ベクトル保持部と、上記色ベクトル導出部が導出した現フレームに対応する第1色ベクトルと、上記色ベクトル保持部に保持された前フレームに対応する第2色ベクトルとに基づいて、色ベクトルの内積値を導出する内積導出部と、上記第1ベクトルと、上記第2ベクトルと、上記内積導出部が導出した上記内積値とに基づいて、クロスカラー妨害の発生の度合いを導出するクロスカラー妨害判定部とを備える画像処理装置が提供される。   In order to achieve the above object, according to a first aspect of the present invention, a color vector deriving unit for deriving a color vector based on an input color signal inputted, and a color vector derived by the color vector deriving unit Based on the color vector holding unit to hold, the first color vector corresponding to the current frame derived by the color vector deriving unit, and the second color vector corresponding to the previous frame held in the color vector holding unit, The degree of occurrence of cross color interference is derived based on the inner product deriving unit for deriving the inner product value of the color vector, the first vector, the second vector, and the inner product value derived by the inner product deriving unit. An image processing apparatus including a cross-color interference determination unit is provided.

かかる構成により、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を検出することができる。   With this configuration, it is possible to detect up-converted cross-color interference related to Y / C separation based on the input image signal.

また、上記入力色信号を時間軸方向に平滑化するフィルタと、上記クロスカラー妨害判定部における判定結果に基づいて、上記入力色信号と上記フィルタにおいて平滑化された平滑化色信号とを混合する比率を規定するゲイン値を画素ごとに設定するゲイン設定部と、画素ごとに設定される上記ゲイン値に基づいて、上記入力色信号と上記平滑化色信号とを画素ごとに混合する混合部とを備えてもよい。   In addition, the input color signal and the smoothed color signal smoothed by the filter are mixed based on the determination result in the cross color interference determination unit and the filter that smoothes the input color signal in the time axis direction. A gain setting unit that sets a gain value that defines a ratio for each pixel; and a mixing unit that mixes the input color signal and the smoothed color signal for each pixel based on the gain value set for each pixel. May be provided.

かかる構成により、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を検出し、検出されたアップコンバートされたクロスカラー妨害を低減することによって、高画質化を図ることができる。   With this configuration, the up-converted cross-color interference related to Y / C separation is detected based on the input image signal, and the detected up-converted cross-color interference is reduced, thereby improving the image quality. be able to.

また、入力された現フレームに対応する入力輝度信号と前フレームに対応する前フレーム入力輝度信号との間の相関基づいて、画素ごとに動き量を検出する動き検出部をさらに備え、上記ゲイン設定部は、さらに上記動き検出部が検出した上記動き量に基づいて上記ゲイン値を画素ごとに設定してもよい。   The gain setting unit further includes a motion detection unit that detects a motion amount for each pixel based on a correlation between the input luminance signal corresponding to the input current frame and the previous frame input luminance signal corresponding to the previous frame. The unit may further set the gain value for each pixel based on the motion amount detected by the motion detection unit.

かかる構成により、アップコンバートされたクロスカラー妨害の誤検出をより確実に防止することができる。   With this configuration, it is possible to more reliably prevent erroneous detection of up-converted cross color interference.

また、上記入力輝度信号に基づいて、クロスカラー妨害が発生する条件を満たす画素を画素ごとに検出するクロスカラー妨害発生条件検出部をさらに備え、上記ゲイン設定部は、さらに上記クロスカラー妨害発生条件検出部の検出結果に基づいて上記ゲイン値を画素ごとに設定してもよい。   Further, the image processing apparatus further includes a cross color interference generation condition detection unit that detects, for each pixel, a pixel that satisfies a condition that causes cross color interference based on the input luminance signal, and the gain setting unit further includes the cross color interference generation condition. The gain value may be set for each pixel based on the detection result of the detection unit.

かかる構成により、アップコンバートされたクロスカラー妨害を画素ごとにより高い精度で低減することができる。   With this configuration, the up-converted cross color interference can be reduced with higher accuracy for each pixel.

また、上記平滑化色信号に対して、画素ごとに上記平滑化色信号の絶対値に応じたゲイン抑制値を乗算するゲイン抑制部をさらに備え、上記混合部は、上記入力色信号と、上記ゲイン抑制値が乗算された平滑化色信号とを画素ごとに混合してもよい。   The smoothing color signal further includes a gain suppression unit that multiplies the gain suppression value corresponding to the absolute value of the smoothing color signal for each pixel, and the mixing unit includes the input color signal, The smoothed color signal multiplied by the gain suppression value may be mixed for each pixel.

かかる構成により、アップコンバートされたクロスカラー妨害の影響を低減することができる。   With this configuration, the influence of up-converted cross color interference can be reduced.

また、上記目的を達成するために、本発明の第2の観点によれば、入力された入力色信号に基づいて色ベクトルを導出するステップと、上記色ベクトルを導出するステップにおいて導出された色ベクトルを保持するステップと、上記色ベクトルを導出するステップにおいて導出された現フレームに対応する第1色ベクトルと、上記保持するステップにおいて保持された前フレームに対応する第2色ベクトルとに基づいて、色ベクトルの内積値を導出するステップと、上記第1ベクトルと、上記第2ベクトルと、上記内積値を導出するステップにおいて導出された上記内積値とに基づいて、クロスカラー妨害の発生の度合いを導出するステップとを有する画像処理方法が提供される。   In order to achieve the above object, according to a second aspect of the present invention, the color derived in the step of deriving a color vector based on the input color signal inputted and the step of deriving the color vector Based on the step of holding a vector, the first color vector corresponding to the current frame derived in the step of deriving the color vector, and the second color vector corresponding to the previous frame held in the step of holding Degree of occurrence of cross-color interference based on the inner product value derived in the step of deriving the inner product value of the color vector, the first vector, the second vector, and the step of deriving the inner product value An image processing method is provided.

かかる方法を用いることにより、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を検出することができる。   By using such a method, it is possible to detect an up-converted cross color interference related to Y / C separation based on an input image signal.

また、上記目的を達成するために、本発明の第3の観点によれば、入力された入力色信号に基づいて色ベクトルを導出するステップ、上記色ベクトルを導出するステップにおいて導出された色ベクトルを保持するステップ、上記色ベクトルを導出するステップにおいて導出された現フレームに対応する第1色ベクトルと、上記保持するステップにおいて保持された前フレームに対応する第2色ベクトルとに基づいて、色ベクトルの内積値を導出するステップ、上記第1ベクトルと、上記第2ベクトルと、上記内積値を導出するステップにおいて導出された上記内積値とに基づいて、クロスカラー妨害の発生の度合いを導出するステップをコンピュータに実行させるためのプログラムが提供される。   In order to achieve the above object, according to a third aspect of the present invention, a color vector derived in a step of deriving a color vector based on an input color signal input and a step of deriving the color vector Based on the first color vector corresponding to the current frame derived in the step of deriving, the step of deriving the color vector, and the second color vector corresponding to the previous frame retained in the step of retaining Deriving the degree of occurrence of cross-color interference based on the step of deriving the inner product value of the vectors, the first vector, the second vector, and the inner product value derived in the step of deriving the inner product value. A program for causing a computer to execute the steps is provided.

かかるプログラムにより、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を検出することができる。   With such a program, it is possible to detect up-converted cross color interference related to Y / C separation based on the input image signal.

本発明によれば、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を検出することができる。   According to the present invention, it is possible to detect an up-converted cross color interference related to Y / C separation based on an input image signal.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

(本発明の実施形態に係る画像処理システムの構成例)
まず、本発明の実施形態に係る画像処理システムの構成の一例について説明する。図1は、本発明の実施形態に係る画像処理システムの構成の一例を示す説明図である。
(Configuration example of image processing system according to an embodiment of the present invention)
First, an example of the configuration of an image processing system according to an embodiment of the present invention will be described. FIG. 1 is an explanatory diagram showing an example of the configuration of an image processing system according to an embodiment of the present invention.

図1を参照すると、本発明の実施形態に係る画像処理システムは、画像信号を送信する画像信号送信装置(図1の符号10、20、30、…)と、入力された(あるいは、受信した)画像信号に基づいて画像を表示する表示装置100とを有する。ここで、本発明の実施形態に係る画像信号送信装置と表示装置100とは、それぞれ無線/有線で接続される。   Referring to FIG. 1, an image processing system according to an embodiment of the present invention receives and receives (or receives) an image signal transmitting device (reference numerals 10, 20, 30,... And a display device 100 that displays an image based on the image signal. Here, the image signal transmission device and the display device 100 according to the embodiment of the present invention are connected by wireless / wired respectively.

本発明の実施形態に係る画像信号送信装置は、HD解像度の画像信号を送信する。このとき、本発明の実施形態に係る画像信号送信装置は、送信する画像信号に応じて、選択的にY/C分離とアップコンバートとを行う。より具体的には、本発明の実施形態に係る画像信号送信装置は、送信する画像信号がSD解像度の画像信号である場合にY/C分離とアップコンバートとを行うことによって、HD解像度の画像信号または擬似HD解像度の画像信号を送信する。   An image signal transmission apparatus according to an embodiment of the present invention transmits an HD resolution image signal. At this time, the image signal transmission apparatus according to the embodiment of the present invention selectively performs Y / C separation and up-conversion according to the image signal to be transmitted. More specifically, the image signal transmission apparatus according to the embodiment of the present invention performs an Y / C separation and an up-conversion when an image signal to be transmitted is an SD resolution image signal, thereby performing an HD resolution image. A signal or a pseudo HD resolution image signal is transmitted.

ここで、本発明の実施形態に係る画像信号送信装置としては、例えば、デジタル放送に係る画像信号を送信する放送局10(あるいは、テレビ塔)や、Y/C分離機能およびアップコンバート機能を備え、画像データを再生して再生した画像を示す画像信号を出力する画像再生装置20、30、…などが挙げられる。画像再生装置20、30、…としては、例えば、PC(Personal Computer)などのコンピュータ、Blu−ray(登録商標)ディスク再生機(または、Blu−ray(登録商標)レコーダ)やDVDレコーダなどのディスク再生装置、プレイステーション(登録商標)シリーズなどのゲーム機などが挙げられるが、上記に限られない。   Here, as the image signal transmission apparatus according to the embodiment of the present invention, for example, a broadcasting station 10 (or a television tower) that transmits an image signal related to digital broadcasting, a Y / C separation function, and an up-conversion function are provided. An image reproducing apparatus 20, 30,... That outputs an image signal indicating an image reproduced by reproducing the image data. As the image reproducing devices 20, 30,..., For example, a computer such as a PC (Personal Computer), a disc such as a Blu-ray (registered trademark) disc player (or Blu-ray (registered trademark) recorder), a DVD recorder, etc. A game machine such as a playback device or PlayStation (registered trademark) series may be used, but the present invention is not limited thereto.

表示装置100は、入力された画像信号に基づいて、Y/C分離に係るアップコンバートされたクロスカラー妨害を画素ごとに検出する。また、表示装置100は、例えば、クロスカラー妨害の検出結果に基づいて、入力された画像信号に対してY/C分離に係るアップコンバートされたクロスカラー妨害(ノイズ)を低減する画像処理を施す。そして、表示装置100は、例えば、アップコンバートされたクロスカラー妨害が低減された画像信号に応じた画像や、アップコンバートされたクロスカラー妨害の検出結果などを表示画面に表示する。つまり、表示装置100は、入力された画像信号を処理する画像処理装置としての役目も果たす。なお、表示装置100の構成例、および本発明の実施形態に係る画像処理(アップコンバートされたクロスカラー妨害の検出処理や、クロスカラー妨害の検出結果に基づいてアップコンバートされたクロスカラー妨害を低減するクロスカラー妨害低減処理など)については、後述する。   The display device 100 detects the up-converted cross-color interference related to Y / C separation for each pixel based on the input image signal. Further, for example, based on the detection result of the cross color interference, the display device 100 performs image processing for reducing the up-converted cross color interference (noise) related to Y / C separation on the input image signal. . Then, the display device 100 displays, for example, an image corresponding to the image signal with the reduced up-converted cross color interference and the detection result of the up-converted cross color interference on the display screen. That is, the display device 100 also serves as an image processing device that processes an input image signal. It should be noted that the configuration example of the display device 100 and image processing according to the embodiment of the present invention (upconverted cross color interference detection processing and cross color interference upconverted based on the detection result of cross color interference are reduced. Will be described later.

本発明の実施形態に係る画像処理システムでは、画像信号送信装置がHD解像度の画像信号または擬似HD解像度の画像信号を送信する。そして、本発明の実施形態に係る画像処理システムでは、上記画像信号を受信した表示装置100が、入力された画像信号に基づいて、Y/C分離に係るアップコンバートされたクロスカラー妨害を画素ごとに検出する。   In the image processing system according to the embodiment of the present invention, the image signal transmission device transmits an HD resolution image signal or a pseudo HD resolution image signal. In the image processing system according to the embodiment of the present invention, the display device 100 that has received the image signal performs up-converted cross-color interference related to Y / C separation for each pixel based on the input image signal. To detect.

上述したように、入力された画像信号が擬似HD解像度の画像信号である場合には、クロスカラー妨害の発生に係る画像信号の性質がSD解像度の画像信号から変化する。そのため、SD解像度の画像信号において有効であった従来のクロスカラー妨害の検出方法では、アップコンバートされたクロスカラー妨害を検出することができない。よって、表示装置100は、SD解像度の画像信号において有効であった従来のクロスカラー妨害の検出方法を用いずに、後述する本発明の実施形態に係るクロスカラー妨害検出方法を用いることによってアップコンバートされたクロスカラー妨害を検出する。したがって、表示装置100は、従来のクロスカラー妨害の検出方法では検出することができないアップコンバートされたクロスカラー妨害を検出することができる。   As described above, when the input image signal is a pseudo HD resolution image signal, the property of the image signal related to the occurrence of cross color interference changes from the SD resolution image signal. For this reason, the conventional cross-color interference detection method that is effective in the image signal of SD resolution cannot detect the up-converted cross-color interference. Therefore, the display device 100 does not use the conventional cross color interference detection method that is effective for the SD resolution image signal, but uses the cross color interference detection method according to an embodiment of the present invention described later, thereby up-converting. Detect cross color interference. Therefore, the display device 100 can detect the up-converted cross color interference that cannot be detected by the conventional method for detecting cross color interference.

また、表示装置100は、本発明の実施形態に係るクロスカラー妨害検出方法を用いた検出結果に基づいて、例えば、アップコンバートされたクロスカラー妨害(ノイズ)の低減を図る。したがって、本発明の実施形態に係る画像処理システムでは、表示装置100の表示画面に表示される画像の高画質化を図ることができる。   Further, the display device 100 attempts to reduce, for example, up-converted cross color interference (noise) based on the detection result using the cross color interference detection method according to the embodiment of the present invention. Therefore, the image processing system according to the embodiment of the present invention can improve the image quality of the image displayed on the display screen of the display device 100.

以下、本発明の実施形態に係る表示装置について説明する。なお、以下では、本発明の実施形態に係る表示装置が、入力された画像信号を画像処理し、画像処理後の画像信号に対応する画像を表示画面に表示するものとして説明するが、本発明の実施形態は、かかる構成に限られない。本発明の実施形態は、以下に示す本発明の実施形態に係る表示装置を、画像を表示する表示デバイスとは独立の画像処理装置(例えば、以下に示す画像処理部を独立の装置とする構成)とすることもできる。つまり、以下に示す本発明の実施形態に係る表示装置は、画像処理装置と置き換えることができる。以下では、説明の便宜上、本発明の実施形態に係る画像処理装置を表示装置に適用した場合を例に挙げて説明する。   Hereinafter, a display device according to an embodiment of the present invention will be described. In the following description, it is assumed that the display device according to the embodiment of the present invention performs image processing on an input image signal and displays an image corresponding to the image signal after image processing on a display screen. The embodiment is not limited to such a configuration. In an embodiment of the present invention, a display device according to an embodiment of the present invention shown below is an image processing device independent of a display device that displays an image (for example, a configuration in which an image processing unit shown below is an independent device) ). That is, the display device according to the embodiment of the present invention described below can be replaced with an image processing device. Hereinafter, for convenience of explanation, a case where the image processing apparatus according to the embodiment of the present invention is applied to a display device will be described as an example.

また、本発明の実施形態に係る表示装置に入力される(あるいは、受信する)画像信号とは、画像信号送信装置から送信される輝度信号(以下、「入力輝度信号」という。)、および画像信号送信装置から送信される色信号(以下、「入力色信号」という。)を総称したものである。ここで、本発明の実施形態に係る画像信号は、静止画像を示すものであってもよいし、または、動画像(いわゆる映像)であってもよい。また、上述したように、入力輝度信号は、画像信号送信装置においてY/C分離された輝度信号(擬似HD解像度の輝度信号)である場合がある。同様に、入力色信号は、画像信号送信装置においてY/C分離された色信号(擬似HD解像度の色信号)である場合がある。   The image signal input (or received) to the display device according to the embodiment of the present invention is a luminance signal transmitted from the image signal transmission device (hereinafter referred to as “input luminance signal”) and an image. It is a general term for color signals transmitted from a signal transmission device (hereinafter referred to as “input color signals”). Here, the image signal according to the embodiment of the present invention may indicate a still image or may be a moving image (so-called video). In addition, as described above, the input luminance signal may be a Y / C-separated luminance signal (pseudo HD resolution luminance signal) in the image signal transmission apparatus. Similarly, the input color signal may be a Y / C separated color signal (a pseudo HD resolution color signal) in the image signal transmission apparatus.

(本発明の実施形態に係る表示装置)
図2は、本発明の実施形態に係る表示装置100の構成例を示すブロック図である。図2を参照すると、表示装置100は、信号入力部102と、画像処理部104と、表示部106とを備える。
(Display device according to an embodiment of the present invention)
FIG. 2 is a block diagram illustrating a configuration example of the display device 100 according to the embodiment of the present invention. Referring to FIG. 2, the display device 100 includes a signal input unit 102, an image processing unit 104, and a display unit 106.

また、表示装置100は、例えば、MPU(Micro Processing Unit)などで構成され表示装置100全体を制御することが可能な制御部(図示せず)や、制御部が使用するプログラムや演算パラメータなどの制御用データが記録されたROM(Read Only Memory;図示せず)、制御部により実行されるプログラムなどを一次記憶するRAM(Random Access Memory;図示せず)、映像ファイルや画像ファイル、アプリケーションなどを記憶可能な記憶部(図示せず)、ユーザが操作可能な操作部(図示せず)などを備えてもよい。表示装置100は、例えば、データの伝送路としてのバス(bus)により上記各構成要素間を接続する。また、上記制御部は、画像処理部104として機能することもできる。   The display device 100 includes, for example, a control unit (not shown) configured by an MPU (Micro Processing Unit) or the like that can control the entire display device 100, a program used by the control unit, an operation parameter, and the like. ROM (Read Only Memory; not shown) in which control data is recorded, RAM (Random Access Memory; not shown) that primarily stores programs executed by the control unit, video files, image files, applications, etc. You may provide the memory | storage part (not shown) which can memorize | store, the operation part (not shown) which a user can operate. The display device 100 connects the above-described constituent elements by, for example, a bus as a data transmission path. The control unit can also function as the image processing unit 104.

ここで、記憶部(図示せず)としては、例えば、ハードディスク(Hard Disk)などの磁気記録媒体や、EEPROM(Electronically Erasable and Programmable Read Only Memory)、フラッシュメモリ(flash memory)、MRAM(Magnetoresistive Random Access Memory)、FeRAM(Ferroelectric Random Access Memory)、PRAM(Phase change Random Access Memory)などの不揮発性メモリ(nonvolatile memory)が挙げられるが、上記に限られない。   Here, as the storage unit (not shown), for example, a magnetic recording medium such as a hard disk, an EEPROM (Electronically Erasable and Programmable Read Only Memory), a flash memory, a MRAM (Magnetoresistive Random Access) Non-volatile memory such as Memory (RAM), FeRAM (Ferroelectric Random Access Memory), PRAM (Phase change Random Access Memory), and the like, but is not limited thereto.

また、操作部(図示せず)としては、例えば、キーボードやマウスなどの操作入力デバイスや、ボタン、方向キー、ジョグダイヤルなどの回転型セレクター、あるいは、これらの組み合わせなどが挙げられるが、上記に限られない。また、表示部106としては、例えば、LCD(Liquid Crystal Display;液晶ディスプレイ)、有機ELディスプレイ(organic ElectroLuminescence display;または、OLEDディスプレイ(Organic Light Emitting Diode display)とも呼ばれる。)などが挙げられるが、上記に限られない。   Examples of the operation unit (not shown) include an operation input device such as a keyboard and a mouse, a rotary selector such as a button, a direction key, and a jog dial, or a combination thereof. I can't. Examples of the display unit 106 include an LCD (Liquid Crystal Display), an organic EL display (Organic Light Emitting Diode display), and the like. Not limited to.

[表示装置100のハードウェア構成例]
図3は、本発明の実施形態に係る表示装置100のハードウェア構成の一例を示す説明図である。図3を参照すると、表示装置100は、例えば、MPU120と、ROM122と、RAM124と、記録媒体126と、入出力インタフェース128と、操作入力デバイス130と、表示デバイス132と、通信インタフェース134とを備える。また、表示装置100は、例えば、データの伝送路としてのバス136で各構成要素間を接続する。
[Hardware configuration example of display device 100]
FIG. 3 is an explanatory diagram illustrating an example of a hardware configuration of the display device 100 according to the embodiment of the present invention. Referring to FIG. 3, the display device 100 includes, for example, an MPU 120, a ROM 122, a RAM 124, a recording medium 126, an input / output interface 128, an operation input device 130, a display device 132, and a communication interface 134. . In addition, the display device 100 connects each component with a bus 136 as a data transmission path, for example.

MPU120は、表示装置100全体を制御する制御部として機能する。また、MPU120は、表示装置100において、画像処理部104の役目を果たすこともできる。   The MPU 120 functions as a control unit that controls the entire display device 100. The MPU 120 can also serve as the image processing unit 104 in the display device 100.

ROM122は、MPU120が使用するプログラムや演算パラメータなどの制御用データを記憶し、また、RAM124は、MPU120により実行されるプログラムなどを一次記憶する。   The ROM 122 stores programs used by the MPU 120 and control data such as calculation parameters, and the RAM 124 primarily stores programs executed by the MPU 120.

記録媒体126は、表示装置100の記憶部として機能し、映像ファイルや画像ファイル、アプリケーションなどを記憶可能とする。ここで、記録媒体126としては、例えば、ハードディスクなどの磁気記録媒体や、フラッシュメモリなどの不揮発性メモリが挙げられるが、上記に限られない。   The recording medium 126 functions as a storage unit of the display device 100 and can store video files, image files, applications, and the like. Here, examples of the recording medium 126 include a magnetic recording medium such as a hard disk and a non-volatile memory such as a flash memory, but are not limited thereto.

入出力インタフェース128は、例えば、操作入力デバイス130や、表示デバイス132を接続する。ここで、入出力インタフェース128としては、例えば、USB(Universal Serial Bus)端子や、DVI(Digital Visual Interface)端子、HDMI(High-Definition Multimedia Interface)端子などが挙げられるが、上記に限られない。また、操作入力デバイス130は、例えば、ボタン、方向キー、ジョグダイヤルなどの回転型セレクター、あるいは、これらの組み合わせなど、表示装置100上に備えられ、表示装置100の内部で入出力インタフェース128と接続される。また、表示デバイス132は、例えば、LCD、有機ELディスプレイなど、表示装置100上に備えられ、表示装置100の内部で入出力インタフェース128と接続される。なお、入出力インタフェース128は、表示装置100の外部装置としての操作入力デバイス(例えば、キーボードやマウスなど)や、表示デバイス(例えば、外部ディスプレイなど)と接続することもできることは、言うまでもない。   The input / output interface 128 connects, for example, the operation input device 130 and the display device 132. Here, examples of the input / output interface 128 include a USB (Universal Serial Bus) terminal, a DVI (Digital Visual Interface) terminal, an HDMI (High-Definition Multimedia Interface) terminal, and the like, but are not limited thereto. The operation input device 130 is provided on the display device 100 such as buttons, direction keys, a rotary selector such as a jog dial, or a combination thereof, and is connected to the input / output interface 128 inside the display device 100. The The display device 132 is provided on the display device 100 such as an LCD or an organic EL display, and is connected to the input / output interface 128 inside the display device 100. Needless to say, the input / output interface 128 can be connected to an operation input device (for example, a keyboard or a mouse) as an external device of the display device 100 or a display device (for example, an external display).

通信インタフェース134は、外部装置と有線/無線通信を行うためのインタフェースであり、信号入力部102として機能する。ここで、通信インタフェース134としては、例えば、IEEE802.11ポート、RF(Radio Frequency)回路、HDMI端子などが挙げられるが、上記に限られない。   The communication interface 134 is an interface for performing wired / wireless communication with an external device, and functions as the signal input unit 102. Here, examples of the communication interface 134 include an IEEE 802.11 port, an RF (Radio Frequency) circuit, an HDMI terminal, and the like, but are not limited thereto.

表示装置100は、図3に示すようなハードウェア構成により、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を検出する。また、表示装置100は、図3に示すようなハードウェア構成によって、クロスカラー妨害の検出結果に基づいてアップコンバートされたクロスカラー妨害(ノイズ)を低減し、高画質化を図ることができる。なお、本発明の実施形態に係る表示装置のハードウェア構成は、図3に限られない。例えば、本発明の実施形態に係る表示装置は、後述する画像処理部104の機能を実現する画像処理回路などをさらに備えることもできる。   The display device 100 detects the up-converted cross color interference related to Y / C separation based on the input image signal with a hardware configuration as shown in FIG. In addition, the display device 100 can reduce the cross-color interference (noise) up-converted based on the detection result of the cross-color interference and improve the image quality with the hardware configuration shown in FIG. The hardware configuration of the display device according to the embodiment of the present invention is not limited to FIG. For example, the display device according to the embodiment of the present invention may further include an image processing circuit that realizes a function of the image processing unit 104 described later.

再度図2を参照して、表示装置100の各構成要素について説明する。信号入力部102は、放送局10や画像再生装置20、30、…などから有線/無線で送信される画像信号を受信し、受信した画像信号のデコードなどを行う役目を果たす。   With reference to FIG. 2 again, each component of the display device 100 will be described. The signal input unit 102 serves to receive an image signal transmitted by wire / wireless from the broadcasting station 10 or the image reproducing devices 20, 30,... And decode the received image signal.

画像処理部104は、信号入力部102が受信した画像信号に対して、様々な画像処理を施す。画像処理部104が行う画像処理としては、例えば、インターレース信号をプログレッシブ信号に変換するIP(Interlace/Progressive)変換処理や、色空間の変更などの色に関する処理を行うクロマ処理、中間フレームを生成してフレームレートを高める中間フレーム生成処理、アップコンバートされたクロスカラー妨害を検出するクロスカラー妨害検出処理、アップコンバートされたクロスカラー妨害(ノイズ)を低減するクロスカラー妨害低減処理などが挙げられるが、上記に限られない。本発明の実施形態に係るクロスカラー妨害検出処理、クロスカラー妨害低減処理については、後述する。   The image processing unit 104 performs various image processing on the image signal received by the signal input unit 102. Image processing performed by the image processing unit 104 includes, for example, IP (Interlace / Progressive) conversion processing for converting an interlace signal into a progressive signal, chroma processing for performing color-related processing such as color space change, and generation of an intermediate frame. Intermediate frame generation processing to increase the frame rate, cross-color interference detection processing to detect up-converted cross-color interference, cross-color interference reduction processing to reduce up-converted cross-color interference (noise), etc. It is not limited to the above. Cross color interference detection processing and cross color interference reduction processing according to an embodiment of the present invention will be described later.

表示部106は、画像処理部104において処理された画像信号に基づいて、当該画像信号に応じた画像を表示する。また、表示部106は、画像処理部104におけるクロスカラー妨害の検出結果を表示することもできる。   The display unit 106 displays an image corresponding to the image signal based on the image signal processed by the image processing unit 104. The display unit 106 can also display the detection result of cross color interference in the image processing unit 104.

〔表示部106の構成例〕
表示部106は、パネル110と、行駆動部112と、列駆動部114と、電源供給部116と、表示制御部118とを備える。
[Configuration Example of Display Unit 106]
The display unit 106 includes a panel 110, a row driving unit 112, a column driving unit 114, a power supply unit 116, and a display control unit 118.

パネル110は、マトリクス状(行列状)に配置された複数の画素を備え、画像が表示される表示画面としての役目を果たす。例えば、SD解像度の画像を表示するパネルは、少なくとも640×480=307200(データ線×走査線)の画素を有し、カラー表示のために当該画素がR、G、Bのサブピクセル(sub pixel)からなる場合には、640×480×3=921600(データ線×走査線×サブピクセルの数)のサブピクセルを有する。同様に、例えば、HD解像度の映像を表示するパネルは、1920×1080の画素を有し、カラー表示の場合には、1920×1080×3のサブピクセルを有する。   The panel 110 includes a plurality of pixels arranged in a matrix (matrix), and serves as a display screen on which an image is displayed. For example, a panel for displaying an SD resolution image has at least 640 × 480 = 307200 (data lines × scanning lines) pixels, and the pixels are R, G, B subpixels for color display. ) × 640 × 480 × 3 = 921600 (data lines × scanning lines × number of subpixels). Similarly, for example, a panel that displays an HD resolution video has 1920 × 1080 pixels, and in the case of color display, has 1920 × 1080 × 3 subpixels.

また、パネル110は、例えば、画素ごとに印加する電圧量/電流量を制御するための画素回路(図示せず)を備えていてもよい。画素回路は、例えば、印加される走査信号および電圧信号により電流量を制御するためのスイッチ素子およびドライブ素子と、電圧信号を保持するためのキャパシタで構成される。上記スイッチ素子および上記ドライブ素子は、例えば、薄膜トランジスタ(Thin Film Transistor)で構成される。   Further, the panel 110 may include, for example, a pixel circuit (not shown) for controlling the amount of voltage / current applied to each pixel. The pixel circuit includes, for example, a switch element and a drive element for controlling the amount of current by an applied scanning signal and a voltage signal, and a capacitor for holding a voltage signal. The switch element and the drive element are composed of, for example, a thin film transistor.

行駆動部112、および列駆動部114は、例えば、パネル110が有する複数の画素に電圧信号を印加して各画素を発光させる。ここで、行駆動部112、および列駆動部114は、一方が画素のON/OFFを決定する電圧信号(走査信号)を印加し、他方が表示させる画像に応じた電圧信号(画像信号)を印加する役目を果たすことができる。   For example, the row driving unit 112 and the column driving unit 114 apply voltage signals to a plurality of pixels included in the panel 110 to cause each pixel to emit light. Here, one of the row driving unit 112 and the column driving unit 114 applies a voltage signal (scanning signal) that determines ON / OFF of a pixel, and the other applies a voltage signal (image signal) corresponding to an image to be displayed. It can play the role of applying.

また、行駆動部112、および列駆動部114の駆動方式としては、例えば、上記行列状に配置された画素ごとに発光させる点順次駆動走査方式、上記行列状に配置された画素を一列ごとに発光させる線順次駆動走査方式、そして、上記行列状に配置された全ての画素を発光させる面順次駆動走査方式などが挙げられる。なお、図2に示す表示装置100の表示部106は、行駆動部112と列駆動部114との2つの駆動部を備えているが、本発明の実施形態に係る表示装置が、表示部を1つの駆動部で構成できることは、言うまでもない。   Further, as a driving method of the row driving unit 112 and the column driving unit 114, for example, a dot-sequential driving scanning method in which light is emitted for each pixel arranged in the matrix form, and the pixels arranged in the matrix form are arranged for each column. Examples include a line sequential drive scanning method for emitting light, and a surface sequential drive scanning method for emitting light from all the pixels arranged in the matrix. The display unit 106 of the display device 100 illustrated in FIG. 2 includes two drive units, that is, the row drive unit 112 and the column drive unit 114. However, the display device according to the embodiment of the present invention includes the display unit. Needless to say, it can be configured by one drive unit.

電源供給部116は、行駆動部112および列駆動部114に電源を供給し、行駆動部112および列駆動部114には電圧が印加される。また、電源供給部116が、行駆動部112および列駆動部114に印加する電圧の大きさは、画像処理部104が処理した画像信号に応じて可変する。   The power supply unit 116 supplies power to the row driving unit 112 and the column driving unit 114, and a voltage is applied to the row driving unit 112 and the column driving unit 114. The magnitude of the voltage that the power supply unit 116 applies to the row driving unit 112 and the column driving unit 114 varies according to the image signal processed by the image processing unit 104.

表示制御部118は、例えば、MPUなどで構成され、画像処理部104が処理した画像信号に応じて、行駆動部112および列駆動部114の一方に画素のON/OFFを決定する電圧を画素に印加するための制御信号を入力し、また、他方に画像信号を入力する。また、表示制御部118は、画像処理部104が処理した画像信号に応じて、電源供給部116による行駆動部112および列駆動部114への電源の供給を制御することもできる。   The display control unit 118 is configured by, for example, an MPU and the like, and in accordance with the image signal processed by the image processing unit 104, a voltage for determining ON / OFF of the pixel is applied to one of the row driving unit 112 and the column driving unit 114 A control signal to be applied to is input, and an image signal is input to the other. The display control unit 118 can also control the supply of power to the row driving unit 112 and the column driving unit 114 by the power supply unit 116 in accordance with the image signal processed by the image processing unit 104.

表示装置100は、図2に示すような構成を有することにより、入力された画像信号に基づいてアップコンバートされたクロスカラー妨害を検出することができる。また、表示装置100は、クロスカラー妨害の検出結果に基づいて、Y/C分離に係るアップコンバートされたクロスカラー妨害(ノイズ)を低減し、当該クロスカラー妨害が低減された画像を表示画面に表示することができる。   The display device 100 has a configuration as shown in FIG. 2 and can detect cross-color interference that has been up-converted based on an input image signal. Further, the display device 100 reduces the up-converted cross color interference (noise) related to the Y / C separation based on the detection result of the cross color interference, and displays the image with the reduced cross color interference on the display screen. Can be displayed.

[本発明の実施形態に係る画像処理部104における画像処理]
次に、表示装置100の画像処理部104における画像処理について、より具体的に説明する。以下では、本発明の実施形態に係る画像処理として、[1]クロスカラー妨害検出処理と、当該クロスカラー妨害検出処理を用いた、[2]クロスカラー妨害低減処理とについて説明する。
[Image Processing in Image Processing Unit 104 According to the Embodiment of the Present Invention]
Next, the image processing in the image processing unit 104 of the display device 100 will be described more specifically. Hereinafter, as image processing according to the embodiment of the present invention, [1] cross-color interference detection processing and [2] cross-color interference reduction processing using the cross-color interference detection processing will be described.

ここで、画像処理部104が検出の対象とするクロスカラー妨害とは、例えば、放送局10や画像再生装置20、30、…などの画像信号の供給元から送信される擬似HD解像度の画像信号に含まれる“アップコンバートされたクロスカラー妨害”をいう。また、“アップコンバートされたクロスカラー妨害”とは、入力色信号に輝度信号成分が混入することによって生じるノイズであり、例えば、虹模様のノイズ(色つきモアレ)として画像上に表れる。   Here, the cross-color interference to be detected by the image processing unit 104 is, for example, a pseudo HD resolution image signal transmitted from an image signal supply source such as the broadcast station 10 or the image reproducing devices 20, 30,. Means "up-converted cross-color interference". Further, “up-converted cross color interference” is noise generated when a luminance signal component is mixed in an input color signal, and appears, for example, as rainbow pattern noise (colored moire) on an image.

[1]画像処理部104におけるクロスカラー妨害検出処理
まず、表示装置100の画像処理部104におけるクロスカラー妨害検出処理について、より具体的に説明する。
[1] Cross Color Interference Detection Processing in Image Processing Unit 104 First, the cross color interference detection processing in the image processing unit 104 of the display device 100 will be described more specifically.

(1−1)アップコンバートされたクロスカラー妨害の検出アプローチ
まず、本発明の実施形態に係るアップコンバートされたクロスカラー妨害の検出アプローチについて説明する。
(1-1) Upconverted Cross Color Interference Detection Approach First, an upconverted cross color interference detection approach according to an embodiment of the present invention will be described.

(1−1−A)検出アプローチの概要
上述したように、画像処理部104が処理する画像信号が擬似HD解像度の画像信号である場合には、1ラインごとにクロスカラー妨害成分が反転する性質が失われたり、クロスカラー妨害成分の空間周波数が変化したりするなど、クロスカラー妨害の発生に係る画像信号の性質がSD解像度の画像信号から変化する。したがって、擬似HD解像度の画像信号を処理する場合には、例えばアナログ放送の画像信号に対して有効であった「1ラインごとにクロスカラー妨害成分が反転する性質を利用したクロスカラー妨害成分の検出方法(例えば、垂直方向にフィルタリングする方法)」を用いたとしても、アップコンバートされたクロスカラー妨害を検出することができない。また、同様に、擬似HD解像度の画像信号を処理する場合には、「所定の空間周波数成分に基づいてクロスカラー妨害を検出する検出方法(例えば、バンドパス・フィルタを用いる方法)」などを用いたとしても、アップコンバートされたクロスカラー妨害を検出することができない。
(1-1-A) Overview of Detection Approach As described above, when the image signal processed by the image processing unit 104 is a pseudo HD resolution image signal, the cross color interference component is inverted for each line. The characteristics of the image signal related to the occurrence of the cross color interference change from the image signal of the SD resolution, such as loss of the color or the spatial frequency of the cross color interference component changing. Therefore, when processing a pseudo HD resolution image signal, for example, it was effective for an analog broadcast image signal “detection of a cross color interference component utilizing the property that the cross color interference component is inverted for each line. Even if a method (for example, a method of filtering in the vertical direction) is used, the up-converted cross-color interference cannot be detected. Similarly, when processing a pseudo HD resolution image signal, a “detection method for detecting cross-color interference based on a predetermined spatial frequency component (for example, a method using a bandpass filter)” or the like is used. If so, the up-converted cross-color interference cannot be detected.

また、画像処理部104が処理する画像信号が擬似HD解像度の画像信号である場合には、アップコンバートされたクロスカラー妨害成分は、空間・時間軸座標に応じて、様々な色相をとる性質を有する。したがって、例えば、ある画素に注目したとき(以下、注目する画素を「注目画素」とよぶ。)、注目画素における現在のフレーム(以下、「現フレーム」という。)と、現フレームから一つ前のフレーム(以下、「前フレーム」という。)との間の差分値は、大きく変動する可能性がある。そのため、各画素に対して、例えば、現フレームと前フレームとの間の差分値を導出したとしても、当該差分値に基づいてアップコンバートされたクロスカラー妨害を検出できるとは限らない。   Further, when the image signal processed by the image processing unit 104 is a pseudo HD resolution image signal, the up-converted cross-color interference component has a characteristic of taking various hues according to the space / time axis coordinates. Have. Therefore, for example, when attention is paid to a certain pixel (hereinafter, the pixel of interest is referred to as a “pixel of interest”), the current frame (hereinafter referred to as “current frame”) of the pixel of interest and the previous frame from the current frame. There is a possibility that the difference value between this frame (hereinafter referred to as the “previous frame”) varies greatly. Therefore, for example, even if a difference value between the current frame and the previous frame is derived for each pixel, it is not always possible to detect cross-color interference that has been up-converted based on the difference value.

そこで、画像処理部104は、入力色信号を色ベクトルとして捉え、フレーム間における色ベクトルの偏角の差分(以下、「偏角差分」という。)を用いてアップコンバートされたクロスカラー妨害の検出を図る。ここで、擬似HD解像度の画像信号においてアップコンバートされたクロスカラー妨害が発生している場合には、色ベクトルの偏角差分は、空間・時間軸座標よらずにある程度の大きさの値をとり続ける性質をもつ。例えば、入力画像信号が静止画像を示している場合には、現フレームと前フレームとの偏角差分は180°に近い値をとる。また、入力画像信号が動画像を表している場合においても、偏角差分は、ある程度以上の大きさの値をとる。上記の性質は、SD解像度の画像信号においてクロスカラー妨害が発生している場合と同様であり、アップコンバートの前後で変化しない。   Therefore, the image processing unit 104 recognizes the input color signal as a color vector, and detects cross-color interference that has been up-converted using a color vector declination difference between frames (hereinafter referred to as “declination difference”). Plan. Here, when an up-converted cross-color interference has occurred in the pseudo HD resolution image signal, the color vector declination difference takes a value of a certain size regardless of the space / time axis coordinates. Has the nature of continuing. For example, when the input image signal indicates a still image, the deviation angle difference between the current frame and the previous frame takes a value close to 180 °. Even when the input image signal represents a moving image, the declination difference has a value of a certain level or more. The above property is the same as when cross-color interference occurs in an SD resolution image signal, and does not change before and after up-conversion.

したがって、画像処理部104は、上記のようなフレーム間における色ベクトルの偏角差分に基づいて検出処理を行うことによって、従来の検出方法では検出できないアップコンバートされたクロスカラー妨害を検出することができる。   Therefore, the image processing unit 104 can detect the up-converted cross-color interference that cannot be detected by the conventional detection method by performing the detection process based on the color vector declination difference between frames as described above. it can.

以下、本発明の実施形態に係る色ベクトルの偏角差分に基づくアップコンバートされたクロスカラー妨害の検出方法について、より具体的に説明する。また、以下では、画像処理部104に入力される入力色信号として、色ベクトルを2次元ベクトルで表すことが可能な、青の色差信号(以下、「U信号」とよぶ場合がある。)および赤の色差信号(以下、「V信号」とよぶ場合がある。)が入力される場合を例に挙げて説明する。なお、本発明の実施形態に係る入力色信号は、色空間がYUVで表される色差信号に限られず、例えば、YPbPrや、Lなど様々な色空間の信号とすることができる。 Hereinafter, the up-converted cross color interference detection method based on the color vector deviation difference according to the embodiment of the present invention will be described more specifically. In the following, as an input color signal input to the image processing unit 104, a blue color difference signal (hereinafter sometimes referred to as “U signal”) that can represent a color vector as a two-dimensional vector, and A case where a red color difference signal (hereinafter sometimes referred to as “V signal”) is input will be described as an example. Note that the input color signal according to the embodiment of the present invention is not limited to a color difference signal whose color space is represented by YUV, and may be signals of various color spaces such as YPbPr and L * a * b *. it can.

(1−1−B)色ベクトルの偏角差分に基づくクロスカラー妨害の検出方法
図4は、本発明の実施形態に係る色ベクトルの偏角差分に基づくアップコンバートされたクロスカラー妨害の検出方法を説明するための説明図である。ここで、図4は、入力色信号を、U信号に対応するu軸とV信号に対応するv軸とで表した図である。以下、図4を参照して、本発明の実施形態に係る色ベクトルの偏角差分に基づくアップコンバートされたクロスカラー妨害の検出方法について説明する。
(1-1-B) Cross Color Interference Detection Method Based on Color Vector Deflection Difference FIG. 4 shows an upconverted cross color interference detection method based on a color vector declination difference according to an embodiment of the present invention. It is explanatory drawing for demonstrating. Here, FIG. 4 is a diagram illustrating the input color signal by the u axis corresponding to the U signal and the v axis corresponding to the V signal. Hereinafter, an up-converted cross color interference detection method based on a color vector deviation difference according to an embodiment of the present invention will be described with reference to FIG.

〔第1の検出方法〕
注目画素における現フレームの入力色信号の値をU信号=u1、V信号=v1とすると、現フレームにおける色ベクトル(以下、「第1色ベクトル」という。)C1は、「C1=(u1,v1)」と表される。また、注目画素における前フレームの入力色信号の値をU信号=u0、V信号=v0とすると、前フレームにおける色ベクトル(以下、「第2色ベクトル」という。)C0は、「C0=(u0,v0)」と表される。
[First detection method]
Assuming that the value of the input color signal of the current frame in the pixel of interest is U signal = u1 and V signal = v1, the color vector (hereinafter referred to as “first color vector”) C1 in the current frame is “C1 = (u1, v1) ". Also, assuming that the value of the input color signal of the previous frame at the target pixel is U signal = u0 and V signal = v0, the color vector (hereinafter referred to as “second color vector”) C0 in the previous frame is “C0 = ( u0, v0) ".

ここで、第1色ベクトルC1と第2色ベクトルC0とがなす角を「θ」とすると、当該θが偏角差分に相当する。つまり、第1色ベクトルC1と第2色ベクトルC0とからθを導出すれば、画像処理部104は、導出したθをクロスカラー妨害発生の度合いを規定する評価値とすることによって、アップコンバートされたクロスカラー妨害を検出することができる。   Here, if the angle formed by the first color vector C1 and the second color vector C0 is “θ”, the θ corresponds to the declination difference. That is, if θ is derived from the first color vector C1 and the second color vector C0, the image processing unit 104 performs up-conversion by setting the derived θ as an evaluation value that defines the degree of occurrence of cross-color interference. Cross color interference can be detected.

〔第2の検出方法〕
第1の検出方法に示したように、図4に示すθを導出することによって、画像処理部104は導出したθに基づいてアップコンバートされたクロスカラー妨害を検出することができる。しかしながら、第1色ベクトルC1と第2色ベクトルC0とからθを直接導出するためには複雑な算術演算が必要となる。そのため、第1色ベクトルC1と第2色ベクトルC0とからθを直接導出するためには、画像処理部104は、例えば、大規模な演算処理回路を備えなければならない場合がある。
[Second detection method]
As shown in the first detection method, by deriving θ shown in FIG. 4, the image processing unit 104 can detect cross-color interference that has been up-converted based on the derived θ. However, in order to directly derive θ from the first color vector C1 and the second color vector C0, a complicated arithmetic operation is required. Therefore, in order to directly derive θ from the first color vector C1 and the second color vector C0, the image processing unit 104 may have to include a large-scale arithmetic processing circuit, for example.

そこで、画像処理部104は、第2の検出方法として、第1色ベクトルC1と第2色ベクトルC0とからθを導出するのではなく、第1色ベクトルC1と第2色ベクトルC0とから「cosθ」を導出する。第2の検出方法において導出されるcosθは、色ベクトルの偏角差分を示すθを含むことからも明らかなように、色ベクトルの偏角差分の情報である。画像処理部104は、導出したcosθをクロスカラー妨害発生の度合いを規定する評価値とすることによって、アップコンバートされたクロスカラー妨害の検出を図る。   Therefore, as a second detection method, the image processing unit 104 does not derive θ from the first color vector C1 and the second color vector C0, but from the first color vector C1 and the second color vector C0, “ cos θ ”is derived. As is apparent from the fact that cos θ derived in the second detection method includes θ indicating the deviation angle difference of the color vector, it is information on the deviation angle difference of the color vector. The image processing unit 104 detects the up-converted cross color interference by using the derived cos θ as an evaluation value that defines the degree of occurrence of the cross color interference.

ここで、第2の検出方法において導出されるcosθは、cosθの値が“1.0”に近ければ近いほどクロスカラー妨害が発生している可能性が低く、また、逆にcosθの値が“−1.0”に近ければ近いほどクロスカラー妨害が発生している可能性が高いといえる。したがって、画像処理部104は、cosθを導出することによって、アップコンバートされたクロスカラー妨害を検出することができる。   Here, the cos θ derived in the second detection method is less likely to cause cross-color interference as the cos θ value is closer to “1.0”, and conversely, the cos θ value is smaller. It can be said that the closer to “−1.0”, the higher the possibility of cross-color interference. Therefore, the image processing unit 104 can detect the up-converted cross color interference by deriving cos θ.

以下、第2の検出方法に係るcosθの導出方法について説明する。画像処理部104は、第1色ベクトルC1の絶対値と、第2色ベクトルC0の絶対値と、第1色ベクトルC1と第2色ベクトルC0との内積(内積値)とを用いることによって、cosθを導出する。ここで、第1色ベクトルC1の絶対値は以下の数式1で導出され、第2色ベクトルC0の絶対値は以下の数式2で導出される。また、第1色ベクトルC1と第2色ベクトルC0との内積は、以下の数式3で導出される。したがって、数式1〜数式3より、cosθは以下の数式4によって導出される。   Hereinafter, a method for deriving cos θ according to the second detection method will be described. The image processing unit 104 uses the absolute value of the first color vector C1, the absolute value of the second color vector C0, and the inner product (inner product value) of the first color vector C1 and the second color vector C0. Deriving cos θ. Here, the absolute value of the first color vector C1 is derived by the following Equation 1, and the absolute value of the second color vector C0 is derived by the following Equation 2. Further, the inner product of the first color vector C1 and the second color vector C0 is derived by the following Equation 3. Therefore, from Equations 1 to 3, cos θ is derived by Equation 4 below.

なお、図4に示すように、第1色ベクトルC1と第2色ベクトルC0とがUV平面上に表される場合には、u0、u1、v0、v1の値は、それぞれ正負の値を有する。例えば、入力色信号が8ビットで表される場合には、U信号、V信号は、それぞれ“−128〜127”の値を有する。ここで、入力色信号が、例えばオフセットバイナリなどのように正の値しかもたない場合には、画像処理部104は、以下の数式1〜数式4に示す演算処理を行う前に、例えば、色空間の変換などによって第1色ベクトルC1、第2色ベクトルC0それぞれの値を変換してもよい。   As shown in FIG. 4, when the first color vector C1 and the second color vector C0 are represented on the UV plane, the values of u0, u1, v0, and v1 have positive and negative values, respectively. . For example, when the input color signal is represented by 8 bits, the U signal and the V signal each have a value of “−128 to 127”. Here, when the input color signal has only a positive value such as an offset binary, for example, the image processing unit 104 performs, for example, a color before performing the arithmetic processing shown in the following Equations 1 to 4. The values of the first color vector C1 and the second color vector C0 may be converted by space conversion or the like.

Figure 2009253632
・・・(数式1)
Figure 2009253632
... (Formula 1)

Figure 2009253632
・・・(数式2)
Figure 2009253632
... (Formula 2)

Figure 2009253632
・・・(数式3)
Figure 2009253632
... (Formula 3)

Figure 2009253632
・・・(数式4)
Figure 2009253632
... (Formula 4)

第2の検出方法を用いる画像処理部104は、上記数式1〜数式4よりcosθを導出する。ここで、導出されたcosθは、色ベクトルの偏角差分を示すθを含むことからも明らかなように、色ベクトルの偏角差分の情報である。したがって、画像処理部104は、導出したcosθをクロスカラー妨害発生の度合いを規定する評価値とすることによって、θを評価値とする場合と同様に、アップコンバートされたクロスカラー妨害を検出することができる。   The image processing unit 104 using the second detection method derives cos θ from Equations 1 to 4 above. Here, the derived cos θ is information on the declination difference of the color vector, as is clear from the fact that θ indicates the declination difference of the color vector. Therefore, the image processing unit 104 detects the up-converted cross-color interference by setting the derived cos θ as an evaluation value that defines the degree of occurrence of cross-color interference, as in the case where θ is the evaluation value. Can do.

〔第2の検出方法の変形例1〕
第2の検出方法に示したように、cosθを導出することによって、例えばクロスカラー妨害の検出に係る回路規模を小さくしつつ、アップコンバートされたクロスカラー妨害を検出することができる。しかしながら、数式4は平方根を含むため、第2の検出方法を用いる画像処理部104は、cosθを導出するために、自然数を処理する演算回路よりも大きな規模の演算処理回路を備えなければならない場合がある。
[Modification 1 of Second Detection Method]
As shown in the second detection method, by deriving cos θ, it is possible to detect the up-converted cross color interference while reducing the circuit scale related to detection of the cross color interference, for example. However, since Equation 4 includes a square root, the image processing unit 104 using the second detection method must include an arithmetic processing circuit having a larger scale than an arithmetic circuit that processes natural numbers in order to derive cos θ. There is.

そこで、画像処理部104は、例えば、平方根と離散的な値とが対応付けられたルックアップテーブル(Look Up Table)を用いることによって、平方根の演算を簡略化して回路規模をより小さくする。上記のようなルックアップテーブルを用いることによって、数式4に示す平方根の演算が必要なくなるので、画像処理部104は、より簡易な構成で実現されることとなる。   Therefore, the image processing unit 104 simplifies the calculation of the square root and reduces the circuit scale by using, for example, a look-up table in which the square root and discrete values are associated. By using the lookup table as described above, the calculation of the square root shown in Equation 4 is not necessary, so that the image processing unit 104 is realized with a simpler configuration.

〔第2の検出方法の変形例2〕
また、画像処理部104は、より簡易な構成で実現する方法は、ルックアップテーブルを用いる方法に限られない。例えば、画像処理部104は、以下の数式5に示すようにcosθではなく「cosθ」を導出し、cosθをクロスカラー妨害発生の度合いを規定する評価値とすることもできる。ここで、導出されたcosθは、色ベクトルの偏角差分を示すθを含むことからも明らかなように、色ベクトルの偏角差分の情報である。したがって、画像処理部104は、導出したcosθをクロスカラー妨害発生の度合いを規定する評価値とすることによって、θを評価値とする場合と同様に、アップコンバートされたクロスカラー妨害を検出することができる。なお、数式5に示す“sgn(C0・C1)”は、第1色ベクトルC1と第2色ベクトルC0との内積の符号部分を示す。
[Second Modification of Second Detection Method]
Further, the method of realizing the image processing unit 104 with a simpler configuration is not limited to the method using a lookup table. For example, the image processing unit 104 can derive “cos 2 θ” instead of cos θ as shown in the following Equation 5, and set cos 2 θ as an evaluation value that defines the degree of occurrence of cross-color interference. Here, the derived cos 2 θ is information on the declination difference of the color vector, as is clear from the fact that θ indicates the declination difference of the color vector. Therefore, the image processing unit 104 detects the up-converted cross color interference by using the derived cos 2 θ as an evaluation value that defines the degree of occurrence of cross color interference, as in the case where θ is the evaluation value. can do. Note that “sgn (C0 · C1)” shown in Equation 5 indicates the sign portion of the inner product of the first color vector C1 and the second color vector C0.

Figure 2009253632
・・・(数式5)
Figure 2009253632
... (Formula 5)

〔第2の検出方法の変形例3〕
上記では、第2の検出方法に係るクロスカラー妨害発生の度合いを規定する評価値として「cosθ」や「cosθ」を挙げたが、当該評価値は上記に限られない。例えば、「cosθ」や「cosθ」の値と、「θ」の値とが対応付けられたルックアップテーブルを用いることによって、第2の検出方法を用いる画像処理部104が、「θ」をクロスカラー妨害発生の度合いを規定する評価値とすることもできる。
[Variation 3 of the second detection method]
In the above, “cos θ” and “cos 2 θ” are given as the evaluation values that define the degree of occurrence of cross-color interference according to the second detection method, but the evaluation values are not limited to the above. For example, by using a look-up table in which the values of “cos θ” and “cos 2 θ” and the value of “θ” are associated, the image processing unit 104 using the second detection method performs “θ”. May be an evaluation value that defines the degree of occurrence of cross-color interference.

画像処理部104は、上述した第1の検出方法や第2の検出方法(または第2の検出方法に係る変形例)を用いることによって、クロスカラー妨害発生の度合いを規定する評価値を導出することができる。   The image processing unit 104 derives an evaluation value that defines the degree of occurrence of cross-color interference by using the first detection method or the second detection method described above (or a modified example related to the second detection method). be able to.

ここで、画像処理部104がクロスカラー妨害の発生の度合いとして導出する「cosθ」や「cosθ」などの評価値は、色ベクトルの偏角差分の情報である。上述したように、色ベクトルの偏角差分は、SD解像度の画像信号からアップコンバートされた擬似HD解像度の画像信号においても、アップコンバートされたクロスカラー妨害が発生している場合には空間・時間軸座標よらずにある程度の大きさの値をとり続ける性質をもつ。したがって、表示装置100は、画像処理部104が導出したクロスカラー妨害の発生の度合いによって、例えば、アップコンバートされたクロスカラー妨害が発生しているか否かや、アップコンバートされたクロスカラー妨害がどの程度発生しているのかを画素ごとに認識することができる。つまり、画像処理部104がクロスカラー妨害の発生の度合いを導出することは、アップコンバートされたクロスカラー妨害の発生を画素ごとに判定する(または検出する)ことに相当する。 Here, evaluation values such as “cos θ” and “cos 2 θ” derived by the image processing unit 104 as the degree of occurrence of cross-color interference are information on the declination difference of the color vector. As described above, the declination difference of the color vector is the spatial / temporal when the up-converted cross-color interference occurs in the pseudo HD resolution image signal up-converted from the SD resolution image signal. It has the property of taking a certain amount of value regardless of the axis coordinates. Therefore, the display device 100 determines, for example, whether up-converted cross-color interference has occurred or not, and whether the up-converted cross-color interference has occurred, depending on the degree of occurrence of the cross-color interference derived by the image processing unit 104. It can be recognized for each pixel whether or not a certain degree has occurred. That is, deriving the degree of occurrence of cross-color interference by the image processing unit 104 is equivalent to determining (or detecting) the occurrence of up-converted cross-color interference for each pixel.

したがって、画像処理部104は、クロスカラー妨害の発生の度合いを導出することによって、アップコンバートされたクロスカラー妨害を検出することができる。   Therefore, the image processing unit 104 can detect the up-converted cross color interference by deriving the degree of occurrence of the cross color interference.

なお、上記では、第1色ベクトルC1および第2色ベクトルC0が2次元ベクトルで表される場合を例に挙げて説明したが、上記に限られない。例えば、本発明の実施形態に係る画像処理部は、3次元ベクトルとしての色ベクトルに基づいて、色ベクトルの偏角差分の情報を導出することもできる。   In the above description, the case where the first color vector C1 and the second color vector C0 are represented by two-dimensional vectors has been described as an example. However, the present invention is not limited thereto. For example, the image processing unit according to the embodiment of the present invention can also derive information on the color vector declination difference based on a color vector as a three-dimensional vector.

(1−2)アップコンバートされたクロスカラー妨害の検出処理の流れ
次に、上述した検出アプローチを利用した、本発明の実施形態に係るアップコンバートされたクロスカラー妨害の検出処理の流れについて説明する。以下では、上述した第2の検出方法(または、第2の検出方法の変形例)を用いる場合におけるアップコンバートされたクロスカラー妨害の検出処理について説明する。
(1-2) Flow of detection process of up-converted cross-color interference Next, a flow of detection process of up-converted cross-color interference according to the embodiment of the present invention using the above-described detection approach will be described. . In the following, the up-converted cross color interference detection process in the case of using the above-described second detection method (or a modification of the second detection method) will be described.

画像処理部104は、例えば、以下の〔1−2−A〕〜〔1−2−D〕の処理によって、アップコンバートされたクロスカラー妨害を画素ごとに検出する。   For example, the image processing unit 104 detects the up-converted cross color interference for each pixel by the following processes [1-2A] to [1-2-D].

〔1−2−A〕色ベクトルの導出
画像処理部104は、入力色信号に基づいて第1色ベクトルC1を画素ごとに導出する。ここで、画像処理部104は、例えば、入力色信号の色空間が、色成分が3つ(あるいは3つ以上)で表される色空間である場合には、当該色空間を色成分が2つで表される色空間に変換した後に、第1色ベクトルC1を画素ごとに導出する。上記のように、入力色信号の色空間に応じて、色空間の変換を選択的に行うことによって、画像処理部104は、図4に示すように、色ベクトルを2次元ベクトルとして扱うことができる。したがって、画像処理部104は、入力色信号が、色成分が3つ(あるいは3つ以上)で表される色空間である場合においても、上述した第2の検出方法などを用いて、クロスカラー妨害発生の度合いを規定する評価値を導出することができる。なお、本発明の実施形態に係る画像処理部が、例えば、3次元ベクトルとしての色ベクトルに基づいて、色ベクトルの偏角差分の情報に基づくクロスカラー妨害発生の度合いを導出できることは、言うまでもない。
[1-2-A] Derivation of Color Vector The image processing unit 104 derives the first color vector C1 for each pixel based on the input color signal. Here, for example, when the color space of the input color signal is a color space represented by three (or three or more) color components, the image processing unit 104 converts the color space into two color components. After the conversion to the color space represented by the two, the first color vector C1 is derived for each pixel. As described above, by selectively performing color space conversion according to the color space of the input color signal, the image processing unit 104 can handle the color vector as a two-dimensional vector as shown in FIG. it can. Therefore, even when the input color signal is a color space represented by three (or three or more) color components, the image processing unit 104 uses the second detection method described above to perform cross color. An evaluation value that defines the degree of occurrence of interference can be derived. Needless to say, the image processing unit according to the embodiment of the present invention can derive the degree of occurrence of cross-color interference based on the information on the angle difference of the color vector, for example, based on the color vector as a three-dimensional vector. .

〔1−2−B〕色ベクトルの保持
画像処理部104は、導出した第1色ベクトルC1を画素ごとに保持する。第1色ベクトルC1を画素ごとに保持することによって、画像処理部104は、保持された色ベクトルを第2色ベクトル(前フレームに対応する色ベクトル)として用いることができる。
[1-2B] Holding Color Vector The image processing unit 104 holds the derived first color vector C1 for each pixel. By holding the first color vector C1 for each pixel, the image processing unit 104 can use the held color vector as the second color vector (color vector corresponding to the previous frame).

〔1−2−C〕色ベクトルの内積の導出
画像処理部104は、上記〔1−2−A〕で導出した第1色ベクトルC1と、上記〔1−2−B〕で保持されている第2色ベクトルC0とに基づいて、色ベクトルの内積を導出する。
Derivation of [1-2-C] color vector inner product The image processing unit 104 holds the first color vector C1 derived in [1-2-A] and [1-2-B]. Based on the second color vector C0, an inner product of the color vectors is derived.

〔1−2−D〕クロスカラー妨害の発生の度合いの導出
画像処理部104は、上記〔1−2−A〕で導出した第1色ベクトルC1、上記〔1−2−B〕で保持されている第2色ベクトルC0、および上記〔1−2−C〕で導出した色ベクトルの内積に基づいて、クロスカラー妨害の発生の度合いを導出する。ここで、画像処理部104は、上記数式4の演算を行うことによってクロスカラー妨害の発生の度合いを導出することができるが、上記に限られない。例えば、画像処理部104は、ルックアップテーブルなどを併用して演算を簡略化したり、上記数式5の演算を行うことによってクロスカラー妨害の発生の度合いを導出することもできる。
[1-2D] Derivation of degree of occurrence of cross-color interference The image processing unit 104 holds the first color vector C1 derived in [1-2A] and [1-2-B]. The degree of occurrence of cross-color interference is derived based on the inner product of the second color vector C0 and the color vector derived in [1-2-C]. Here, the image processing unit 104 can derive the degree of occurrence of cross-color interference by performing the calculation of Equation 4, but is not limited thereto. For example, the image processing unit 104 can simplify the calculation by using a look-up table or the like, or can derive the degree of occurrence of cross-color interference by performing the calculation of Equation 5.

画像処理部104がクロスカラー妨害の発生の度合いとして導出する「cosθ」や「cosθ」などは、色ベクトルの偏角差分の情報である。上述したように、色ベクトルの偏角差分は、SD解像度の画像信号からアップコンバートされた擬似HD解像度の画像信号においても、アップコンバートされたクロスカラー妨害が発生している場合には空間・時間軸座標よらずにある程度の大きさの値をとり続ける性質をもつ。したがって、画像処理部104は、クロスカラー妨害の発生の度合いを導出することによって、アップコンバートされたクロスカラー妨害を検出することができる。以下、画像処理部104におけるアップコンバートされたクロスカラー妨害の検出処理に係る構成について説明する。 “Cos θ”, “cos 2 θ”, and the like derived as the degree of occurrence of cross-color interference by the image processing unit 104 are information on the color vector declination difference. As described above, the declination difference of the color vector is the spatial / temporal when the up-converted cross-color interference occurs in the pseudo HD resolution image signal up-converted from the SD resolution image signal. It has the property of taking a certain amount of value regardless of the axis coordinates. Therefore, the image processing unit 104 can detect the up-converted cross color interference by deriving the degree of occurrence of the cross color interference. Hereinafter, a configuration related to the detection process of the up-converted cross color interference in the image processing unit 104 will be described.

(1−3)画像処理部104におけるクロスカラー妨害の検出処理に係る構成
図5は、本発明の実施形態に係る画像処理部104におけるアップコンバートされたクロスカラー妨害の検出処理に係る構成例を示すブロック図である。ここで、画像処理部104は、ハードウェア(例えば、画像処理回路)および/またはソフトウェア(画像処理ソフトウェア)で画像処理を行うことができる。
(1-3) Configuration Related to Cross Color Interference Detection Processing in Image Processing Unit 104 FIG. 5 is a configuration example related to cross color interference detection processing upconverted in the image processing unit 104 according to the embodiment of the present invention. FIG. Here, the image processing unit 104 can perform image processing with hardware (for example, an image processing circuit) and / or software (image processing software).

以下では、画像処理部104に入力される入力色信号として、U信号およびV信号が入力される場合を例に挙げて説明する。なお、本発明の実施形態に係る入力色信号は、色空間がYUVで表される色差信号に限られず、例えば、YIQ、Lなど色成分が2つで表される色空間の信号や、RGB、CMYなど色成分が3つで表される色空間の信号など、様々な色空間を用いることができる。 Hereinafter, a case where a U signal and a V signal are input as input color signals input to the image processing unit 104 will be described as an example. Note that the input color signal according to the embodiment of the present invention is not limited to the color difference signal whose color space is represented by YUV. For example, the color space is represented by two color components such as YIQ and L * a * b *. Various color spaces can be used, such as a signal of a color space represented by three color components such as RGB and CMY.

ここで、入力色信号が色成分が3つで表される色空間の信号である場合には、本発明の実施形態に係る画像処理部は、例えば、図5に示す色ベクトル導出部150の前段に色空間変換部(図示せず)をさらに備えることができる。色空間変換部(図示せず)は、入力される色信号に応じて色成分が2つで表される色空間へと選択的に変換する役目を果たす。なお、本発明の実施形態に係る画像処理部が、色成分が3つで表される色空間の信号をそのまま用いることによって(すなわち3次元の色ベクトルによって)、色ベクトルの偏角差分に係るクロスカラー妨害の発生の度合いを導出できることは、言うまでもない。   Here, when the input color signal is a signal in a color space represented by three color components, the image processing unit according to the embodiment of the present invention, for example, of the color vector deriving unit 150 shown in FIG. A color space conversion unit (not shown) can be further provided in the previous stage. A color space conversion unit (not shown) plays a role of selectively converting into a color space represented by two color components in accordance with an input color signal. Note that the image processing unit according to the embodiment of the present invention uses the color space signal represented by three color components as they are (that is, by a three-dimensional color vector), and thereby relates to the declination difference of the color vector. Needless to say, the degree of occurrence of cross-color interference can be derived.

図5を参照すると、画像処理部104は、色ベクトル導出部150と、色ベクトル保持部152と、内積導出部154と、クロスカラー妨害判定部156とを備える。   Referring to FIG. 5, the image processing unit 104 includes a color vector deriving unit 150, a color vector holding unit 152, an inner product deriving unit 154, and a cross color interference determining unit 156.

色ベクトル導出部150は、上記〔1−2−A〕の処理を行う役目を果たし、入力色信号(U信号、V信号)に基づいて第1色ベクトルC1を画素ごとに導出する。また、色ベクトル導出部150は、導出した第1色ベクトルC1を色ベクトル保持部152、内積導出部154、およびクロスカラー妨害判定部156に伝達する。   The color vector deriving unit 150 plays the role of performing the process [1-2A], and derives the first color vector C1 for each pixel based on the input color signal (U signal, V signal). Further, the color vector deriving unit 150 transmits the derived first color vector C1 to the color vector holding unit 152, the inner product deriving unit 154, and the cross color interference determining unit 156.

色ベクトル保持部152は、上記〔1−2−B〕の処理を行う役目を果たし、色ベクトル導出部150から伝達される第1色ベクトルC1を画素ごとに保持する。ここで、色ベクトル保持部152は、例えば、現フレームの色ベクトル(第1色ベクトルC1)と、前フレームの色ベクトル(第2色ベクトルC0)とを保持する構成とすることができるが、上記に限られない。例えば、色ベクトル保持部152は、任意の数のフレームに対応する色ベクトルを画素ごとに保持することもできる。また、色ベクトル保持部152は、例えば、フレーム・メモリ(frame memory)で構成することができるが、上記に限られない。   The color vector holding unit 152 plays the role of performing the above [1-2B], and holds the first color vector C1 transmitted from the color vector deriving unit 150 for each pixel. Here, the color vector holding unit 152 may be configured to hold, for example, the current frame color vector (first color vector C1) and the previous frame color vector (second color vector C0). It is not limited to the above. For example, the color vector holding unit 152 can hold a color vector corresponding to an arbitrary number of frames for each pixel. Further, the color vector holding unit 152 can be configured by a frame memory, for example, but is not limited thereto.

また、色ベクトル保持部152は、例えば、MPUなどからの読み出し命令、あるいは、オシレータ(図示せず)などから伝達される基準クロック信号などに応じて、保持された第2色ベクトルC0を内積導出部154、およびクロスカラー妨害判定部156に伝達する。   Further, the color vector holding unit 152 derives the inner product of the held second color vector C0 in accordance with, for example, a read command from the MPU or a reference clock signal transmitted from an oscillator (not shown) or the like. To the unit 154 and the cross color interference determination unit 156.

内積導出部154は、上記〔1−2−C〕の処理を行う役目を果たし、色ベクトル導出部150から伝達される第1色ベクトルC1と、色ベクトル保持部152から伝達される第2色ベクトルC0とに基づいて、色ベクトルの内積を導出する。そして、内積導出部154は、導出した色ベクトルの内積をクロスカラー妨害判定部156に伝達する。   The inner product deriving unit 154 plays the role of performing the process of [1-2C], and the first color vector C1 transmitted from the color vector deriving unit 150 and the second color transmitted from the color vector holding unit 152. An inner product of color vectors is derived based on the vector C0. Then, the inner product deriving unit 154 transmits the inner product of the derived color vectors to the cross color interference determining unit 156.

クロスカラー妨害判定部156は、上記〔1−2−D〕の処理を行う役目を果たす。クロスカラー妨害判定部156は、色ベクトル導出部150から伝達される第1色ベクトルC1、色ベクトル保持部152から伝達される第2色ベクトルC0、および内積導出部154から伝達される色ベクトルの内積に基づいて、クロスカラー妨害の発生の度合いを導出する。そして、クロスカラー妨害判定部156は、導出したクロスカラー妨害の発生の度合いを出力する。ここで、表示装置100は、クロスカラー妨害判定部156が出力したクロスカラー妨害の発生の度合いを用いて、例えば後述するクロスカラー低減処理などを行うが、上記に限られない。   The cross-color interference determining unit 156 serves to perform the above [1-2-D] process. The cross color interference determination unit 156 includes the first color vector C1 transmitted from the color vector deriving unit 150, the second color vector C0 transmitted from the color vector holding unit 152, and the color vector transmitted from the inner product deriving unit 154. The degree of occurrence of cross color interference is derived based on the inner product. Then, the cross color interference determination unit 156 outputs the derived degree of occurrence of the cross color interference. Here, the display device 100 performs, for example, a cross color reduction process described later using the degree of occurrence of cross color interference output from the cross color interference determination unit 156, but is not limited thereto.

画像処理部104は、例えば、図5に示す構成によって、入力色信号に基づいて、「cosθ」や「cosθ」などの色ベクトルの偏角差分に係るクロスカラー妨害の発生の度合いを導出することができる。上述したように、色ベクトルの偏角差分は、SD解像度の画像信号からアップコンバートされた擬似HD解像度の画像信号においても、アップコンバートされたクロスカラー妨害が発生している場合には空間・時間軸座標よらずにある程度の大きさの値をとり続ける性質をもつ。したがって、画像処理部104は、入力された画像信号に基づいて色ベクトルの偏角差分に係るクロスカラー妨害の発生の度合いを導出することによって、Y/C分離に係るアップコンバートされたクロスカラー妨害を検出することができる。 For example, with the configuration illustrated in FIG. 5, the image processing unit 104 derives the degree of occurrence of cross-color interference related to the declination difference of color vectors such as “cos θ” and “cos 2 θ” based on the input color signal. can do. As described above, the declination difference of the color vector is the spatial / temporal when the up-converted cross-color interference occurs in the pseudo HD resolution image signal up-converted from the SD resolution image signal. It has the property of taking a certain amount of value regardless of the axis coordinates. Therefore, the image processing unit 104 derives the degree of occurrence of cross color interference related to the color vector deviation difference based on the input image signal, thereby performing the up-converted cross color interference related to Y / C separation. Can be detected.

(1−4)本発明の実施形態に係る第1の画像処理方法(アップコンバートされたクロスカラー妨害の検出方法)
次に、本発明の実施形態に係る第1の画像処理方法について説明する。図6は、本発明の実施形態に係る第1の画像処理方法の一例を示す流れ図であり、アップコンバートされたクロスカラー妨害の検出方法の一例を示している。なお、以下では、第1の画像処理方法を表示装置100が行うものとして説明するが、上述したように本発明の実施形態に係る画像処理装置が行うこともできる。
(1-4) First image processing method according to an embodiment of the present invention (up-converted cross color interference detection method)
Next, the first image processing method according to the embodiment of the present invention will be described. FIG. 6 is a flowchart showing an example of the first image processing method according to the embodiment of the present invention, and shows an example of the detection method of the up-converted cross color interference. In the following description, the first image processing method is described as being performed by the display device 100. However, as described above, the image processing device according to the embodiment of the present invention can also be performed.

表示装置100は、入力色信号(例えば、U信号、V信号)に基づいて、現フレームに対応する第1色ベクトルを画素ごとに導出する(S100)。そして、表示装置100は、ステップS100において導出された第1色ベクトルを保持する(S102)。ここで、ステップS102において保持された第1色ベクトルは、次フレームの入力色信号が入力された場合(現フレームが遷移した場合)には、前フレームに対応する第2色ベクトルとなる。   The display device 100 derives a first color vector corresponding to the current frame for each pixel based on the input color signal (for example, U signal, V signal) (S100). Then, the display device 100 holds the first color vector derived in step S100 (S102). Here, the first color vector held in step S102 is the second color vector corresponding to the previous frame when the input color signal of the next frame is input (when the current frame transitions).

表示装置100は、ステップS100において導出された第1色ベクトルと、ステップS102において保持されている第2色ベクトルとに基づいて、色ベクトルの内積を画素ごとに導出する(S104)。   The display device 100 derives the inner product of the color vectors for each pixel based on the first color vector derived in step S100 and the second color vector held in step S102 (S104).

表示装置100は、ステップS100において導出された第1色ベクトル、ステップS102において保持されている第2色ベクトル、およびステップS104において導出された色ベクトルの内積に基づいて、クロスカラー妨害の発生の度合いを導出する(S106;アップコンバートされたクロスカラー妨害の検出)。   The display device 100 determines the degree of occurrence of cross-color interference based on the inner product of the first color vector derived in step S100, the second color vector held in step S102, and the color vector derived in step S104. (S106; detection of up-converted cross-color interference).

図6に示す第1の画像処理方法を用いることによって、表示装置100は、上述した〔1−2−A〕〜〔1−2−D〕の処理を行うことができる。したがって、図6に示す第1の画像処理方法を用いる表示装置100は、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を検出することができる。   By using the first image processing method shown in FIG. 6, the display device 100 can perform the processes [1-2A] to [1-2D] described above. Therefore, the display device 100 using the first image processing method shown in FIG. 6 can detect the up-converted cross color interference related to Y / C separation based on the input image signal.

[2]画像処理部104におけるクロスカラー妨害低減処理
画像処理部104が、上述した[1]の処理(クロスカラー妨害検出処理)を行うことによって、表示装置100は、Y/C分離に係るアップコンバートされたクロスカラー妨害を検出することができる。そこで、次に、本発明の実施形態に係る画像処理として、クロスカラー妨害検出処理を用いたクロスカラー妨害低減処理について説明する。
[2] Cross Color Interference Reduction Processing in Image Processing Unit 104 When the image processing unit 104 performs the above-described process [1] (cross color interference detection processing), the display device 100 is improved in Y / C separation. Converted cross-color interference can be detected. Therefore, next, a cross color interference reduction process using a cross color interference detection process will be described as the image processing according to the embodiment of the present invention.

(2−1)アップコンバートされたクロスカラー妨害の低減アプローチ
まず、本発明の実施形態に係るアップコンバートされたクロスカラー妨害の低減アプローチについて説明する。
(2-1) Upconverted Cross Color Interference Reduction Approach First, an upconverted cross color interference reduction approach according to an embodiment of the present invention will be described.

画像処理部104が処理する画像信号が擬似HD解像度の画像信号である場合には、上述したように、1ラインごとにクロスカラー妨害成分が反転する性質が失われたり、クロスカラー妨害成分の空間周波数が変化したりするなど、クロスカラー妨害の発生に係る画像信号の性質がSD解像度の画像信号から変化する。したがって、擬似HD解像度の画像信号を処理する場合には、例えばアナログ放送の画像信号に対して有効であった、「1ラインごとにクロスカラー妨害成分が反転する性質を利用したクロスカラー妨害成分の低減方法(例えば、垂直方向にフィルタリングする方法)」や「所定の空間周波数成分に基づいてクロスカラー妨害を検出して低減する低減方法(例えば、バンドパス・フィルタを用いる方法)」などを用いたとしても、クロスカラー妨害を低減することはできない。   When the image signal processed by the image processing unit 104 is a pseudo HD resolution image signal, as described above, the property that the cross color interference component is inverted for each line is lost, or the space of the cross color interference component is lost. The nature of the image signal related to the occurrence of cross-color interference, such as a frequency change, changes from an SD resolution image signal. Therefore, when processing a pseudo HD resolution image signal, for example, it is effective for an analog broadcast image signal, “a cross color interference component utilizing the property that the cross color interference component is inverted for each line. A reduction method (for example, a method for filtering in the vertical direction) or a “reduction method for detecting and reducing cross-color interference based on a predetermined spatial frequency component (for example, a method using a bandpass filter)” However, cross-color interference cannot be reduced.

そこで、画像処理部104では、1ラインごとにクロスカラー妨害成分が反転する性質ではなく、クロスカラー妨害成分が1フレームおきに反転する性質に着目する。ここで、クロスカラー妨害成分が1フレームおきに反転する性質は、SD解像度の画像信号がアップコンバートされた擬似HD解像度の画像信号においても失われない。したがって、クロスカラー妨害成分が1フレームおきに反転する性質を利用すれば、クロスカラー妨害成分を効果的に低減することができる。   Therefore, the image processing unit 104 focuses on the property that the cross color interference component is inverted every other frame, not the property that the cross color interference component is inverted every line. Here, the property that the cross color interference component is inverted every other frame is not lost even in the pseudo HD resolution image signal obtained by up-converting the SD resolution image signal. Therefore, the cross color interference component can be effectively reduced by utilizing the property that the cross color interference component is inverted every other frame.

しかしながら、画像処理部104が、例えば、クロスカラー妨害が発生していない画素に対してまでクロスカラー妨害の低減処理を行った場合には、当該クロスカラー妨害の低減処理に起因して、画像がぼやけるなどの副作用が発生する恐れがある。そのため、画像処理部104は、上述した[1]の処理(クロスカラー妨害検出処理)などを用いてアップコンバートされたクロスカラー妨害が発生している画素を検出し、検出結果に基づいて選択的にクロスカラー妨害の低減処理を行う。したがって、画像処理部104は、アップコンバートされたクロスカラー妨害が発生している画素に対してのみクロスカラー妨害の低減処理を行うことができるので、画像がぼやけるなどの副作用を防止しながらクロスカラー妨害成分を効果的に低減することができる。   However, when the image processing unit 104 performs the cross-color interference reduction process even for pixels where cross-color interference has not occurred, for example, the image is generated due to the cross-color interference reduction process. Side effects such as blurring may occur. For this reason, the image processing unit 104 detects the pixel in which the cross-color interference is up-converted using the above-described process [1] (cross-color interference detection process) or the like, and selectively selects the pixel based on the detection result. To reduce cross color interference. Therefore, the image processing unit 104 can perform the cross color interference reduction process only on the pixels in which the up-converted cross color interference occurs, so that the cross color is prevented while preventing side effects such as blurring of the image. Interfering components can be effectively reduced.

以下、画像処理部104におけるアップコンバートされたクロスカラー妨害の低減アプローチについて、具体的に説明する。画像処理部104は、上記クロスカラー妨害成分が1フレームおきに反転する性質を利用し、例えば、以下の〔2−1−A〕〜〔2−1−E〕の処理によって、アップコンバートされたクロスカラー妨害を画素ごとに低減する。以下では、画像処理部104に入力される入力色信号として、U信号およびV信号が入力される場合を例に挙げて説明する。なお、本発明の実施形態に係る入力色信号が、色空間がYUVで表される色差信号に限られないことは、言うまでもない。   Hereinafter, an approach for reducing the up-converted cross color interference in the image processing unit 104 will be described in detail. The image processing unit 104 uses the property that the cross color interference component is inverted every other frame, and is up-converted by, for example, the following processes [2-1-A] to [2-1-E]. Cross color interference is reduced pixel by pixel. Hereinafter, a case where a U signal and a V signal are input as input color signals input to the image processing unit 104 will be described as an example. Needless to say, the input color signal according to the embodiment of the present invention is not limited to the color difference signal whose color space is represented by YUV.

〔2−1−A〕入力色信号に対する時間軸方向の平滑化
画像処理部104は、例えば、時間軸方向の平滑化フィルタを用いることにより、U信号およびV信号(入力色信号)に対して画素ごとに時間軸方向の平滑化を行う。
[2-1-A] Smoothing of input color signal in time axis direction The image processing unit 104 uses, for example, a smoothing filter in the time axis direction to perform U signal and V signal (input color signal). Smoothing in the time axis direction is performed for each pixel.

ここで、時間軸方向の平滑化フィルタとしては、例えば、2タップのローパス・フィルタ(Low-Pass Filter;すなわち、前フレームとの平均値を導出する構成)が挙げられるが上記に限られない。例えば、時間軸方向の平滑化フィルタは、2タップのローパス・フィルタに限られず、タップ数を任意に設定することができる。また、時間軸方向の平滑化フィルタは、ローパス・フィルタに限られず、例えば、移動平均フィルタや加重平均フィルタなど、様々なフィルタを用いることができる。さらに、時間軸方向の平滑化フィルタは、上記のようなFIR(Finite Impulse Response Filter)フィルタ(非巡回型のフィルタ)に限られず、IIR(Infinite Impulse Response)フィルタ(巡回型のフィルタ)を用いてもよい。IIRフィルタを用いることによって、1画面分に相当するフレームメモリを用いてタップ数の長いフィルタを実現することができる。   Here, examples of the smoothing filter in the time axis direction include, but are not limited to, a 2-tap low-pass filter (Low-Pass Filter; that is, a configuration for deriving an average value from the previous frame). For example, the smoothing filter in the time axis direction is not limited to a 2-tap low-pass filter, and the number of taps can be set arbitrarily. The smoothing filter in the time axis direction is not limited to a low-pass filter, and various filters such as a moving average filter and a weighted average filter can be used. Further, the smoothing filter in the time axis direction is not limited to the FIR (Finite Impulse Response Filter) filter (non-recursive filter) as described above, and an IIR (Infinite Impulse Response) filter (cyclic filter) is used. Also good. By using the IIR filter, a filter having a long tap number can be realized by using a frame memory corresponding to one screen.

また、上記平滑化フィルタのフィルタ係数は、例えば、画像信号が示す画像が静止画像を示すときの奇数番目の係数の和と、偶数番目の係数の和とが等しくなるように設定することができる。上記のように設定することによって、画像処理部104は、理論上、平滑化によってクロスカラー妨害成分を0(ゼロ)とすることができる。   In addition, the filter coefficient of the smoothing filter can be set so that, for example, the sum of odd-numbered coefficients and the sum of even-numbered coefficients when the image indicated by the image signal represents a still image are equal. . By setting as described above, the image processing unit 104 can theoretically set the cross color interference component to 0 (zero) by smoothing.

上記のような平滑化フィルタを用いることによって、画像処理部104は、画素ごとに時間軸方向の平滑化が行われた入力色信号(以下、「平滑化色信号」とよぶ場合がある。)を得ることができる。   By using the smoothing filter as described above, the image processing unit 104 performs input color signal smoothing in the time axis direction for each pixel (hereinafter, referred to as “smoothed color signal” in some cases). Can be obtained.

〔2−1−B〕平滑化色信号のゲインの抑制
入力された画像信号がアップコンバートされたクロスカラー妨害を含んでいる場合には、U信号およびV信号が異常に大きな値を持つことが多い。また、上記の特徴が、アップコンバートされたクロスカラー妨害を含んだ画像信号に対応する画像が表示画面に表示されたときにクロスカラー妨害が目立つ要因の一つとなっている。そこで、画像処理部104は、平滑化色信号に対して、画素ごとに1.0以下のゲイン(ゲイン抑制値。以下、「抑制ゲイン」とよぶ場合がある。)を乗算することによって、平滑化色信号のゲインを抑制する。平滑化色信号のゲインを抑制ことによって、アップコンバートされたクロスカラー妨害の影響を低減することができる。
[2-1-B] Suppression of gain of smoothed color signal When an input image signal includes up-converted cross color interference, the U signal and the V signal may have an abnormally large value. Many. In addition, the above-described feature is one of the factors that make cross-color interference conspicuous when an image corresponding to an image signal that includes up-converted cross-color interference is displayed on the display screen. Therefore, the image processing unit 104 multiplies the smoothed color signal by a gain of 1.0 or less (gain suppression value, hereinafter referred to as “suppression gain” in some cases) for each pixel. The gain of the color signal is suppressed. By suppressing the gain of the smoothed color signal, the influence of the up-converted cross color interference can be reduced.

図7は、本発明の実施形態に係る平滑化色信号のゲインの抑制の一例を説明する説明図である。ここで、図7は、x軸にU信号およびV信号(U,V入力)、y軸に平滑化色信号(U,V出力)をとった例を示している。   FIG. 7 is an explanatory diagram illustrating an example of suppression of the gain of the smoothed color signal according to the embodiment of the present invention. Here, FIG. 7 shows an example in which a U signal and a V signal (U, V input) are taken on the x axis, and a smoothed color signal (U, V output) is taken on the y axis.

<2−1−B−1>U信号およびV信号が閾値thより小さい場合(図7の区間p)
U信号およびV信号が閾値th2より小さい場合には、画像処理部104は、平滑化色信号のゲインの抑制を行わない。すなわち、図7に示すように、区間pでは、「y=x」の関係が成立する。
<2-1-B-1> When U signal and V signal are smaller than threshold th (section p in FIG. 7)
When the U signal and the V signal are smaller than the threshold th2, the image processing unit 104 does not suppress the gain of the smoothed color signal. That is, as shown in FIG. 7, the relationship “y = x” is established in the section p.

ここで、閾値thの値が小さければ小さい程、平滑化色信号のゲインの抑制処理は働き易く、逆に閾値thの値が大きければ大きい程、平滑化色信号のゲインの抑制処理は働き難い。つまり、平滑化色信号のゲインの抑制処理のために閾値thが設定されることによって、画像処理部104は、平滑化色信号のゲインの抑制処理の働き易さを調整することができる。また、閾値thの値は、例えば、ユーザが操作部(図示せず)を操作することによって、調整することができるが、上記に限られない。   Here, the smaller the threshold th value, the easier the smoothing color signal gain suppression process works. Conversely, the larger the threshold th value, the harder the smoothed color signal gain suppression process works. . That is, by setting the threshold th for the smoothing color signal gain suppression process, the image processing unit 104 can adjust the workability of the smoothing color signal gain suppression process. Further, the value of the threshold th can be adjusted, for example, by a user operating an operation unit (not shown), but is not limited thereto.

<2−1−B−2>U信号およびV信号が閾値th以上である場合(図7の区間q)
U信号およびV信号が閾値th以上である場合には、画像処理部104は、例えば、以下の数式6、数式7により、平滑化色信号のゲインの抑制を行う。ここで、数式6は抑制ゲインを示している。つまり、数式6、数式7を用いることによって、画像処理部104は、U信号およびV信号の値が大きければ大きい程、平滑化色信号のゲインを抑制することができる。
<2-1-B-2> When U signal and V signal are greater than or equal to threshold th (section q in FIG. 7)
When the U signal and the V signal are equal to or greater than the threshold th, the image processing unit 104 suppresses the gain of the smoothed color signal using, for example, the following formulas 6 and 7. Here, Formula 6 shows the suppression gain. That is, by using Expressions 6 and 7, the image processing unit 104 can suppress the gain of the smoothed color signal as the values of the U signal and the V signal are larger.

G=1.0+(g0−1.0)×(X/L)
・・・(数式6)
G = 1.0 + (g0−1.0) × (X / L)
... (Formula 6)

Y=G×X
・・・(数式7)
Y = G × X
... (Formula 7)

なお、上記では、画像処理部104が数式6、数式7を用いて平滑化色信号のゲインをそれぞれ抑制する例を示したが、上記に限られない。例えば、画像処理部104は、U信号、V信号それぞれに対して、予め設定された抑制ゲインを乗算することによって、平滑化色信号のゲインを抑制することもできる。   In the above description, the example in which the image processing unit 104 suppresses the gain of the smoothed color signal using Expression 6 and Expression 7 is described, but the present invention is not limited thereto. For example, the image processing unit 104 can suppress the gain of the smoothed color signal by multiplying each of the U signal and the V signal by a preset suppression gain.

また、上記では、画像処理部104が、U信号、V信号に対して、独立にゲインの抑制を行う例を示したが、上記に限られない。ここで、U信号、V信号に対して独立にゲインの抑制を行った場合には、色相が変化してしまう可能性がある。そのため、画像処理部104は、例えば、ゲイン抑制に起因した色相の変化が発生しないように、U信号およびV信号に対してゲインを抑制することもできる。   In the above description, the example in which the image processing unit 104 suppresses the gain independently of the U signal and the V signal has been described. However, the present invention is not limited thereto. Here, when the gain is suppressed independently for the U signal and the V signal, the hue may change. Therefore, for example, the image processing unit 104 can also suppress the gain with respect to the U signal and the V signal so that a hue change due to the gain suppression does not occur.

より具体的に説明すると、画像処理部104は、例えば、まず、画素ごとにU信号の絶対値とV信号の絶対値とを比較する。次に、画像処理部104は、上記比較結果に基づいて、画素ごとに絶対値の大きさが大きい値と、数式6とを用いて抑制ゲインを導出する。そして、画像処理部104は、導出された抑制ゲインをU信号およびV信号にそれぞれ乗算する。つまり、U信号およびV信号それぞれには、同一の値を有する抑制ゲインが乗算されることとなる。上記のような手順でゲイン抑制を行うことによって、画像処理部104は、色相の変化を防止しつつ、U信号およびV信号に対してゲインを抑制することができる。   More specifically, for example, the image processing unit 104 first compares the absolute value of the U signal and the absolute value of the V signal for each pixel. Next, the image processing unit 104 derives a suppression gain using a value having a large absolute value for each pixel and Equation 6 based on the comparison result. Then, the image processing unit 104 multiplies the U signal and the V signal by the derived suppression gain. That is, each of the U signal and the V signal is multiplied by a suppression gain having the same value. By performing the gain suppression in the above procedure, the image processing unit 104 can suppress the gain for the U signal and the V signal while preventing the hue from changing.

なお、上記では、U信号およびV信号の最大値を用いて色相の変化を防止する例を示したが、本発明の実施形態に係る色相の変化を防止する方法は、上記に限られない。例えば、画像処理部104は、U信号およびV信号の加算値や、UVベクトルの大きさなど他の値を用いて抑制ゲインを導出することによって、ゲイン抑制を行うこともできる。   In the above, the example of preventing the change in hue using the maximum values of the U signal and the V signal has been described. However, the method for preventing the change in hue according to the embodiment of the present invention is not limited to the above. For example, the image processing unit 104 can also perform gain suppression by deriving the suppression gain using other values such as the added value of the U signal and the V signal and the magnitude of the UV vector.

また、上記では、画像処理部104が、YUV空間において色相の変化を防止する例を示したが、本発明の実施形態に係る色相の変化を防止する方法は、上記に限られない。例えば、画像処理部104は、HSV空間などの他の色空間に入力色信号を変換し、変換後の色空間において上述したような色相の変化を防止する処理を行うこともできる。   In the above, the example in which the image processing unit 104 prevents the hue change in the YUV space has been described. However, the method for preventing the hue change according to the embodiment of the present invention is not limited to the above. For example, the image processing unit 104 can convert the input color signal into another color space such as an HSV space, and can perform a process for preventing the hue change as described above in the converted color space.

〔2−1−C〕クロスカラー妨害が発生している画素の検出
上記〔2−1−A〕では、平滑化色信号を得ることを示したが、時間軸方向の平滑化は、入力色信号をある意味劣化させる処理である。そのため、画像処理部104から出力されるノイズ低減後の入力色信号が、クロスカラー妨害が発生していない画素に対してまで平滑化された信号となった場合には、画像がぼやけるなどの副作用が発生する可能性がある。そこで、画像処理部104は、上記副作用を防止するために、入力された画像信号(入力輝度信号/入力色信号)に基づいてクロスカラー妨害が発生している画素を検出する。
[2-1-C] Detection of pixels in which cross-color interference has occurred In the above [2-1-A], it has been shown that a smoothed color signal is obtained. This is a process of degrading the signal in a sense. For this reason, when the noise-reduced input color signal output from the image processing unit 104 is a signal that has been smoothed down to pixels where cross-color interference has not occurred, side effects such as image blurring. May occur. Therefore, the image processing unit 104 detects pixels in which cross-color interference has occurred based on the input image signal (input luminance signal / input color signal) in order to prevent the above side effects.

ここで、画像処理部104は、例えば、以下の〔I〕に示す処理、または、以下の〔I〕〜〔III〕を組み合わせた処理によって、クロスカラー妨害が発生している画素を検出する。   Here, the image processing unit 104 detects pixels in which cross-color interference has occurred, for example, by processing shown in the following [I] or a combination of the following [I] to [III].

〔I〕U信号、V信号に基づくクロスカラー妨害が発生している画素の検出
画像処理部104は、U信号、V信号(入力色信号)に基づいてクロスカラー妨害が発生している画素を検出する。ここで、画像処理部104は、上述した[1]の処理(クロスカラー妨害検出処理)を行うことによって、アップコンバートされたクロスカラー妨害を画素ごとに検出することができる。
[I] Detection of Pixels with Cross Color Interference Based on U Signal and V Signal The image processing unit 104 detects pixels with cross color interference based on the U signal and V signal (input color signal). To detect. Here, the image processing unit 104 can detect the up-converted cross color interference for each pixel by performing the above-described process [1] (cross color interference detection processing).

〔II〕動きの検出
上記〔I〕では、上述した[1]の処理(クロスカラー妨害検出処理)を行うことによって、アップコンバートされたクロスカラー妨害が発生している画素を検出することを示した。つまり、画像処理部104は、色ベクトルの偏角差分の情報に基づいてクロスカラー妨害発生の度合いを導出することによって、アップコンバートされたクロスカラー妨害が発生している画素を検出する。ここで、色ベクトルの偏角差分は、上述したように、入力された画像信号がアップコンバートされたクロスカラー妨害を含みかつ動画像を表している場合においても、空間・時間軸座標よらずにある程度以上の大きさの値をとる。したがって、画像処理部104は、入力された画像信号が動画像を表している場合であっても、アップコンバートされたクロスカラー妨害が発生している画素を検出することができる。
[II] Motion Detection The above [I] indicates that the pixel having the up-converted cross color interference is detected by performing the above-described processing [1] (cross color interference detection processing). It was. In other words, the image processing unit 104 detects the pixel where the up-converted cross color interference occurs by deriving the degree of occurrence of the cross color interference based on the information of the deviation angle difference of the color vector. Here, as described above, even when the input image signal includes cross-color interference obtained by up-conversion and represents a moving image, the color vector declination difference does not depend on the space / time axis coordinates. It takes a value larger than a certain level. Therefore, the image processing unit 104 can detect pixels in which up-converted cross-color interference has occurred even when the input image signal represents a moving image.

しかしながら、上述した[1]の処理(クロスカラー妨害検出処理)では、入力された画像信号が動画像であるか否かを判別した上で、アップコンバートされたクロスカラー妨害を検出している訳ではない。そのため、入力された画像信号が動画像を表している場合において、画像処理部104がクロスカラー妨害が発生している画素を誤検出(未検出や過検出)してしまう可能性がある。ここで、仮に誤検出が生じた場合には、例えば、クロスカラー妨害を効果的に低減することができない、または、動いている部分がぼけてしまうなどといった望ましくない結果が生じる恐れがある。そこで、画像処理部104は、例えば現フレームと前フレームとの間の相関に基づいて動き(動き量)を検出し、上記〔I〕の処理の結果と、動きの検出処理の結果とを組み合わせる。これによって、画像処理部104は、クロスカラー妨害が発生している画素の誤検出をより確実に防止することができる。   However, in the above-described process [1] (cross color interference detection process), the up-converted cross color interference is detected after determining whether or not the input image signal is a moving image. is not. For this reason, when the input image signal represents a moving image, the image processing unit 104 may erroneously detect (not detect or over detect) a pixel in which cross color interference occurs. Here, if an erroneous detection occurs, there is a possibility that an undesirable result may occur, for example, the cross-color interference cannot be effectively reduced or the moving part is blurred. Therefore, the image processing unit 104 detects motion (motion amount) based on the correlation between the current frame and the previous frame, for example, and combines the result of the process [I] and the result of the motion detection process. . As a result, the image processing unit 104 can more reliably prevent erroneous detection of pixels in which cross-color interference occurs.

ここで、動きを検出する方法としては、例えば、入力輝度信号(以下、「Y信号」とよぶ場合もある。)に基づいて、画素ごとに現フレームと前フレームとの差分を導出する方法が挙げられる。例えば、画像処理部104は、注目画素を含む所定の領域に属する画素(例えば、注目画素の周辺の画素)のY信号の値に基づいて、画素ごとに現フレームと前フレームとの差分値を導出する。そして、画像処理部104は、例えば、導出された差分値の絶対値の合計値に基づいて、動きの度合いを判別する。ここで、画像処理部104は、例えば、上記合計値と動きの度合いを示す値とが対応付けられたルックアップテーブルを用いることによって、動きの度合いを一意に判別することができるが、上記に限られない。   Here, as a method of detecting motion, for example, a method of deriving a difference between the current frame and the previous frame for each pixel based on an input luminance signal (hereinafter also referred to as “Y signal”). Can be mentioned. For example, the image processing unit 104 calculates a difference value between the current frame and the previous frame for each pixel based on the Y signal value of a pixel belonging to a predetermined region including the target pixel (for example, a pixel around the target pixel). To derive. Then, the image processing unit 104 determines the degree of movement, for example, based on the total absolute value of the derived difference values. Here, for example, the image processing unit 104 can uniquely determine the degree of movement by using a lookup table in which the total value and a value indicating the degree of movement are associated with each other. Not limited.

また、画像処理部104における動きを検出する方法は、上記に限られない。例えば、画像処理部104は、動きベクトルを導出し、当該動きベクトルの絶対値を動き量とすることによって動きを検出することもできる。ここで、動きベクトルの導出方法としては、例えば、テンプレートのマッチングを用いる方法が挙げられるが、上記に限られない。なお、例えば、IP変換処理や中間フレーム生成処理など画像処理部104の他の処理、または表示装置100の他の構成要素が行う他の処理において、動きベクトルが導出されている場合には、画像処理部104は、当該動きベクトルを流用することもできる。上記の場合には、より効率的かつ高精度に動きを検出することができる。   Further, the method for detecting the motion in the image processing unit 104 is not limited to the above. For example, the image processing unit 104 can detect a motion by deriving a motion vector and using the absolute value of the motion vector as a motion amount. Here, as a method for deriving a motion vector, for example, a method using template matching is cited, but the method is not limited to the above. Note that, for example, when a motion vector is derived in another process of the image processing unit 104 such as an IP conversion process or an intermediate frame generation process or another process performed by another component of the display device 100, the image The processing unit 104 can also use the motion vector. In the above case, motion can be detected more efficiently and with high accuracy.

〔III〕クロスカラー妨害発生条件を満たす画素の検出
上記〔I〕では、クロスカラー妨害成分が1フレームおきに反転する性質を用い、U信号およびV信号に基づいてクロスカラー妨害が発生している画素を検出することを示した。ここで、クロスカラー妨害が発生している場合には、U信号およびV信号に限られず、Y信号(入力輝度信号)においても信号の周波数に特徴が生じている場合がある。そこで、画像処理部104は、上記〔I〕の処理の結果と、Y信号に基づくクロスカラー妨害発生の条件を満たす画素(クロスカラー妨害発生の可能性が高い画素)の検出結果とを組み合わせることによって、クロスカラー妨害が発生している画素の検出精度をより高める。なお、さらに上記〔II〕の処理の結果を組み合わせることによって、画像処理部104が、クロスカラー妨害が発生している画素の検出精度をより高めながらクロスカラー妨害が発生している画素の誤検出をより確実に防止することができることは、言うまでもない。
[III] Detection of Pixels that Satisfy Cross-Color Interference Occurrence In [I] above, cross-color interference is generated based on the U signal and V signal using the property that the cross-color interference component is inverted every other frame. It was shown to detect pixels. Here, when cross-color interference occurs, the signal frequency may be characterized not only in the U signal and the V signal but also in the Y signal (input luminance signal). Therefore, the image processing unit 104 combines the result of the process [I] above with the detection result of the pixel that satisfies the condition for occurrence of cross-color interference based on the Y signal (the pixel that is highly likely to cause cross-color interference). As a result, the detection accuracy of the pixel in which the cross color interference occurs is further increased. Further, by combining the results of the above process [II], the image processing unit 104 can increase the detection accuracy of the pixel in which the cross color interference has occurred, and the erroneous detection of the pixel in which the cross color interference has occurred. Needless to say, this can be prevented more reliably.

ここで、クロスカラー妨害領域発生の条件を満たす画素を検出する方法としては、例えば、Y信号の高域成分の度合いに基づく方法が挙げられる。クロスカラー妨害が発生している場合、Y信号の斜め方向に高域成分が含まれている可能性が高い。そこで、画像処理部104は、例えば、ハイパス・フィルタ(High-Pass Filter)やバンドパス・フィルタを用いることによって、Y信号から高域成分(検出値)を得る。そして、画像処理部104は、フィルタリングにより検出された検出値に基づいて、クロスカラー妨害領域発生の条件を満たす度合いを画素ごとに導出する。ここで、クロスカラー妨害領域発生の条件を満たす度合いは、例えば、斜め方向に連続する検出値の数と、クロスカラー妨害領域発生の条件を満たす度合いとが対応付けられたルックアップテーブルを用いて導出することができるが、上記に限られない。   Here, as a method of detecting a pixel that satisfies the condition for generating the cross-color interference region, for example, a method based on the degree of the high frequency component of the Y signal can be mentioned. When cross-color interference occurs, there is a high possibility that a high frequency component is included in the diagonal direction of the Y signal. Therefore, the image processing unit 104 obtains a high-frequency component (detection value) from the Y signal by using, for example, a high-pass filter or a band-pass filter. Then, the image processing unit 104 derives, for each pixel, a degree that satisfies the condition for generating the cross-color interference region based on the detection value detected by filtering. Here, the degree of satisfying the condition for occurrence of the cross-color interference region is, for example, using a look-up table in which the number of detection values consecutive in the oblique direction is correlated with the degree of condition for satisfying the occurrence of the cross-color interference region. It can be derived, but is not limited to the above.

画像処理部104は、例えば、上記〔I〕に示す処理、または、上記〔I〕〜〔III〕を組み合わせた処理によって、クロスカラー妨害が発生している画素を検出することができる。   For example, the image processing unit 104 can detect a pixel in which cross-color interference has occurred by the process shown in [I] or a process combining [I] to [III].

〔2−1−D〕ゲイン値の設定
画像処理部104は、上記〔2−1−C〕における検出結果に基づいて、入力色信号と平滑化色信号とを混合する比率を規定するゲイン値を画素ごとに設定する。ここで、ゲイン値は、例えば、平滑化色信号を入力色信号に混合する比率を表す値とすることができるが、上記に限られず、入力色信号を平滑化色信号に混合する比率を表す値としてもよい。
[2-1-D] Gain Value Setting The image processing unit 104 defines a ratio for mixing the input color signal and the smoothed color signal based on the detection result in [2-1-C]. Is set for each pixel. Here, for example, the gain value can be a value representing a ratio of mixing the smoothed color signal with the input color signal, but is not limited to the above, and represents a ratio of mixing the input color signal with the smoothed color signal. It may be a value.

図8は、本発明の実施形態に係るゲイン値の設定方法の一例を説明するための説明図である。ここで、図8は、ゲイン値を平滑化色信号を入力色信号に混合する比率を表す値とした場合の一例を示している。また、図8は、クロスカラー妨害の発生の度合いが「cosθ」で表される場合を示している。以下、図8を適宜参照しつつ、ゲイン値の設定方法について説明する。   FIG. 8 is an explanatory diagram for explaining an example of a gain value setting method according to the embodiment of the present invention. Here, FIG. 8 shows an example when the gain value is a value representing the ratio of the smoothed color signal to the input color signal. FIG. 8 shows a case where the degree of occurrence of cross color interference is represented by “cos θ”. Hereinafter, a gain value setting method will be described with reference to FIG. 8 as appropriate.

<2−1−D−1>上記〔I〕の処理における検出結果を用いる場合
上記〔I〕の処理における検出結果を用いる場合(すなわち、1つの検出結果を用いる場合)には、画像処理部104は、例えば、以下の数式8によって、ゲイン値を導出する。
<2-1-D-1> When using the detection result in the process [I] When using the detection result in the process [I] (that is, when using one detection result), the image processing unit 104 derives a gain value by, for example, the following Equation 8.

G1=(th2−cosθ)×a (0.0≦G≦1.0)
・・・(数式8)
G1 = (th2-cos θ) × a (0.0 ≦ G ≦ 1.0)
... (Formula 8)

数式8に示す「G1」はゲイン値を示しており、「cosθ」はクロスカラー妨害の発生の度合いなどの〔i〕の処理における検出結果の一例を示している。また、数式8に示す「th2」は、図8に示すように、ゲイン値を0(ゼロ)から変化させ始める閾値を示している。ここで、閾値th2の値が小さければ小さい程、アップコンバートされたクロスカラー妨害の低減処理は働き難く、逆に閾値th2の値が大きければ大きい程、アップコンバートされたクロスカラー妨害の低減処理は働き易い。つまり、ゲイン値の設定のために閾値th2が設定されることによって、画像処理部104は、アップコンバートされたクロスカラー妨害の低減処理の働き易さを調整することができる。また、閾値thの値は、例えば、ユーザが操作部(図示せず)を操作することによって、調整することができるが、上記に限られない。   “G1” in Expression 8 indicates a gain value, and “cos θ” indicates an example of a detection result in the process [i] such as the degree of occurrence of cross-color interference. Further, “th2” shown in Formula 8 indicates a threshold value at which the gain value starts to change from 0 (zero) as shown in FIG. Here, the smaller the threshold value th2, the more difficult the up-converted cross color interference reduction processing is. On the contrary, the larger the threshold value th2, the more the up-converted cross color interference reduction processing is performed. Easy to work. That is, by setting the threshold th2 for setting the gain value, the image processing unit 104 can adjust the workability of the up-converted cross color interference reduction process. Further, the value of the threshold th can be adjusted, for example, by a user operating an operation unit (not shown), but is not limited thereto.

また、数式8に示す「a」は、図8に示すように、ゲイン値の変化の傾きを表している。ここで、傾きaの値が小さければ小さい程、アップコンバートされたクロスカラー妨害の低減処理の効果は、〔I〕の処理における検出結果の変化に対して緩やかとなり、逆に傾きaの値が大きければ大きい程、アップコンバートされたクロスカラー妨害の低減処理の効果は〔I〕の処理における検出結果の変化に対して急激なものとなる。つまり、ゲイン値の設定のために傾きaが設定されることによって、画像処理部104は、アップコンバートされたクロスカラー妨害の低減処理の働き方を調整することができる。また、傾きaの値は、例えば、ユーザが操作部(図示せず)を操作することによって、調整することができるが、上記に限られない。   Further, “a” shown in Expression 8 represents the slope of the change in gain value as shown in FIG. Here, the smaller the value of the slope a, the slower the effect of the up-converted cross-color interference reduction process with respect to the change in the detection result in the process [I]. The larger the value is, the more abrupt the effect of the up-converted cross color interference reduction process is with respect to the change in the detection result in the process [I]. That is, by setting the slope a for setting the gain value, the image processing unit 104 can adjust the working method of the up-converted cross color interference reduction processing. Further, the value of the inclination a can be adjusted by, for example, the user operating an operation unit (not shown), but is not limited to the above.

なお、図8では、ゲイン値が1次直線で表現される例を示したが、上記に限られない。例えば、本発明の実施形態に係るゲイン値は、「cosθ」(クロスカラー妨害の発生の度合いの一例)が“−1.0”に近ければ近いほど大きく、また、“1.0”に近ければ近いほど小さくなるような条件を満たせば、2次曲線などを用いて任意に設定されてもよい。   Although FIG. 8 shows an example in which the gain value is expressed by a linear line, it is not limited to the above. For example, the gain value according to the embodiment of the present invention is larger as “cos θ” (an example of the degree of occurrence of cross-color interference) is closer to “−1.0”, and closer to “1.0”. It may be arbitrarily set using a quadratic curve or the like as long as the condition that the smaller the distance is is satisfied.

<2−1−D−2>上記〔I〕〜〔III〕の処理における検出結果を組み合わせて用いる場合
上記〔I〕〜〔III〕の処理における検出結果を組み合わせて用いる場合(すなわち、2つ以上の検出結果を用いる場合)には、画像処理部104は、例えば、以下の数式9および数式10によって、ゲイン値を導出する。ここで、数式9は、上記〔I〕〜〔III〕の処理における検出結果を組み合わせて用いる場合を示している。
<2-1-D-2> When using the detection results in the processes [I] to [III] in combination When using the detection results in the processes [I] to [III] in combination (that is, two In the case where the above detection result is used), the image processing unit 104 derives the gain value using, for example, Equation 9 and Equation 10 below. Here, Formula 9 shows a case where the detection results in the processes [I] to [III] are used in combination.

gN=(a0×g0)+(a1×g1)+(a2×g2)
・・・(数式9)
G2=(gN−th3)×a (0.0≦G≦1.0)
・・・(数式10)
gN = (a0 × g0) + (a1 × g1) + (a2 × g2)
... (Formula 9)
G2 = (gN−th3) × a (0.0 ≦ G ≦ 1.0)
(Equation 10)

数式9に示す「a0」は〔I〕の処理における検出結果に対する重み付け係数である。「g0」は〔I〕の処理における検出結果に基づく値を示しており、例えば、上記数式8の「G1」が対応する。また、数式9に示す「a1」は〔II〕の処理における検出結果に対する重み付け係数、「g1」は〔II〕の処理における検出結果、「a2」は〔III〕の処理における検出結果に対する重み付け係数、そして「g2」は〔III〕の処理における検出結果をそれぞれ示している。数式9に示すように、上記〔I〕〜〔III〕の処理における検出結果それぞれに重み付けがなされることによって、画像処理部104は、重み付けされた検出結果「gN」を導出することができる。また、画像処理部104は、上記〔I〕〜〔III〕の処理における検出結果それぞれの重み付け係数を設定することによって、どの検出結果を重視してゲイン値の設定するかを調整することができる。なお、上記〔I〕〜〔III〕の処理における検出結果それぞれの重み付け係数の値は、例えば、ユーザが操作部(図示せず)を操作することによって、調整することができるが、上記に限られない。   “A0” shown in Equation 9 is a weighting coefficient for the detection result in the process [I]. “G0” indicates a value based on the detection result in the process [I], and corresponds to, for example, “G1” in Equation 8 above. “A1” shown in Equation 9 is a weighting coefficient for the detection result in the process [II], “g1” is a detection result in the process [II], and “a2” is a weighting coefficient for the detection result in the process [III]. “G2” indicates a detection result in the process [III]. As shown in Equation 9, the image processing unit 104 can derive the weighted detection result “gN” by weighting each detection result in the processes [I] to [III]. In addition, the image processing unit 104 can adjust which detection result is set as the gain value by setting the weighting coefficient for each detection result in the processes [I] to [III]. . The values of the weighting coefficients of the detection results in the processes [I] to [III] can be adjusted, for example, by the user operating an operation unit (not shown). I can't.

また、画像処理部104は、数式9において導出した「gN」と数式10とを用いることによって、ゲイン値を導出する。   Further, the image processing unit 104 derives a gain value by using “gN” derived in Equation 9 and Equation 10.

ここで、数式10に示す「th3」は、図8の「th2」と同様に、ゲイン値を0(ゼロ)から変化させ始める閾値を示している。ここで、閾値th3の値が小さければ小さい程、アップコンバートされたクロスカラー妨害の低減処理は働き易く、逆に閾値th3の値が大きければ大きい程、アップコンバートされたクロスカラー妨害の低減処理は働き難い。つまり、ゲイン値の設定のために閾値th3が設定されることによって、画像処理部104は、アップコンバートされたクロスカラー妨害の低減処理の働き易さを調整することができる。また、閾値th3の値は、例えば、ユーザが操作部(図示せず)を操作することによって、調整することができるが、上記に限られない。   Here, “th3” shown in Expression 10 indicates a threshold value at which the gain value starts to change from 0 (zero), similarly to “th2” in FIG. Here, the smaller the threshold value th3, the easier the up-converted cross-color interference reduction processing works. Conversely, the larger the threshold value th3, the greater the up-converted cross-color interference reduction processing. Hard to work. In other words, by setting the threshold th3 for setting the gain value, the image processing unit 104 can adjust the workability of the up-converted cross color interference reduction process. Further, the value of the threshold th3 can be adjusted by, for example, the user operating an operation unit (not shown), but is not limited thereto.

画像処理部104は、上記<2−1−D−1>や<2−1−D−2>に示した方法を用いることによって、上記〔I〕に示す処理における検出結果、または、上記〔I〕〜〔III〕に示す処理における検出結果の組み合わせに基づいて、画素ごとにゲイン値を設定することができる。   By using the method shown in <2-1-D-1> or <2-1-D-2>, the image processing unit 104 detects the detection result in the process shown in [I] or [ A gain value can be set for each pixel based on a combination of detection results in the processes shown in [I] to [III].

なお、上記数式9では、上記〔I〕〜〔III〕それぞれの処理における検出結果、すなわち、3つの検出結果を用いて重み付けされた検出結果「gN」を導出する例を示しているが、上記に限られない。例えば、画像処理部104は、上記〔I〕に示す処理における検出結果および上記〔II〕に示す処理における検出結果、または、上記〔I〕に示す処理における検出結果および上記〔III〕に示す処理における検出結果、という2つの検出結果を用いて重み付けされた検出結果「gN」を導出することもできる。   In addition, although the above formula 9 shows an example of deriving the detection results “gN” weighted using the detection results in the processes [I] to [III], that is, using the three detection results, Not limited to. For example, the image processing unit 104 detects the detection result in the process shown in [I] and the detection result in the process shown in [II], or the detection result in the process shown in [I] and the process shown in [III]. It is also possible to derive a weighted detection result “gN” using the two detection results, i.

〔2−1−E〕ゲイン値に基づく入力色信号と平滑化色信号との混合
画像処理部104は、上記〔2−1−D〕において画素ごとに設定したゲイン値に応じて、画素ごとに入力色信号と平滑化色信号とを混合する。具体的には、画像処理部104は、画素ごとのゲイン値「G」(例えば上記G1または上記G2)に基づいて、例えば、「入力色信号:平滑化色信号=(1−G):G」となるように入力色信号と平滑化色信号とを混合する。上記〔2−1−C〕〜〔2−1−E〕の処理によって、画像処理部104は、画像がぼやけるなどの副作用の発生をより確実に防止しながら、アップコンバートされたクロスカラー妨害を画素ごとに高い精度で低減することができる。
[2-1-E] Mixing of input color signal and smoothed color signal based on gain value The image processing unit 104 performs pixel-by-pixel in accordance with the gain value set for each pixel in [2-1-D]. The input color signal and the smoothed color signal are mixed together. Specifically, the image processing unit 104, for example, “input color signal: smoothed color signal = (1-G): G based on the gain value“ G ”(for example, G1 or G2) for each pixel. The input color signal and the smoothed color signal are mixed so that " By the processing of [2-1-C] to [2-1-E], the image processing unit 104 can prevent the up-converted cross-color interference while more reliably preventing the occurrence of side effects such as blurring of the image. It can be reduced with high accuracy for each pixel.

画像処理部104は、入力された画像信号に基づいて、上記〔2−1−A〕〜〔2−1−E〕の処理を行うことによって、アップコンバートされたクロスカラー妨害を画素ごとに低減する。したがって、表示装置100は、アップコンバートされたクロスカラー妨害を画素ごとに低減された画像を表示画面に表示することができるので、高画質化を図ることができる。以下、画像処理部104におけるクロスカラー妨害低減処理に係る構成について説明する。   The image processing unit 104 reduces the up-converted cross color interference for each pixel by performing the processes [2-1-A] to [2-1-E] based on the input image signal. To do. Therefore, the display device 100 can display an image in which the up-converted cross-color interference is reduced for each pixel on the display screen, so that high image quality can be achieved. Hereinafter, a configuration related to the cross color interference reduction process in the image processing unit 104 will be described.

(2−2)画像処理部104におけるクロスカラー低減処理に係る構成
図9は、本発明の実施形態に係る画像処理部104におけるクロスカラー妨害低減処理に係る構成の一例を示すブロック図である。ここで、画像処理部104は、ハードウェア(例えば、画像処理回路)および/またはソフトウェア(画像処理ソフトウェア)で画像処理を行うことができる。
(2-2) Configuration Related to Cross Color Reduction Processing in Image Processing Unit 104 FIG. 9 is a block diagram showing an example of configuration related to cross color interference reduction processing in the image processing unit 104 according to the embodiment of the present invention. Here, the image processing unit 104 can perform image processing with hardware (for example, an image processing circuit) and / or software (image processing software).

以下では、画像処理部104にY信号と、U信号およびV信号とが入力される場合を例に挙げて説明する。また、以下では、ノイズ低減後の入力色信号を「U’信号」、「V’信号」とよぶ場合がある。なお、本発明の実施形態に係る入力色信号が、色空間がYUVで表される色差信号に限られないことは、言うまでもない。   Hereinafter, a case where the Y signal, the U signal, and the V signal are input to the image processing unit 104 will be described as an example. In the following, the input color signal after noise reduction may be referred to as “U ′ signal” or “V ′ signal”. Needless to say, the input color signal according to the embodiment of the present invention is not limited to the color difference signal whose color space is represented by YUV.

図9を参照すると、画像処理部104は、3次元フィルタ200(フィルタ)と、ゲイン抑制部202と、クロスカラー妨害検出部204と、動き検出部206と、クロスカラー妨害発生条件検出部208と、ゲイン設定部210と、混合部212とを備える。ここで、3次元フィルタ200は、上記〔2−1−A〕の処理を行う役目を果たし、ゲイン抑制部202は、上記〔2−1−B〕の処理を行う役目を果たす。また、クロスカラー妨害検出部204、動き検出部206、およびクロスカラー妨害発生条件検出部208は、上記〔2−1−C〕の処理を行う役目を果たす。そして、ゲイン設定部210は、上記〔2−1−D〕の処理を行う役目を果たし、混合部212は、上記〔2−1−E〕の処理を行う役目を果たす。   Referring to FIG. 9, the image processing unit 104 includes a three-dimensional filter 200 (filter), a gain suppression unit 202, a cross color interference detection unit 204, a motion detection unit 206, and a cross color interference occurrence condition detection unit 208. The gain setting unit 210 and the mixing unit 212 are provided. Here, the three-dimensional filter 200 serves to perform the process [2-1-A], and the gain suppression unit 202 serves to perform the process [2-1-B]. In addition, the cross color interference detection unit 204, the motion detection unit 206, and the cross color interference occurrence condition detection unit 208 serve to perform the above-described process [2-1-C]. The gain setting unit 210 serves to perform the above-described process [2-1-D], and the mixing unit 212 serves to perform the process [2-1-E].

3次元フィルタ200は、上記〔2−1−A〕の処理を行う役目を果たし、U信号、V信号に対して画素ごとに時間軸方向の平滑化を行う。ここで、3次元フィルタ200は、時間軸方向および面方向に平滑化を行う2タップのローパス・フィルタで構成することができるが、上記に限られない。   The three-dimensional filter 200 plays the role of performing the above [2-1-A], and smoothes the U signal and V signal in the time axis direction for each pixel. Here, the three-dimensional filter 200 can be configured with a 2-tap low-pass filter that performs smoothing in the time axis direction and the surface direction, but is not limited thereto.

ゲイン抑制部202は、上記〔2−1−B〕の処理を行う役目を果たし、3次元フィルタ200から出力される平滑化色信号に基づいて画素ごとにゲインを抑制する。   The gain suppression unit 202 serves to perform the above [2-1-B] process, and suppresses the gain for each pixel based on the smoothed color signal output from the three-dimensional filter 200.

クロスカラー妨害検出部204は、上記〔2−1−C〕の処理のうちの上記〔I〕の処理を行う役目を果たし、U信号およびV信号に基づいてクロスカラー妨害が発生している画素を検出する。そして、クロスカラー妨害検出部204は、クロスカラー妨害の発生の度合い(検出結果)を、画素ごとにゲイン設定部210に伝達する。ここで、クロスカラー妨害検出部204は、例えば、図5に示すような構成によって、色ベクトルの偏角差分の情報に基づくクロスカラー妨害発生の度合いを導出することができる。   The cross color interference detection unit 204 serves to perform the process [I] of the processes [2-1-C], and a pixel in which cross color interference has occurred based on the U signal and the V signal. Is detected. Then, the cross color interference detection unit 204 transmits the degree of occurrence of cross color interference (detection result) to the gain setting unit 210 for each pixel. Here, the cross color interference detection unit 204 can derive the degree of occurrence of the cross color interference based on the information of the deviation angle difference of the color vector, for example, with a configuration as shown in FIG.

動き検出部206は、上記〔2−1−C〕の処理のうちの上記〔II〕の処理を行う役目を果たし、Y信号に基づいて画素ごとに動きを検出する。そして、動き検出部206は、例えば動きの度合いなどの検出結果を、画素ごとにゲイン設定部210に伝達する。   The motion detection unit 206 serves to perform the process [II] of the processes [2-1-C], and detects a motion for each pixel based on the Y signal. Then, the motion detection unit 206 transmits a detection result such as the degree of motion, for example, to the gain setting unit 210 for each pixel.

クロスカラー妨害発生条件検出部208は、上記〔2−1−C〕の処理のうちの上記〔III〕の処理を行う役目を果たし、Y信号に基づいてクロスカラー妨害領域発生の条件を満たす画素を検出する。そして、クロスカラー妨害発生条件検出部208は、例えばクロスカラー妨害領域発生の条件を満たす度合いなどの検出結果を、画素ごとにゲイン設定部210に伝達する。   The cross color interference occurrence condition detection unit 208 plays a role of performing the process [III] of the processes [2-1-C], and a pixel that satisfies the conditions for the occurrence of the cross color interference area based on the Y signal. Is detected. Then, the cross color interference occurrence condition detection unit 208 transmits, for example, a detection result such as a degree satisfying the condition for generating the cross color interference region to the gain setting unit 210 for each pixel.

ゲイン設定部210は、上記〔2−1−D〕の処理を行う役目を果たし、クロスカラー妨害検出部204、動き検出部206、およびクロスカラー妨害発生条件検出部208からそれぞれ伝達される検出結果に基づいて、画素ごとにゲイン値を導出する。そして、ゲイン設定部210は、画素ごとに導出したゲイン値を混合部212へ伝達する。   The gain setting unit 210 plays the role of performing the process of [2-1-D], and the detection results transmitted from the cross color interference detection unit 204, the motion detection unit 206, and the cross color interference occurrence condition detection unit 208, respectively. Based on the above, a gain value is derived for each pixel. Then, the gain setting unit 210 transmits the gain value derived for each pixel to the mixing unit 212.

混合部212は、上記〔2−1−E〕の処理を行う役目を果たし、ゲイン設定部210から伝達される画素ごとのゲイン値に基づいて、画素ごとに、入力色信号と、ゲイン抑制部202から出力されるゲインが抑制された平滑化色信号とを混合する。そして、混合部212は、上記混合された色信号をU’信号およびV’信号として出力する。   The mixing unit 212 serves to perform the above-described processing [2-1-E]. Based on the gain value for each pixel transmitted from the gain setting unit 210, the mixing unit 212 performs an input color signal and a gain suppression unit for each pixel. The smoothed color signal with suppressed gain output from 202 is mixed. Then, the mixing unit 212 outputs the mixed color signal as a U ′ signal and a V ′ signal.

画像処理部104は、例えば、図9に示す構成によって、画像がぼやけるなどの副作用の発生をより確実に防止しながら、アップコンバートされたクロスカラー妨害を画素ごとに低減することができる。   For example, with the configuration shown in FIG. 9, the image processing unit 104 can reduce the up-converted cross-color interference for each pixel while more reliably preventing the occurrence of side effects such as blurring of the image.

なお、上記では、画像処理部104が、クロスカラー妨害検出部204、動き検出部206、およびクロスカラー妨害発生条件検出部208を備える構成について説明したが、上記に限られない。例えば、本発明の実施形態に係る画像処理部は、クロスカラー妨害検出部204のみを備える構成や、クロスカラー妨害検出部204および動き検出部206を備える構成、または、クロスカラー妨害検出部204およびクロスカラー妨害発生条件検出部208を備える構成とすることもできる。上記の構成であっても、本発明の実施形態に係る画像処理部は、アップコンバートされたクロスカラー妨害を画素ごとに低減することができる。   In the above description, the configuration in which the image processing unit 104 includes the cross color interference detection unit 204, the motion detection unit 206, and the cross color interference occurrence condition detection unit 208 has been described. However, the configuration is not limited thereto. For example, the image processing unit according to the embodiment of the present invention includes a configuration including only the cross color interference detection unit 204, a configuration including the cross color interference detection unit 204 and the motion detection unit 206, or a cross color interference detection unit 204 and A configuration including a cross color interference occurrence condition detection unit 208 may also be adopted. Even with the above configuration, the image processing unit according to the embodiment of the present invention can reduce the up-converted cross-color interference for each pixel.

(2−3)本発明の実施形態に係る第2の画像処理方法(アップコンバートされたクロスカラー妨害の低減方法)
次に、本発明の実施形態に係る第2の画像処理方法について説明する。図10は、本発明の実施形態に係る第2の画像処理方法の一例を示す流れ図であり、アップコンバートされたクロスカラー妨害の低減方法の一例を示している。なお、以下では、第2の画像処理方法を表示装置100が行うものとして説明するが、上述したように本発明の実施形態に係る画像処理装置が行うこともできる。
(2-3) Second image processing method according to the embodiment of the present invention (up-converted cross color interference reduction method)
Next, a second image processing method according to the embodiment of the present invention will be described. FIG. 10 is a flowchart showing an example of the second image processing method according to the embodiment of the present invention, and shows an example of a method for reducing the up-converted cross color interference. In the following description, the second image processing method is described as being performed by the display device 100. However, as described above, the image processing device according to the embodiment of the present invention can also perform the second image processing method.

表示装置100は、U信号、V信号(入力色信号)に対して、画素ごとに時間軸方向の平滑化を行う(S200)。ここで、表示装置100は、例えば、2タップのローパス・フィルタなどで構成され時間軸方向および面方向に平滑化を行う3次元フィルタによって、ステップS100の処理を行うことができるが、上記に限られない。   The display apparatus 100 smoothes the U signal and the V signal (input color signal) in the time axis direction for each pixel (S200). Here, the display device 100 can perform the process of step S100 with a three-dimensional filter configured by, for example, a 2-tap low-pass filter and performing smoothing in the time axis direction and the surface direction. I can't.

表示装置100は、ステップS200において平滑化されたU信号、V信号(平滑化色信号)のゲインを、選択的に抑制する(S202)。ここで、表示装置100は、例えば、上記数式6、数式7を用いることによって、平滑化されたU信号、V信号のゲインそれぞれを、画素ごとにかつ選択的に抑制することができるが、上記に限られない。   The display device 100 selectively suppresses the gain of the U signal and V signal (smoothed color signal) smoothed in step S200 (S202). Here, the display device 100 can selectively suppress the gains of the smoothed U signal and V signal for each pixel by using, for example, the above Equations 6 and 7. Not limited to.

表示装置100は、U信号、V信号に基づいて画素ごとにアップコンバートされたクロスカラー妨害を検出する(S204)。ここで、表示装置100は、例えば、色ベクトルの偏角差分に係るクロスカラー妨害の発生の度合いを導出することによって、ステップS204の処理を行うことができる。   The display device 100 detects cross-color interference up-converted for each pixel based on the U signal and the V signal (S204). Here, the display device 100 can perform the process of step S204, for example, by deriving the degree of occurrence of cross-color interference related to the color vector deviation angle difference.

表示装置100は、Y信号に基づいて画素ごとに動きを検出する(S206)。ここで、表示装置100は、例えば、Y信号に基づいて画素ごとに現フレームと前フレームとの差分を導出することによって、ステップS206の処理を行うことができるが、上記に限られない。   The display device 100 detects movement for each pixel based on the Y signal (S206). Here, for example, the display device 100 can perform the process of step S206 by deriving a difference between the current frame and the previous frame for each pixel based on the Y signal, but is not limited thereto.

表示装置100は、Y信号に基づいて、クロスカラー妨害発生条件を満たす画素を検出する(S208)。ここで、表示装置100は、例えば、Y信号における斜め方向の高域成分に基づいてY信号の高域成分の度合いを導出することによって、ステップS208の処理を行うことができるが、上記に限られない。   The display device 100 detects a pixel that satisfies the cross-color interference occurrence condition based on the Y signal (S208). Here, for example, the display device 100 can perform the process of step S208 by deriving the degree of the high frequency component of the Y signal based on the diagonal high frequency component of the Y signal. I can't.

なお、図10では、ステップS200およびステップS202の処理の後にステップS204、ステップS206、ステップS208の処理が順番に行われる例を示しているが、表示装置100は、ステップS200およびステップS202と、ステップS204〜S208の各処理とを、それぞれ独立に行うことができる。したがって、表示装置100は、例えば、ステップS200およびステップS202と、ステップS204〜S208の各処理との順序を入れ換えて行うことができ、また、ステップS200およびステップS202と、ステップS204〜S208の各処理とをそれぞれ同期して行うこともできる。   FIG. 10 shows an example in which the processing of step S204, step S206, and step S208 is performed in order after the processing of step S200 and step S202. However, the display device 100 includes steps S200 and S202, Each process of S204-S208 can be performed independently. Therefore, the display device 100 can perform, for example, the order of steps S200 and S202 and the processes of steps S204 to S208 interchanged, and each process of steps S200 and S202 and steps S204 to S208. Can also be performed in synchronization with each other.

表示装置100は、ステップS204〜S208の各処理の検出結果に基づいて、ゲイン値を画素ごとに設定する(S210)。ここで、表示装置100は、例えば、上記数式8、または、上記数式9および数式10を用いてゲイン値を画素ごとに導出することができる。   The display device 100 sets a gain value for each pixel based on the detection results of the processes in steps S204 to S208 (S210). Here, the display device 100 can derive the gain value for each pixel using, for example, the above Equation 8 or the above Equation 9 and Equation 10.

表示装置100は、ステップS210において画素ごとに設定されたゲイン値に基づいて、U信号、V信号(入力色信号)と、平滑化されたU信号、V信号(平滑化色信号)とを画素ごとに混合する(S212)。   Based on the gain value set for each pixel in step S <b> 210, the display device 100 converts the U signal, V signal (input color signal), and the smoothed U signal, V signal (smoothed color signal) into pixels. Each is mixed (S212).

図10に示す画像処理方法を用いることによって、表示装置100は、上述した〔2−1−A〕〜〔2−1−E〕の処理を行うことができる。したがって、図10に示す画像処理方法を用いる表示装置100は、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害(ノイズ)を画素ごとに低減し、高画質化を図ることができる。   By using the image processing method shown in FIG. 10, the display device 100 can perform the processes [2-1-A] to [2-1-E] described above. Therefore, the display device 100 using the image processing method shown in FIG. 10 reduces the up-converted cross-color interference (noise) related to Y / C separation on the basis of the input image signal for each pixel, thereby improving the image quality. Can be achieved.

以上のように、本発明の実施形態に係る表示装置100は、色ベクトルの偏角差分に基づいてアップコンバートされたクロスカラー妨害を画素ごとに検出する。より具体的には、表示装置100は、例えば、上述した〔1−2−A〕(色ベクトルの導出)、〔1−2−B〕(色ベクトルの保持)、〔1−2−C〕(色ベクトルの内積の導出)、〔1−2−D〕(クロスカラー妨害の発生の度合いの導出)によって、色ベクトルの偏角差分に係るクロスカラー妨害の発生の度合いを導出する。上述したように、色ベクトルの偏角差分は、SD解像度の画像信号からアップコンバートされた擬似HD解像度の画像信号においても、アップコンバートされたクロスカラー妨害が発生している場合には空間・時間軸座標よらずにある程度の大きさの値をとり続ける性質をもつ。したがって、表示装置100は、入力された画像信号に基づいて色ベクトルの偏角差分に係るクロスカラー妨害の発生の度合いを導出することによって、Y/C分離に係るアップコンバートされたクロスカラー妨害を検出することができる。   As described above, the display device 100 according to the embodiment of the present invention detects the cross-color interference that has been up-converted based on the color vector deviation difference for each pixel. More specifically, for example, the display device 100 includes, for example, [1-2A] (derivation of a color vector), [1-2B] (holding a color vector), and [1-2C] described above. (Derivation of color vector inner product), [1-2-D] (Derivation of degree of occurrence of cross-color interference) The degree of occurrence of cross-color interference relating to the color vector declination difference is derived. As described above, the declination difference of the color vector is the spatial / temporal when the up-converted cross-color interference occurs in the pseudo HD resolution image signal up-converted from the SD resolution image signal. It has the property of taking a certain amount of value regardless of the axis coordinates. Accordingly, the display apparatus 100 derives the degree of occurrence of cross color interference related to the color vector deviation difference based on the input image signal, thereby preventing the up-converted cross color interference related to Y / C separation. Can be detected.

また、表示装置100は、導出された色ベクトルの偏角差分に係るクロスカラー妨害の発生の度合い(アップコンバートされたクロスカラー妨害の検出結果)と、クロスカラー妨害成分が1フレームおきに反転する性質とを利用することによって、アップコンバートされたクロスカラー妨害(ノイズ)の低減を画素ごと図る。より具体的には、表示装置100は、例えば、上述した〔2−1−A〕(入力色信号に対する時間軸方向の平滑化)、〔2−1−B〕(平滑化色信号のゲインの抑制)、〔2−1−C〕(クロスカラー妨害が発生している画素の検出)、〔2−1−D〕(ゲイン値の設定)、および〔2−1−E〕(ゲイン値に基づく入力色信号と平滑化色信号との混合)の処理によって、アップコンバートされたクロスカラー妨害の低減を図る。ここで、表示装置100は、上述したように、色ベクトルの偏角差分に係るクロスカラー妨害の発生の度合いによって、アップコンバートされたクロスカラー妨害を検出することができる。また、クロスカラー妨害成分が1フレームおきに反転する性質は、アップコンバートされた擬似HD解像度の画像信号においても失われない。したがって、表示装置100は、上述した〔2−1−A〕〜〔2−1−E〕の処理によって、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害(ノイズ)を画素ごとに低減し、高画質化を図ることができる。   In addition, the display device 100 inverts the degree of occurrence of cross-color interference (the detection result of the up-converted cross-color interference) related to the deviation angle difference of the derived color vector and the cross-color interference component every other frame. By utilizing these properties, reduction of up-converted cross color interference (noise) is achieved for each pixel. More specifically, the display device 100, for example, includes the above-described [2-1-A] (smoothing in the time axis direction with respect to the input color signal), [2-1-B] (the gain of the smoothed color signal). Suppression), [2-1-C] (detection of pixels in which cross-color interference has occurred), [2-1-D] (setting of gain value), and [2-1-E] (to gain value) Based on the processing of the input color signal and the smoothed color signal based on the above, the reduction of the up-converted cross color interference is achieved. Here, as described above, the display device 100 can detect the up-converted cross color interference according to the degree of occurrence of the cross color interference related to the color vector deviation angle difference. Further, the property that the cross color interference component is inverted every other frame is not lost even in the up-converted pseudo HD resolution image signal. Therefore, the display device 100 performs the above-described processes [2-1-A] to [2-1-E], based on the input image signal, the up-converted cross-color interference (Y / C separation). Noise) can be reduced for each pixel, and high image quality can be achieved.

また、表示装置100は、入力色信号と平滑化色信号とを混合する比率を規定するゲイン値を、上記〔I〕〜〔III〕に示す処理における検出結果の組み合わせに基づいて設定することができる。したがって、表示装置100は、画像がぼやけるなどの副作用の発生をより確実に防止しながら、アップコンバートされたクロスカラー妨害を画素ごとに高い精度で低減することができる。   Further, the display device 100 may set a gain value that defines a ratio for mixing the input color signal and the smoothed color signal based on a combination of detection results in the processes shown in the above [I] to [III]. it can. Accordingly, the display device 100 can reduce the up-converted cross-color interference with high accuracy for each pixel while more reliably preventing the occurrence of side effects such as blurring of the image.

(本発明の実施形態に係るプログラム)
[アップコンバートされたクロスカラー妨害の検出に係るプログラム]
コンピュータを、本発明の実施形態に係る表示装置100(画像処理装置)として機能させるためのプログラムによって、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を画素ごとに検出することができる。
(Program according to an embodiment of the present invention)
[Program for detection of up-converted cross-color interference]
By the program for causing the computer to function as the display device 100 (image processing device) according to the embodiment of the present invention, the up-converted cross-color interference related to Y / C separation is detected for each pixel based on the input image signal. Can be detected.

[アップコンバートされたクロスカラー妨害の低減に係るプログラム]
コンピュータを、本発明の実施形態に係る表示装置100(画像処理装置)として機能させるためのプログラムによって、入力された画像信号に基づいてY/C分離に係るアップコンバートされたクロスカラー妨害を低減し、高画質化を図ることができる。
[Program for reducing up-converted cross-color interference]
A program for causing a computer to function as the display device 100 (image processing device) according to the embodiment of the present invention reduces up-converted cross-color interference related to Y / C separation based on an input image signal. High image quality can be achieved.

以上、本発明の実施形態に係る画像処理システムを構成する構成要素として表示装置100(画像処理装置)を挙げて説明したが、本発明の実施形態は、かかる形態に限られない。本発明の実施形態は、例えば、PCやサーバ(Server)などのコンピュータ、携帯電話やPHS(Personal Handyphone System)などの携帯型通信装置、プレイステーション(登録商標)シリーズやPlayStation Portable(登録商標)などのゲーム機、テレビジョン放送を受信し映像を表示するテレビ受像機、有機ELディスプレイ、FED(Field Emission Display)、LCDなどの表示装置など、様々な機器に適用することができる。   As described above, the display device 100 (image processing device) has been described as a constituent element of the image processing system according to the embodiment of the present invention, but the embodiment of the present invention is not limited to such a form. Embodiments of the present invention include, for example, computers such as PCs and servers, portable communication devices such as mobile phones and PHS (Personal Handyphone System), PlayStation (registered trademark) series, PlayStation Portable (registered trademark), and the like. The present invention can be applied to various devices such as game machines, television receivers that receive television broadcasts and display images, organic EL displays, FEDs (Field Emission Displays), and display devices such as LCDs.

また、上記では、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   In the above, preferred embodiments of the present invention have been described with reference to the accompanying drawings. However, it goes without saying that the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば、上記では、コンピュータを本発明の実施形態に係る表示装置(画像処理装置)として機能させるためのプログラム(コンピュータプログラム)が提供されることを示したが、本発明の実施形態は、さらに、上記プログラムを記憶させた記憶媒体も併せて提供することができる。   For example, in the above description, it has been shown that a program (computer program) for causing a computer to function as a display device (image processing device) according to an embodiment of the present invention is provided. A storage medium storing the program can also be provided.

上述した構成は、本発明の実施形態の一例を示すものであり、当然に、本発明の技術的範囲に属するものである。   The configuration described above shows an example of the embodiment of the present invention, and naturally belongs to the technical scope of the present invention.

本発明の実施形態に係る画像処理システムの構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the image processing system which concerns on embodiment of this invention. 本発明の実施形態に係る表示装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the display apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る表示装置のハードウェア構成の一例を示す説明図である。It is explanatory drawing which shows an example of the hardware constitutions of the display apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る色ベクトルの偏角差分に基づくアップコンバートされたクロスカラー妨害の検出方法を説明するための説明図である。It is explanatory drawing for demonstrating the detection method of the up-converted cross color interference based on the deviation angle difference of the color vector which concerns on embodiment of this invention. 本発明の実施形態に係る画像処理部におけるアップコンバートされたクロスカラー妨害の検出処理に係る構成例を示すブロック図である。It is a block diagram which shows the structural example which concerns on the detection process of the up-converted cross color interference in the image process part which concerns on embodiment of this invention. 本発明の実施形態に係る第1の画像処理方法の一例を示す流れ図である。It is a flowchart which shows an example of the 1st image processing method which concerns on embodiment of this invention. 本発明の実施形態に係る平滑化色信号のゲインの抑制の一例を説明する説明図である。It is explanatory drawing explaining an example of suppression of the gain of the smoothing color signal which concerns on embodiment of this invention. 本発明の実施形態に係るゲイン値の設定方法の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the setting method of the gain value which concerns on embodiment of this invention. 本発明の実施形態に係る画像処理部におけるクロスカラー妨害低減処理に係る構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure which concerns on the cross color interference reduction process in the image process part which concerns on embodiment of this invention. 本発明の実施形態に係る第2の画像処理方法の一例を示す流れ図である。It is a flowchart which shows an example of the 2nd image processing method which concerns on embodiment of this invention.

符号の説明Explanation of symbols

104 画像処理部
150 色ベクトル導出部
152 色ベクトル保持部
154 内積導出部
156 クロスカラー妨害判定部
200 3次元フィルタ
202 ゲイン抑制部
204 クロスカラー妨害検出部
206 動き検出部
208 クロスカラー妨害発生条件検出部
210 ゲイン設定部
212 混合部
Reference Signs List 104 Image processing unit 150 Color vector deriving unit 152 Color vector holding unit 154 Inner product deriving unit 156 Cross color interference determining unit 200 Three-dimensional filter 202 Gain suppressing unit 204 Cross color interference detecting unit 206 Motion detecting unit 208 Cross color interference generating condition detecting unit 210 Gain setting unit 212 Mixing unit

Claims (7)

入力された入力色信号に基づいて色ベクトルを導出する色ベクトル導出部と;
前記色ベクトル導出部が導出した色ベクトルを保持する色ベクトル保持部と;
前記色ベクトル導出部が導出した現フレームに対応する第1色ベクトルと、前記色ベクトル保持部に保持された前フレームに対応する第2色ベクトルとに基づいて、色ベクトルの内積値を導出する内積導出部と;
前記第1ベクトルと、前記第2ベクトルと、前記内積導出部が導出した前記内積値とに基づいて、クロスカラー妨害の発生の度合いを導出するクロスカラー妨害判定部と;
を備える、画像処理装置。
A color vector deriving unit for deriving a color vector based on the input color signal input;
A color vector holding unit for holding the color vector derived by the color vector deriving unit;
An inner product value of the color vectors is derived based on the first color vector corresponding to the current frame derived by the color vector deriving unit and the second color vector corresponding to the previous frame held in the color vector holding unit. An inner product deriving unit;
A cross color interference determination unit for deriving a degree of occurrence of cross color interference based on the first vector, the second vector, and the inner product value derived by the inner product deriving unit;
An image processing apparatus comprising:
前記入力色信号を時間軸方向に平滑化するフィルタと;
前記クロスカラー妨害判定部における判定結果に基づいて、前記入力色信号と前記フィルタにおいて平滑化された平滑化色信号とを混合する比率を規定するゲイン値を画素ごとに設定するゲイン設定部と;
画素ごとに設定される前記ゲイン値に基づいて、前記入力色信号と前記平滑化色信号とを画素ごとに混合する混合部と;
を備える、請求項1に記載の画像処理装置。
A filter for smoothing the input color signal in the time axis direction;
A gain setting unit that sets, for each pixel, a gain value that defines a ratio of mixing the input color signal and the smoothed color signal smoothed by the filter based on a determination result in the cross color interference determination unit;
A mixing unit that mixes the input color signal and the smoothed color signal for each pixel based on the gain value set for each pixel;
The image processing apparatus according to claim 1, comprising:
入力された現フレームに対応する入力輝度信号と前フレームに対応する前フレーム入力輝度信号との間の相関基づいて、画素ごとに動き量を検出する動き検出部をさらに備え、
前記ゲイン設定部は、さらに前記動き検出部が検出した前記動き量に基づいて前記ゲイン値を画素ごとに設定する、請求項2に記載の画像処理装置。
A motion detector for detecting a motion amount for each pixel based on a correlation between the input luminance signal corresponding to the input current frame and the previous frame input luminance signal corresponding to the previous frame;
The image processing apparatus according to claim 2, wherein the gain setting unit further sets the gain value for each pixel based on the amount of motion detected by the motion detection unit.
前記入力輝度信号に基づいて、クロスカラー妨害が発生する条件を満たす画素を画素ごとに検出するクロスカラー妨害発生条件検出部をさらに備え、
前記ゲイン設定部は、さらに前記クロスカラー妨害発生条件検出部の検出結果に基づいて前記ゲイン値を画素ごとに設定する、請求項3に記載の画像処理装置。
A cross color interference generation condition detection unit that detects, for each pixel, a pixel that satisfies a condition for generating cross color interference based on the input luminance signal;
The image processing apparatus according to claim 3, wherein the gain setting unit further sets the gain value for each pixel based on a detection result of the cross color interference occurrence condition detection unit.
前記平滑化色信号に対して、画素ごとに前記平滑化色信号の絶対値に応じたゲイン抑制値を乗算するゲイン抑制部をさらに備え、
前記混合部は、前記入力色信号と、前記ゲイン抑制値が乗算された平滑化色信号とを画素ごとに混合する、請求項2に記載の画像処理装置。
A gain suppression unit that multiplies the smoothed color signal by a gain suppression value corresponding to the absolute value of the smoothed color signal for each pixel.
The image processing apparatus according to claim 2, wherein the mixing unit mixes the input color signal and a smoothed color signal multiplied by the gain suppression value for each pixel.
入力された入力色信号に基づいて色ベクトルを導出するステップと;
前記色ベクトルを導出するステップにおいて導出された色ベクトルを保持するステップと;
前記色ベクトルを導出するステップにおいて導出された現フレームに対応する第1色ベクトルと、前記保持するステップにおいて保持された前フレームに対応する第2色ベクトルとに基づいて、色ベクトルの内積値を導出するステップと;
前記第1ベクトルと、前記第2ベクトルと、前記内積値を導出するステップにおいて導出された前記内積値とに基づいて、クロスカラー妨害の発生の度合いを導出するステップと;
を有する、画像処理方法。
Deriving a color vector based on the input color signal input;
Holding the color vector derived in the step of deriving the color vector;
Based on the first color vector corresponding to the current frame derived in the step of deriving the color vector and the second color vector corresponding to the previous frame retained in the retaining step, an inner product value of the color vectors is calculated. Deriving steps;
Deriving the degree of occurrence of cross-color interference based on the first vector, the second vector, and the inner product value derived in the step of deriving the inner product value;
An image processing method.
入力された入力色信号に基づいて色ベクトルを導出するステップ;
前記色ベクトルを導出するステップにおいて導出された色ベクトルを保持するステップ;
前記色ベクトルを導出するステップにおいて導出された現フレームに対応する第1色ベクトルと、前記保持するステップにおいて保持された前フレームに対応する第2色ベクトルとに基づいて、色ベクトルの内積値を導出するステップ;
前記第1ベクトルと、前記第2ベクトルと、前記内積値を導出するステップにおいて導出された前記内積値とに基づいて、クロスカラー妨害の発生の度合いを導出するステップ;
をコンピュータに実行させるためのプログラム。

Deriving a color vector based on the inputted input color signal;
Retaining the color vector derived in the step of deriving the color vector;
Based on the first color vector corresponding to the current frame derived in the step of deriving the color vector and the second color vector corresponding to the previous frame retained in the retaining step, an inner product value of the color vectors is calculated. Deriving step;
Deriving the degree of occurrence of cross-color interference based on the first vector, the second vector, and the inner product value derived in the step of deriving the inner product value;
A program that causes a computer to execute.

JP2008098614A 2008-04-04 2008-04-04 Image processing apparatus, image processing method, and program Withdrawn JP2009253632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098614A JP2009253632A (en) 2008-04-04 2008-04-04 Image processing apparatus, image processing method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008098614A JP2009253632A (en) 2008-04-04 2008-04-04 Image processing apparatus, image processing method, and program

Publications (1)

Publication Number Publication Date
JP2009253632A true JP2009253632A (en) 2009-10-29

Family

ID=41313878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098614A Withdrawn JP2009253632A (en) 2008-04-04 2008-04-04 Image processing apparatus, image processing method, and program

Country Status (1)

Country Link
JP (1) JP2009253632A (en)

Similar Documents

Publication Publication Date Title
US20150363912A1 (en) Rgbw demosaic method by combining rgb chrominance with w luminance
JP4967454B2 (en) Image correction circuit, image correction method, and image display apparatus
JP5653614B2 (en) Image processing apparatus, image processing method, program, and display apparatus
US20080284793A1 (en) Hue and saturation control module
US8358334B2 (en) Apparatus and method for processing image
US10152945B2 (en) Image processing apparatus capable of performing conversion on input image data for wide dynamic range
KR20030096082A (en) Image processing apparatus, image processing method, program and recording medium
JP2007096997A (en) Video signal processing apparatus and video signal processing method
JP5084457B2 (en) Image processing apparatus, image processing method, program, and display apparatus
JPWO2017203941A1 (en) IMAGE PROCESSING APPARATUS, IMAGE PROCESSING METHOD, AND PROGRAM
JP2010109794A (en) Video signal processor, video signal processing method, program, and display device
US9576337B2 (en) Image processing apparatus and control method thereof
JP5950652B2 (en) Image processing circuit, semiconductor device, and image processing device
JP2011027944A (en) Device, method and program for processing video signal, and display device
US20190172416A1 (en) Image processing apparatus and image processing method
CN110718178A (en) Display panel and image display apparatus including the same
JP2017126964A (en) Imaging control unit, and imaging apparatus
JP7065360B2 (en) Image processing methods, image processing devices and programs
JP2009253632A (en) Image processing apparatus, image processing method, and program
JP5791687B2 (en) Conversion control apparatus and control method thereof
US10068548B1 (en) Sub-pixel layout resampler systems and methods
US7590302B1 (en) Image edge enhancement system and method
JP2009253631A (en) Image processing apparatus, image processing method, and program
JP5191870B2 (en) Image processing apparatus, image processing method, program, and display apparatus
JP5147585B2 (en) Image processing apparatus, image processing method, program, and display apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607