JP2009243733A - Mixed gas composition fluctuation suppressing device - Google Patents

Mixed gas composition fluctuation suppressing device Download PDF

Info

Publication number
JP2009243733A
JP2009243733A JP2008089469A JP2008089469A JP2009243733A JP 2009243733 A JP2009243733 A JP 2009243733A JP 2008089469 A JP2008089469 A JP 2008089469A JP 2008089469 A JP2008089469 A JP 2008089469A JP 2009243733 A JP2009243733 A JP 2009243733A
Authority
JP
Japan
Prior art keywords
gas
fluctuation
composition
mixed gas
heating value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008089469A
Other languages
Japanese (ja)
Other versions
JP5207522B2 (en
Inventor
Susumu Nishio
晋 西尾
Yasuhiko Urabe
安彦 浦邊
Takefumi Ishikura
威文 石倉
Toshihiro Meguro
俊宏 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2008089469A priority Critical patent/JP5207522B2/en
Publication of JP2009243733A publication Critical patent/JP2009243733A/en
Application granted granted Critical
Publication of JP5207522B2 publication Critical patent/JP5207522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feeding And Controlling Fuel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mixed gas composition fluctuation suppressing device suitable as a supply device to combustion equipment requiring a high level of stability in a high generation amount such as a gas engine. <P>SOLUTION: When using fuel gas having fluctuation in the heating value, the fluctuating width needs to be suppressed to a degree in which a combustion device sensitive to fluctuation in the heating value can perform normal combustion. The invention focuses on a gas engine representing such a fuel device. According to "Advanced Technologies for Biomass Power Generation" (first publication July 31, 2006), in a heating value fluctuation limit of a gas engine, a heating value change rate is less than 1% in 30 seconds. Fig.4 is a graph showing the relation between an adsorption tower aspect ratio and a heating value fluctuation width in 30 seconds of fuel gas containing methane as the main component. When H/D≥0.5, superior combustion of the gas engine is maintained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は組成の安定化が必要な混合ガスの組成変動抑制装置に係り、特に、ガスエンジン等、高度の発熱量安定化が必要な燃焼機器への供給装置として好適な混合ガスの組成変動抑制装置に関する。   The present invention relates to an apparatus for suppressing composition fluctuations of a mixed gas that requires stabilization of the composition, and in particular, suppresses composition fluctuations of the mixed gas suitable as a supply apparatus for a combustion apparatus that requires a high degree of heat generation stabilization such as a gas engine. Relates to the device.

近年、大都市圏から離れた地方における都市ガス需要の増加に伴い、LNG(液化天然ガス)サテライト基地が多く建設されている。LNGサテライト基地は、LNG貯槽と気化器を備えた設備であり、沿岸のLNG受入基地からローリーでLNGを輸送し、LNG貯槽に一旦貯蔵した後に、LNGを気化して工業団地や住宅地などに都市ガスとして供給するためのものである。
このようなLNGサテライト供給方式においては、気化器稼動開始時や負荷変動、気温変化等に伴う供給ガスの発熱量変動が問題となる場合があり、このため供給ガスの発熱量安定化のための種々の技術が開示されている。気化器自体の改良としては、LNG気化器の停止時にパージラインからLPGをパージする技術が提案されている(例えば特許文献1)。
In recent years, LNG (liquefied natural gas) satellite bases have been built with increasing demand for city gas in regions far from metropolitan areas. The LNG satellite base is a facility equipped with LNG storage tanks and vaporizers. After transporting LNG from the coastal LNG receiving base by lorry and storing it in the LNG storage tanks, the LNG is vaporized to industrial parks and residential areas. It is for supply as city gas.
In such an LNG satellite supply system, there is a case where the heat generation amount fluctuation of the supply gas accompanying the start of operation of the carburetor, load fluctuation, temperature change or the like becomes a problem. Various techniques have been disclosed. As an improvement of the vaporizer itself, a technique for purging LPG from a purge line when the LNG vaporizer is stopped has been proposed (for example, Patent Document 1).

また、吸着材を用いた発熱量調整装置として、気化器下流側に活性炭を充填した吸着塔を設けて、発熱量変動を抑制する技術が提案されている(例えば特許文献2)。図5は、この方式による従来のサテライト基地100を示すものである。サテライト基地100は、LNG貯槽101、外気を加熱源とする気化器102、吸着塔103を主要構成とする。充填塔103内には細孔直径2.0〜3.0nmの活性炭が充填されている。このような構成により、ローリー105、ライン106を介して供給されるLNGをLNG貯槽101に一旦貯蔵し、気化器102で気化して天然ガスとし、さらに充填塔103を通過させる。これにより、気化器出側において高沸点(重質炭化水素)成分の組成比が高くガス発熱量が高いときには、高沸点成分を吸着材で吸着し、また低沸点成分であるメタンの組成比が高くガス発熱量が低いときには、吸着した高沸点成分を脱着させて発熱量変動を抑制する。
特開平7−109476号公報 特開2005-273753号公報
In addition, as a calorific value adjusting device using an adsorbent, a technique has been proposed in which an adsorption tower filled with activated carbon is provided on the downstream side of the vaporizer to suppress fluctuations in the calorific value (for example, Patent Document 2). FIG. 5 shows a conventional satellite base 100 according to this method. The satellite base 100 mainly includes an LNG storage tank 101, a vaporizer 102 using outside air as a heat source, and an adsorption tower 103. The packed tower 103 is filled with activated carbon having a pore diameter of 2.0 to 3.0 nm. With such a configuration, the LNG supplied via the lorry 105 and the line 106 is temporarily stored in the LNG storage tank 101, vaporized by the vaporizer 102 to become natural gas, and further passed through the packed tower 103. Thus, when the composition ratio of the high boiling point (heavy hydrocarbon) component is high and the gas calorific value is high on the outlet side of the vaporizer, the high boiling point component is adsorbed by the adsorbent, and the composition ratio of methane which is the low boiling point component is When the gas heat generation amount is high and the gas heat generation amount is low, the adsorbed high boiling point component is desorbed to suppress the heat generation amount fluctuation.
JP-A-7-109476 JP 2005-273753 A

従来の吸着材を用いた発熱量調整方法においては、吸着材の吸着量に限界があるため、吸着塔の単位体積当たりガス処理量が制限される。従って、下流側に高度の発熱量安定化が必要とされる燃焼装置(例えばガスエンジン)が存在するような場合には、発熱量変動抑制のために吸着材充填量を増やすことが必要となり、吸着塔容積の大型化、建設作業や設置作業の煩雑化が避けられないという問題がある。このように、LNGサテライト基地を始めとする燃料ガス供給装置において、吸着塔の小型化、燃料ガスの発熱量変動抑制効果の改善が求められている。
さらに、燃料ガスに限らず、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等の混合ガスに関しても、安定的な供給確保の要請から組成変動抑制の必要性が高まっている。
In the conventional calorific value adjustment method using an adsorbent, there is a limit to the amount of adsorbent adsorbed, so that the gas throughput per unit volume of the adsorption tower is limited. Therefore, when there is a combustion device (for example, a gas engine) that requires a high degree of heat generation stabilization on the downstream side, it is necessary to increase the adsorbent filling amount in order to suppress the heat generation amount fluctuation, There is a problem that the adsorption tower volume is increased and the construction work and the installation work are complicated. As described above, in the fuel gas supply apparatus including the LNG satellite base, there is a demand for downsizing the adsorption tower and improving the effect of suppressing the fluctuation in the heat generation amount of the fuel gas.
Furthermore, not only for fuel gas, but also for mixed gases such as raw material gas, by-product gas, exhaust gas, and produced gas from biomass in the chemical industry, the need to suppress composition fluctuations is increasing due to the demand for ensuring a stable supply. .

本願発明者らは鋭意研究の結果、吸着塔のアスペクト比(塔高H/内直径D)(以下、H/Dと略記することがある)に着目し、アスペクト比を適切に設定した吸着塔を用いることにより、組成変動を所望の範囲内に抑制できることを見出した。これらの知見に基づいて本発明は、より小さな吸着塔により組成変動を所望範囲内に抑えることを可能とする組成変動抑制技術を提供するものである。   As a result of diligent research, the inventors of the present application paid attention to the aspect ratio of the adsorption tower (tower height H / inner diameter D) (hereinafter sometimes abbreviated as H / D), and the adsorption ratio was set appropriately. It has been found that the composition variation can be suppressed within a desired range by using. Based on these findings, the present invention provides a composition fluctuation suppressing technique that makes it possible to suppress the composition fluctuation within a desired range with a smaller adsorption tower.

本発明は、以下の内容を要旨とする。すなわち、本発明に係る混合ガスの組成変動抑制装置は、
(1)組成が時間経過とともに変動する混合ガスを、吸着塔を通過させて組成変動を抑制する組成変動抑制装置であって、該吸着塔のアスペクト比(塔高/内直径)を、0.5以上に設定して成る、ことを特徴とする。
本発明において、「ガス組成が時間経過ともに変動」とは、必ずしも周期的な変動のみを意味せず、非周期的変動をも含み、また連続的な変動のみならず単発的な変動も含む。
吸着塔に充填する「吸着材」としては、活性炭、ゼオライト、シリカゲル、メソポーラスシリカ、活性アルミナ、有機金属錯体などを用いることができる。また、活性炭としては、石炭原料活性炭、ヤシガラ活性炭、木炭、石油原料活性炭、竹炭、フェノール樹脂活性炭、レーヨン由来活性炭、アクロニトリル由来活性炭、草炭、おがくず炭、泥炭などがある。
(2)上記発明において、アスペクト比を、0.67以上に設定して成る、ことを特徴とする。
(3)上記各発明において、混合ガスが可燃性ガスであり、かつ、組成に替えて発熱量である、ことを特徴とする。
(4)可燃性ガスが炭化水素ガスを主成分とする燃料ガスであることを特徴とする。
発熱量変動がある燃料ガスを用いる場合、発熱量変動に敏感な燃焼装置が正常に燃焼できる程度に変動幅を抑制することが必要である。本発明では、このような燃料装置を代表するものとしてガスエンジンに着目した。ガスエンジンの発熱量変動限界について、「バイオマス発電の最新技術」(吉川他監修,シーエムシー出版、2006.7.31第1刷発行)によれば、発熱量変化率が30秒間で1%を下回ることとしている。
The gist of the present invention is as follows. That is, the composition fluctuation suppressing device for mixed gas according to the present invention is
(1) A composition fluctuation suppressing device that suppresses composition fluctuation by allowing a mixed gas whose composition fluctuates with time to pass through an adsorption tower, wherein the aspect ratio (column height / inner diameter) of the adsorption tower is It is characterized by being set to 5 or more.
In the present invention, “the gas composition varies with time” does not necessarily mean only a periodic variation, but also includes an aperiodic variation, and includes not only a continuous variation but also a single variation.
As the “adsorbent” packed in the adsorption tower, activated carbon, zeolite, silica gel, mesoporous silica, activated alumina, organometallic complex and the like can be used. Examples of the activated carbon include coal raw material activated carbon, coconut husk activated carbon, charcoal, petroleum raw material activated carbon, bamboo charcoal, phenol resin activated carbon, rayon-derived activated carbon, acrylonitrile-derived activated carbon, grass charcoal, sawdust charcoal, and peat.
(2) In the above invention, the aspect ratio is set to 0.67 or more.
(3) Each of the above inventions is characterized in that the mixed gas is a combustible gas and has a calorific value instead of the composition.
(4) The combustible gas is a fuel gas containing a hydrocarbon gas as a main component.
When using a fuel gas having a calorific value fluctuation, it is necessary to suppress the fluctuation range to such an extent that a combustion apparatus sensitive to the calorific value fluctuation can normally burn. In the present invention, attention is paid to a gas engine as a representative of such a fuel device. Regarding the limit of heat generation fluctuation of gas engines, according to “Latest Biomass Power Generation Technology” (supervised by Yoshikawa et al., CMC Publishing Co., Ltd., published on July 31, 2006), the calorific value change rate is less than 1% in 30 seconds. It is said.

図4は、メタンを主成分とする燃料ガスについて、吸着塔のアスペクト比を変化させたときの30秒間の発熱量変動幅を示す図である。試験条件等についての詳細は後述するが、アスペクト比0.5以上であれば発熱量変化率が1%を下回り、ガスエンジンの良好燃焼が維持されることが分かる。さらに、同図において、アスペクト比0.67未満では、僅かなH/Dの変化に対して発熱量変動幅が大きく変化する。従って、安定的な燃焼を維持するためにはアスペクト比0.67以上とすることが、より望ましい。
なお、アスペクト比上限に関して、上述のようにH/Dが0.67以上では殆ど変化がなく、発熱量変動幅の観点からは上限がないといえる。しかしながら、吸着塔製作における経済性や耐震強度等の観点からは、一定の限界を設ける必要がある。「改訂四版 化学工学便覧」(化学工学協会編、丸善、昭和53年10月25日発行)によれば、吸着塔の標準的操作条件に関して、層高と直径比について最大5:1とする記述がある(882ページ:表11.21)。これらより、上限値としてはH/D≦5程度が妥当と思われる。
FIG. 4 is a diagram showing the fluctuation range of the calorific value for 30 seconds when the aspect ratio of the adsorption tower is changed for the fuel gas containing methane as a main component. Although details of the test conditions and the like will be described later, it can be seen that when the aspect ratio is 0.5 or more, the rate of change in the calorific value is less than 1%, and good combustion of the gas engine is maintained. Furthermore, in the same figure, when the aspect ratio is less than 0.67, the calorific value fluctuation range greatly changes with a slight change in H / D. Therefore, in order to maintain stable combustion, it is more desirable to set the aspect ratio to 0.67 or more.
As for the upper limit of the aspect ratio, as described above, there is almost no change when H / D is 0.67 or more, and it can be said that there is no upper limit from the viewpoint of the calorific value fluctuation range. However, it is necessary to set a certain limit from the viewpoints of economy and seismic strength in manufacturing the adsorption tower. According to the revised 4th edition, Chemical Engineering Handbook (Chemical Engineering Association edition, Maruzen, published on October 25, 1978), the maximum height and diameter ratio of the adsorption tower is 5: 1 for the standard operating conditions of the adsorption tower. There is a description (page 882: Table 11.21). From these, it is considered appropriate that the upper limit is about H / D ≦ 5.

本発明において、「燃料ガス」は、化学工業における原料ガス、副生ガス、バイオマスによる生成ガス等を含む概念である。   In the present invention, “fuel gas” is a concept including a raw material gas, a by-product gas, a produced gas by biomass, and the like in the chemical industry.

(5)上記発明において、燃料ガスが、メタンを主成分とする天然ガス又は都市ガスであることを特徴とする。 (5) The above invention is characterized in that the fuel gas is natural gas or city gas mainly composed of methane.

現在、全国の都市ガスはウオッベ指数及び燃焼速度指数に基づいて13種類のガスグループに分類され、都市ガス事業者は特定したガス種の都市ガスを供給域内の需要家に対して供給することが、ガス事業法により義務付けられている。例えば、メタンを主成分とする13A都市ガスについては、52.7≦WI≦57.8、35≦MCP≦47と定められている。ここにウオッベ指数(WI)は、ガスの発熱量Q(MJ/m3)をガスの空気に対する比重sの平方根で割った数値(WI=Q/√s)で表され、ガス機器の完全燃焼性の指標となるものである。また、燃焼速度指数(MCP)は、都市ガス中の各可燃性ガスの燃焼速度の関数として表される(詳細はガス事業法に示されているため、説明を省略する)。
燃料ガスとしてWI及びMCPが上記13A都市ガスの範囲内のガスを用い、かつ、本発明に係る発熱量変動抑制装置を通過させることにより、供給域内で都市ガス13A用機器を良好に燃焼させることができる。
Currently, city gas nationwide is classified into 13 types of gas groups based on the Wobbe index and burning rate index, and city gas companies can supply city gas of the specified gas type to consumers in the supply area. As required by the Gas Business Law. For example, 13A city gas mainly composed of methane is defined as 52.7 ≦ WI ≦ 57.8 and 35 ≦ MCP ≦ 47. Here, the Wobbe index (WI) is expressed by a numerical value (WI = Q / √s) obtained by dividing the calorific value Q (MJ / m3) of the gas by the square root of the specific gravity s of the gas with respect to the air of the gas. It is an indicator of In addition, the combustion rate index (MCP) is expressed as a function of the combustion rate of each combustible gas in the city gas (details are shown in the gas business law, and the description is omitted).
By using the gas within the range of the above 13A city gas as the fuel gas and passing through the calorific value fluctuation suppressing device according to the present invention, the device for the city gas 13A is burned well in the supply area. Can do.

本発明により、供給元から発熱量変動を伴う燃料ガスが供給された場合であっても、発熱量変動に敏感な燃焼装置が正常燃焼可能な程度に変動幅を抑制して、需要家に供給することが可能となる。   According to the present invention, even when the fuel gas accompanied by the calorific value fluctuation is supplied from the supplier, the fluctuation range is suppressed to the extent that the combustion apparatus sensitive to the calorific value fluctuation can be normally burned and supplied to the consumer. It becomes possible to do.

以下、本発明の実施形態について、図1、2を参照してさらに詳細に説明する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
本実施形態は、燃料ガスとして起動時に組成が変動するLNG気化ガスを用い、アスペクト比H/D=1.0に設定された吸着塔を通すことにより、末端側の負荷装置を正常に燃焼させるものである。
図1は、本実施形態に係る燃料ガス供給装置1の全体構成を示す図である。燃料ガス供給装置1は、LNG貯槽4と、経路中に設けられた吸着塔2と、供給配管L3の末端側に負荷装置であるガスエンジン5と、を備えている。LNG貯槽4には、不図示のローリーにより運ばれるLNGが貯蔵されている。これら装置間は供給配管L1乃至L3により接続されている。気化器3からは組成が変動(これに伴い発熱量も時間経過とともに変動)するLNG気化ガスが供給される。吸着塔2には吸着材(例えば石炭原料活性炭、ヤシガラ原料活性炭等)が充填されている。
燃料ガス供給装置1は以上のように構成されており、これによりLNG貯槽4内のLNGを気化器3で気化して天然ガスとし、吸着塔2に導いて発熱量変動を負荷装置5の許容限度以下に抑制させた後に、供給配管L3を経由して負荷装置5に供給する。
Hereinafter, embodiments of the present invention will be described in more detail with reference to FIGS. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
In this embodiment, an LNG vaporized gas whose composition varies at startup is used as a fuel gas, and the end-side load device is normally burned by passing through an adsorption tower set to an aspect ratio H / D = 1.0. Is.
FIG. 1 is a diagram illustrating an overall configuration of a fuel gas supply apparatus 1 according to the present embodiment. The fuel gas supply device 1 includes an LNG storage tank 4, an adsorption tower 2 provided in the path, and a gas engine 5 as a load device on the terminal side of the supply pipe L3. The LNG storage tank 4 stores LNG carried by a lorry (not shown). These devices are connected by supply pipes L1 to L3. The vaporizer 3 is supplied with LNG vaporized gas whose composition fluctuates (and the calorific value fluctuates with time). The adsorption tower 2 is filled with an adsorbent (for example, coal raw material activated carbon, coconut shell raw material activated carbon, etc.).
The fuel gas supply device 1 is configured as described above, and as a result, the LNG in the LNG storage tank 4 is vaporized by the vaporizer 3 to become natural gas, which is led to the adsorption tower 2 to allow the load device 5 to change the heat generation amount. After being controlled below the limit, the load is supplied to the load device 5 via the supply pipe L3.

図2は、気化器起動に伴う気化器3出口(同図(a))及び吸着塔2出口(同図(b))における発熱量変動の時間的推移を比較した図である。通常、起動前には気化器3内部には比較的高温(約−30℃)のガスが残留している。起動バルブV1が開かれると、LNG貯槽4内のLNGが気化器3の下部マニホールド3aに流入し、残留している比較的高温の残留ガスと同温度の配管表面に接触して気化する。この場合、LNGに含まれる炭化水素類のうち、沸点温度の低いメタン成分(沸点−161℃)が優先的に蒸発するため、起動時には気化器から出るガスはメタン成分の多い低発熱量ガス(最小発熱量Qmin)となり、時間経過とともに標準発熱量(Q0)となる。このとき最小発熱量近傍のガスは、ガスエンジンの良好燃焼域から外れる。しかしながら、ハンチングガスは吸着塔2に導かれ、ここで低発熱量成分が吸着材に吸着されて高発熱量成分の比率が高まるため、吸着塔2出口では同図(b)のように発熱量変動幅が抑制され(最小発熱量Q0’)、ガスエンジンの良好燃焼域に納まる。
なお、本実施形態では発熱量が起動時や、供給量変化、LNGの払出し圧力変化等に伴い変動するが、通常状態では殆ど変化しないガスを用いる形態としたが、これに限らず常に発熱量が変動するガスを用いる形態とすることもできる。
FIG. 2 is a diagram comparing temporal transitions of fluctuations in heat generation at the outlet of the vaporizer 3 (FIG. 2A) and the outlet of the adsorption tower 2 (FIG. 2B) accompanying the activation of the vaporizer. Normally, a relatively high temperature (about −30 ° C.) gas remains in the vaporizer 3 before starting. When the start valve V1 is opened, the LNG in the LNG storage tank 4 flows into the lower manifold 3a of the carburetor 3 and vaporizes in contact with the pipe surface having the same temperature as the remaining relatively high temperature residual gas. In this case, among the hydrocarbons contained in LNG, the methane component having a low boiling point temperature (boiling point −161 ° C.) evaporates preferentially. The minimum heat generation amount Qmin) and the standard heat generation amount (Q0) with time. At this time, the gas near the minimum calorific value deviates from the good combustion region of the gas engine. However, since the hunting gas is guided to the adsorption tower 2, where the low calorific value component is adsorbed by the adsorbent and the ratio of the high calorific value component is increased, the calorific value at the outlet of the adsorption tower 2 is as shown in FIG. The fluctuation range is suppressed (minimum calorific value Q0 ′), and it falls within the good combustion region of the gas engine.
In this embodiment, the calorific value fluctuates at the time of start-up, supply amount change, LNG discharge pressure change, etc., but the gas is used in a normal state. However, the present invention is not limited to this. It is also possible to use a gas that varies.

以下、本発明の効果確認のために行った試験の内容について説明する。
(試験ガス)
2分間、LNG気化ガス(組成:CH4:90.8%、C2H6:5.0%、C3H8:3.0%、i-C4H10:0.6%、n-C4H10:0.6%)を流し、その後1分間、このガスに添加用ガス(C3H8:C4H10=1:1)を添加するサイクルを繰り返すことにより、周期的に組成(発熱量)が変動するガスを調製した。試験ガスの発熱量変動は、最小44.3MJ/m3、最大46.8MJ/m3であった。
Hereinafter, the content of the test conducted for confirming the effect of the present invention will be described.
(Test gas)
Flow LNG vapor (composition: CH4: 90.8%, C2H6: 5.0%, C3H8: 3.0%, i-C4H10: 0.6%, n-C4H10: 0.6%) for 2 minutes, then add to this gas for 1 minute By repeating the cycle of adding the gas (C3H8: C4H10 = 1: 1), a gas whose composition (calorific value) fluctuates periodically was prepared. The variation in calorific value of the test gas was a minimum of 44.3 MJ / m3 and a maximum of 46.8 MJ / m3.

(試験方法)
吸着塔として、アスペクト比を6種類(0.3、0.5、0.67、1.0、3.6、36)に設定した試験容器(内容積30cc)に、吸着材(石炭原料活性炭)12ccを充填したものを用いた。各試験容器に温度25℃、空塔速度2000h−1の流入条件で試験ガスを流して、容器出口におけるガス発熱量を熱量計(Advantica社製、製品名:GasPT)で測定した。
(Test method)
As an adsorption tower, an adsorbent (coal raw material activated carbon) is placed in a test vessel (internal volume of 30 cc) having six aspect ratios (0.3, 0.5, 0.67, 1.0, 3.6, 36). ) The one filled with 12 cc was used. A test gas was allowed to flow into each test vessel under an inflow condition of a temperature of 25 ° C. and a superficial velocity of 2000 h −1, and a gas calorific value at the outlet of the vessel was measured with a calorimeter (product name: GasPT).

(測定結果)
図3に、各アスペクト比のときの発熱量変動の時間的推移を示す。なお、同図では発熱量変動の様子が分かりやすいように、安定後の平均熱量からの偏差を縦軸にプロットした。また、表1は各アスペクト比の最大偏差を比較したものである。平均熱量からの偏差が小さいほど、より発熱量変動抑制効果が高いことを意味する。
(Measurement result)
FIG. 3 shows the temporal transition of the calorific value fluctuation at each aspect ratio. In addition, in the same figure, the deviation from the average heat quantity after stabilization is plotted on the vertical axis so that the state of the heat generation fluctuation can be easily understood. Table 1 compares the maximum deviation of each aspect ratio. It means that the smaller the deviation from the average calorific value, the higher the calorific value fluctuation suppressing effect.

Figure 2009243733
Figure 2009243733

(適性アスペクト比判定)
図5は、試験ガス流入開始後10分〜50分における、30秒間の発熱量変化率の最大値を各アスペクト比についてプロットした図である。同図より、アスペクト比0.67以上で発熱量変化率はほぼ一定になることが分かる。またアスペクト比が0.5以上であれば、ガスエンジンが許容する変化率1%/30secを下回ることが分かる。アスペクト比0.3では、もとの発熱量変動よりは小さいものの許容変化率を上回っており、ガスエンジン用としては不適切である。以上の結果より、アスペクト比の下限は0.5以上、より好ましくは0.67以上であると判断される。
(Appropriate aspect ratio judgment)
FIG. 5 is a diagram in which the maximum value of the rate of change in calorific value for 30 seconds from 10 minutes to 50 minutes after the start of test gas inflow is plotted for each aspect ratio. From the figure, it can be seen that the rate of change in heat generation is almost constant when the aspect ratio is 0.67 or more. It can also be seen that when the aspect ratio is 0.5 or more, the rate of change allowed by the gas engine is less than 1% / 30 sec. An aspect ratio of 0.3 is smaller than the original heat generation fluctuation, but exceeds the allowable change rate, and is unsuitable for a gas engine. From the above results, it is determined that the lower limit of the aspect ratio is 0.5 or more, more preferably 0.67 or more.

本発明は、燃料ガスの発熱量抑制に限らず、化学工業における原料ガス、副生ガス、排気ガス、バイオマスによる生成ガス等、発熱量変動する複数のガス成分からなる燃料ガスの発熱量変動抑制に広く利用可能である。   The present invention is not limited to the suppression of the calorific value of fuel gas, but also suppresses the fluctuation of the calorific value of fuel gas composed of a plurality of gas components whose calorific value fluctuates, such as raw material gas, by-product gas, exhaust gas, and produced gas from biomass Widely available.

本発明の一実施形態に係る燃料ガス供給装置1の構成を示す図である。It is a figure which shows the structure of the fuel gas supply apparatus 1 which concerns on one Embodiment of this invention. 気化器起動に伴う気化器3及び吸着塔2出口における発熱量変動の時間的推移を比較した図である。It is the figure which compared the time transition of the emitted-heat amount fluctuation | variation in the vaporizer 3 and adsorption tower 2 exit accompanying vaporizer starting. 実施例における各アスペクト比のときの発熱量変動の時間的推移を示す図である。It is a figure which shows the time transition of the emitted-heat amount fluctuation | variation at the time of each aspect ratio in an Example. 試験ガス流入開始後10分〜50分における30秒間の発熱量変化率の最大値を、各アスペクト比についてプロットした図である。It is the figure which plotted the maximum value of the calorific value change rate for 30 seconds in 10 minutes-50 minutes after the start of test gas inflow about each aspect ratio. 従来のサテライト基地100の構成を示す図である。It is a figure which shows the structure of the conventional satellite base 100. FIG.

符号の説明Explanation of symbols

1・・・・燃料ガス供給装置
2・・・・吸着塔
3・・・・気化器
4・・・・LNG貯槽
5・・・・負荷装置
L1〜L3・・・・供給ライン
DESCRIPTION OF SYMBOLS 1 ... Fuel gas supply device 2 ... Adsorption tower 3 ... Vaporizer 4 ... LNG storage tank 5 ... Load devices L1-L3 ... Supply line

Claims (5)

組成が時間経過とともに変動する混合ガスを、吸着材を充填した吸着塔を通過させて組成変動を抑制する組成変動抑制装置であって、
該吸着塔のアスペクト比(塔高/内直径)を、0.5以上に設定して成る、
ことを特徴とする混合ガスの組成変動抑制装置。
A composition fluctuation suppressing device that suppresses composition fluctuation by passing a mixed gas whose composition fluctuates over time through an adsorption tower filled with an adsorbent,
The aspect ratio (tower height / inner diameter) of the adsorption tower is set to 0.5 or more.
An apparatus for suppressing composition fluctuations in a mixed gas.
請求項1において、前記アスペクト比を、0.67以上に設定して成る、
ことを特徴とする混合ガスの組成変動抑制装置。
In Claim 1, the aspect ratio is set to 0.67 or more,
An apparatus for suppressing composition fluctuations in a mixed gas.
請求項1又は2において、前記混合ガスが可燃性ガスであり、かつ、前記組成に替えて発熱量である、ことを特徴とする混合ガスの組成変動抑制装置。 3. The mixed gas composition fluctuation suppressing device according to claim 1, wherein the mixed gas is a combustible gas and has a calorific value instead of the composition. 前記可燃性ガスが炭化水素ガスを主成分とする燃料ガスであることを特徴とする請求項3に記載の混合ガスの組成変動抑制装置。 The composition fluctuation suppressing device for a mixed gas according to claim 3, wherein the combustible gas is a fuel gas containing a hydrocarbon gas as a main component. 前記燃料ガスが、メタンを主成分とする天然ガス又は都市ガスであることを特徴とする請求項4に記載の混合ガスの組成変動抑制装置。

5. The composition fluctuation suppressing device for mixed gas according to claim 4, wherein the fuel gas is natural gas or city gas mainly containing methane.

JP2008089469A 2008-03-31 2008-03-31 Mixing gas composition fluctuation suppression device Active JP5207522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008089469A JP5207522B2 (en) 2008-03-31 2008-03-31 Mixing gas composition fluctuation suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089469A JP5207522B2 (en) 2008-03-31 2008-03-31 Mixing gas composition fluctuation suppression device

Publications (2)

Publication Number Publication Date
JP2009243733A true JP2009243733A (en) 2009-10-22
JP5207522B2 JP5207522B2 (en) 2013-06-12

Family

ID=41305838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089469A Active JP5207522B2 (en) 2008-03-31 2008-03-31 Mixing gas composition fluctuation suppression device

Country Status (1)

Country Link
JP (1) JP5207522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108661A (en) * 2011-11-18 2013-06-06 Osaka Gas Co Ltd Gas mixture supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279740A (en) * 1999-03-31 2000-10-10 Taiyo Nps Kk Method for producing air reduced in water and carbon dioxide contents and device therefor and regenerating method of adsorbent
JP2005273753A (en) * 2004-03-24 2005-10-06 Osaka Gas Co Ltd Vaporizing and supplying system of liquefied natural gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279740A (en) * 1999-03-31 2000-10-10 Taiyo Nps Kk Method for producing air reduced in water and carbon dioxide contents and device therefor and regenerating method of adsorbent
JP2005273753A (en) * 2004-03-24 2005-10-06 Osaka Gas Co Ltd Vaporizing and supplying system of liquefied natural gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013108661A (en) * 2011-11-18 2013-06-06 Osaka Gas Co Ltd Gas mixture supply system

Also Published As

Publication number Publication date
JP5207522B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5103030B2 (en) Mixed gas supply device, calorific value adjustment device, and calorific value adjustment method in mixed gas supply device
JP2016105022A (en) Liquefied natural gas receiving facility
SG186255A1 (en) Method and system for storing natural gas
JP4407913B2 (en) Liquefied natural gas vapor supply system
KR20170081484A (en) Fuel Liquefied Gas Supply Heater and Fuel Liquefied Gas Supply System and Method of Engine Required Methane Number Control of Ship
JP5207522B2 (en) Mixing gas composition fluctuation suppression device
JP6716048B1 (en) Heat quantity fluctuation suppressing device, heat quantity fluctuation suppressing method
JP5001031B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP4931781B2 (en) Mixed gas supply device and method for suppressing composition variation
JP2011026144A (en) Activated carbon for suppressing heat quantity fluctuation of fuel gas, and method and system for suppressing heat quantity fluctuation
JP5042364B2 (en) Gas supply system and supply method
JP5382583B2 (en) Gas odorant
KR102200359B1 (en) treatment system of boil-off gas and ship having the same
JP5313737B2 (en) Mixed gas supply device and composition variation adjustment method in mixed gas supply device
JP4907845B2 (en) Method for adjusting calorific value of delivered fuel gas, method for stabilizing heat quantity, and apparatus therefor
JP5001041B2 (en) Mixed gas supply device, calorific value adjustment device, and variation adjustment method thereof
JP5686989B2 (en) Production of liquefied natural gas for automobiles
JP4859724B2 (en) Mixed gas supply device and method for adjusting composition variation thereof
JP5160627B2 (en) Method for adjusting calorific value of delivered fuel gas and calorific value adjusting device
JP2016191024A (en) Gas control device, combustion system and program
JP2004323285A (en) Hydrogen production system
KR20100085973A (en) Use of liquefied gas compositions
EP3482055A1 (en) Internal combustion engine fuel gas blending system
KR20180015694A (en) Fuel Liquefied Gas Supply Heater and Fuel Liquefied Gas Supply System and Method of Engine Required Methane Number Control of Ship
JP2008116020A (en) Gas storage and sending-out method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250