JP2009238687A - Fluoride electrode active material - Google Patents

Fluoride electrode active material Download PDF

Info

Publication number
JP2009238687A
JP2009238687A JP2008086113A JP2008086113A JP2009238687A JP 2009238687 A JP2009238687 A JP 2009238687A JP 2008086113 A JP2008086113 A JP 2008086113A JP 2008086113 A JP2008086113 A JP 2008086113A JP 2009238687 A JP2009238687 A JP 2009238687A
Authority
JP
Japan
Prior art keywords
active material
electrode active
metal
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008086113A
Other languages
Japanese (ja)
Inventor
Shigeto Okada
重人 岡田
D Gocheva Irina
イリナ ディ ゴシェヴァ
Manabu Nishijima
学 西嶋
Takayuki Doi
貴之 土井
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2008086113A priority Critical patent/JP2009238687A/en
Publication of JP2009238687A publication Critical patent/JP2009238687A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel electrode active material for a nonaqueous electrolyte secondary battery which can make the best use of features of alkali-metal-containing fluoride metal. <P>SOLUTION: The electrode active material made by sufficiently kneading the alkali-metal-containing fluoride metal with a carbon material does not emits oxygen at the time of fully charging at high temperature, and consequently, the secondary battery having no problem on heat generation and expansion of the battery can be obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、充放電可能な非水電解質二次電池の技術分野に属し、特に、非水電解質二次電池の安全性を著しく向上させる電極活物質の改良に関する。   The present invention belongs to the technical field of chargeable / dischargeable nonaqueous electrolyte secondary batteries, and particularly relates to improvements in electrode active materials that significantly improve the safety of nonaqueous electrolyte secondary batteries.

従来のリチウムイオン電池用正極活物質にはLiCoO2や三元系と呼ばれるLiCo1/3Ni1/3Mn1/3等の層状酸化物正極が使われてきた。しかし、満充電状態でCoの四価やNiの四価といったいわゆる異常電子価状態が出現し、電池という密閉空間の中に対し、酸素の放出源となって電池の発熱や内圧上昇等のトラブルの原因となっていた。この種の熱安定性や過充電耐性の問題を解決するため、酸素が脱離しにくいようにヘテロ元素との共有結合で酸素を格子中に強固に固定したポリアニオン系正極が次世代リチウム電池用正極活物質として注目され、その中でもオリビン型LiFePOが電気自動車電池用正極として最有力視されているが、酸素がある限り酸素脱離量は0ではなく、やはり300℃以上の高温にさらされてしまうと、満充電状態のオリビン正極から酸素脱離が発生することは避けられないのが現状である(S.Okada,M.Ueno,Y.Uebou and J.Yamaki,J.Power Sources,146,565−569(2005)(非特許文献1))。
S.Okada,M.Ueno,Y.Uebou and J.Yamaki,J.Power Sources,146,565−569(2005)
As conventional positive electrode active materials for lithium ion batteries, layered oxide positive electrodes such as LiCoO 2 and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 called ternary system have been used. However, in the fully charged state, so-called abnormal electronic valence states such as Co tetravalent and Ni tetravalent appear, and it becomes an oxygen release source in the sealed space of the battery, causing problems such as heat generation of the battery and increase in internal pressure. It was the cause. In order to solve this type of thermal stability and overcharge resistance problems, a polyanion positive electrode in which oxygen is firmly fixed in the lattice by a covalent bond with a hetero element so that oxygen is not easily released is a positive electrode for next-generation lithium batteries. Although it has been attracting attention as an active material, olivine-type LiFePO 4 is regarded as the most promising positive electrode for electric vehicle batteries. However, as long as oxygen is present, the amount of released oxygen is not 0, and it is exposed to a high temperature of 300 ° C. or higher. In other words, it is inevitable that oxygen is desorbed from the fully charged olivine positive electrode (S. Okada, M. Ueno, Y. Uebou and J. Yamaki, J. Power Sources, 146, 565-569 (2005) (nonpatent literature 1)).
S. Okada, M. Ueno, Y. Uebou and J. Yamaki, J. Power Sources, 146, 565-569 (2005)

本発明者らは、これまでにも、非水電解質二次電池の正極活物質としてフッ化金属を用いることを案出しているが、未だにフッ化物正極の報告例はこれ以外、ほとんどないのが現状であった(特開平9−22698号公報(特許文献1);特開平9−55201号公報(特許文献2))。
特開平9−22698号公報 特開平9−55201号公報
The present inventors have devised the use of a metal fluoride as the positive electrode active material of a nonaqueous electrolyte secondary battery, but there are still few other reported examples of fluoride positive electrodes. It was the present state (Japanese Patent Laid-Open No. 9-22698 (Patent Document 1); Japanese Patent Laid-Open No. 9-55201 (Patent Document 2)).
Japanese Patent Laid-Open No. 9-22698 Japanese Patent Laid-Open No. 9-55201

本発明の目的は、アルカリ金属含有フッ化金属の特長を活かした新規な非水電解質二次電池用電極活物質を提供することにある。   An object of the present invention is to provide a novel electrode active material for a non-aqueous electrolyte secondary battery that takes advantage of the characteristics of an alkali metal-containing metal fluoride.

本発明者らは、アルカリ金属含有フッ化金属を炭素質材料と充分に混練して正極活物質とすることにより、高温下、満充電時においても酸素を放出せず、そのために電池の発熱や膨張の問題のない二次電池が得られることを見出し本発明を導き出した。   The inventors of the present invention have sufficiently mixed the alkali metal-containing metal fluoride with the carbonaceous material to form a positive electrode active material, so that oxygen is not released even at full charge at high temperatures. The present invention was derived by finding that a secondary battery having no problem of expansion can be obtained.

かくして、本発明は、炭素でコートされた一般式Ax+21−xで表されるアルカリ金属含有フッ化金属(式中、Aはアルカリ金属、Mは3価金属元素、Nは4価金属元素を表し、xは0≦x≦1示す)から成ることを特徴とする非水電解質二次電池用正極活物質およびそれを用いた二次電池を提供するものである。 Thus, the present invention is an alkali metal-containing metal fluoride (wherein of the general formula A x + 2 M x N 1 -x F 6 coated with carbon, A is an alkali metal, M is a trivalent metal element, N Represents a tetravalent metal element, and x represents 0 ≦ x ≦ 1, and provides a positive electrode active material for a nonaqueous electrolyte secondary battery and a secondary battery using the same.

本発明の非水電解質二次電池用正極活物質を構成する炭素コートされたアルカリ金属含有フッ化金属Ax+21−xにおいて、Aで示される金属元素としては、アルカリ金属であれば、いずれも適用可能である。Aに適用される金属の例として、Li(リチウム)、Na(ナトリウム)等が上げられる。Mで示される金属元素としては、3価の金属であればいずれも適用可能である。Mに適用される金属の例として、Fe(鉄)、Mn(マンガン)、V(バナジウム)、Co(コバルト)、Ni(ニッケル)、Sc(スカンジウム)、Zr(ジルコニウム)、Al(アルミニウム)、Bi(ビスマス)、Ti(チタン)等が挙げられる。また、Nで示される金属元素としては、4価の金属であればいずれも適用可能である。Nに適用される金属の例として、Ti(チタン)、Zr(ジルコニウム)、Mn(マンガン)、V(バナジウム)、Co(コバルト)、Ni(ニッケル)、Mo(モリブデン)、Cr(クロム)、Sn(スズ)等が挙げられる。それぞれ、炭素コートされたLiTiF、LiFeF、Li2.5Fe0.5Ti0.5などが正極活物質に用いられる。 In the non-aqueous electrolyte containing an alkali metal fluoride is carbon coated constituting the positive electrode active material for a secondary battery metal A x + 2 M x N 1 -x F 6 of the present invention, the metal element represented by A, an alkali metal Any are applicable. Examples of the metal applied to A include Li (lithium) and Na (sodium). As the metal element represented by M, any trivalent metal can be used. Examples of metals applied to M include Fe (iron), Mn (manganese), V (vanadium), Co (cobalt), Ni (nickel), Sc (scandium), Zr (zirconium), Al (aluminum), Bi (bismuth), Ti (titanium), etc. are mentioned. As the metal element represented by N, any tetravalent metal can be applied. Examples of metals applied to N include Ti (titanium), Zr (zirconium), Mn (manganese), V (vanadium), Co (cobalt), Ni (nickel), Mo (molybdenum), Cr (chromium), Sn (tin) etc. are mentioned. Carbon-coated Li 2 TiF 6 , Li 3 FeF 6 , Li 2.5 Fe 0.5 Ti 0.5 F 6 and the like are used as the positive electrode active material, respectively.

非水電解質二次電池において如上の正極活物質とともに用いられる負極活物質としては、アルカリ金属またはアルカリ金属化合物が用いられるが、一般的には、リチウム(Li)またはナトリウム(Na)である。本発明の炭素コートされたアルカリ金属含有フッ化金属Ax+21−xを正極活物質とする系は、Liに対して容量の大きい可逆な充放電特性を示すのみならず、Naに対しても同様に可逆な充放電特性を示す。 As the negative electrode active material used together with the positive electrode active material in the nonaqueous electrolyte secondary battery, an alkali metal or an alkali metal compound is used, and is generally lithium (Li) or sodium (Na). The system in which the carbon-coated alkali metal-containing fluoride metal A x + 2 M x N 1-x F 6 of the present invention is used as a positive electrode active material not only exhibits reversible charge / discharge characteristics with a large capacity with respect to Li, Similarly, reversible charge / discharge characteristics are exhibited for Na.

例えば、Li電池において炭素コートされたLiTiFを正極活物質として用いると100mAh/g以上の可逆容量(エネルギー密度)が実現されており、また、Liだけでなく安価なNa電池用正極としてもエネルギー密度の大きい可逆充放電反応が得られる(後述の実施例参照)。 For example, when Li 2 TiF 6 coated with carbon in a Li battery is used as a positive electrode active material, a reversible capacity (energy density) of 100 mAh / g or more is realized, and not only Li but also an inexpensive positive electrode for a Na battery In addition, a reversible charge / discharge reaction having a large energy density is obtained (see Examples described later).

本発明が適用される特に好ましいその他の例は、リチウム含有フッ化金属としてLiFeFを用いる場合であり、炭素コートされたLiFeFを正極活物質とするリチウム電池では、充電特性と放電特性の差が殆どなく、きわめて効率的で且つ120mAh/gを超える高エネルギー密度の二次電池が実現される(後述の実施例参照)。 Another particularly preferable example to which the present invention is applied is a case where Li 3 FeF 6 is used as the lithium-containing fluoride metal, and in a lithium battery using a carbon-coated Li 3 FeF 6 as a positive electrode active material, There is little difference in discharge characteristics, and a highly efficient secondary battery having a high energy density exceeding 120 mAh / g is realized (see examples described later).

その他、例えば、炭素コートされたLi2.5Fe0.5Ti0.5などを正極活物質として用いることにより可逆な充放電特性を示しエネルギー密度の良好なLi電池またはNa電池が得られる。 In addition, for example, by using carbon-coated Li 2.5 Fe 0.5 Ti 0.5 F 6 or the like as the positive electrode active material, a Li battery or Na battery having reversible charge / discharge characteristics and good energy density can be obtained. It is done.

本発明に従う炭素コートされたアルカリ金属含有フッ化金属Ax+21−xは、原料となる金属酸化物をフッ化水素溶液に溶かして加熱した後、炭酸リチウムや炭酸ナトリウムを加えてから、乾燥後、フッ化物の熱分解温度以下でアニールすることにより得られる。得られたアルカリ金属含有フッ化金属Ax+21−xは炭素質材料と不活性ガスの雰囲気下に機械的混合手段により数時間以上、乾式で混合することにより炭素コートされる。 Alkali metal-containing metal fluoride A x + 2 M x N 1 -x F 6 which is a carbon-coated according to the present invention, after the metal oxide as a raw material is heated by dissolving the hydrogen fluoride solution, lithium carbonate or sodium carbonate is added Then, after drying, it is obtained by annealing at a temperature lower than the thermal decomposition temperature of fluoride. The obtained alkali metal-containing fluoride metal A x + 2 M x N 1-x F 6 is carbon coated by dry mixing for several hours or more by a mechanical mixing means in an atmosphere of a carbonaceous material and an inert gas. .

機械的混合手段として好ましく、一般的に用いられるのは、ボールミル、特に遊星型ボールミル(planetary ball milling)である。遊星型ボールミルは、自転・公転運動による粉砕エネルギーによりアルカリ金属含有フッ化金属Ax+21−xと炭素質材料とを充分に粉砕・混合することができる点から特に好ましい。
混合時間は、1時間以上、好ましくは4時間以上であり、混合は、アルゴンガスのような不活性ガス雰囲気下に乾式で行う。
A preferred and generally used mechanical mixing means is a ball mill, especially a planetary ball mill. Planetary ball mill is particularly preferable because it can sufficiently be pulverized and mixed with an alkali metal-containing metal fluoride A x + 2 M x N 1 -x F 6 and carbonaceous material by pulverization energy due to the rotation-revolution.
The mixing time is 1 hour or longer, preferably 4 hours or longer, and the mixing is carried out dry in an inert gas atmosphere such as argon gas.

上記の工程において、アルカリ金属含有フッ化金属Ax+21−xとともに混合される炭素質材料としては、導電性のある炭素系物質であればいずれも適用可能であり、例えば、アセチレンブラック、カーボンブラック、活性炭などを用いることができる。フッ化金属MF:炭素質材料の比は、一般に、重量基準で50:50から90:10であり、例えば、70:25である。 In the above process, as the carbonaceous material mixed with an alkali metal-containing metal fluoride A x + 2 M x N 1 -x F 6, but any carbon-based material having conductivity can be applied, for example, Acetylene black, carbon black, activated carbon and the like can be used. The ratio of metal fluoride MF 3 : carbonaceous material is generally 50:50 to 90:10 on a weight basis, for example 70:25.

以上のような操作に従い、アルカリ金属含有フッ化金属Ax+21−xと炭素質材料とを充分に混和することにより、該フッ化金属の表面を炭素が均一にコートしていることは、SEM(走査型電子顕微鏡)やEDS(エネルギー分散型X線分光)を用いる観察により確認されている。 According to the above operation, the alkali metal-containing fluoride metal A x + 2 M x N 1-x F 6 and the carbonaceous material are sufficiently mixed so that the surface of the fluoride metal is uniformly coated with carbon. It has been confirmed by observation using SEM (scanning electron microscope) and EDS (energy dispersive X-ray spectroscopy).

かくして、本発明は、アルカリ金属含有フッ化金Ax+21−xをベースとし、その微粒子の表面に炭素をコートすることによる導電性付与と電解質液への溶出抑制の双方の効果によってきわめて可逆容量(エネルギー密度)の高い非水電解質二次電池を実現したものである。
以下、本発明の特徴を更に具体的に示すために炭素コートされた各種のアルカリ金属含有フッ化金属Ax+21−xを正極活物質とするリチウム電池(Liセル)およびナトリウム電池(Naセル)について行った充放電測定の実施例を記す。
Thus, the present invention is based on alkali metal-containing gold fluoride A x + 2 M x N 1-x F 6 , and provides both conductivity imparting and suppression of elution into the electrolyte solution by coating the surface of the fine particles with carbon. As a result, a non-aqueous electrolyte secondary battery with extremely high reversible capacity (energy density) has been realized.
Hereinafter, various alkali metal-containing metal fluoride A x + 2 M x N 1 -x F 6 a lithium battery that the cathode active material (Li cell) and sodium that are carbon coated to further specifically showing the features of the present invention An example of charge / discharge measurement performed on the battery (Na cell) will be described.

<炭素コートされたリチウム含有フッ化金属の調製>
遊星型ボールミル(伊藤製作所製、LA−PO4)を用い、200rpm、Ar雰囲気下に、所定時間、フッ化金属とアセチレンブラックを結着剤として少量のフッ素ポリマー(PTFE:ポリテトラフルオロエチレン)とともに混合した。
<Preparation of carbon-coated lithium-containing metal fluoride>
Using planetary ball mill (manufactured by Ito Seisakusho, LA-PO4), mixed with a small amount of fluoropolymer (PTFE: polytetrafluoroethylene) at 200 rpm under Ar atmosphere for a predetermined time with metal fluoride and acetylene black as binder. did.

<電池の構造・組成>
電池の1例として用いたのは図1に示すコイン型電池(宝泉製、R2032)である。図1において、1は正極、2は負極、3は正極容器、4は負極蓋、5はセパレーターと電解液を表す。
正極は、直径1.0cmであり、上記のように調製した活物質(リチウム含有フッ化金属):アセチレンブラック:PTFE=70:25:5から成る。アセチレンブラックは電気化学工業製、また、PTFEはダイキン製のものを用いた。
負極は、直径1.5cmであり、Liセルの場合はLiメタル(本城金属製)、Naセルの場合はNaメタル(Aldrich製)を用いた。
電解液は、Liセルの場合は、1M LiPF/EC:DMC(1:1vol%)(富山薬品工業製)や1M LiClO/EC:DMC(1:1vol%)(富山薬品工業製)や1M LiPF/MFA(ダイキン製)であり、また、Naセルの場合は、1M NaClO/PC(富山薬品工業製)である。セパレーターはポリプロピレン微多孔体(セルガード社製)である。
<Battery structure and composition>
The coin type battery (made by Hosen, R2032) shown in FIG. 1 was used as an example of the battery. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a positive electrode container, 4 is a negative electrode lid, 5 is a separator and electrolyte solution.
The positive electrode has a diameter of 1.0 cm and is composed of the active material (lithium-containing metal fluoride): acetylene black: PTFE = 70: 25: 5 prepared as described above. Acetylene black was made by Denki Kagaku Kogyo, and PTFE was made by Daikin.
The negative electrode had a diameter of 1.5 cm, and Li metal (made by Honjo Metal) was used in the case of the Li cell, and Na metal (made by Aldrich) was used in the case of the Na cell.
In the case of a Li cell, the electrolyte is 1M LiPF 6 / EC: DMC (1: 1 vol%) (manufactured by Toyama Pharmaceutical Co., Ltd.), 1M LiClO 4 / EC: DMC (1: 1 vol%) (manufactured by Toyama Pharmaceutical Co., Ltd.), It is 1M LiPF 6 / MFA (manufactured by Daikin), and in the case of a Na cell, it is 1M NaClO 4 / PC (manufactured by Toyama Pharmaceutical). The separator is a polypropylene microporous material (manufactured by Celgard).

<充放電測定>
測定に用いた装置は、NAGANO BTS−2004(株式会社ナガノ製)である。測定温度は25℃であり、電圧範囲は2.0〜4.5V(Liセル)、1.5〜4.0V(Naセル)とし、電流密度は、原則として0.2mA/cmとした。
<Charge / discharge measurement>
The apparatus used for the measurement is NAGANO BTS-2004 (manufactured by Nagano Co., Ltd.). The measurement temperature is 25 ° C., the voltage range is 2.0 to 4.5 V (Li cell), 1.5 to 4.0 V (Na cell), and the current density is generally 0.2 mA / cm 2 . .

LiTiF
本発明の電極活物質の1つであるリチウム含有フッ化金属LiTiFは下記の方法で合成した。まず100℃でよく乾燥したルチル型TiOを46%のフッ酸に溶かし、HTiFの水溶液を作る。これに等モルの炭酸リチウムを加え反応させる。これにエタノールを加え、水和フッ化物を析出させたのち、これを150℃で真空乾燥後、さらに350℃で熱処理しLiTiFを得た。図2に、その粉末X線回折図を示す。得られた粉末試料は、空間群P42/mnm三方晶トリルチル構造のLiTiFであることがわかる。
Li 2 TiF 6
Lithium-containing metal fluoride Li 2 TiF 6 which is one of the electrode active materials of the present invention was synthesized by the following method. First, rutile TiO 2 well dried at 100 ° C. is dissolved in 46% hydrofluoric acid to make an aqueous solution of H 2 TiF 6 . To this, equimolar lithium carbonate is added and reacted. Ethanol was added thereto to precipitate a hydrated fluoride, which was vacuum-dried at 150 ° C. and then heat-treated at 350 ° C. to obtain Li 2 TiF 6 . FIG. 2 shows the powder X-ray diffraction pattern. The obtained powder sample is found to be Li 2 TiF 6 having a space group P42 / mnm trigonal tritylyl structure.

図3は、遊星ミルにより25%重量混合比で炭素コートされたLiTiFを正極活物質とするLiセル(リチウム電池)の充放電プロフィルを示す。初期状態でTiが4価状態のため、初回充電はほとんどできないが、その後のサイクル性は良好である。LiTiFのイオン伝導度は2×10-4 S/cmと小さな値であるが、炭素コートすることにより約2.5 Vの平均放電電圧で100mAh/g以上の可逆容量が得られた。 FIG. 3 shows a charge / discharge profile of a Li cell (lithium battery) using Li 2 TiF 6 coated with carbon at a 25% weight mixing ratio by a planetary mill as a positive electrode active material. Since Ti is tetravalent in the initial state, the initial charge is hardly possible, but the subsequent cycle characteristics are good. The ionic conductivity of Li 2 TiF 6 is a small value of 2 × 10 −4 S / cm, but by carbon coating, a reversible capacity of 100 mAh / g or more was obtained at an average discharge voltage of about 2.5 V. .

LiFeF
本発明の電極活物質の1つであるリチウム含有フッ化金属LiFeFは下記の方法で合成した。まず化学量論比の炭酸リチウムと塩化鉄FeClをフッ酸中で反応させ、有機溶媒で洗浄後、150℃で真空乾燥させ、LiFeFを得た。図4に、その粉末X線回折図を示す。得られた試料は、空間群Pna2斜方晶のα相LiFeFであることがわかる。
Li 3 FeF 6
Lithium-containing metal fluoride Li 3 FeF 6 which is one of the electrode active materials of the present invention was synthesized by the following method. First, a stoichiometric ratio of lithium carbonate and iron chloride FeCl 3 were reacted in hydrofluoric acid, washed with an organic solvent, and then vacuum dried at 150 ° C. to obtain Li 3 FeF 6 . FIG. 4 shows the powder X-ray diffraction pattern. It can be seen that the obtained sample is a space group Pna2 1 orthorhombic α-phase Li 3 FeF 6 .

図5は、遊星ミルにより25%重量混合比で炭素コートされたLiFeFを正極活物質とするLiセル(リチウム電池)の充放電プロフィルの電解液依存性を示す。いずれも約2.5Vの平均放電電圧で100mAh/g以上の可逆容量が得られた。また図6はそのサイクル特性を示す。初期状態でFeが3価状態のため、初回充電はほとんどできないが、その後のサイクル性は良好である。また、電解液によらずほぼ一定の可逆特性を示すことがわかる。 FIG. 5 shows the electrolyte dependency of the charge / discharge profile of a Li cell (lithium battery) using Li 3 FeF 6 carbon-coated by a planetary mill at a 25% weight mixing ratio as a positive electrode active material. In either case, a reversible capacity of 100 mAh / g or more was obtained at an average discharge voltage of about 2.5V. FIG. 6 shows the cycle characteristics. Since Fe is trivalent in the initial state, the initial charge is almost impossible, but the subsequent cycle is good. Moreover, it turns out that a substantially constant reversible characteristic is shown irrespective of electrolyte solution.

図7は、遊星ミルにより25%重量混合比で炭素コートされたLiFeFを正極活物質とするLiセル(リチウム電池)の放電終止電圧1Vまでの深充放電プロフィルを示す。LiFeFはほぼ1.6電子分の深い充放電でも可逆性を保つコンバージョン反応が可能な正極系であることがわかる。 FIG. 7 shows a deep charge / discharge profile up to a discharge end voltage of 1 V of a Li cell (lithium battery) using Li 3 FeF 6 carbon-coated with a planetary mill at a 25% weight mixing ratio as a positive electrode active material. It can be seen that Li 3 FeF 6 is a positive electrode system capable of a conversion reaction that maintains reversibility even during deep charge / discharge of approximately 1.6 electrons.

NaFeF
本発明の電極活物質の1つであるナトリウム含有フッ化金属NaFeFは下記の方法で合成した。フッ酸に化学量論比の水酸化鉄Fe(OH)3とNaFを加え、これに過酸化水素水を加えて得られた析出物を真空乾燥させ、NaFeFを得た。図8に、その粉末X線回折図を示す。得られた試料は、空間群P21/n単斜晶のNaFeFであることがわかる。
Na 3 FeF 6
Sodium-containing metal fluoride Na 3 FeF 6 which is one of the electrode active materials of the present invention was synthesized by the following method. A stoichiometric ratio of iron hydroxide Fe (OH) 3 and NaF was added to hydrofluoric acid, and a hydrogen peroxide solution was added thereto, and the resulting precipitate was vacuum-dried to obtain Na 3 FeF 6 . FIG. 8 shows the powder X-ray diffraction pattern. It can be seen that the obtained sample is a space group P2 1 / n monoclinic Na 3 FeF 6 .

図9は、同じく炭素コートナトリウム含有フッ化金属NaFeFを正極とするNaセルの充放電プロフィルを示す。放電電圧も、可逆容量も、Liセルに比べ劣るが、高い可逆放電容量が得られることがわかる。ここでは、1M NaClO/PCを用いているが、相応する電解液を用いることにより、さらに高い可逆容量も実現可能と考えられる。 FIG. 9 shows a charge / discharge profile of a Na cell having the same carbon-coated sodium-containing metal fluoride metal Na 3 FeF 6 as a positive electrode. Although the discharge voltage and the reversible capacity are inferior to those of the Li cell, it can be seen that a high reversible discharge capacity is obtained. Here, 1M NaClO 4 / PC is used, but it is considered that even higher reversible capacity can be realized by using a corresponding electrolyte.

本発明は、安価なNa電池を含む非水電解質二次電池について高い可逆充放電容量(エネルギー密度)を可能にしたものであり、本発明の正極活物質は、産業の種々の分野における電池、例えば、経済性、安全性および容量の並立が必要な大型ロードレベリング用電源や電気自動車用電池の正極材料への利用が期待される。   The present invention enables high reversible charge / discharge capacity (energy density) for nonaqueous electrolyte secondary batteries including inexpensive Na batteries, and the positive electrode active material of the present invention is a battery in various fields of industry, For example, it is expected to be used for a large-scale load leveling power source that requires parallel economy, safety and capacity, and a positive electrode material for electric vehicle batteries.

本発明の正極活物質が用いられる電池を例示する。A battery in which the positive electrode active material of the present invention is used is exemplified. 本発明の正極活物質LiTiFの粉末X線回折図を例示する。It illustrates the powder X-ray diffraction pattern of the positive electrode active material Li 2 TiF 6 of the present invention. 本発明の正極活物質LiTiFを用いたLiセルの初回充放電プロフィルを例示する。The initial charge / discharge profile of the Li cell using the positive electrode active material Li 2 TiF 6 of the present invention is illustrated. 本発明の正極活物質LiFeFの粉末X線回折図を例示する。It illustrates the powder X-ray diffraction pattern of the positive electrode active material Li 3 FeF 6 of the present invention. 本発明の正極活物質LiFeFを用いたLiセルの初回充放電プロフィルを例示する。The initial charge / discharge profile of the Li cell using the positive electrode active material Li 3 FeF 6 of the present invention is illustrated. 本発明の正極活物質LiFeFを用いたLiセルのサイクル特性を例示する。The cycle characteristic of the Li cell using the positive electrode active material Li 3 FeF 6 of the present invention is illustrated. 本発明の正極活物質LiFeFを用いたLiセルの初回深充放電プロフィルを例示する。The initial deep charge / discharge profile of the Li cell using the positive electrode active material Li 3 FeF 6 of the present invention is illustrated. 本発明の正極活物質NaFeFの粉末X線回折図を例示する。It illustrates the powder X-ray diffraction pattern of the positive electrode active material Na 3 FeF 6 of the present invention. 本発明の正極活物質NaFeFのNaセルの充放電プロフィルを例示する。Illustrate the charging and discharging profile of the positive electrode active Na cell material Na 3 FeF 6 of the present invention.

符号の説明Explanation of symbols

1 正極
2 負極
3 正極容器
4 負極蓋
5 セパレーターと電解液
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Positive electrode container 4 Negative electrode lid 5 Separator and electrolyte solution

Claims (8)

一般式Ax+21−x(式中、Aはアルカリ金属、Mは3価金属元素、Nは4価金属元素を表し、xは0≦x≦1示す)で表されるアルカリ金属含有フッ化金属から成ることを特徴とする非水電解質二次電池用電極活物質。 Represented by the general formula A x + 2 M x N 1-x F 6 (wherein A represents an alkali metal, M represents a trivalent metal element, N represents a tetravalent metal element, x represents 0 ≦ x ≦ 1) An electrode active material for a nonaqueous electrolyte secondary battery, comprising an alkali metal-containing metal fluoride. AがLi、Naからなるアルカリ金属の少なくとも1種類、MがFe、Mn、V、Co、Ni、Sc、Zr、Al、Bi、Tiからなる3価金属元素群の少なくとも1種類、またNがTi、Zr、Mn、V、Co、Ni、Mo、Cr、Snからなる4価金属元素群の少なくとも1種類から選ばれることを特徴とする請求項1に記載の非水電解質二次電池用電極活物質。 A is at least one alkali metal composed of Li and Na, M is at least one trivalent metal element group composed of Fe, Mn, V, Co, Ni, Sc, Zr, Al, Bi and Ti, and N is 2. The electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the electrode is selected from at least one of a tetravalent metal element group consisting of Ti, Zr, Mn, V, Co, Ni, Mo, Cr, and Sn. Active material. アルカリ金属含有フッ化金属Ax+21−xがLi2.5Fe0.5Ti0.56であることを特徴とする請求項1に記載の非水電解質二次電池用電極活物質。 2. The electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the alkali metal-containing metal fluoride A x + 2 M x N 1-x F 6 is Li 2.5 Fe 0.5 Ti 0.5 F 6 . アルカリ金属含有フッ化金属Ax+21−xがLi2TiF6であることを特徴とする請求項1に記載の非水電解質二次電池用電極活物質。 The non-aqueous electrolyte secondary battery electrode active material according to claim 1, wherein the alkali metal-containing metal fluoride A x + 2 M x N 1 -x F 6 is Li 2 TiF 6. アルカリ金属含有フッ化金属Ax+21−xがLi3FeF6であることを特徴とする請求項1に記載の非水電解質二次電池用電極活物質。 The non-aqueous electrolyte secondary battery electrode active material according to claim 1, wherein the alkali metal-containing metal fluoride A x + 2 M x N 1 -x F 6 is Li 3 FeF 6. 請求項1〜5のいずれかに記載の電極活物質を含むことを特徴とする非水電解質二次電池用電極。 A nonaqueous electrolyte secondary battery electrode comprising the electrode active material according to claim 1. 請求項6に記載の電極を含むことを特徴とする非水電解質二次電池。 A nonaqueous electrolyte secondary battery comprising the electrode according to claim 6. 請求項6に記載の電極を正極として用いることを特徴とする非水電解質二次電池。
A nonaqueous electrolyte secondary battery using the electrode according to claim 6 as a positive electrode.
JP2008086113A 2008-03-28 2008-03-28 Fluoride electrode active material Withdrawn JP2009238687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086113A JP2009238687A (en) 2008-03-28 2008-03-28 Fluoride electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086113A JP2009238687A (en) 2008-03-28 2008-03-28 Fluoride electrode active material

Publications (1)

Publication Number Publication Date
JP2009238687A true JP2009238687A (en) 2009-10-15

Family

ID=41252366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086113A Withdrawn JP2009238687A (en) 2008-03-28 2008-03-28 Fluoride electrode active material

Country Status (1)

Country Link
JP (1) JP2009238687A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025751A2 (en) * 2009-08-31 2011-03-03 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
JP2011113954A (en) * 2009-11-30 2011-06-09 Equos Research Co Ltd Positive electrode active material, and secondary battery using the same
JP2012195087A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Positive electrode for secondary battery and secondary battery equipped with the same
EP2548244A1 (en) * 2010-03-19 2013-01-23 Basf Se Electrode material and the use thereof for producing electrochemical cells
JP2015153697A (en) * 2014-02-18 2015-08-24 本田技研工業株式会社 positive electrode active material
WO2023238508A1 (en) * 2022-06-07 2023-12-14 パナソニックIpマネジメント株式会社 Solid electrolyte material and method for producing same
WO2023238509A1 (en) * 2022-06-07 2023-12-14 パナソニックIpマネジメント株式会社 Solid electrolyte material and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011025751A2 (en) * 2009-08-31 2011-03-03 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
WO2011025751A3 (en) * 2009-08-31 2011-06-30 3M Innovative Properties Company Cathode compositions for lithium-ion electrochemical cells
JP2011113954A (en) * 2009-11-30 2011-06-09 Equos Research Co Ltd Positive electrode active material, and secondary battery using the same
EP2548244A1 (en) * 2010-03-19 2013-01-23 Basf Se Electrode material and the use thereof for producing electrochemical cells
JP2012195087A (en) * 2011-03-15 2012-10-11 Mitsubishi Heavy Ind Ltd Positive electrode for secondary battery and secondary battery equipped with the same
JP2015153697A (en) * 2014-02-18 2015-08-24 本田技研工業株式会社 positive electrode active material
WO2023238508A1 (en) * 2022-06-07 2023-12-14 パナソニックIpマネジメント株式会社 Solid electrolyte material and method for producing same
WO2023238509A1 (en) * 2022-06-07 2023-12-14 パナソニックIpマネジメント株式会社 Solid electrolyte material and method for producing same

Similar Documents

Publication Publication Date Title
US8309253B2 (en) Titanium oxide, method for manufacturing the same, and lithium secondary battery using the same as active material
CN108336328B (en) Positive electrode active material and battery
CN107017385B (en) Positive electrode active material, method for producing same, and lithium secondary battery
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
JP7127277B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode active material for lithium ion secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5177672B2 (en) Active material for lithium battery, method for producing the same, and lithium battery using the same
JP2008270175A (en) Cathode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7024715B2 (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
US20140234536A1 (en) Metal Fluoride Electrode Protection Layer and Method of Making Same
JP2013030494A (en) Secondary electrochemical cell
Ogihara et al. Effect of organic acid on the electrochemical properties of Li4Ti5O12/C composite powders synthesized by spray pyrolysis
JP6733140B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2009238687A (en) Fluoride electrode active material
JP7262419B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN112292350B (en) Fluorinated oxides based on Li and Mn
US9748568B2 (en) Manganese oxide nanoparticles, methods and applications
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
Garhi et al. Coprecipitation synthesis of Co-doped LiMn1. 5Ni0. 5O4 material as 5 V cathode of Li-ion batteries with huge rate capability for high power applications
US20040208818A1 (en) Cathode active material for non-aqueous electrolyte secondary cell and process for producing the same
WO2020049792A1 (en) Positive electrode active material and battery comprising same
Hashigami et al. Hard X-ray photoelectron spectroscopy analysis of surface chemistry of spray pyrolyzed LiNi0. 5Co0. 2Mn0. 3O2 positive electrode coated with lithium boron oxide
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
JP3835235B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607