JP2009233531A - Pcb contaminated matter treatment method - Google Patents

Pcb contaminated matter treatment method Download PDF

Info

Publication number
JP2009233531A
JP2009233531A JP2008081030A JP2008081030A JP2009233531A JP 2009233531 A JP2009233531 A JP 2009233531A JP 2008081030 A JP2008081030 A JP 2008081030A JP 2008081030 A JP2008081030 A JP 2008081030A JP 2009233531 A JP2009233531 A JP 2009233531A
Authority
JP
Japan
Prior art keywords
slag
pcb
basicity
melting
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008081030A
Other languages
Japanese (ja)
Other versions
JP5415006B2 (en
JP2009233531A5 (en
Inventor
Shigeyoshi Tagashira
成能 田頭
Yoshiaki Shimizu
由章 清水
Yasushi Kajiwara
康司 梶原
Yutaka Ishii
豊 石井
Nobuyuki Mikata
信行 三方
Yasuki Motai
泰樹 馬渡
Makoto Yamazaki
良 山崎
Toru Kinukawa
徹 絹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd, Kobelco Eco Solutions Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2008081030A priority Critical patent/JP5415006B2/en
Publication of JP2009233531A publication Critical patent/JP2009233531A/en
Publication of JP2009233531A5 publication Critical patent/JP2009233531A5/ja
Application granted granted Critical
Publication of JP5415006B2 publication Critical patent/JP5415006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a PCB decomposition treatment method in which the slag is stably discharged while keeping the property of slag proper. <P>SOLUTION: The PCB contaminated matter treatment method includes: a melting and cracking process of feeding a PCB contaminated matter into a melting and cracking furnace 12 together with a basicity conditioning agent for conditioning the basicity of the slag, melting and cracking the PCB contaminated matter by irradiating it with plasma, and discharging the slag, generated by melting and cracking, from the melting and cracking furnace 12; and a conditioning agent amount determining process of determining the amount of the basicity conditioning agent before feeding the PCB contaminated matter into the melting and cracking furnace 12. The conditioning agent amount determining process includes: a prediction process of predicting the composition of the slag to be generated on the basis of the components of the PCB contaminated matter; and a calculation process of calculating the feed amount of the basicity conditioning agent so as to settle the weight ratio of a specific component, which affects the flowability of the slag among the components contained in the slag, within a preset target range on the basis of the predicted result. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、PCB(ポリ塩化ビフェニル)汚染物を溶融分解しスラグを生成するPCB汚染物処理方法に関する。   The present invention relates to a PCB contaminant treatment method for melting and decomposing PCB (polychlorinated biphenyl) contaminants to produce slag.

前記PCBは、常温で液体の化学的に安定した不燃性の物質であり、高い電気絶縁性を有する点および沸点が高く熱分解しにくい点等からコンデンサなどの電気部品の絶縁油等に広く用いられていた。しかしながら、現在では、前記PCBが人体に悪影響をおよぼすとして、その製造および使用が禁止されており、前記電気部品等のPCBにより汚染されたPCB汚染物の無害化処理が進められている。   The PCB is a chemically stable non-flammable substance that is liquid at room temperature, and is widely used for insulating oils for electric parts such as capacitors because of its high electrical insulation and high boiling point and resistance to thermal decomposition. It was done. However, at present, since the PCB has an adverse effect on the human body, its manufacture and use are prohibited, and a PCB contamination contaminated by the PCB such as the electrical component is being detoxified.

例えば、特許文献1には、前記PCB汚染物を分解せずより安全に処理できる方法として、前記PCB汚染物にプラズマを照射し当該PCB汚染物を溶融分解する方法が開示されている。この方法では、前記PCB汚染物を溶融分解炉に投入し、この溶融分解炉内にて前記PCB汚染物にプラズマを照射する。そして、PCBを無害化するとともに、PCB汚染物の溶融分解によりスラグを生成する。前記生成されたスラグは前記溶融分解炉から出滓されて、冷却・固化された後、破砕、粒度調整などの所定の工程を経て道路の路盤等に再利用される。
特開2005−262196号公報
For example, Patent Document 1 discloses a method of irradiating the PCB contaminants with plasma and melting and decomposing the PCB contaminants as a method for safely processing the PCB contaminants without decomposing the PCB contaminants. In this method, the PCB contaminant is introduced into a melting cracking furnace, and the PCB contaminant is irradiated with plasma in the melting cracking furnace. And while detoxifying PCB, slag is produced | generated by melt decomposition of PCB contaminant. The generated slag is discharged from the melting cracking furnace, cooled and solidified, and then reused for road roadbeds through predetermined processes such as crushing and particle size adjustment.
JP 2005-262196 A

前記PCBは前述のように絶縁油として広く用いられており、PCBを含む製品の種類すなわちPCB汚染物の組成は多岐にわたる。そのため、このPCB汚染物の溶融分解により生成されるスラグの性状が一定せず、安定したスラグの出滓が困難であるという問題がある。すなわち、スラグの塩基度、あるいは、スラグ中の特定成分の比率によって、スラグの流動性が適正な状態にならない場合がある。   As described above, the PCB is widely used as an insulating oil, and the types of products containing the PCB, that is, the composition of PCB contaminants, vary widely. Therefore, there is a problem that the properties of the slag produced by the melt decomposition of the PCB contaminants are not constant, and it is difficult to stably extract the slag. That is, the fluidity of the slag may not be in an appropriate state depending on the basicity of the slag or the ratio of the specific component in the slag.

本発明は、かかる事情に鑑み、前記PCB汚染物の溶融分解により生成されたスラグの性状を適正に保ち、安定したスラグの出滓を実現することのできるPCB分解処理方法の提供を目的とする。   In view of such circumstances, an object of the present invention is to provide a PCB decomposition processing method that can appropriately maintain the properties of slag generated by melt decomposition of the PCB contaminants and realize stable slag outflow. .

前記課題を解決するための請求項1に係る発明は、PCB汚染物の溶融分解により当該PCB汚染物の無害化およびスラグの生成を行うためのPCB汚染物の処理方法であって、前記PCB汚染物をこのPCB汚染物の溶融分解により生成されるスラグの塩基度を調整するための塩基度調整剤とともに溶融分解炉に投入し、この溶融分解炉内で前記PCB汚染物にプラズマを照射することにより当該PCB汚染物を溶融分解するとともに当該溶融分解により生成されたスラグを前記溶融分解炉から出滓する溶融分解工程と、前記溶融分解炉内への前記PCB汚染物の投入の前に、このPCB汚染物とともに投入されるべき前記塩基度調整剤の量を決定する調整剤量決定工程とを含み、この調整剤量決定工程は、前記PCB汚染物の成分に基づき、当該PCB汚染物の溶融分解により生成されるスラグの組成を予測する予測工程と、その予測結果に基づき、前記スラグに含まれる成分のうち当該スラグの流動性に影響する特定の成分の重量比率を予め設定された目標範囲内に収めるように、前記塩基度調整剤の投入量を算定する算定工程とを含むことを特徴とするものである(請求項1)。   The invention according to claim 1 for solving the above problem is a method for treating PCB contaminants for detoxifying the PCB contaminants and generating slag by melting and decomposing the PCB contaminants. And putting the substance into a melting cracking furnace together with a basicity adjusting agent for adjusting the basicity of the slag produced by melting and decomposing the PCB pollutant, and irradiating the PCB pollutant with plasma in the melting and cracking furnace The PCB contamination is melted and decomposed, and the slag generated by the melt decomposition is discharged from the melting and cracking furnace, and before the PCB contaminant is put into the melting and cracking furnace, A regulator amount determining step for determining the amount of the basicity modifier to be introduced together with the PCB contaminant, the modifier amount determining step being based on the components of the PCB contaminant. The weight ratio of the specific component which influences the fluidity | liquidity of the said slag among the components contained in the said slag based on the prediction process which estimates the composition of the slag produced | generated by the melt decomposition of the said PCB contaminant, and the prediction result Including a calculation step of calculating the input amount of the basicity adjusting agent so as to fall within a preset target range (Claim 1).

この方法によれば、塩基度調整剤を投入することによって、前記スラグの塩基度とスラグの特定の成分の重量比率との双方を調整することができ、より安定したスラグの出滓が可能となる。すなわち、本方法では、前記溶融分解炉内にPCB汚染物とともに塩基度調整剤を投入しており、スラグの塩基度を調整することができる。しかも、前記PCB汚染物の成分に基づきスラグの組成を予測し、この予測結果に基づいて、スラグの流動性に影響する前記特定の成分の重量比率を予め設定された目標範囲内に収めるように前記塩基度調整剤の投入量を算定しており、塩基度調整剤が前記PCB汚染物とともに前記溶融分解炉に投入されることを利用して、前記特定の成分の重量比率も調整することができる。そして、このようにスラグの塩基度とスラグの特定成分の重量比率とが適正な状態に調整されれば、スラグの流動性が良好になり、より安定したスラグの出滓を実現することができる。   According to this method, by introducing a basicity adjusting agent, it is possible to adjust both the basicity of the slag and the weight ratio of specific components of the slag, and more stable slag can be produced. Become. That is, in this method, a basicity adjusting agent is introduced into the melt cracking furnace together with PCB contaminants, and the basicity of the slag can be adjusted. Moreover, the composition of the slag is predicted based on the component of the PCB contaminant, and based on the prediction result, the weight ratio of the specific component that affects the fluidity of the slag is within a preset target range. The input amount of the basicity adjusting agent is calculated, and the weight ratio of the specific component can be adjusted by using the basicity adjusting agent that is introduced into the melting cracking furnace together with the PCB contaminant. it can. If the basicity of the slag and the weight ratio of the specific component of the slag are adjusted to an appropriate state in this way, the fluidity of the slag can be improved and more stable slag output can be realized. .

ここで、前記調整剤量決定工程に含まれる算定工程は、前記スラグの流動性に影響する成分であるAlの重量比率を20%以下に収めるように前記塩基度調整剤の投入量を算定する工程を含むのが好ましい(請求項2)。 Here, the calculation step included in the adjusting agent amount determining step includes the input amount of the basicity adjusting agent so that the weight ratio of Al 2 O 3 which is a component that affects the fluidity of the slag is 20% or less. It is preferable that the method includes a step of calculating (Claim 2).

Alはスラグの粘性を高める特性を有しているので、このようにAlの重量比率を20%以下に抑えれば、スラグが、好ましい流動性を実現する粘性および溶融点を持つように調整することができ、スラグを出滓容易な状態に保つことが可能となる。 Since Al has the property of increasing the viscosity of slag, if the weight ratio of Al 2 O 3 is suppressed to 20% or less in this way, the slag will have a viscosity and a melting point that achieves favorable fluidity. Therefore, it is possible to keep the slag in an easy-to-catch state.

また、前記調整剤量決定工程に含まれる算定工程は、前記スラグの流動性に影響する成分であるFeをFeに換算して当該Feの重量比率を60%以下に収めるように前記塩基度調整剤の投入量を算定する工程を含むのが好ましい(請求項3)。 Further, the calculation step included in the adjusting agent amount determination step converts Fe, which is a component affecting the fluidity of the slag, into Fe 2 O 3 and keeps the weight ratio of the Fe 2 O 3 to 60% or less. Thus, it is preferable to include a step of calculating the input amount of the basicity adjusting agent.

Feはスラグの粘性を低くする特性を有しているので、このようにFeの重量比率を60%以下に抑えれば、スラグの粘性が下がりすぎるのを抑制することができるとともに、スラグの溶融点を低い値に抑えることができ、スラグを出滓容易な状態に保つことが可能となる。 Since Fe has a characteristic of reducing the viscosity of slag, if the weight ratio of Fe 2 O 3 is suppressed to 60% or less in this way, it is possible to suppress the viscosity of the slag from being lowered too much, The melting point of the slag can be suppressed to a low value, and it becomes possible to keep the slag in a state where it can be easily discharged.

また、本発明において、前記溶融分解工程にて、前記塩基度調整剤として前記スラグの塩基度を低くする酸性物質と、前記スラグの塩基度を高くする塩基性物質とが前記溶融分解炉に投入され、前記調整剤量決定工程は、前記塩基度調整剤の投入量を算定する算定工程に加えて、前記酸性物質の投入量と前記塩基性物質の投入量との合計が前記算定工程にて算定された前記塩基度調整剤の投入量となる条件下で、前記スラグの塩基度を予め設定された目標範囲に収めるように、前記酸性物質の投入量と前記塩基性物質の投入量との比率を算定する工程を含むのが好ましい(請求項4)。   In the present invention, an acidic substance that lowers the basicity of the slag and a basic substance that increases the basicity of the slag as the basicity adjusting agent and the basic substance that increases the basicity of the slag are charged into the melting cracking furnace in the melt decomposition step. In addition to the calculation step of calculating the input amount of the basicity adjusting agent, the total amount of the acidic substance input amount and the basic material input amount is calculated in the calculation step. Under the condition that the calculated amount of the basicity adjusting agent is input, the input amount of the acidic substance and the input amount of the basic substance are set so that the basicity of the slag falls within a preset target range. It is preferable to include a step of calculating the ratio (claim 4).

このようにすれば、前記スラグの特定の成分の重量比率を適正な範囲に保つための塩基度調整剤の全投入量を確保しながら、その前投入量中の前記酸性物質の投入量と塩基性物質の投入量との比率を算定することにより、スラグの塩基度も適正な範囲内に収めることができる。   In this way, while ensuring the total input amount of the basicity adjusting agent for keeping the weight ratio of the specific component of the slag in an appropriate range, the input amount of the acidic substance and the base in the previous input amount are secured. By calculating the ratio with the amount of the charged substance, the basicity of the slag can be kept within an appropriate range.

前記スラグの塩基度の目標範囲としては、0.67〜1.5といった範囲が挙げられる(請求項5)。   Examples of the target range of the basicity of the slag include a range of 0.67 to 1.5 (Claim 5).

また、前記酸性物質としては、例えば、SiOを主成分とする物質を、前記塩基性物質としては、例えばCaO、または、CaCOやCa(OH)といった溶融分解処理によってCaOに変化する物質の少なくとも一つを主成分とする物質が挙げられる(請求項6、7)。 The acidic substance is, for example, a substance mainly composed of SiO 2 , and the basic substance is, for example, CaO, or a substance that changes to CaO by melt decomposition treatment such as CaCO 3 or Ca (OH) 2. The substance which has at least one of these as a main component is mentioned (Claims 6 and 7).

以上説明したように、本発明によれば、前記PCB汚染物の溶融分解により生成されたスラグの性状を出滓に適した範囲に保つことのできるPCB汚染物処理方法を提供することができる。   As described above, according to the present invention, it is possible to provide a PCB contaminant treatment method capable of maintaining the properties of slag generated by melt decomposition of the PCB contaminant in a range suitable for brewing.

以下、本発明の好ましい実施形態について図面を参照して説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

本発明に係るPCB汚染物処理方法では、図1に示すプラズマ溶融分解装置10を用いてPCB汚染物を溶融分解し、PCB汚染物を無害化するとともにこのPCB汚染物の溶融分解によってスラグを生成する。   In the PCB contaminant treatment method according to the present invention, the PCB contaminant is melted and decomposed using the plasma melting and decomposing apparatus 10 shown in FIG. 1 to render the PCB contaminant harmless and to generate slag by melting and decomposing the PCB contaminant. To do.

前記プラズマ溶融分解装置10は、溶融分解炉12と、ドラム缶投入室14と、スラグ排出容器16とを有している。   The plasma melting and decomposing apparatus 10 includes a melting and decomposing furnace 12, a drum can charging chamber 14, and a slag discharge container 16.

前記ドラム缶投入室14は、PCB汚染物が充填されたドラム缶20を投入する部分である。このドラム缶投入室14は前記溶融分解炉12に連設されており、投入されたドラム缶20は前記溶融分解炉12に案内される。   The drum can loading chamber 14 is a portion for loading a drum 20 filled with PCB contaminants. The drum can charging chamber 14 is connected to the melting cracking furnace 12, and the charged drum can 20 is guided to the melting cracking furnace 12.

前記溶融分解炉12は、前記PCB汚染物を溶融分解する部分である。この溶融分解炉12の天井部には、プラズマトーチ18が取り付けられている。このプラズマトーチ18は、プラズマを発生させるためのものであり、トーチ本体の中に陽極と陰極とを備えている。このプラズマトーチ18は、前記陽極と陰極との間のガスに通電することで非常に高い温度(15000℃以上)のガスを発生させる。そして、この溶融分解炉12では、前記発生したプラズマを前記ドラム缶20に照射することで、PCB汚染物をドラム缶20ごと溶融しPCBを原子レベルにまで分解する。本方法では、このようにドラム缶20ごと溶融分解することで、PCB汚染物を破砕、分別することなく安全に処理が行われるとともに、汚染された容器も同時に処理される。   The melt cracking furnace 12 is a part that melts and decomposes the PCB contaminant. A plasma torch 18 is attached to the ceiling of the melting cracking furnace 12. This plasma torch 18 is for generating plasma, and has an anode and a cathode in the torch body. The plasma torch 18 generates a gas having a very high temperature (15000 ° C. or higher) by energizing the gas between the anode and the cathode. In the melting and decomposing furnace 12, the generated plasma is irradiated onto the drum 20 to melt the PCB contaminants together with the drum 20 to decompose the PCB to the atomic level. In this method, the drum can 20 is melted and decomposed in this way, so that the PCB contamination can be safely processed without being crushed and separated, and the contaminated container is also processed at the same time.

また、前記溶融分解炉12では、前記PCB汚染物の溶融分解時に不燃物を溶融することでスラグを生成する。生成したスラグは前記溶融分解炉12の底部に溜まりスラグ浴40を形成する。前記溶融分解炉12内は、前記プラズマの照射により1400℃以上に維持されており、前記スラグ浴40は、これと同等の高温に維持されている。従って、前記ドラム缶20内のPCB汚染物は、このスラグ浴40に浸ることによっても溶融分解される。   In the melting cracking furnace 12, slag is generated by melting non-combustible materials when the PCB contaminants are melted and decomposed. The generated slag accumulates at the bottom of the melting cracking furnace 12 to form a slag bath 40. The inside of the melting cracking furnace 12 is maintained at 1400 ° C. or higher by the plasma irradiation, and the slag bath 40 is maintained at a high temperature equivalent thereto. Accordingly, PCB contaminants in the drum 20 can be melted and decomposed by being immersed in the slag bath 40.

前記溶融分解炉12の底部に貯留したスラグは、適宜、外部に排出され、再利用されるべく所定の処理施設に搬送される。具体的には、前記溶融分解炉12の底部付近にスラグ排出口12aが設けられており、前記スラグは、前記溶融分解炉12が傾動することにより、前記スラグ排出口12aから前記スラグ排出容器16に出滓される。そして、スラグ排出容器16に出滓されたスラグ30は、順次、後段の冷却、破砕などの工程に搬送されていく。   The slag stored at the bottom of the melting cracking furnace 12 is appropriately discharged to the outside and transferred to a predetermined processing facility for reuse. Specifically, a slag discharge port 12a is provided in the vicinity of the bottom of the melting cracking furnace 12, and the slag is tilted by the melting cracking furnace 12, so that the slag discharge container 16 extends from the slag discharge port 12a. To be met. And the slag 30 put out to the slag discharge container 16 is conveyed in processes, such as subsequent cooling and crushing, sequentially.

ここで、本実施形態では、スラグを安定してスムーズに出滓すべく、次のような調整を行うことで、スラグの粘性を適正に保ちつつスラグの溶融点を低下させる。すなわち、PCB汚染物とともに塩基度調整剤であるSiO(酸性物質)およびCaO(塩基性物質)を前記溶融分解炉12に投入し、(1)スラグ中のAlの重量比率を所定の目標値以下に抑え、(2)スラグ中のFeの重量比率を所定の目標値以下に抑え、(3)スラグの塩基度を所定の目標値に維持する。ここで、前記塩基度調整剤としてはスラグの塩基度を調整可能な物質であれば特に限定されないが、前述のように、SiO等の酸性酸化物とCaO等の塩基性酸化物が好ましい。また、前記スラグの塩基度は、最も簡単には、スラグに含まれるCaOとSiOの比率CaO/SiOで表すことができ、本実施形態では、前記スラグの塩基度としてこの比率を用いる。 Here, in this embodiment, the melting point of the slag is lowered while maintaining the viscosity of the slag appropriately by performing the following adjustment in order to stably and smoothly extract the slag. That is, SiO 2 (acidic substance) and CaO (basic substance), which are basicity adjusting agents, together with PCB contaminants are charged into the melting cracking furnace 12, and (1) the weight ratio of Al 2 O 3 in the slag is predetermined. (2) The weight ratio of Fe 2 O 3 in the slag is suppressed to a predetermined target value or less, and (3) the basicity of the slag is maintained at the predetermined target value. Here, the basicity adjusting agent is not particularly limited as long as it is a substance capable of adjusting the basicity of slag, but as described above, an acidic oxide such as SiO 2 and a basic oxide such as CaO are preferable. Further, basicity of the slag is most easily can be represented by the ratio CaO / SiO 2 of CaO and SiO 2 contained in the slag, in the present embodiment, this ratio is used as the basicity of the slag.

まず、前記(3)のスラグの塩基度の目標値について、スラグの塩基度とスラグの溶融点との関係を示す図2のCaO−SiO−Alの3元系状態図を用いて説明する。ここで、スラグの塩基度は、前述のように、スラグに含まれるCaOとSiOの比率CaO/SiOで表すことができる。そのため、図2における左側の斜辺は塩基度を表していることになる。 First, using the ternary phase diagram of CaO—SiO 2 —Al 2 O 3 of FIG. 2 showing the relationship between the basicity of the slag and the melting point of the slag, with respect to the target value of the basicity of the slag (3). I will explain. Here, the basicity of slag can be represented by the ratio CaO / SiO 2 of CaO and SiO 2 contained in the slag, as described above. Therefore, the left hypotenuse in FIG. 2 represents basicity.

この図2において、斜線で示した領域は溶融点が1500℃以下となる領域である。従って、スラグの組成をこの斜線で示された領域の組成にすることで、スラグの溶融点を低く抑えることができる。しかしながら、塩基度をラインL1の0.67以下にし、スラグの組成を領域Aの組成とすると、スラグの粘性が高くなってしまい、スラグの排出が困難となることがわかった。一方、領域Cでは、組成の変化に対して溶融点の変化割合が大きい。そのため、塩基度をラインL2の1.5以上にし、スラグの組成を領域Cの組成にすると、スラグの溶融点が安定しにくいことがわかった。すなわち、スラグの塩基度としては0.67〜1.5の間に収めるのが好ましいことがわかった。そこで、本実施形態では、スラグの塩基度を1.0に維持するようにし、スラグの粘性および溶融点を適正範囲に収めるようにする。   In FIG. 2, the shaded area is the area where the melting point is 1500 ° C. or less. Therefore, the melting point of the slag can be kept low by setting the composition of the slag to the composition of the region indicated by the oblique lines. However, it has been found that when the basicity is set to 0.67 or less of the line L1 and the composition of the slag is the composition of the region A, the viscosity of the slag becomes high and it becomes difficult to discharge the slag. On the other hand, in the region C, the change rate of the melting point is large with respect to the change of the composition. Therefore, it was found that when the basicity is set to 1.5 or more of the line L2 and the composition of the slag is the composition of the region C, the melting point of the slag is difficult to stabilize. That is, it was found that the basicity of the slag is preferably within the range of 0.67 to 1.5. Therefore, in this embodiment, the basicity of the slag is maintained at 1.0, and the viscosity and melting point of the slag are kept within an appropriate range.

次に、前記(2)のスラグ中のAlの重量比率の目標値について、図3を用いて説明する。この図3は、スラグの塩基度を1.0に保ちつつ、SiOとCaOの投入量を変化させることでスラグ中のAl重量比率を変化させた場合のスラグの溶融点、溶流点、軟化点の変化を示している。この図における各値は、AlとFeとをほぼ同質量含む回路素子を前記溶融分解炉12にて溶融分解した際の計測結果である。この図において、L11は溶融点の変化を、L12は溶流点の変化を、L13は軟化点の変化を示している。この図3に示すように、SiOとCaOの投入量を増やしAlの重量比率を低下させていくとスラグの溶融点、溶流点および軟化点は低下していく。例えば、Alの重量比率を20%とするとスラグの溶融点は1300℃まで低下する。ここで、前述のように、溶融分解炉12内は約1400℃に保たれており、スラグの固着をより確実に抑制するためにはスラグの溶融点を前記1400℃以下に維持するのが好ましい。そこで、本実施形態では、Alの重量比率の目標範囲を20%以下とし、スラグの溶融点を1300℃付近にまで低下させスラグのスムーズな出滓を実現する。しかも、このようにAlの重量比率を20%にまで低下させると、スラグ中のAlの含有率が小さくなることでAlによるスラグの粘性の上昇が抑制されるので、スラグを容易に出滓することが可能となる。 Next, the target value of the weight ratio of Al 2 O 3 in the slag (2) will be described with reference to FIG. FIG. 3 shows the melting point and melting point of the slag when the Al 2 O 3 weight ratio in the slag is changed by changing the amounts of SiO 2 and CaO while keeping the basicity of the slag at 1.0. Changes in pour point and softening point are shown. Each value in this figure is a measurement result when a circuit element containing almost the same mass of Al and Fe is melted and decomposed in the melting cracking furnace 12. In this figure, L11 indicates a change in melting point, L12 indicates a change in melting point, and L13 indicates a change in softening point. As shown in FIG. 3, when the amounts of SiO 2 and CaO added are increased and the weight ratio of Al 2 O 3 is lowered, the melting point, melting point and softening point of slag are lowered. For example, when the weight ratio of Al 2 O 3 is 20%, the melting point of slag decreases to 1300 ° C. Here, as described above, the inside of the melting cracking furnace 12 is maintained at about 1400 ° C., and it is preferable to maintain the melting point of the slag at 1400 ° C. or lower in order to more reliably suppress the adhesion of the slag. . Therefore, in this embodiment, the target range of the weight ratio of Al 2 O 3 is set to 20% or less, and the melting point of the slag is lowered to around 1300 ° C., thereby realizing smooth slag extraction. In addition, when the weight ratio of Al 2 O 3 is reduced to 20% in this way, the increase in the viscosity of the slag due to Al is suppressed by reducing the Al content in the slag, so that the slag can be easily formed. It is possible to come out.

次に、前記(3)のスラグ中のFeの重量比率の目標値について、図4を用いて説明する。この図4は、スラグの塩基度を1.0とし、SiOとCaOの投入量を変化させることでスラグ中のFeの重量比率を変化させた場合のスラグの溶融点、溶流点、軟化点の変化を示したものである。この図の各値は、主にFeからなる安定器を前記溶融分解炉12にて溶融分解した際の計測結果である。この図において、L21は溶融点の変化を、L22は溶流点の変化を、L23は軟化点の変化を示している。この図からわかるように、Feについては、Feの重量比率を60%以下に抑えることでスラグの溶融点を1300℃以下に抑えることができる。そこで、本実施形態では、Feの重量比率の目標範囲を60%以下とし、スラグの溶融点を低く維持してスラグの固着を抑制するとともに、Feによりスラグの粘性が下がりすぎるのを抑制する。 Next, the target value of the weight ratio of Fe 2 O 3 in the slag (3) will be described with reference to FIG. FIG. 4 shows that the melting point and the melt flow of the slag when the basicity of the slag is 1.0 and the weight ratio of Fe 2 O 3 in the slag is changed by changing the input amounts of SiO 2 and CaO. This shows the change of the point and the softening point. Each value in this figure is a measurement result when a ballast mainly made of Fe is melted and decomposed in the melting cracking furnace 12. In this figure, L21 indicates a change in melting point, L22 indicates a change in melting point, and L23 indicates a change in softening point. As can be seen from this figure, with regard to Fe, the melting point of slag can be suppressed to 1300 ° C. or less by suppressing the weight ratio of Fe 2 O 3 to 60% or less. Therefore, in the present embodiment, the target range of the weight ratio of Fe 2 O 3 is set to 60% or less, the melting point of slag is maintained low to suppress slag sticking, and the viscosity of slag is excessively lowered by Fe. Suppress.

次に、前記各調整を行いつつ、前記プラズマ溶融分解装置10を用いてPCB汚染物を溶融分解する手順について、図5のフローチャートを用いて説明する。   Next, a procedure for melting and decomposing PCB contaminants using the plasma melting and decomposing apparatus 10 while making each adjustment will be described with reference to the flowchart of FIG.

まず、前記溶融分解炉12に投入されるPCB汚染物の成分を分析する(ステップS2)。この成分分析は、各PCB汚染物に対してそれぞれ実施してもよいが、予めPCB汚染物の種類毎に実施しておき、その分析結果とドラム缶20に充填されるPCB汚染物の種類とに基づいてドラム缶20内のPCB汚染物の成分を特定するようにしてもよい。   First, components of PCB contaminants charged into the melting cracking furnace 12 are analyzed (step S2). This component analysis may be performed for each PCB contaminant, but is previously performed for each type of PCB contaminant, and the analysis result and the type of PCB contaminant filled in the drum 20 are determined. Based on this, the components of the PCB contaminant in the drum 20 may be specified.

次に、前記特定されたPCB汚染物の成分に基づいて、このPCB汚染物が前記溶融分解炉12で溶融分解されることにより生成するスラグの組成およびスラグの全重量W_totalを予測する(ステップS4)。そして、PCB汚染物のAlの含有量に基づいてスラグ中のAlの重量を予測し、前記PCB汚染物のFe含有量に基づいてスラグ中のFeをFeに換算し、このFeの重量を予測する(予測工程)。 Next, based on the component of the specified PCB contaminant, the composition of the slag and the total weight W_total of the slag generated by melting and decomposing the PCB contaminant in the melting cracking furnace 12 are predicted (step S4). ). And predicting the weight of Al 2 O 3 in the slag based on the Al content of PCB contaminants, converting Fe in the slag to Fe 2 O 3 based on the Fe content of the PCB contaminants, The weight of this Fe 2 O 3 is predicted (prediction process).

具体的には、前記成分分析から前記溶融分解炉12に投入されるPCB汚染物に対して、Alが約W_Al[kg]、Feが約W_Fe[kg]含まれているとの分析結果が得られたとすると、これらの値に基づいて、前記予測工程にて、スラグ中のAlの重量W_Al[kg]を、Alの原子量を102、Alの原子量を27として、W_Al=W_Al×102/(2×27)[kg]と予測する。同様に、Feの原子量を159.6、Feの原子量を55.8として、スラグ中のFeの重量W_Fe[kg]をW_Fe=W_Fe×159.6/(2×55.8)[kg]と予測する。 Specifically, from the component analysis, an analysis result that Al is contained in about W_Al [kg] and Fe is contained in about W_Fe [kg] is obtained with respect to the PCB contaminant introduced into the melting cracking furnace 12. Assuming that the weight of Al 2 O 3 in the slag is W_Al 2 O 3 [kg] based on these values, the atomic weight of Al 2 O 3 is 102, and the atomic weight of Al is 27. , W_Al 2 O 3 = W_Al × 102 / (2 × 27) [kg]. Similarly, the atomic weight of Fe 2 O 3 is 159.6, the atomic weight of Fe is 55.8, and the weight W_Fe 2 O 3 [kg] of Fe 2 O 3 in the slag is W_Fe 2 O 3 = W_Fe × 159.6. /(2×55.8) [kg].

次に、スラグ中のAlの重量比率が20%以下となるように、かつ、スラグ中のFeの重量比率が60%以下となるように、前記SiOとCaOの合計投入量を算定する(ステップS6、算定工程)。すなわち、PCB汚染物の生成されるスラグの全重量とSiOとCaOの投入量との和に対するAlの重量比率が20%以下となるように、SiOとCaOの合計投入量W1_adj[kg]の範囲を、W_Al/(W_total+W1_adj)≦0.2から算定する。同様に、前記和に対するFeの重量比率が60%以下となるように、SiOとCaOの合計投入量W2_adj[kg]の範囲を、W_Fe/(W_total+W2_adj)≦0.6から算定する。そして、前記W1_adjとW2_adjのうち大きい方の値を最終的なSiOとCaOの投入量W_adjとして決定する。 Next, the total of SiO 2 and CaO so that the weight ratio of Al 2 O 3 in the slag is 20% or less and the weight ratio of Fe 2 O 3 in the slag is 60% or less. The input amount is calculated (step S6, calculation process). That is, the total input amount W1_adj of SiO 2 and CaO so that the weight ratio of Al 2 O 3 to the sum of the total weight of slag generated by PCB contamination and the input amount of SiO 2 and CaO is 20% or less. The range of [kg] is calculated from W_Al 2 O 3 /(W_total+W1_adj)≦0.2. Similarly, the range of the total input amount W2_adj [kg] of SiO 2 and CaO is set to W_Fe 2 O 3 /(W_total+W2_adj)≦0.6 so that the weight ratio of Fe 2 O 3 to the sum is 60% or less. Calculate from Then, the larger value of W1_adj and W2_adj is determined as the final input amount W_adj of SiO 2 and CaO.

その後、前記予測されたスラグの組成に基づいて、スラグの塩基度が1.0となるように、すなわち、スラグ中のSiOの質量とCaOの質量とが等しくなるように、SiOの投入量とCaOの投入量の比率を算定する(ステップS8)。そして、前記SiOとCaOの全体の投入量W_adjと、前記SiOの投入量とCaOの投入量の比率から、前記SiOとCaOの各投入量を算定する(ステップS10)。 Then, on the basis of the composition of the predicted slag, as the slag basicity is 1.0, i.e., so that the mass of SiO 2 mass and CaO in the slag is equal, the SiO 2 introduced The ratio of the amount and the input amount of CaO is calculated (step S8). Then, the the total input amount W_adj of SiO 2 and CaO, the ratio of the SiO 2 of the input amount and CaO of input amount, calculates the respective input of the SiO 2 and CaO (step S10).

例として、回路素子7kgを2kgのドラム缶20に入れて本プラズマ溶融分解装置10にて溶融分解する場合におけるSiOとCaOの各投入量の算定手順を説明する。前記回路素子7kg中には1.9kgのAlが含まれていると分析されたとする。また、前記ドラム缶20は、2kgのFeで作られているものとすると、この回路素子が収容されたドラム缶20の溶融分解により、Alは1.9kg×(102/54)=3.6kg生成され、Feは2kg×(159.6/11.6)=2.9kg生成される。簡単のため、ここでは、他のスラグは生成されないものとすると、生成されたスラグの全重量W_totalは、W_Al+W_Fe=3.6+2.9=6.5kgとなる。 As an example, the calculation procedure of each input amount of SiO 2 and CaO when 7 kg of the circuit element is put into a 2 kg drum 20 and melted and decomposed by the plasma melting and decomposing apparatus 10 will be described. Assume that the circuit element 7 kg is analyzed to contain 1.9 kg of Al. Also, assuming that the drum 20 is made of 2 kg of Fe, Al 2 O 3 is 1.9 kg × (102/54) = 3. 6 kg is produced, and 2 kg × (159.6 / 11.6) = 2.9 kg of Fe 2 O 3 is produced. For the sake of simplicity, assuming that no other slag is generated here, the total weight W_total of the generated slag is W_Al 2 O 3 + W_Fe 2 O 3 = 3.6 + 2.9 = 6.5 kg.

これに対して、Alの重量比率が20%以下となる塩基度調整剤の合計投入量W1_adjは、W_Al/(W_total+W1_adj)≦0.2からW1_adj≧11.5kgと算定される。一方、Feの重量比率が60%以下となる塩基度調整剤の合計投入量W2_adjは、W_Fe/(W_total+W2_adj)≦0.6からW2_adj≧0kgと算定される。従って、最終的な塩基度調整剤の投入量W_adjは11.5kgと決定される。 On the other hand, the total amount W1_adj of the basicity adjusting agent in which the weight ratio of Al 2 O 3 is 20% or less is calculated as W1_adj ≧ 11.5 kg from W_Al 2 O 3 /(W_total+W1_adj)≦0.2. The On the other hand, the total amount W2_adj of the basicity adjusting agent with which the weight ratio of Fe 2 O 3 is 60% or less is calculated from W_Fe 2 O 3 /(W_total+W2_adj)≦0.6 to W2_adj ≧ 0 kg. Therefore, the final input amount W_adj of the basicity adjusting agent is determined to be 11.5 kg.

最後に、前記塩基度調整剤を、SiOおよびCaOとすると、両者の比率CaO/SiO=1を満足すべく、SiOの投入量は5.75kgと算定され、CaOの投入量は5.75kgと算定される。ここで、CaO/SiO=1としたのは一例であり、CaO/SiOが0.67〜1.5の範囲であれば、本発明の期待する効果を得られることは言うまでもない。 Finally, when the basicity adjusting agent is SiO 2 and CaO, the amount of SiO 2 input is calculated to be 5.75 kg in order to satisfy the ratio CaO / SiO 2 = 1, and the amount of CaO input is 5 Calculated at .75 kg. Here, CaO / SiO 2 = 1 is an example, and it goes without saying that the effect expected by the present invention can be obtained if CaO / SiO 2 is in the range of 0.67 to 1.5.

以上のようにして、SiOの投入量とCaOの投入量とを算定した後は、SiOとCaOを前記算定された各量だけ所定の容器に充填する。もちろん、このSiOとCaOとは、前記ドラム缶20に前記PCB汚染物とともに充填されてもよい。そして、このSiOとCaOとが充填された容器と前記PCB汚染物が充填されたドラム缶20と、前記ドラム缶投入室14から溶融分解炉12に投入する(ステップS12)。このドラム缶20等が溶融分解炉12に投入されたことが確認されれば、前記プラズマトーチ18を作動させプラズマを前記ドラム缶20に照射して、前記PCB汚染物を溶融分解しスラグを生成する(ステップS14)。このとき、前述のように、溶融分解炉12の底部に貯留したスラグ浴40の熱によってもPCB汚染物は溶融分解される。 After calculating the input amount of SiO 2 and the input amount of CaO as described above, a predetermined container is filled with SiO 2 and CaO by the calculated amounts. Of course, the SiO 2 and CaO may be filled in the drum 20 together with the PCB contaminants. Then, the container filled with SiO 2 and CaO, the drum can 20 filled with the PCB contaminants, and the drum can introduction chamber 14 are put into the melting cracking furnace 12 (step S12). If it is confirmed that the drum 20 or the like has been put into the melting and decomposing furnace 12, the plasma torch 18 is operated to irradiate the drum 20 with plasma, and the PCB contaminants are melted and decomposed to generate slag ( Step S14). At this time, as described above, the PCB contaminants are also melted and decomposed by the heat of the slag bath 40 stored at the bottom of the melting and cracking furnace 12.

このようにして、ステップS2からステップS14を繰り返し、PCB汚染物を順次溶融分解し、PCBを無害化するとともにスラグを生成していく。ここで、本実施形態では、前記溶融分解により生成したスラグを前記溶融分解炉12の底部に貯留して前記スラグ浴40を形成していき、この貯留量が所定値以上になった時点で、前記溶融分解炉12を傾動し、前記スラグ排出口12aからスラグを出滓する(ステップS16)(溶融分解工程)。   In this way, Steps S2 to S14 are repeated to sequentially melt and decompose the PCB contaminants, detoxify the PCB and generate slag. Here, in the present embodiment, the slag generated by the melt cracking is stored in the bottom of the melt cracking furnace 12 to form the slag bath 40, and when this storage amount becomes a predetermined value or more, The melt cracking furnace 12 is tilted and slag is discharged from the slag discharge port 12a (step S16) (melt cracking step).

このとき、前記スラグは、Alの重量比率が20%以下に維持され、かつ、Feの重量比率がFe換算で60以下に維持されており、スラグの溶融点は1300℃以下に保たれている。また、前記スラグは、Alの重量比率が20%以下に抑えられるとともに、その塩基度が1.0に維持されており、粘性が適正な範囲に調整されている。従って、前記スラグは、前記スラグ排出口12aからスムーズに出滓される。 At this time, in the slag, the weight ratio of Al 2 O 3 is maintained at 20% or less, and the weight ratio of Fe is maintained at 60 or less in terms of Fe 2 O 3 , and the melting point of the slag is 1300 ° C. It is kept below. In addition, the weight ratio of Al 2 O 3 is suppressed to 20% or less, and the basicity of the slag is maintained at 1.0, and the viscosity is adjusted to an appropriate range. Therefore, the slag is smoothly discharged from the slag discharge port 12a.

そして、再び他のPCB汚染物を処理すべくステップS2からステップS16が実施されることになるが、異なる成分のPCB汚染物が前記溶融分解炉12で溶融分解されたとしても、その成分に応じてスラグ中のAlの重量およびFeの重量が予測され、このAlの重量比率が20%以下になるよう、Feの重量比率がFe換算で60%以下になるよう、かつ、スラグの塩基度が1.0になるよう、SiOとCaOとが投入されるので、スラグの溶融点および粘性は安定して前記のような適正な状態に保たれる。 Then, Steps S2 to S16 are performed again to process other PCB contaminants. Even if PCB contaminants of different components are melted and decomposed in the melting cracking furnace 12, they are dependent on the components. Te weight of the weight and Fe 2 O 3 of Al 2 O 3 in the slag is predicted, so that the weight ratio of the Al 2 O 3 is below 20%, 60% weight ratio of Fe in terms of Fe 2 O 3 Since SiO 2 and CaO are introduced so that the basicity of the slag becomes 1.0, the melting point and viscosity of the slag are stably maintained in the proper state as described above. It is.

このように、本PCB処理方法では、PCB汚染物の成分が変化してもスラグの塩基度とスラグ中のAlおよびFeの重量比率が所定の範囲に収められるので、スラグの溶融点および粘性が適正な状態に保たれ、安定したスラグの出滓が可能となる。   As described above, in this PCB processing method, the basicity of the slag and the weight ratio of Al and Fe in the slag can be kept within a predetermined range even if the components of the PCB contaminant change, so that the melting point and viscosity of the slag can be reduced. It is kept in an appropriate state, and stable slag can be extracted.

前記スラグ排出口12aから出滓されたスラグは、前記スラグ排出容器16に流下し冷却されるとともに他の処理設備に搬送される。   The slag discharged from the slag discharge port 12a flows down to the slag discharge container 16, is cooled, and is conveyed to another processing facility.

ここで、スラグ中のAlとFeとのうちいずれか一方の重量比率のみを所定の目標範囲に収めるようにしてもよい。また、AlやFeに代えてスラグの他の成分の重量比率を所定の目標範囲に収めるようにしてもよい。ただし、PCBは、コンデンサなどの電気部品の絶縁油として広く用いられており、PCB汚染物としては、回路素子や安定器といった電気製品であってAlやFeを多く含むものが多い。そして、Alはスラグの粘性を上げる一方Feはスラグの粘性を下げるという特性を有している。そのため、前記溶融分解炉12に投入されるPCB汚染物の種類に応じて溶融分解炉12内のAlとFeの含有量がことでスラグの流動性は大きくばらついてしてしまう。従って、AlとFeの重量比率を調整すれば、スラグをより確実に、安定してスムーズに出滓することが可能となる。 Here, only the weight ratio of either one of Al 2 O 3 and Fe 2 O 3 in the slag may fall within a predetermined target range. It may also be in place as Al 2 O 3 and Fe 2 O 3 to accommodate the weight ratio of the other components of the slag to a predetermined target range. However, PCBs are widely used as insulating oils for electrical components such as capacitors, and many PCB contaminants are electrical products such as circuit elements and ballasts and contain a large amount of Al and Fe. And Al has the characteristic of increasing the viscosity of slag while Fe decreases the viscosity of slag. Therefore, the fluidity of the slag varies greatly due to the contents of Al and Fe in the melting cracking furnace 12 depending on the type of PCB contaminant introduced into the melting cracking furnace 12. Therefore, if the weight ratio of Al 2 O 3 and Fe 2 O 3 is adjusted, the slag can be more reliably and stably extracted.

また、前記Alの重量比率、Feの重量比率の目標範囲およびスラグの塩基度の目標値は前記に限らない。ただし、前述のようにAlの重量比率を20%以下に抑え、Feの重量比率を60%以下に抑えれば、スラグの溶融点を十分に低下させることができるとともにスラグの粘性を適正な範囲に収めることができる。また、スラグの塩基度を0.67〜1.5の範囲とすれば、スラグの粘性および溶融点をより確実に適正な範囲に収めることができる。 Moreover, the target range of the weight ratio of the Al 2 O 3, the weight ratio of the Fe 2 O 3 and the basic value of the slag are not limited to the above. However, if the weight ratio of Al 2 O 3 is suppressed to 20% or less and the weight ratio of Fe 2 O 3 is suppressed to 60% or less as described above, the melting point of slag can be sufficiently lowered and slag can be reduced. The viscosity of can be kept within an appropriate range. Further, when the basicity of the slag is in the range of 0.67 to 1.5, the viscosity and melting point of the slag can be more reliably within the proper range.

また、スラグの塩基度を調整するための塩基度調整剤の具体的な種類は前記に限らない。すなわち、前記実施形態では、塩基度調整剤の酸性物質としてSiOを例示し、塩基度調整剤の塩基性物質としてCaOを例示したが、これら以外の酸性物質および塩基性物質を使用することは可能である。例えば、CaOの代わりにCaCO、Ca(OH)を用いてもよい。ただし、その際には、前記ステップS8において、CaCOあるいはCa(OH)が、CaOに変化したときの重量の減少量を勘案し、スラグ中のCaO/SiO=0.67〜1.5の範囲となるように、CaCOやCa(OH)の投入量を決定すればよい。また、塩基性物質として、NaOやNaCOを使用してもよい。 Moreover, the specific kind of basicity adjusting agent for adjusting the basicity of slag is not restricted to the above. That is, in the embodiment, SiO 2 is exemplified as an acidic substance basicity adjusting agent, is exemplified CaO as the basic substance of basicity adjusting agent, the use of these non-acidic substance and basic substance Is possible. For example, CaCO 3 or Ca (OH) 2 may be used instead of CaO. However, in that case, considering the decrease in weight when CaCO 3 or Ca (OH) 2 is changed to CaO in step S8, CaO / SiO 2 in the slag = 0.67-1. The input amount of CaCO 3 or Ca (OH) 2 may be determined so as to be in the range of 5. Further, as the basic material, it may be used Na 2 O and Na 2 CO 3.

また、前記PCB汚染物を処理するためのプラズマ溶融分解装置10の具体的な構成は前記に限らない。すなわち、前記実施形態では、処理対象物であるPCB汚染物をドラム缶に封入して処理する場合を例示したが、これに限らず、処理対象物のみをプッシャ・二重ダンパ等の供給機で前記溶融分解炉12に直接投入してもよい。また、前記実施形態では、SiO等の塩基度調整剤を所定の容器に充填した場合を例示したが、これに限らず、塩基度調整剤専用の供給機を用いて、塩基度調整剤を前記溶融分解炉12に直接投入してもよい。 Further, the specific configuration of the plasma melting and decomposing apparatus 10 for treating the PCB contaminant is not limited to the above. That is, in the said embodiment, although the case where the PCB contaminant which is a process target object was enclosed in a drum can and processed was illustrated, not only this but only a process target object with said feeders, such as a pusher and a double damper, said It may be charged directly into the melting cracking furnace 12. In the above embodiment, a case has been exemplified filled with basicity adjusting agent such as SiO 2 in a predetermined container, not limited to this, using a basicity adjusting agent dedicated feeder of the basicity adjusting agent It may be directly charged into the melting cracking furnace 12.

本発明の実施形態に係るPCB汚染物処理方法を適用するプラズマ溶融分解装置の概略図である。1 is a schematic view of a plasma melting and decomposing apparatus to which a PCB contaminant treatment method according to an embodiment of the present invention is applied. スラグの塩基度と溶融点との関係を説明するための、3元系状態図である。It is a ternary phase diagram for explaining the relationship between the basicity of slag and the melting point. Alの重量比率と溶融点等との関係を説明するための図である。It is a diagram for explaining the relationship between the weight ratio of al 2 O 3 and the melting point or the like. Feの重量比率と溶融点等との関係を説明するための図である。It is a diagram for explaining a relationship between a weight ratio of Fe 2 O 3 and the melting point or the like. 本発明の実施形態に係るPCB汚染物処理方法の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of the PCB contaminant processing method which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 プラズマ溶融分解装置
12 溶融分解炉
12a スラグ排出口
14 ドラム缶投入室
16 スラグ排出容器
18 プラズマトーチ
20 ドラム缶
40 スラグ浴
DESCRIPTION OF SYMBOLS 10 Plasma melt decomposition apparatus 12 Melt cracking furnace 12a Slag discharge port 14 Drum can insertion chamber 16 Slag discharge container 18 Plasma torch 20 Drum can 40 Slag bath

Claims (7)

PCB汚染物の溶融分解により当該PCB汚染物の無害化およびスラグの生成を行うためのPCB汚染物の処理方法であって、
前記PCB汚染物をこのPCB汚染物の溶融分解により生成されるスラグの塩基度を調整するための塩基度調整剤とともに溶融分解炉に投入し、この溶融分解炉内で前記PCB汚染物にプラズマを照射することにより当該PCB汚染物を溶融分解するとともに当該溶融分解により生成されたスラグを前記溶融分解炉から出滓する溶融分解工程と、
前記溶融分解炉内への前記PCB汚染物の投入の前に、このPCB汚染物とともに投入されるべき前記塩基度調整剤の量を決定する調整剤量決定工程とを含み、
この調整剤量決定工程は、前記PCB汚染物の成分に基づき、当該PCB汚染物の溶融分解により生成されるスラグの組成を予測する予測工程と、その予測結果に基づき、前記スラグに含まれる成分のうち当該スラグの流動性に影響する特定の成分の重量比率を予め設定された目標範囲内に収めるように、前記塩基度調整剤の投入量を算定する算定工程とを含むことを特徴とするPCB汚染物処理方法。
A method for treating PCB contaminants for detoxifying the PCB contaminants and generating slag by melt decomposition of the PCB contaminants,
The PCB contaminant is introduced into a melting cracking furnace together with a basicity adjusting agent for adjusting the basicity of the slag produced by melting and decomposing the PCB pollutant, and plasma is generated on the PCB contaminant in the melting cracking furnace. A melting and decomposing step of melting and decomposing the PCB contaminant by irradiating the slag generated by the decomposing and decomposing from the melting and decomposing furnace;
A regulator amount determining step for determining an amount of the basicity modifier to be charged together with the PCB contaminant before the PCB contaminant is charged into the melting cracking furnace,
This regulator amount determination step is based on the component of the PCB contaminant, a prediction step of predicting the composition of slag generated by melt decomposition of the PCB contaminant, and a component contained in the slag based on the prediction result A calculation step of calculating the input amount of the basicity adjusting agent so that the weight ratio of a specific component that affects the fluidity of the slag falls within a preset target range. PCB contamination treatment method.
請求項1に記載のPCB汚染物処理方法において、
前記調整剤量決定工程に含まれる算定工程は、前記スラグの流動性に影響する成分であるAlの重量比率を20%以下に収めるように前記塩基度調整剤の投入量を算定する工程を含むことを特徴とするPCB汚染物処理方法。
The PCB contaminant treatment method according to claim 1,
The calculating step included in the adjusting agent amount determining step calculates the input amount of the basicity adjusting agent so that the weight ratio of Al 2 O 3 which is a component affecting the fluidity of the slag is kept to 20% or less. A method for treating PCB contaminants, comprising the steps of:
請求項1または2に記載のPCB汚染物処理方法において、
前記調整剤量決定工程に含まれる算定工程は、前記スラグの流動性に影響する成分であるFeをFeに換算して当該Feの重量比率を60%以下に収めるように前記塩基度調整剤の投入量を算定する工程を含むことを特徴とするPCB汚染物処理方法。
The PCB contaminant treatment method according to claim 1 or 2,
The calculation step included in the adjusting agent amount determination step converts Fe, which is a component that affects the fluidity of the slag, into Fe 2 O 3 so that the weight ratio of the Fe 2 O 3 falls within 60%. A PCB contaminant treatment method comprising a step of calculating an input amount of the basicity adjusting agent.
請求項1〜3のいずれかに記載のPCB汚染物処理方法において、
前記溶融分解工程にて、前記スラグの塩基度を低くする酸性物質と前記スラグの塩基度を高くする塩基性物質とを含む前記塩基度調整剤が前記溶融分解炉に投入され、
前記調整剤量決定工程は、前記塩基度調整剤の投入量を算定する算定工程に加えて、前記酸性物質の投入量と前記塩基性物質の投入量との合計が前記算定工程にて算定された前記塩基度調整剤の投入量となる条件下で、前記スラグの塩基度を予め設定された目標範囲に収めるように、前記酸性物質の投入量と前記塩基性物質の投入量との比率を算定する工程を含むことを特徴とするPCB汚染物処理方法。
In the PCB contamination processing method in any one of Claims 1-3,
In the melt decomposition step, the basicity adjusting agent containing an acidic substance that lowers the basicity of the slag and a basic substance that increases the basicity of the slag is charged into the melt cracking furnace,
In the adjusting agent amount determining step, in addition to the calculating step of calculating the input amount of the basicity adjusting agent, the total of the input amount of the acidic substance and the input amount of the basic substance is calculated in the calculating step. The ratio of the amount of the acidic substance and the amount of the basic substance is set so that the basicity of the slag falls within a preset target range under the condition that the amount of the basicity adjuster is charged. A PCB contaminant treatment method comprising a step of calculating.
請求項4に記載のPCB汚染物処理方法において、
前記調整剤量決定工程にて、前記酸性物質の投入量と前記塩基性物質の投入量とが、前記スラグの塩基度が0.67〜1.5となるようにそれぞれ算定されることを特徴とするPCB汚染物処理方法。
The PCB contaminant disposal method according to claim 4,
In the adjusting agent amount determination step, the input amount of the acidic substance and the input amount of the basic substance are respectively calculated so that the basicity of the slag is 0.67 to 1.5. PCB contaminant treatment method.
請求項4または5に記載のPCB汚染物処理方法において、
前記酸性物質が、SiOを主成分とする物質であることを特徴とするPCB汚染物処理方法。
The PCB contaminant disposal method according to claim 4 or 5,
A PCB contaminant treatment method, wherein the acidic substance is a substance mainly composed of SiO 2 .
請求項4〜6のいずれかに記載のPCB汚染物処理方法において、
前記塩基性物質が、CaOまたは溶融分解処理によってCaOに変化する物質の少なくとも一つを主成分とする物質であることを特徴とするPCB汚染物処理方法。
In the PCB contaminant disposal method in any one of Claims 4-6,
The PCB contaminant treatment method, wherein the basic substance is a substance mainly comprising at least one of CaO or a substance that changes to CaO by melt decomposition treatment.
JP2008081030A 2008-03-26 2008-03-26 PCB contamination treatment method Active JP5415006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081030A JP5415006B2 (en) 2008-03-26 2008-03-26 PCB contamination treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081030A JP5415006B2 (en) 2008-03-26 2008-03-26 PCB contamination treatment method

Publications (3)

Publication Number Publication Date
JP2009233531A true JP2009233531A (en) 2009-10-15
JP2009233531A5 JP2009233531A5 (en) 2010-05-06
JP5415006B2 JP5415006B2 (en) 2014-02-12

Family

ID=41248184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081030A Active JP5415006B2 (en) 2008-03-26 2008-03-26 PCB contamination treatment method

Country Status (1)

Country Link
JP (1) JP5415006B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017006851A (en) * 2015-06-19 2017-01-12 株式会社神鋼環境ソリューション Pcb treatment method
CN106807726A (en) * 2017-01-17 2017-06-09 安徽工业大学 Titanium-containing blast furnace slag cooperates with full constituent method of resource with waste printed circuit board
JP2017127869A (en) * 2011-04-21 2017-07-27 テトロニクス (インターナショナル) リミテッド Processing of waste

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298717A (en) * 1989-04-27 1990-12-11 Westinghouse Electric Corp <We> Disposal method for excavated and reclaimed material in state to be contaminated by noxious and deleterious material and plasma combustion type cupola
JP2003001222A (en) * 2001-06-26 2003-01-07 Kobe Steel Ltd Melting treatment method and method for manufacturing slag
JP2007244958A (en) * 2006-03-14 2007-09-27 Nippon Steel Corp Equipment for treating matter contaminated with polychlorinated biphenyl

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298717A (en) * 1989-04-27 1990-12-11 Westinghouse Electric Corp <We> Disposal method for excavated and reclaimed material in state to be contaminated by noxious and deleterious material and plasma combustion type cupola
JP2003001222A (en) * 2001-06-26 2003-01-07 Kobe Steel Ltd Melting treatment method and method for manufacturing slag
JP2007244958A (en) * 2006-03-14 2007-09-27 Nippon Steel Corp Equipment for treating matter contaminated with polychlorinated biphenyl

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017127869A (en) * 2011-04-21 2017-07-27 テトロニクス (インターナショナル) リミテッド Processing of waste
JP2017006851A (en) * 2015-06-19 2017-01-12 株式会社神鋼環境ソリューション Pcb treatment method
CN106807726A (en) * 2017-01-17 2017-06-09 安徽工业大学 Titanium-containing blast furnace slag cooperates with full constituent method of resource with waste printed circuit board
CN106807726B (en) * 2017-01-17 2019-03-22 安徽工业大学 Titanium-containing blast furnace slag cooperates with full constituent method of resource with waste printed circuit board

Also Published As

Publication number Publication date
JP5415006B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
CA1293857C (en) Method of treating fluoride contaminated wastes
JP5415006B2 (en) PCB contamination treatment method
JP5251360B2 (en) Manufacturing method of clean steel by ladle refining method
CN105695790A (en) Copper alloy aluminum removing compound agent and preparation and use method thereof
JP6673051B2 (en) Desulfurization method of molten steel
JP4675804B2 (en) Polychlorinated biphenyl contaminant treatment facility
JP2006283083A (en) Aluminum ash, desulfurizing agent for steelmaking, and method for producing aluminum ash
Schneider et al. Effect of the Al2O3 Content in the Slag on the Remelting Behavior of a Bearing Steel
JP2005262196A (en) Method and apparatus for treating contaminated matter contaminated with polychlorinated biphenyl
JP2009172603A (en) Method and apparatus for treating contamination polluted with polychlorinated biphenyl
CN109073215B (en) Plasma melting method for treating object to be treated and plasma furnace used therefor
JP2005255485A (en) Method for producing phosphorous silicate fertilizer and apparatus therefor
JP5322860B2 (en) Recycled slag generation method and recycled slag
KR100219827B1 (en) Method for melting incineration residue and apparatus therefor
JPH0763895A (en) Melting treatment for radioactive miscellaneous solid waste
JP3833697B1 (en) Method and system for managing basicity and heavy metal concentration of incinerated ash
JP6501646B2 (en) PCB processing method
JP2009172495A (en) Method of treating material comprising heavy metals by incineration, and incinerator for incinerating material comprising heavy metals
Okada et al. Sodium enrichment on glass surface during heating of heavy-metal-containing glasses under a reductive atmosphere
JP2020186958A (en) Method for disposing of radioactive wastes
JP3744669B2 (en) Ash melting furnace
JP4365846B2 (en) Fly ash treatment method and apparatus
WO2023084898A1 (en) Flux used in electro-slag remelting process, method for producing said flux, and method for producing high-purity steel
JP5906989B2 (en) Processing method for lead-containing ladle slag
JP4124103B2 (en) Waste incineration method and incinerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131113

R150 Certificate of patent or registration of utility model

Ref document number: 5415006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250