JP2009229196A - Refractive index measuring method using waveguide mode resonance lattice and refractive index measuring instrument - Google Patents

Refractive index measuring method using waveguide mode resonance lattice and refractive index measuring instrument Download PDF

Info

Publication number
JP2009229196A
JP2009229196A JP2008073939A JP2008073939A JP2009229196A JP 2009229196 A JP2009229196 A JP 2009229196A JP 2008073939 A JP2008073939 A JP 2008073939A JP 2008073939 A JP2008073939 A JP 2008073939A JP 2009229196 A JP2009229196 A JP 2009229196A
Authority
JP
Japan
Prior art keywords
refractive index
resonance
grating
incident angle
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008073939A
Other languages
Japanese (ja)
Other versions
JP2009229196A5 (en
JP5256808B2 (en
Inventor
Akira Sato
晃 佐藤
Nobuyuki Iwai
信之 岩井
Makoto Sato
佐藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008073939A priority Critical patent/JP5256808B2/en
Publication of JP2009229196A publication Critical patent/JP2009229196A/en
Publication of JP2009229196A5 publication Critical patent/JP2009229196A5/ja
Application granted granted Critical
Publication of JP5256808B2 publication Critical patent/JP5256808B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely calculate the absolute value of the refractive index of an unknown sample even if the structure of a waveguide mode resonance lattice is not as planned. <P>SOLUTION: A plurality of refraction liquids of which the refractive indexes are controlled are prepared (S1) and those refractive indexes are precisely measured (S2). The respective refraction liquids are brought into contact with the waveguide mode resonance lattice and the intensity of refracted light is measured while changing the incident angle of measuring light by a θ-2θ optical system to calculate an angle spectrum while the incident angle of the peak appearing in the angle spectrum is set to a resonance incident angle (S3 and S4). Since a plurality of the relations of a refractive index and the resonance incident angle are clear, fitting using them is performed to be stored as a calibration curve (S5 and S6). The unknown sample is brought into contact with the waveguide mode resonance lattice to measure a resonance incident angle in the same way (S7) and the refractive index is calculated from the resonance incident angle on reference to the calibration curve (S8). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固相、液相、気相など、様々な相の誘電体及び吸収誘電体である試料の屈折率を測定するための屈折率測定方法及び屈折率測定装置に関し、更に詳しくは、導波モード共鳴フィルタを利用した屈折率測定方法及び屈折率測定装置に関する。   The present invention relates to a refractive index measurement method and a refractive index measurement apparatus for measuring the refractive index of a sample that is a dielectric material and an absorbing dielectric material of various phases such as a solid phase, a liquid phase, and a gas phase. The present invention relates to a refractive index measuring method and a refractive index measuring apparatus using a waveguide mode resonance filter.

従来、物質の屈折率を測定する手法として、様々な方法が利用され、また提案されている。例えば固体試料の屈折率を測定する方法としては、最小偏角法や臨界角法などといった異なる屈折率を持つ誘電体の平坦な界面での屈折角を測定する方法、或いは、エリプソメトリのような薄膜試料の干渉効果による反射特性を測定する方法、などが知られている。また、流体(気体及び液体)試料の屈折率を測定する方法としては、マイケルソンモーレー型干渉計や、吸収スペクトル分光法など、試料を伝播する光の吸収を測定するものが一般的である。   Conventionally, various methods have been used and proposed as a method for measuring the refractive index of a substance. For example, as a method of measuring the refractive index of a solid sample, a method of measuring a refraction angle at a flat interface of a dielectric having different refractive indexes, such as a minimum deviation angle method and a critical angle method, or an ellipsometry A method for measuring the reflection characteristics due to the interference effect of a thin film sample is known. As a method for measuring the refractive index of a fluid (gas and liquid) sample, a method for measuring absorption of light propagating through the sample, such as a Michelson Morley interferometer or an absorption spectrum spectroscopy, is generally used.

しかしながら、上述のような各種方法にはそれぞれデメリットがある。即ち、最小偏角法では、試料をプリズム化する必要があるため、試料の形状やサイズを任意に選ぶことができない。そのため、薄膜試料や微小化された試料を測定することできない。アッベ式やプルフリッヒ式などの臨界角法でも同様に、薄膜試料には十分に対応することができない。何故なら、薄膜試料では、その干渉効果により臨界線の境界が明確ではなくなり、高精度の測定が不可能だからである。   However, the various methods as described above have respective disadvantages. In other words, in the minimum deviation method, the sample needs to be made into a prism, and therefore the shape and size of the sample cannot be arbitrarily selected. Therefore, a thin film sample or a miniaturized sample cannot be measured. Similarly, the critical angle method such as Abbe's method and Pullfrich's method cannot sufficiently deal with a thin film sample. This is because in the thin film sample, the boundary of the critical line is not clear due to the interference effect, and high-precision measurement is impossible.

一方、エリプソメトリを利用した測定法では、半導体結晶のエピタキシャル成長やスパッタリングによる蒸着などにより形成される、界面が極めて平坦で且つ平行となる薄膜試料しか測定することができず、測定可能な試料の制約が非常に大きい。また、マイケルソンモーレー型干渉計や吸収スペクトル分光法では、光路長を大きくとる必要があり、微小量の試料の測定には向かない。   On the other hand, in the measurement method using ellipsometry, only thin film samples with extremely flat and parallel interfaces formed by epitaxial growth of semiconductor crystals or vapor deposition by sputtering can be measured. Is very big. In addition, the Michelson Morley interferometer and absorption spectrum spectroscopy require a large optical path length, which is not suitable for measuring a minute amount of sample.

ところで、近年、上記のような従来の屈折率の測定原理とは異なる、導波モード共鳴格子と呼ばれる光学素子を利用して屈折率を測定する方法が提案されている(非特許文献2参照)。導波モード共鳴格子(Guided-mode resonant grating: GMRG)は、1985年にマシェフらにより初めて提案された(非特許文献1参照)サブ波長回折格子の一種であり、誘電体材料の屈折率や寸法などを適当に定めた構造とすることにより非常に鋭い狭帯域特性を持つことが知られている。この特性を利用して、波長選択フィルタや波長シフタなどへの応用が進められている。   By the way, in recent years, a method of measuring a refractive index using an optical element called a waveguide mode resonance grating, which is different from the conventional principle of measuring a refractive index as described above, has been proposed (see Non-Patent Document 2). . Guided-mode resonant grating (GMRG) is a kind of sub-wavelength diffraction grating first proposed by Maschev et al. In 1985 (see Non-Patent Document 1), and has a refractive index and dimensions of dielectric materials. It is known to have a very sharp narrow band characteristic by making the structure appropriately defined. Utilizing this characteristic, applications to wavelength selective filters, wavelength shifters, and the like are being advanced.

上記のようにして狭帯域化された導波モード共鳴格子の光学特性は、その素子を構成する誘電体材料や基板、或いは入射空間の屈折率に大きく依存するので、ごく僅かな屈折率の変化を検出することが可能となる。非特許文献2、3では、この特性を利用した屈折率センサの可能性について開示している。こうした従来技術は、導波モード共鳴格子を利用して複素屈折率の実部を測定することのみを示しており、複素屈折率の虚部についての測定は考慮されていない。   The optical characteristics of the waveguide mode resonance grating narrowed as described above greatly depend on the refractive index of the dielectric material, the substrate, or the incident space constituting the element, and therefore, a very slight change in the refractive index. Can be detected. Non-Patent Documents 2 and 3 disclose the possibility of a refractive index sensor using this characteristic. Such prior art shows only the measurement of the real part of the complex refractive index using a waveguide mode resonant grating, and does not consider the measurement of the imaginary part of the complex refractive index.

これに対し、本願発明者は、非特許文献4により、導波モード共鳴格子を利用して複素屈折率の実部のみならず、虚部について測定を行う方法を提案している。即ち、導波モード共鳴フィルタへの入射角を横軸に、反射率を縦軸にとった角度スペクトルにおいて現れるピークの位置が複素屈折率の実部、強度が虚部を反映したものとなることが示されている。   On the other hand, the inventor of this application proposes a method for measuring not only the real part of the complex refractive index but also the imaginary part by using a guided mode resonance grating according to Non-Patent Document 4. That is, the peak position appearing in the angle spectrum with the incident angle to the waveguide mode resonance filter on the horizontal axis and the reflectance on the vertical axis reflects the real part of the complex refractive index and the intensity reflects the imaginary part. It is shown.

非特許文献4でも指摘されているように、導波モード共鳴格子は、原理的にいくらでも反射帯域を狭小化することができ、屈折率の分解能は、測定系の角度分解能や波長分解能に依存する。共鳴入射角や共鳴波長が精度良く求められれば、その値は試料の屈折率に依存するので、屈折率を求めることができる。理論的には、共鳴入射角や共鳴波長から計算により、試料の屈折率を求めることが可能である。   As pointed out in Non-Patent Document 4, in principle, the waveguide mode resonance grating can narrow the reflection band as much as possible, and the refractive index resolution depends on the angular resolution and wavelength resolution of the measurement system. . If the resonance incident angle and the resonance wavelength are obtained with high accuracy, the values depend on the refractive index of the sample, so that the refractive index can be obtained. Theoretically, the refractive index of the sample can be obtained by calculation from the resonance incident angle and the resonance wavelength.

しかしながら、現実の素子構造は必ずしも設計通りのものであるとは限らず、製造上での素子構造の寸法誤差は必ず生じると言える。特に導波モード共鳴格子の場合、高い寸法精度で素子を製造することは未だ技術的に難しく、そのずれが測定値の誤差をもたらす。そのため、導波モード共鳴格子を利用した屈折率計では、2つの異なる試料の屈折率の差、つまり相対値については精度の高い測定が可能であるが、それぞれの試料の屈折率を絶対値として精度良く求めることは困難であるという問題がある。   However, an actual element structure is not always as designed, and it can be said that a dimensional error of the element structure in manufacturing always occurs. In particular, in the case of a waveguide mode resonance grating, it is still technically difficult to manufacture an element with high dimensional accuracy, and the deviation causes an error in measurement values. Therefore, a refractometer using a waveguide mode resonant grating can measure the difference between the refractive indexes of two different samples, that is, a relative value with high accuracy, but the refractive index of each sample as an absolute value. There is a problem that it is difficult to obtain with high accuracy.

マシェフ、ほか1名、「ゼロ・オーダー・アノマリー・オブ・ディエレクトリック・コーテッド・グレーティングス(zero order anomaly of dielectric coated gratings)」、オプティカル・コミュニケーション(optical communication)、55、pp.377-380、1985Maschev and 1 other, "zero order anomaly of dielectric coated gratings", optical communication, 55, pp.377-380, 1985 スー・シェン、ほか2名、「ストロング・リゾナント・カップリング・オブ・サーフェス・プラズモン・ポラリトンズ・トゥー・ラディエイション・モーズ・スルー・ア・スィン・メタル・スラブ・ディエレクトリック・グレーティングス(Strong resonant coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings)」、ジャーナル・オブ・オプティカル・ソサイエティ(J. Opt. Soc.)、Vol.24, No.1, pp. 225-230、2007Sue Shen and two others, “Strong Resonant Coupling of Surface Plasmon Polaritons to Radiation Mose Through a Thin Metal Slab Deelectric Gratings coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings ”, J. Opt. Soc., Vol. 24, No. 1, pp. 225-230, 2007 菊田久雄、ほか4名、「リフラクティブ・インデクス・センサ・ウィズ・ア・ガイデッド-モード リゾナント・グレーティング・フィルタ(Refractive index sensor with a guided-mode resonant grating filter)」、プロシーディングス・オブ・SPIE(Proc. SPIE)、Vol.4416, pp. 219-222、2001Hisao Kikuta and four others, "Refractive index sensor with a guided-mode resonant grating filter", Proceedings of SPIE (Proc. SPIE), Vol. 4416, pp. 219-222, 2001 佐藤晃、「導波モード共鳴フィルターの屈折率依存特性」、第36回電磁界理論シンポジウム、平成19年10月19日、電磁界理論研究専門委員会Satoshi Sato, “Refractive index dependence of guided mode resonance filter”, 36th Electromagnetic Theory Symposium, October 19, 2007, Electromagnetic Theory Research Committee

本発明はかかる課題に鑑みて成されたものであり、その目的とするところは、試料の屈折率の絶対値を容易に且つ高い精度で求めることができる、導波モード共鳴格子を利用した屈折率測定方法及び屈折率測定装置を提供することである。   The present invention has been made in view of the above problems, and the object of the present invention is to provide a refractive index using a waveguide mode resonance grating that can easily and accurately determine the absolute value of the refractive index of a sample. An object of the present invention is to provide a refractive index measuring method and a refractive index measuring apparatus.

上記課題を解決するために成された第1発明は、格子層と導波層との複層構造体又は両者の機能を併せ持つ単層構造体が基板上に形成された導波モード共鳴格子と、該導波モード共鳴格子の複層構造体又は単層構造体を挟んで基板と反対側の面に被測定物が接触された状態で、該導波モード共鳴格子の基板面又は被測定物面に光を照射する光照射手段と、該光照射手段による光照射に対する反射光を受け、照射光の入射角度を変化させたときの角度スペクトル又は照射光の波長を変化させたときの波長スペクトルを測定するスペクトル測定手段と、を具備し、該スペクトル測定手段の測定結果による共鳴入射角度又は共鳴波長に基づいて被測定物の屈折率を計算する屈折率測定装置を用いた屈折率測定方法であって、
a)異なる既知の屈折率を有する複数の基準液を被測定物として共鳴入射角度又は共鳴波長をそれぞれ測定し、各屈折率に対する共鳴入射角度又は共鳴波長を把握する基準液測定ステップと、
b)該基準液測定ステップで得られた屈折率と共鳴入射角度又は共鳴波長との離散的な関係に基づいて校正曲線を作成する校正曲線作成ステップと、
c)未知試料を被測定物として共鳴入射角度又は共鳴波長を測定し、前記校正曲線を参照して、その測定結果から未知試料の屈折率を求める試料測定ステップと、
を実行することを特徴としている。
A first invention made to solve the above problems is a waveguide mode resonance grating in which a multilayer structure of a grating layer and a waveguide layer or a single layer structure having both functions is formed on a substrate. The substrate surface of the waveguide mode resonance grating or the object to be measured in a state where the object to be measured is in contact with the surface opposite to the substrate across the multilayer structure or single layer structure of the waveguide mode resonance grating A light irradiating means for irradiating light on the surface, and a reflected light for the light irradiation by the light irradiating means, and an angle spectrum when the incident angle of the irradiated light is changed or a wavelength spectrum when the wavelength of the irradiated light is changed A refractive index measuring method using a refractive index measuring device that calculates a refractive index of an object to be measured based on a resonance incident angle or a resonance wavelength according to a measurement result of the spectrum measuring means. There,
a) a reference liquid measurement step for measuring a resonance incident angle or a resonance wavelength for each of the plurality of reference liquids having different known refractive indexes, and measuring a resonance incident angle or a resonance wavelength for each refractive index;
b) a calibration curve creating step for creating a calibration curve based on the discrete relationship between the refractive index obtained in the reference liquid measurement step and the resonance incident angle or resonance wavelength;
c) measuring a resonance incident angle or a resonance wavelength with an unknown sample as an object to be measured, referring to the calibration curve, and obtaining a refractive index of the unknown sample from the measurement result; and
It is characterized by performing.

また上記課題を解決するために成された第2発明は、上記第1発明に係る屈折率測定方法を実施するための屈折率測定装置であって、
a)格子層と導波層との複層構造体又は両者の機能を併せ持つ単層構造体が基板上に形成された導波モード共鳴格子と、
b)該導波モード共鳴格子の複層構造体又は単層構造体を挟んで基板と反対側の面に被測定物が接触された状態で、該導波モード共鳴格子の基板面又は被測定物面に光を照射する光照射手段と、
c)該光照射手段による光照射に対する反射光を受け、照射光の入射角度を変化させたときの角度スペクトル又は照射光の波長を変化させたときの波長スペクトルを測定し、共鳴ピークを与える共鳴入射角度又は共鳴波長を求めるスペクトル測定手段と、
d)異なる既知の屈折率を有する複数の基準液を被測定物として、前記スペクトル測定手段によりそれぞれ測定された共鳴入射角度又は共鳴波長と屈折率との離散的な関係に基づいて、校正曲線を作成する校正曲線作成手段と、
e)未知試料を被測定物として前記スペクトル測定手段により測定された共鳴入射角度又は共鳴波長から、前記校正曲線を参照して、未知試料の屈折率を求める演算処理手段と、
を備えることを特徴としている。
A second invention made to solve the above-mentioned problems is a refractive index measuring apparatus for carrying out the refractive index measuring method according to the first invention,
a) a waveguide mode resonance grating in which a multilayer structure of a grating layer and a waveguide layer or a single layer structure having both functions is formed on a substrate;
b) The substrate surface of the waveguide mode resonance grating or the measurement object in a state where the object to be measured is in contact with the surface opposite to the substrate across the multilayer structure or single layer structure of the waveguide mode resonance grating A light irradiation means for irradiating the object with light;
c) Resonance that gives a resonance peak by receiving reflected light from the light irradiation means and measuring the angle spectrum when the incident angle of the irradiation light is changed or the wavelength spectrum when the wavelength of the irradiation light is changed. Spectrum measuring means for determining an incident angle or a resonance wavelength;
d) Using a plurality of reference solutions having different known refractive indexes as objects to be measured, a calibration curve is obtained based on the discrete relationship between the resonance incident angle or the resonance wavelength and the refractive index respectively measured by the spectrum measuring means. A calibration curve creation means to create,
e) an arithmetic processing means for obtaining a refractive index of the unknown sample with reference to the calibration curve from a resonance incident angle or a resonance wavelength measured by the spectrum measuring means with the unknown sample as an object to be measured;
It is characterized by having.

第1発明、第2発明、及びそのほかの以下の全ての発明において、基準液はユーザ等が自ら調製したものでもよいが、屈折率が制御された市販の屈折液を用いると便利である。具体的には、株式会社島津製作所が販売している接触液(インターネット<URL : http://www.shimadzu.co.jp/products/opt/products/se.html>参照)や株式会社モリテックスが販売している米国カーギル社製の標準屈折液(インターネット<URL : http://www.shimadzu.co.jp/products/opt/products/se.html>参照)などを利用することができる。前者は、標準的には波長587.56nmでの屈折率が1.48〜1.78の範囲で0.01刻みの製品が入手可能である。後者はより広い屈折率範囲で公差±0.0002の製品が入手可能である。   In the first invention, the second invention, and all other inventions described below, the reference solution may be prepared by the user or the like, but it is convenient to use a commercially available refractive solution with a controlled refractive index. Specifically, contact liquids sold by Shimadzu Corporation (see Internet <URL: http://www.shimadzu.co.jp/products/opt/products/se.html>) and Moritex Corporation Standard refraction liquid made by US Cargill Corporation (see the Internet <URL: http://www.shimadzu.co.jp/products/opt/products/se.html>) and the like can be used. The former is typically available in 0.01 increments with a refractive index in the range of 1.48 to 1.78 at a wavelength of 587.56 nm. The latter is available in a wider refractive index range with a tolerance of ± 0.0002.

なお、上述したような市販の屈折液を基準液として用いる場合、屈折液の屈折率は既知であるものの、高い精度での測定が要求される場合には、例えばプリズムセルを用いた最小偏角法などの手法によって基準液の屈折率を測定することが望ましい。   When a commercially available refractive liquid as described above is used as a reference liquid, the refractive index of the refractive liquid is known, but when measurement with high accuracy is required, for example, the minimum deflection angle using a prism cell is used. It is desirable to measure the refractive index of the reference solution by a method such as the method.

第1発明に係る屈折率測定方法では、基準液測定ステップにおいて、屈折率が既知である複数の基準液を校正対象である導波モード共鳴格子を用いた屈折率測定装置でそれぞれ測定し、得られた角度スペクトル又は波長スペクトルに現れるピークの位置から共鳴入射角度又は共鳴波長を求める。これにより、屈折率と共鳴入射角度又は共鳴波長との対応点が複数求まるから、校正曲線作成ステップにおいて、周知の手法を用いて、校正曲線又は校正曲線を表す計算式を算出する。ここで周知の手法とは特に限定されないが、例えば直線近似、スプライン関数近似などの様々なカーブフィッティングの手法を用いることができる。   In the refractive index measurement method according to the first aspect of the present invention, in the reference liquid measurement step, a plurality of reference liquids having known refractive indices are respectively measured with a refractive index measurement apparatus using a waveguide mode resonance grating to be calibrated. The resonance incident angle or resonance wavelength is obtained from the position of the peak appearing in the obtained angle spectrum or wavelength spectrum. As a result, a plurality of corresponding points between the refractive index and the resonance incident angle or the resonance wavelength are obtained. In the calibration curve creation step, a calculation formula representing the calibration curve or the calibration curve is calculated using a known method. Here, there are no particular limitations on the known method, but various curve fitting methods such as linear approximation and spline function approximation can be used.

この校正曲線は導波モード共鳴格子の寸法のずれなどが全て反映されたものである。通常、例えば製造上生じる導波モード共鳴格子の個体差などにより、装置毎に異なる校正曲線が作成される。この校正曲線に基づいて、任意の共鳴入射角度又は共鳴波長に対する屈折率が導出可能である。そこで、試料測定ステップでは、校正曲線を参照して、未知試料の測定により得られた共鳴入射角度又は共鳴波長から屈折率を求める。これにより、導波モード共鳴格子の間隔や深さなどのサイズが設計通り、また理想通りに製造されたものでなくても、高い精度で未知試料の屈折率の絶対値を求めることができる。   This calibration curve reflects all deviations in the dimensions of the waveguide mode resonance grating. Usually, different calibration curves are created for each apparatus due to, for example, individual differences in waveguide mode resonance gratings produced in manufacturing. Based on this calibration curve, the refractive index for any resonant incident angle or resonant wavelength can be derived. Therefore, in the sample measurement step, the refractive index is obtained from the resonance incident angle or the resonance wavelength obtained by measuring the unknown sample with reference to the calibration curve. This makes it possible to obtain the absolute value of the refractive index of the unknown sample with high accuracy even if the size of the guided mode resonance grating, such as the spacing and depth, is not designed or ideally manufactured.

また、屈折率と共鳴入射角度又は共鳴波長との関係、換言すれば共鳴入射角度や共鳴波長の屈折率依存性(「分散の度合い」とも言う)は数値計算によっても解析することが可能であるが、この計算には導波モード共鳴格子の寸法のずれなどが反映されない。例えば共鳴格子が目論見通りの構造に近ければ、上記のような製造上のずれがあっても、共鳴入射角度や共鳴波長の屈折率依存性を示すカーブ(直線も含む)の形状、つまり相対的な関係には変化がないとみなせる場合がある。そこで、既知の屈折率を有する基準液を1つだけ測定することで屈折率と共鳴入射角度又は共鳴波長との対応関係を確定し、これを利用して共鳴入射角度や共鳴波長の屈折率依存性を示すカーブの絶対値を決めるようにしてもよい。   Further, the relationship between the refractive index and the resonance incident angle or the resonance wavelength, in other words, the refractive index dependency (also referred to as “degree of dispersion”) of the resonance incident angle and the resonance wavelength can be analyzed by numerical calculation. However, this calculation does not reflect a shift in the dimensions of the waveguide mode resonance grating. For example, if the resonant grating is close to the intended structure, even if there is a manufacturing deviation as described above, the shape of the curve (including straight lines) showing the refractive index dependence of the resonant incident angle and resonant wavelength, that is, relative Sometimes there is no change in the relationship. Therefore, by measuring only one reference liquid having a known refractive index, the correspondence between the refractive index and the resonance incident angle or the resonance wavelength is determined, and this is used to depend on the refractive index of the resonance incident angle or the resonance wavelength. The absolute value of the curve indicating the sex may be determined.

即ち、上記課題を解決するために成された第3発明は、格子層と導波層との複層構造体又は両者の機能を併せ持つ単層構造体が基板上に形成された導波モード共鳴格子と、該導波モード共鳴格子の複層構造体又は単層構造体を挟んで基板と反対側の面に被測定物が接触された状態で、該導波モード共鳴格子の基板面又は被測定物面に光を照射する光照射手段と、該光照射手段による光照射に対する反射光を受け、照射光の入射角度を変化させたときの角度スペクトル又は照射光の波長を変化させたときの波長スペクトルを測定するスペクトル測定手段と、を具備し、該スペクトル測定手段の測定結果による共鳴入射角度又は共鳴波長に基づいて被測定物の屈折率を計算する屈折率測定装置を用いた屈折率測定方法であって、
a)既知の屈折率を有する基準液を被測定物として共鳴入射角度又は共鳴波長を測定し、少なくとも1つの屈折率に対する共鳴入射角度又は共鳴波長を把握する基準液測定ステップと、
b)前記導波モード共鳴格子の設計上の理論値に基づいて計算される屈折率と共鳴入射角度又は共鳴波長との関係を示す分散曲線カーブを、前記基準液測定ステップで得られた屈折率と共鳴入射角度又は共鳴波長との関係に基づいて修正することで校正曲線を取得する校正曲線取得ステップと、
c)未知試料を被測定物として共鳴入射角度又は共鳴波長を測定し、前記校正曲線を参照して、その測定結果から未知試料の屈折率を求める試料測定ステップと、
を実行することを特徴としている。
That is, the third aspect of the invention made to solve the above-described problem is that a waveguide mode resonance in which a multilayer structure of a grating layer and a waveguide layer or a single layer structure having both functions is formed on a substrate. In a state where the object to be measured is in contact with the surface opposite to the substrate across the grating and the multilayer structure or single layer structure of the waveguide mode resonance grating, Light irradiation means for irradiating the object surface with light, and reflected light for light irradiation by the light irradiation means, and when the angle spectrum or the wavelength of the irradiation light is changed when the incident angle of the irradiation light is changed A refractive index measurement using a refractive index measurement device that calculates a refractive index of an object to be measured based on a resonance incident angle or a resonance wavelength according to a measurement result of the spectrum measurement means. A method,
a) measuring a resonance incident angle or a resonance wavelength using a reference liquid having a known refractive index as an object to be measured, and determining a resonance incident angle or a resonance wavelength for at least one refractive index;
b) A dispersion curve curve showing the relationship between the refractive index calculated based on the theoretical value of the design of the waveguide mode resonance grating and the resonance incident angle or the resonance wavelength is a refractive index obtained in the reference liquid measurement step. And a calibration curve acquisition step of acquiring a calibration curve by correcting based on the relationship between the resonance incident angle or the resonance wavelength,
c) measuring a resonance incident angle or a resonance wavelength with an unknown sample as an object to be measured, referring to the calibration curve, and obtaining a refractive index of the unknown sample from the measurement result; and
It is characterized by performing.

また上記課題を解決するために成された第4発明は、上記第3発明に係る屈折率測定方法を実施するための屈折率測定装置であって、
a)格子層と導波層との複層構造体又は両者の機能を併せ持つ単層構造体が基板上に形成された導波モード共鳴格子と、
b)該導波モード共鳴格子の複層構造体又は単層構造体を挟んで基板と反対側の面に被測定物が接触された状態で、該導波モード共鳴格子の基板面又は被測定物面に光を照射する光照射手段と、
c)該光照射手段による光照射に対する反射光を受け、照射光の入射角度を変化させたときの角度スペクトル又は照射光の波長を変化させたときの波長スペクトルを測定し、共鳴ピークを与える共鳴入射角度又は共鳴波長を求めるスペクトル測定手段と、
d)既知の屈折率を有する基準液を被測定物として、前記スペクトル測定手段により測定された共鳴入射角度又は共鳴波長と屈折率との関係に基づいて、前記導波モード共鳴格子の設計上の理論値に基づいて計算される屈折率と共鳴入射角度又は共鳴波長との関係を示す分散曲線カーブを修正することで校正曲線を取得する校正曲線取得手段と、
e)未知試料を被測定物として前記スペクトル測定手段により測定された共鳴入射角度又は共鳴波長から、前記校正曲線を参照して、未知試料の屈折率を求める演算処理手段と、
を備えることを特徴としている。
A fourth invention made to solve the above-described problem is a refractive index measuring device for carrying out the refractive index measuring method according to the third invention,
a) a waveguide mode resonance grating in which a multilayer structure of a grating layer and a waveguide layer or a single layer structure having both functions is formed on a substrate;
b) The substrate surface of the waveguide mode resonance grating or the measurement object in a state where the object to be measured is in contact with the surface opposite to the substrate across the multilayer structure or single layer structure of the waveguide mode resonance grating A light irradiation means for irradiating the object with light;
c) Resonance that gives a resonance peak by receiving reflected light from the light irradiation means and measuring the angle spectrum when the incident angle of the irradiation light is changed or the wavelength spectrum when the wavelength of the irradiation light is changed. Spectrum measuring means for determining an incident angle or a resonance wavelength;
d) Using a reference liquid having a known refractive index as an object to be measured, the waveguide mode resonant grating is designed based on the relationship between the resonant incident angle or resonant wavelength and refractive index measured by the spectral measuring means. A calibration curve acquisition means for acquiring a calibration curve by correcting a dispersion curve curve indicating a relationship between a refractive index calculated based on a theoretical value and a resonance incident angle or a resonance wavelength;
e) an arithmetic processing means for obtaining a refractive index of the unknown sample with reference to the calibration curve from a resonance incident angle or a resonance wavelength measured by the spectrum measuring means with the unknown sample as an object to be measured;
It is characterized by having.

この第3発明及び第4発明によっても、第1発明及び第2発明と同様に、未知試料の屈折率の絶対値を高い精度で算出することができる。なお、共鳴入射角度や共鳴波長の屈折率依存性の数値計算は、市販されているソフトウエアを利用して行うことが可能である。、例を挙げると、厳密結合波解析に基づく計算ソフトウエアである米国グレーティング・ソルバー・デベロップメント(Grating Solver Development)社のGSOLVER(インターネット<URL : http://www.gsolve.com/>参照)、FDTD法に基づく解析・シミュレーションソフトウエアである日本アールソフトデザイングループ社のFullWAVE(インターネット<URL : http://www.rsoftdesign.co.jp/pdfs/fullwave_jpn.pdf>参照)、などを用いることができる。   According to the third and fourth inventions, as in the first and second inventions, the absolute value of the refractive index of the unknown sample can be calculated with high accuracy. The numerical calculation of the refractive index dependency of the resonance incident angle and the resonance wavelength can be performed using commercially available software. For example, GSOLVER (Grating Solver Development), a calculation software based on exact coupled wave analysis (see Internet <URL: http://www.gsolve.com/>), The use of FullWAVE of the Japan Rsoft Design Group, which is analysis and simulation software based on the FDTD method (see the Internet <URL: http://www.rsoftdesign.co.jp/pdfs/fullwave_jpn.pdf>), etc. it can.

第1乃至第4発明に係る屈折率測定方法又は屈折率測定装置では、同一の導波モード共鳴格子を用いて基準液の測定と未知試料の測定とを時分割で行うようにしてもよいし、同一の導波モード共鳴格子の異なる部位を用いて、基準液の測定と未知試料の測定とを同時並行的に行うようにしてもよい。前者の場合には、1乃至複数の基準液を導波モード共鳴格子に接触させた測定を行う毎に、該共鳴格子の接触面を洗浄し、次の基準液又は未知試料の測定を実行する。この場合、装置の構成は簡単になる。   In the refractive index measuring method or the refractive index measuring apparatus according to the first to fourth inventions, the measurement of the reference liquid and the measurement of the unknown sample may be performed in a time-sharing manner using the same waveguide mode resonance grating. The measurement of the reference solution and the measurement of the unknown sample may be performed in parallel using different parts of the same guided mode resonance grating. In the former case, each time measurement is performed with one or more reference liquids in contact with the waveguide mode resonance grating, the contact surface of the resonance grating is cleaned, and the next reference liquid or unknown sample is measured. . In this case, the configuration of the apparatus is simplified.

一方、後者の場合、基準液の測定と未知試料の測定とをほぼ同じ時刻に同じ環境(主として温度)の下で行うことができる。したがって、例えば基準液の屈折率の温度依存性が大きくても、この影響を殆ど受けずに精度よく未知試料の屈折率を算出することができる。   On the other hand, in the latter case, the measurement of the reference solution and the measurement of the unknown sample can be performed at substantially the same time and under the same environment (mainly temperature). Therefore, for example, even if the temperature dependence of the refractive index of the reference liquid is large, the refractive index of the unknown sample can be calculated with high accuracy without being substantially affected by this.

もちろん、基準液の屈折率の温度依存性が大きい場合には、基準液及び未知試料の測定時に同時にそれぞれの温度を測定し、その温度の相違及び基準液の温度特性とに基づいて、未知試料の屈折率を補正するようにしてもよい。   Of course, when the temperature dependence of the refractive index of the reference solution is large, the temperature of each of the reference solution and the unknown sample is measured simultaneously, and the unknown sample is determined based on the difference in temperature and the temperature characteristics of the reference solution. The refractive index may be corrected.

第1乃至第4発明に係る導波モード共鳴格子を用いた屈折率測定方法及び屈折率測定装置によれば、固相、液相、気相など、様々な相の試料の屈折率(複素屈折率の実部)の絶対値を高い精度で以て測定することが可能となる。   According to the refractive index measuring method and refractive index measuring apparatus using the waveguide mode resonance grating according to the first to fourth inventions, the refractive index (complex refraction) of samples in various phases such as solid phase, liquid phase, and gas phase. The absolute value of the real part of the rate can be measured with high accuracy.

まず、導波モード共鳴格子を用いた屈折率測定方法について説明する。一般的に、導波モード共鳴格子には幾つか形態がある。図1は、典型的な導波モード共鳴格子の構造を説明するための概略断面図である。これらは、比較的作製が容易なものである。   First, a refractive index measurement method using a waveguide mode resonance grating will be described. In general, there are several forms of guided mode resonant gratings. FIG. 1 is a schematic cross-sectional view for explaining the structure of a typical guided mode resonance grating. These are relatively easy to produce.

図1(a)に示す導波モード共鳴格子1Aでは、平板状の基板2の上に所定の厚さの導波層3が形成され、さらにその上に、断面矩形状で紙面に直交する方向に延伸する格子4aが周期的に配置された格子層4が形成されている。基板2の屈折率はns、導波層3と格子層4(格子4a)は同一材料であり、同じ屈折率n1である。また、導波モード共鳴格子が光学フィルタや光スイッチとして利用される場合には、通常、格子層4の上方の空間は空気層であるが、ここでは、これを試料を配置する媒体層5とする。この媒体層5の屈折率はn0である。基板2上に誘電体材料の薄膜を形成し、その後、エッチングで導波層3を残存させるように格子4aを形成することができる。 In a guided mode resonant grating 1A shown in FIG. 1A, a waveguide layer 3 having a predetermined thickness is formed on a flat substrate 2, and a rectangular cross section is formed on the waveguide layer 3 in a direction perpendicular to the paper surface. A lattice layer 4 is formed in which lattices 4a extending in the direction are periodically arranged. The refractive index of the substrate 2 is n s , and the waveguide layer 3 and the grating layer 4 (grating 4a) are made of the same material and have the same refractive index n 1 . When the waveguide mode resonance grating is used as an optical filter or an optical switch, the space above the grating layer 4 is usually an air layer. Here, the space is a medium layer 5 on which a sample is arranged. To do. The refractive index of the medium layer 5 is n 0 . A thin film of dielectric material is formed on the substrate 2, and then the grating 4a can be formed so as to leave the waveguide layer 3 by etching.

図1(b)に示す導波モード共鳴格子1Bは、その基本的な構造は図1(a)と同じであるが、導波層3と格子層4とは異なる誘電体材料からなり、前者は屈折率がn2、後者は屈折率がn1である。基板2上に異なる誘電体材料の薄膜を二層積層し、上の層だけをエッチングすることで格子4aを形成することができる。例えば格子層4をフォトレジスト材料とすることで、導波層3を浸食しないエッチング終了を容易に実現することができる。 The fundamental structure of the guided mode resonant grating 1B shown in FIG. 1B is the same as that of FIG. 1A, but the waveguide layer 3 and the grating layer 4 are made of different dielectric materials. Has a refractive index of n 2 and the latter has a refractive index of n 1 . The lattice 4a can be formed by laminating two thin films of different dielectric materials on the substrate 2 and etching only the upper layer. For example, when the lattice layer 4 is made of a photoresist material, it is possible to easily achieve the end of etching without eroding the waveguide layer 3.

図1(c)に示す導波モード共鳴格子1Cは、格子自体が導波層を兼ねるものであり、互いに屈折率の相違する第1格子6aと第2格子6bとが周期的に交互に配置された格子層6を基板2の上に形成してある。   In the guided mode resonant grating 1C shown in FIG. 1C, the grating itself also serves as a waveguide layer, and the first grating 6a and the second grating 6b having different refractive indexes are alternately arranged periodically. The lattice layer 6 is formed on the substrate 2.

なお、上記導波モード共鳴格子1A、1B、1Cでは、上方側(つまり媒体層5)からでも下方側(つまり基板2)からでも相反的な光学特性を示すから、基板2と媒体層5とを入れ替えて上側を基板2、下側を媒体層5とすることもできる。   The waveguide mode resonance gratings 1A, 1B, and 1C exhibit reciprocal optical characteristics from the upper side (that is, the medium layer 5) and the lower side (that is, the substrate 2). Can be replaced with the substrate 2 on the upper side and the medium layer 5 on the lower side.

以下の説明では、導波層3と格子層4とが同一誘電体材料から成る導波モード共鳴格子を考える。この導波モード共鳴格子を用いた測定系の概略構成を図2に示す。被測定物である試料Sは格子層4を覆い、隣接する格子4aの間の空間にまで侵入するように設けられているものとする。この場合、試料Sは液体又は気体である。   In the following description, a waveguide mode resonance grating in which the waveguide layer 3 and the grating layer 4 are made of the same dielectric material will be considered. FIG. 2 shows a schematic configuration of a measurement system using this guided mode resonance grating. It is assumed that the sample S to be measured covers the lattice layer 4 and is provided so as to penetrate into the space between the adjacent lattices 4a. In this case, the sample S is liquid or gas.

光源10から放出された所定の波長範囲の成分を含む測定光11は、導波層3及び格子層4を挟んで試料Sとは反対側の基板2の一面(図中の下面)に所定の入射角で以て入射される。この導波モード共鳴格子1からの反射光12が検出器13により検出され、反射光の光量に応じた検出信号が取り出される。測定光11の入射角θは所定角度範囲で走査され、これと連動して、検出器13に入射する反射光12の出射角も入射角と同一になるように検出器13の位置も移動される。例えば、入射角をθ→θ+Δθに変化させるように光源10の位置を符号10’の位置に移動させたとき、検出器13の位置も符号13’の位置に移動される。いわゆるθ−2θ光学系を使用して鏡面反射の強度スペクトルを得ることになるが、そのためには周知のゴニオメータなどを利用して光源10と検出器13とを同期して移動させればよい。   The measurement light 11 including a component in a predetermined wavelength range emitted from the light source 10 is predetermined on one surface (the lower surface in the drawing) of the substrate 2 opposite to the sample S with the waveguide layer 3 and the grating layer 4 interposed therebetween. Incident at an incident angle. The reflected light 12 from the waveguide mode resonance grating 1 is detected by the detector 13, and a detection signal corresponding to the amount of the reflected light is extracted. The incident angle θ of the measuring light 11 is scanned within a predetermined angle range, and in conjunction with this, the position of the detector 13 is moved so that the outgoing angle of the reflected light 12 incident on the detector 13 is the same as the incident angle. The For example, when the position of the light source 10 is moved to the position 10 'so that the incident angle is changed from θ to θ + Δθ, the position of the detector 13 is also moved to the position 13'. A so-called θ-2θ optical system is used to obtain an intensity spectrum of specular reflection. For this purpose, the light source 10 and the detector 13 may be moved synchronously using a known goniometer or the like.

非特許文献4などの記載にもあるように、導波モード共鳴格子1は原理的には限りなく狭帯域なフィルタリングの作用を有する。そのため、入射角を変化させながら反射率を測定した角度スペクトルには、図3に示すように特定の入射角においてピークが現れる。また、このピークの位置は試料Sの屈折率(複素屈折率の実部)に応じて左右にシフトする。したがって、原理的には、このピークトップが出現する入射角から、試料Sの屈折率を求めることができる。また、測定光11の入射角の代わりに測定光11の波長を走査して波長スペクトルを作成した場合でも、試料Sの屈折率に応じた波長にピークトップが現れる。したがって、このピークトップが出現する波長から、試料Sの屈折率を求めることもできる。   As described in Non-Patent Document 4 and the like, the guided mode resonant grating 1 has an infinitely narrow band filtering function in principle. Therefore, a peak appears at a specific incident angle in the angle spectrum in which the reflectance is measured while changing the incident angle, as shown in FIG. Further, the position of this peak shifts to the left and right according to the refractive index of the sample S (the real part of the complex refractive index). Therefore, in principle, the refractive index of the sample S can be obtained from the incident angle at which this peak top appears. Even when the wavelength spectrum is created by scanning the wavelength of the measurement light 11 instead of the incident angle of the measurement light 11, a peak top appears at a wavelength corresponding to the refractive index of the sample S. Therefore, the refractive index of the sample S can also be obtained from the wavelength at which this peak top appears.

しかしながら、上述のピーク波長やピーク入射角は、導波モード共鳴格子1の溝の深さや間隔などの構造の変動によっても変化する。屈折率の要求精度にも依るが、導波モード共鳴格子の構造を設計通りに製造するのは困難であり、通常、その構造の誤差は屈折率の要求精度を満たせないほど大きい。そこで、次のような特徴的な屈折率測定方法により、導波モード共鳴格子の構造の誤差が大きい場合でも高い精度で試料Sの屈折率を算出できるようにしている。図4はこの屈折率測定方法の手順を示すフローチャートである。   However, the above-described peak wavelength and peak incident angle also change due to structural variations such as the groove depth and spacing of the waveguide mode resonant grating 1. Although it depends on the required accuracy of the refractive index, it is difficult to manufacture the structure of the guided mode resonance grating as designed, and the error of the structure is usually so large that the required accuracy of the refractive index cannot be satisfied. Therefore, the refractive index of the sample S can be calculated with high accuracy even when the structure error of the waveguide mode resonance grating is large by the following characteristic refractive index measurement method. FIG. 4 is a flowchart showing the procedure of this refractive index measurement method.

まず、測定を実行するに先立って、互いに異なる屈折率を有する複数の、屈折率が制御された基準液を用意する(ステップS1)。基準液は例えば上述したような市販の屈折液を用いるとよい。次に、その複数の基準液の屈折率を、既存の屈折率測定法(例えばプリズムセルを用いた最少偏角法やアッベ屈折法など)で必要とされる精度で以て測定する(ステップS2)。上述のように屈折率が制御された屈折液を用い、且つその屈折液の屈折率精度(ばらつき)が最終的に得られる校正曲線の要求精度を満たすものであれば、ステップS2の実測定は省略できる。なお、基準液の屈折率が温度依存性を持つ場合には、その温度依存性も測定するとよい。   First, prior to performing measurement, a plurality of reference liquids having different refractive indexes and controlled in refractive index are prepared (step S1). As the reference liquid, for example, a commercially available refractive liquid as described above may be used. Next, the refractive indexes of the plurality of reference liquids are measured with the accuracy required by the existing refractive index measurement method (for example, the minimum declination method or the Abbe refraction method using a prism cell) (step S2). ). If the refractive index of which the refractive index is controlled as described above is used and the refractive index accuracy (variation) of the refractive liquid satisfies the required accuracy of the calibration curve to be finally obtained, the actual measurement in step S2 is performed. Can be omitted. If the refractive index of the reference liquid has temperature dependency, the temperature dependency may be measured.

その後、複数の基準液を順に上記原理を利用した屈折率測定装置で測定し、共鳴入射角(又は共鳴波長)を測定する(ステップS3)。つまり、図2中の試料Sに代えて基準液を導波モード共鳴格子1に接触させ、これに入射する測定光11の入射角を変化させつつ検出器13で得た信号に基づいて角度スペクトルを作成する。そして、その角度スペクトルに現れるピークを抽出し、該ピークのピークトップに対応した入射角を求めればよい。測定終了後には導波モード共鳴格子1を有機溶媒などで洗浄して基準液を取り除く。そして、用意された全ての基準液の測定が終了していなければ(ステップS4でNO)、ステップS3に戻って未測定である他の基準液の共鳴入射角(又は共鳴波長)を測定する。なお、基準液の屈折率が温度依存性を持つ場合には、共鳴入射角測定時の温度も同時に測定しておく。   Thereafter, a plurality of reference solutions are sequentially measured with a refractive index measuring device using the above principle, and a resonance incident angle (or resonance wavelength) is measured (step S3). That is, instead of the sample S in FIG. 2, the reference liquid is brought into contact with the waveguide mode resonance grating 1, and the angle spectrum is based on the signal obtained by the detector 13 while changing the incident angle of the measuring light 11 incident thereon. Create Then, a peak appearing in the angle spectrum is extracted, and an incident angle corresponding to the peak top of the peak may be obtained. After the measurement is completed, the reference mode liquid is removed by washing the waveguide mode resonance grating 1 with an organic solvent or the like. If measurement of all the prepared reference solutions has not been completed (NO in step S4), the process returns to step S3 to measure the resonance incident angle (or resonance wavelength) of another reference solution that has not been measured. When the refractive index of the reference liquid has temperature dependence, the temperature at the time of measuring the resonance incident angle is also measured at the same time.

各基準液についてそれぞれ屈折率(ステップS2で得られた精密な測定値)と共鳴入射角との値のペアが求まるから、その値のペアを利用して、周知の各種のカーブフィッティング手法により、最も確からしい曲線又は直線を描き、これを校正曲線とする(ステップS5)。最低2つの屈折率と共鳴入射角との値のペアから直線近似により校正曲線を求めることができるが、一般的には屈折率と共鳴入射角との関係が直線的であるとみなせる範囲は狭く、特にこの範囲を逸脱すると誤差が大きくなる。したがって、好ましくは、スプライン関数などの高次曲線による最適フィッティングを行うほうがよい。こうして求めた校正曲線を例えばフラッシュROMなどの記憶部に保存しておく(ステップS6)。   Since a pair of values of the refractive index (precise measurement value obtained in step S2) and the resonance incident angle is obtained for each reference solution, using the value pairs, various known curve fitting techniques can be used. The most probable curve or straight line is drawn and used as a calibration curve (step S5). A calibration curve can be obtained by linear approximation from a pair of values of at least two refractive indices and the resonant incident angle, but generally the range in which the relationship between the refractive index and the resonant incident angle can be regarded as linear is narrow. In particular, if the value deviates from this range, the error increases. Therefore, it is preferable to perform optimal fitting with a higher-order curve such as a spline function. The calibration curve thus obtained is stored in a storage unit such as a flash ROM (step S6).

次いで、導波モード共鳴格子1を有機溶媒などで洗浄して清浄化した後に、測定対象の試料Sを導波モード共鳴格子1に接触させ、上記基準液の測定時と同様にして共鳴入射角の測定を行う(ステップS7)。そして、校正曲線を参照して、得られた共鳴入射角から屈折率を算出する(ステップS8)。基準液の屈折率が温度依存性を持つ場合には、この試料の共鳴入射角測定時にも温度を測定し、基準液の共鳴入射角測定時に測定した温度との差を求め、この温度差と基準液の屈折率の温度依存性の測定値とを用いて試料の屈折率を補正するとよい。そうして得られた屈折率値を出力する(ステップS9)。   Next, after the waveguide mode resonance grating 1 is cleaned and cleaned with an organic solvent or the like, the sample S to be measured is brought into contact with the waveguide mode resonance grating 1, and the resonance incidence angle is measured in the same manner as in the measurement of the reference liquid. Is measured (step S7). Then, the refractive index is calculated from the obtained resonance incident angle with reference to the calibration curve (step S8). If the refractive index of the reference solution has temperature dependence, the temperature is also measured during the measurement of the resonance incidence angle of this sample, and the difference from the temperature measured during the measurement of the resonance incidence angle of the reference solution is obtained. The refractive index of the sample may be corrected using the measured value of the temperature dependence of the refractive index of the reference solution. The refractive index value thus obtained is output (step S9).

なお、上記フローチャートにおいて作業の手順は必ずしもステップ番号の順である必要はない。例えば、基準液と試料との測定を済ませた後に、校正曲線を求める演算を実行し、その校正曲線を利用した試料の測定結果から屈折率を算定するようにしてもよい。   In the above flowchart, the work procedure is not necessarily in the order of the step numbers. For example, after the measurement of the reference solution and the sample, calculation for obtaining a calibration curve may be executed, and the refractive index may be calculated from the measurement result of the sample using the calibration curve.

上述した測定方法では、屈折率が異なる複数の基準液を利用し、その測定結果をカーブフィッティングなどの演算処理に供することで校正曲線を求めるようにしている。これとは別の方法として、共鳴入射角の屈折率依存性を数値計算により求めることで校正曲線の形状を決定し、屈折率が既知である1つの基準液の測定結果を用いて校正曲線の絶対位置を決めることで、最終的な校正曲線を得るようにしてもよい。共鳴入射角の屈折率依存性を解析するために、上述したような各種の市販のソフトウエアを利用して行うことが可能である。   In the measurement method described above, a plurality of reference solutions having different refractive indexes are used, and the measurement result is subjected to arithmetic processing such as curve fitting to obtain a calibration curve. As another method, the shape of the calibration curve is determined by calculating the refractive index dependency of the resonance incident angle by numerical calculation, and the measurement result of one reference solution having a known refractive index is used to determine the calibration curve. A final calibration curve may be obtained by determining the absolute position. In order to analyze the refractive index dependency of the resonance incident angle, it is possible to use various kinds of commercially available software as described above.

上記測定方法を実施するための屈折率測定装置の一実施例の概略構成を図5、図6に示す。図5は基準液の測定と試料の測定とを時分割で、つまり順番に実行する場合の構成であり、図6は基準液の測定と試料の測定とを同時並行的に実行可能な構成である。   A schematic configuration of an embodiment of a refractive index measuring apparatus for carrying out the above measuring method is shown in FIGS. FIG. 5 shows a configuration in which the measurement of the reference solution and the measurement of the sample are performed in a time-sharing manner, that is, in order. FIG. 6 is a configuration in which the measurement of the reference solution and the measurement of the sample can be performed simultaneously. is there.

図5及び図6において、モータを含む光学系駆動部14は、制御部15による制御の下に、光源10と検出器13とをθ−2θの関係を保つように同期的に移動させるものである。これにより、導波モード共鳴格子1への測定光11の入射角が走査される。検出器13の検出信号を受けて処理するデータ処理部20は、角度スペクトル算出部21、ピーク抽出部22、校正曲線作成部23、校正曲線記憶部24、及び屈折率算出部25を含む。角度スペクトル算出部21は光学系駆動部14により光源10及び検出器13が移動されるに従い順次入力される検出信号に基づいて、横軸が入射角、縦軸が反射率又は回折効率などである角度スペクトルを作成する。ピーク抽出部22は角度スペクトルに対しピーク検出を実行し、ピークトップを見つけ、ピークトップに対応する入射角、つまり共鳴入射角を算出する。校正曲線作成部23は外部から設定される基準液の屈折率と測定により得られた共鳴入射角とに基づいて、又は共鳴入射角の屈折率依存性の数値計算をも利用して、校正曲線を作成する。校正曲線記憶部24は作成された校正曲線を記憶する。屈折率算出部25は校正曲線記憶部24に記憶されている校正曲線を参照して、試料の測定結果から屈折率を算出する。   5 and 6, the optical system drive unit 14 including a motor moves the light source 10 and the detector 13 synchronously so as to maintain the relationship of θ−2θ under the control of the control unit 15. is there. Thereby, the incident angle of the measurement light 11 to the waveguide mode resonance grating 1 is scanned. The data processing unit 20 that receives and processes the detection signal of the detector 13 includes an angle spectrum calculation unit 21, a peak extraction unit 22, a calibration curve creation unit 23, a calibration curve storage unit 24, and a refractive index calculation unit 25. The angle spectrum calculation unit 21 is based on detection signals sequentially input as the light source 10 and the detector 13 are moved by the optical system driving unit 14, and the horizontal axis represents the incident angle and the vertical axis represents the reflectance or diffraction efficiency. Create an angular spectrum. The peak extraction unit 22 performs peak detection on the angle spectrum, finds a peak top, and calculates an incident angle corresponding to the peak top, that is, a resonance incident angle. The calibration curve creation unit 23 is based on the refractive index of the reference solution set from the outside and the resonance incident angle obtained by measurement, or by using the numerical calculation of the refractive index dependence of the resonance incident angle. Create The calibration curve storage unit 24 stores the created calibration curve. The refractive index calculation unit 25 refers to the calibration curve stored in the calibration curve storage unit 24 and calculates the refractive index from the measurement result of the sample.

図5に示した屈折率測定装置において、導波モード共鳴格子1への試料Sの供給や測定後の洗浄などを自動的に行う手段を設けることもできる。それによって、ユーザは 試料と1乃至複数の基準液を用意し、且つ、基準液の測定により得た屈折率値を入力するだけで、自動測定を行って試料の屈折率を出力部26から得ることができる。   In the refractive index measurement apparatus shown in FIG. 5, it is possible to provide means for automatically supplying the sample S to the waveguide mode resonance grating 1 and cleaning after measurement. As a result, the user prepares the sample and one or more reference solutions, and inputs the refractive index value obtained by measuring the reference solution, and performs automatic measurement to obtain the refractive index of the sample from the output unit 26. be able to.

図6の構成では、1つの導波モード共鳴格子1の隔壁100で隔てられた異なる部位に、基準液Srと試料Ssとがそれぞれ収容される。この導波モード共鳴格子1は移動部17により移動可能であり、測定光11の照射位置が基準液Srの収容部位と試料Ssの収容部位とに切り替えできるように構成されている。基準液が複数である場合には、基準液毎に収容部位を設けるようにするとよい。この構成では、導波モード共鳴格子1を洗浄することなしに、1乃至複数の基準液と試料とを連続的に測定することができる。したがって、同時測定であるとみなすことができ、特に洗浄作業が間に挟まれないことにより、測定時の温度条件が同一であるとみなせるという利点がある。   In the configuration of FIG. 6, the reference solution Sr and the sample Ss are accommodated in different portions separated by the partition wall 100 of one waveguide mode resonance grating 1. The waveguide mode resonance grating 1 can be moved by a moving unit 17 and is configured such that the irradiation position of the measurement light 11 can be switched between the accommodation site for the reference liquid Sr and the accommodation site for the sample Ss. When there are a plurality of reference liquids, it is preferable to provide a storage site for each reference liquid. In this configuration, it is possible to continuously measure one or more reference solutions and the sample without cleaning the waveguide mode resonance grating 1. Therefore, it can be regarded as simultaneous measurement, and there is an advantage that the temperature conditions at the time of measurement can be regarded as the same because the cleaning operation is not sandwiched in particular.

なお、導波モード共鳴格子1を移動させる代わりに光源10、検出器13、光学系駆動部14などを移動させてもよいし、光学系の光路の切り替えによって、異なる部位に測定光11が入射し、その反射光12が検出器13に導入されるようにしてもよい。   Note that the light source 10, the detector 13, the optical system drive unit 14 and the like may be moved instead of moving the waveguide mode resonance grating 1, or the measurement light 11 is incident on different parts by switching the optical path of the optical system. However, the reflected light 12 may be introduced into the detector 13.

また、図5、図6に示した構成は、共鳴入射角の屈折率依存性を利用したものであるが、共鳴波長の屈折率依存性を利用する構成に変形することも容易である。その場合には、測定光11の入射角、反射光12の出射角を固定し、反射光12をモノクロメータ或いはポリクロメータなどを含む分光光学系に導入して、分光光学系から取り出した特定の波長光を検出器13に導入する。その分光光学系から取り出す波長を所定範囲で走査することにより、角度スペクトルの代わりに波長スペクトルを算出することができ、そのスペクトル上でピークを抽出して共鳴波長を求めればよい。   5 and 6 uses the refractive index dependency of the resonance incident angle, but can easily be modified to a configuration using the refractive index dependency of the resonance wavelength. In that case, the incident angle of the measurement light 11 and the emission angle of the reflected light 12 are fixed, and the reflected light 12 is introduced into a spectroscopic optical system including a monochromator or a polychromator, and is extracted from the spectroscopic optical system. Wavelength light is introduced into the detector 13. By scanning the wavelength extracted from the spectroscopic optical system within a predetermined range, the wavelength spectrum can be calculated instead of the angle spectrum, and the resonance wavelength can be obtained by extracting a peak on the spectrum.

以下、導波モード共鳴格子1の具体的な構造を想定した場合に、上述した測定方法で屈折率が精度良く求まることを、シミュレーションにより明らかにする。
導波モード共鳴格子1の構造を決めるパラメータを図7に示す。即ち、3600本の格子4aの周期Λは278nm、デューティ比fは0.5、溝深さ(格子層4の厚さ)d2は10nmである。導波層3の厚さd1は90nmである。格子層4と導波層3はいずれも酸化アルミニウムであり、その屈折率n1は1.65−1.68である。基板2の屈折率nsは1.52(物質としては例えばBK7などの通常の光学ガラスを想定)である。
Hereinafter, it will be clarified by simulation that the refractive index can be accurately obtained by the above-described measurement method when a specific structure of the waveguide mode resonance grating 1 is assumed.
The parameters that determine the structure of the guided mode resonant grating 1 are shown in FIG. That is, the period Λ of the 3600 gratings 4a is 278 nm, the duty ratio f is 0.5, and the groove depth (thickness of the grating layer 4) d2 is 10 nm. The thickness d1 of the waveguide layer 3 is 90 nm. Both the grating layer 4 and the waveguiding layer 3 are aluminum oxide, and the refractive index n 1 is 1.65 to 1.68. Refractive index n s of the substrate 2 is 1.52 (assuming the ordinary optical glass, such as the materials such as BK7).

測定系としては図2に示したθ−2θ光学系を想定する。この光学系において、TE偏光を基板2側から入射させ、試料を格子層4と導波層3に接触させる。試料の屈折率nが1.5である場合、486.1[nm]、587.6[nm]及び656.3[nm]の波長の測定光に対する共鳴入射角は、それぞれ8.1058°、22.7550°及び33.4740°となる。この共鳴入射角は、導波モード共鳴格子1が上記想定通りの寸法で理想的に作製された場合のものである。しかしながら、実際には製造上で生じる寸法誤差が避けられないので、通常、上記数値からずれた入射角で共鳴反射が生じる。また、設計方法によっては、設計に用いた電磁界計算の誤差も無視できない。   As the measurement system, the θ-2θ optical system shown in FIG. 2 is assumed. In this optical system, TE polarized light is incident from the substrate 2 side, and the sample is brought into contact with the grating layer 4 and the waveguide layer 3. When the refractive index n of the sample is 1.5, the resonance incident angles with respect to the measurement light having the wavelengths of 486.1 [nm], 587.6 [nm], and 656.3 [nm] are 8.1058 °, 22.7550 ° and 33.4740 °. This resonance incident angle is that in the case where the waveguide mode resonance grating 1 is ideally produced with the above-mentioned dimensions. However, in practice, a dimensional error that occurs in manufacturing is unavoidable, and therefore resonance reflection usually occurs at an incident angle deviated from the above numerical value. Further, depending on the design method, the error in the electromagnetic field calculation used for the design cannot be ignored.

そこで、上述したように、屈折率が既知である基準液を用いて校正を行う必要がある。その校正が可能となる条件は、目的とする屈折率よりも多少ずれたところでも共鳴反射の条件が消失しないことである。市販されている上記の屈折液は、0.01以下の屈折率ステップである。したがって、ここでは1.5±0.01の屈折率範囲で共鳴条件が存在することを示せばよい。それが示せれば、屈折率が既知である基準液を用いたときの共鳴入射角を測定することが可能であり、試料の屈折率を算定可能な校正曲線を作成することができる。   Therefore, as described above, it is necessary to perform calibration using a reference solution having a known refractive index. The condition that enables the calibration is that the condition of resonance reflection does not disappear even at a position slightly deviated from the target refractive index. The above-described refractive liquid that is commercially available has a refractive index step of 0.01 or less. Therefore, it suffices to show that the resonance condition exists in the refractive index range of 1.5 ± 0.01. If it can be shown, it is possible to measure the resonance angle of incidence when using a reference solution with a known refractive index, and to create a calibration curve that can calculate the refractive index of the sample.

図8は、波長が486.1[nm]であるTE偏光に対し、試料(基準液)の屈折率が1.5及び1.5±0.01である場合の反射スペクトルを示す図である。図9は、波長が587.6[nm]であるTE偏光に対し、試料(基準液)の屈折率が1.5及び1.5±0.01である場合の反射スペクトルを示す図である。図10は、波長が656.3[nm]であるTE偏光に対し、試料(基準液)の屈折率が1.5及び1.5±0.01である場合の反射スペクトルを示す図である。全ての場合において、明瞭なピークが現れていることから共鳴条件が存在するとが分かる。またピークトップの反射率はほぼ100%となっている。つまり試料の屈折率が1.5近傍である場合、この値に近い屈折率を持つ屈折液を用いて共鳴入射角を測定することができ、これが基準液として適合していることが分かる。   FIG. 8 is a diagram showing a reflection spectrum when the refractive index of the sample (reference solution) is 1.5 and 1.5 ± 0.01 with respect to TE polarized light having a wavelength of 486.1 [nm]. . FIG. 9 is a diagram showing a reflection spectrum when the refractive index of the sample (reference solution) is 1.5 and 1.5 ± 0.01 with respect to TE polarized light having a wavelength of 587.6 [nm]. . FIG. 10 is a diagram showing a reflection spectrum when the refractive index of the sample (reference solution) is 1.5 and 1.5 ± 0.01 with respect to TE polarized light having a wavelength of 656.3 [nm]. . In all cases, a clear peak appears, indicating that a resonance condition exists. Further, the reflectance at the peak top is almost 100%. That is, when the refractive index of the sample is near 1.5, the resonance angle of incidence can be measured using a refractive liquid having a refractive index close to this value, and it can be seen that this is suitable as a reference liquid.

また屈折率が1.5付近における共鳴入射角からの偏差を図11に示す。R、G、Bは図8〜図10に示した各波長である。R、G、Bいずれの波長においても負の分散特性(ここでは屈折率が大きくなると共鳴入射角度が小さくなること)を持つが、例えば不連続な分散や極を有する分散などといった異常な分散ではなく、線形に近い分散を示していることが分かる。これにより、校正曲線を作成し、試料の共鳴入射角に対する屈折率を求めることができる。   FIG. 11 shows the deviation from the resonant incident angle when the refractive index is around 1.5. R, G, and B are the wavelengths shown in FIGS. It has negative dispersion characteristics (in this case, the resonance incident angle decreases as the refractive index increases) at any wavelength of R, G, and B. For example, in the case of abnormal dispersion such as discontinuous dispersion or dispersion with poles, It can be seen that the dispersion is almost linear. Thereby, a calibration curve can be created and the refractive index with respect to the resonance incident angle of the sample can be obtained.

図8〜図10の結果を図12にまとめた。このように、本発明に係る屈折率測定方法では、
(1)屈折液の屈折率制御可能範囲で共鳴条件が保持されること、
(2)その屈折率範囲で分散が正常である(上記のような異常分散が見られない)こと、
という2つの条件を満足するような入射条件(入射角範囲)及び導波モード共鳴格子構造を設定することにより、市販の屈折液を基準とする屈折率の絶対測定が可能であると言える。また、屈折液の屈折率に温度依存性がある場合には、その特性を予め定量化しておくことで、容易に補正を行うことができる。
The results of FIGS. 8 to 10 are summarized in FIG. Thus, in the refractive index measurement method according to the present invention,
(1) Resonance conditions are maintained within the refractive index controllable range of the refractive liquid;
(2) The dispersion is normal in the refractive index range (the above-mentioned anomalous dispersion is not seen),
By setting the incident condition (incident angle range) satisfying the two conditions and the waveguide mode resonance grating structure, it can be said that the absolute measurement of the refractive index based on a commercially available refractive liquid is possible. Further, when the refractive index of the refracting liquid has temperature dependency, it can be easily corrected by quantifying the characteristics in advance.

本発明に係る屈折率測定装置に利用される典型的な導波モード共鳴格子の構造を説明するための概略断面図。The schematic sectional drawing for demonstrating the structure of the typical waveguide mode resonance grating utilized for the refractive index measuring apparatus which concerns on this invention. 図1(a)に示した導波モード共鳴格子を用いた測定系の概略構成図。The schematic block diagram of the measurement system using the waveguide mode resonance grating shown to Fig.1 (a). 図2の測定系で測定光の入射角を走査したときに得られる角度スペクトルの一例を示す図。The figure which shows an example of the angle spectrum obtained when the incident angle of measurement light is scanned with the measurement system of FIG. 本発明に係る屈折率測定方法の手順を示すフローチャート。The flowchart which shows the procedure of the refractive index measuring method which concerns on this invention. 本発明に係る屈折率測定方法を実施するための屈折率測定装置の一実施例の概略構成図。The schematic block diagram of one Example of the refractive index measuring apparatus for enforcing the refractive index measuring method which concerns on this invention. 本発明に係る屈折率測定方法を実施するための屈折率測定装置の他の実施例の概略構成図。The schematic block diagram of the other Example of the refractive index measuring apparatus for enforcing the refractive index measuring method which concerns on this invention. シミュレーションのために想定した導波モード共鳴格子の構造を決めるパラメータを示す図。The figure which shows the parameter which determines the structure of the waveguide mode resonance grating assumed for simulation. 波長が486.1[nm]であるTE偏光に対し、試料の屈折率が1.5及び1.5±0.01である場合の反射スペクトルを示す図。The figure which shows the reflection spectrum in case the refractive index of a sample is 1.5 and 1.5 +/- 0.01 with respect to TE polarized light whose wavelength is 486.1 [nm]. 波長が587.6[nm]であるTE偏光に対し、試料の屈折率が1.5及び1.5±0.01である場合の反射スペクトルを示す図。The figure which shows the reflection spectrum in case the refractive index of a sample is 1.5 and 1.5 +/- 0.01 with respect to TE polarized light whose wavelength is 587.6 [nm]. 波長が656.3[nm]であるTE偏光に対し、試料の屈折率が1.5及び1.5±0.01である場合の反射スペクトルを示す図。The figure which shows the reflection spectrum in case the refractive index of a sample is 1.5 and 1.5 +/- 0.01 with respect to TE polarized light whose wavelength is 656.3 [nm]. 1.5付近の屈折率における共鳴入射角からの偏差を示す図。The figure which shows the deviation from the resonant incident angle in the refractive index of 1.5 vicinity. 図8〜図10の結果をまとめた図。The figure which summarized the result of FIGS. 8-10.

符号の説明Explanation of symbols

1、1A、1B、1C…導波モード共鳴格子
2…基板
3…導波層
4、6…格子層
4a…格子
5…媒体層
6a…第1格子
6b…第2格子
Sr…基準液
S、Ss…試料
100…隔壁
10…光源
11…測定光
12…反射光
13…検出器
14…光学系駆動部
15…制御部
17…移動部
20…データ処理部
21…角度スペクトル算出部
22…ピーク抽出部
23…校正曲線作成部
24…校正曲線記憶部
25…屈折率算出部
26…出力部
1, 1A, 1B, 1C ... guide mode resonance grating 2 ... substrate 3 ... waveguide layer 4, 6 ... lattice layer 4a ... lattice 5 ... media layer 6a ... first grating 6b ... second grating Sr ... reference solution S, Ss ... sample 100 ... partition wall 10 ... light source 11 ... measurement light 12 ... reflected light 13 ... detector 14 ... optical system drive unit 15 ... control unit 17 ... moving unit 20 ... data processing unit 21 ... angle spectrum calculation unit 22 ... peak extraction Unit 23 ... calibration curve creation unit 24 ... calibration curve storage unit 25 ... refractive index calculation unit 26 ... output unit

Claims (12)

格子層と導波層との複層構造体又は両者の機能を併せ持つ単層構造体が基板上に形成された導波モード共鳴格子と、該導波モード共鳴格子の複層構造体又は単層構造体を挟んで基板と反対側の面に被測定物が接触された状態で、該導波モード共鳴格子の基板面又は被測定物面に光を照射する光照射手段と、該光照射手段による光照射に対する反射光を受け、照射光の入射角度を変化させたときの角度スペクトル又は照射光の波長を変化させたときの波長スペクトルを測定するスペクトル測定手段と、を具備し、該スペクトル測定手段の測定結果による共鳴入射角度又は共鳴波長に基づいて被測定物の屈折率を計算する屈折率測定装置を用いた屈折率測定方法であって、
a)異なる既知の屈折率を有する複数の基準液を被測定物として共鳴入射角度又は共鳴波長をそれぞれ測定し、各屈折率に対する共鳴入射角度又は共鳴波長を把握する基準液測定ステップと、
b)該基準液測定ステップで得られた屈折率と共鳴入射角度又は共鳴波長との離散的な関係に基づいて校正曲線を作成する校正曲線作成ステップと、
c)未知試料を被測定物として共鳴入射角度又は共鳴波長を測定し、前記校正曲線を参照して、その測定結果から未知試料の屈折率を求める試料測定ステップと、
を実行することを特徴とする、導波モード共鳴格子を用いた屈折率測定方法。
A waveguide mode resonance grating in which a multilayer structure of a grating layer and a waveguide layer or a single layer structure having both functions is formed on a substrate, and a multilayer structure or a single layer of the waveguide mode resonance grating A light irradiating means for irradiating light to the substrate surface or the surface of the object to be measured of the waveguide mode resonance grating in a state where the object to be measured is in contact with the surface opposite to the substrate across the structure; A spectrum measuring means for receiving the reflected light with respect to the light irradiation and measuring the angle spectrum when the incident angle of the irradiation light is changed or the wavelength spectrum when the wavelength of the irradiation light is changed, and measuring the spectrum. A refractive index measurement method using a refractive index measuring device that calculates a refractive index of an object to be measured based on a resonance incident angle or a resonance wavelength according to a measurement result of a means,
a) a reference liquid measurement step for measuring a resonance incident angle or a resonance wavelength for each of the plurality of reference liquids having different known refractive indexes, and measuring a resonance incident angle or a resonance wavelength for each refractive index;
b) a calibration curve creating step for creating a calibration curve based on the discrete relationship between the refractive index obtained in the reference liquid measurement step and the resonance incident angle or resonance wavelength;
c) measuring a resonance incident angle or a resonance wavelength with an unknown sample as an object to be measured, referring to the calibration curve, and obtaining a refractive index of the unknown sample from the measurement result; and
A refractive index measurement method using a guided mode resonance grating.
格子層と導波層との複層構造体又は両者の機能を併せ持つ単層構造体が基板上に形成された導波モード共鳴格子と、該導波モード共鳴格子の複層構造体又は単層構造体を挟んで基板と反対側の面に被測定物が接触された状態で、該導波モード共鳴格子の基板面又は被測定物面に光を照射する光照射手段と、該光照射手段による光照射に対する反射光を受け、照射光の入射角度を変化させたときの角度スペクトル又は照射光の波長を変化させたときの波長スペクトルを測定するスペクトル測定手段と、を具備し、該スペクトル測定手段の測定結果による共鳴入射角度又は共鳴波長に基づいて被測定物の屈折率を計算する屈折率測定装置を用いた屈折率測定方法であって、
a)既知の屈折率を有する基準液を被測定物として共鳴入射角度又は共鳴波長を測定し、少なくとも1つの屈折率に対する共鳴入射角度又は共鳴波長を把握する基準液測定ステップと、
b)前記導波モード共鳴格子の設計上の理論値に基づいて計算される屈折率と共鳴入射角度又は共鳴波長との関係を示す分散曲線カーブを、前記基準液測定ステップで得られた屈折率と共鳴入射角度又は共鳴波長との関係に基づいて修正することで校正曲線を取得する校正曲線取得ステップと、
c)未知試料を被測定物として共鳴入射角度又は共鳴波長を測定し、前記校正曲線を参照して、その測定結果から未知試料の屈折率を求める試料測定ステップと、
を実行することを特徴とする、導波モード共鳴格子を用いた屈折率測定方法。
A waveguide mode resonance grating in which a multilayer structure of a grating layer and a waveguide layer or a single layer structure having both functions is formed on a substrate, and a multilayer structure or a single layer of the waveguide mode resonance grating A light irradiating means for irradiating light to the substrate surface or the surface of the object to be measured of the waveguide mode resonance grating in a state where the object to be measured is in contact with the surface opposite to the substrate across the structure; A spectrum measuring means for receiving the reflected light with respect to the light irradiation and measuring the angle spectrum when the incident angle of the irradiation light is changed or the wavelength spectrum when the wavelength of the irradiation light is changed, and measuring the spectrum. A refractive index measurement method using a refractive index measuring device that calculates a refractive index of an object to be measured based on a resonance incident angle or a resonance wavelength according to a measurement result of a means,
a) measuring a resonance incident angle or a resonance wavelength using a reference liquid having a known refractive index as an object to be measured, and determining a resonance incident angle or a resonance wavelength for at least one refractive index;
b) A dispersion curve curve showing the relationship between the refractive index calculated based on the theoretical value of the design of the waveguide mode resonance grating and the resonance incident angle or the resonance wavelength is a refractive index obtained in the reference liquid measurement step. And a calibration curve acquisition step of acquiring a calibration curve by correcting based on the relationship between the resonance incident angle or the resonance wavelength,
c) measuring a resonance incident angle or a resonance wavelength with an unknown sample as an object to be measured, referring to the calibration curve, and obtaining a refractive index of the unknown sample from the measurement result; and
A refractive index measurement method using a guided mode resonance grating.
請求項1又は2に記載の屈折率測定方法であって、同一の導波モード共鳴格子を用いて基準液の測定と未知試料の測定とを時分割で行うことを特徴とする、導波モード共鳴格子を用いた屈折率測定方法。   3. The refractive index measuring method according to claim 1, wherein the measurement of the reference solution and the measurement of the unknown sample are performed in a time-sharing manner using the same guided mode resonance grating. Refractive index measurement method using a resonant grating. 請求項1又は2に記載の屈折率測定方法であって、同一の導波モード共鳴格子の異なる部位を用いて、基準液の測定と未知試料の測定とを同時並行的に行うことを特徴とする、導波モード共鳴格子を用いた屈折率測定方法。   3. The refractive index measurement method according to claim 1, wherein the measurement of the reference solution and the measurement of the unknown sample are simultaneously performed using different parts of the same guided mode resonance grating. A refractive index measurement method using a waveguide mode resonance grating. 請求項1乃至4のいずれかに記載の屈折率測定方法であって、前記基準液は屈折率が制御された市販の屈折液であることを特徴とする、導波モード共鳴格子を用いた屈折率測定方法。   5. The refractive index measuring method according to claim 1, wherein the reference liquid is a commercially available refractive liquid with a controlled refractive index. Rate measurement method. 請求項1乃至5のいずれかに記載の屈折率測定方法であって、基準液及び未知試料の測定時に同時にそれぞれの温度を測定し、その温度の相違及び基準液の温度特性とに基づいて、未知試料の屈折率を補正することを特徴とする、導波モード共鳴格子を用いた屈折率測定方法。   The refractive index measurement method according to any one of claims 1 to 5, wherein each temperature is measured simultaneously when measuring the reference liquid and the unknown sample, and based on the difference in temperature and the temperature characteristics of the reference liquid, A method for measuring a refractive index using a guided mode resonance grating, wherein the refractive index of an unknown sample is corrected. a)格子層と導波層との複層構造体又は両者の機能を併せ持つ単層構造体が基板上に形成された導波モード共鳴格子と、
b)該導波モード共鳴格子の複層構造体又は単層構造体を挟んで基板と反対側の面に被測定物が接触された状態で、該導波モード共鳴格子の基板面又は被測定物面に光を照射する光照射手段と、
c)該光照射手段による光照射に対する反射光を受け、照射光の入射角度を変化させたときの角度スペクトル又は照射光の波長を変化させたときの波長スペクトルを測定し、共鳴ピークを与える共鳴入射角度又は共鳴波長を求めるスペクトル測定手段と、
d)異なる既知の屈折率を有する複数の基準液を被測定物として、前記スペクトル測定手段によりそれぞれ測定された共鳴入射角度又は共鳴波長と屈折率との離散的な関係に基づいて、校正曲線を作成する校正曲線作成手段と、
e)未知試料を被測定物として前記スペクトル測定手段により測定された共鳴入射角度又は共鳴波長から、前記校正曲線を参照して、未知試料の屈折率を求める演算処理手段と、
を備えることを特徴とする、導波モード共鳴格子を用いた屈折率測定装置。
a) a waveguide mode resonance grating in which a multilayer structure of a grating layer and a waveguide layer or a single layer structure having both functions is formed on a substrate;
b) The substrate surface of the waveguide mode resonance grating or the measurement object in a state where the object to be measured is in contact with the surface opposite to the substrate across the multilayer structure or single layer structure of the waveguide mode resonance grating A light irradiation means for irradiating the object with light;
c) Resonance that gives a resonance peak by receiving reflected light from the light irradiation means and measuring the angle spectrum when the incident angle of the irradiation light is changed or the wavelength spectrum when the wavelength of the irradiation light is changed. Spectrum measuring means for determining an incident angle or a resonance wavelength;
d) Using a plurality of reference solutions having different known refractive indexes as objects to be measured, a calibration curve is obtained based on the discrete relationship between the resonance incident angle or the resonance wavelength and the refractive index respectively measured by the spectrum measuring means. A calibration curve creation means to create,
e) an arithmetic processing means for obtaining a refractive index of the unknown sample with reference to the calibration curve from a resonance incident angle or a resonance wavelength measured by the spectrum measuring means with the unknown sample as an object to be measured;
A refractive index measuring apparatus using a guided mode resonance grating.
a)格子層と導波層との複層構造体又は両者の機能を併せ持つ単層構造体が基板上に形成された導波モード共鳴格子と、
b)該導波モード共鳴格子の複層構造体又は単層構造体を挟んで基板と反対側の面に被測定物が接触された状態で、該導波モード共鳴格子の基板面又は被測定物面に光を照射する光照射手段と、
c)該光照射手段による光照射に対する反射光を受け、照射光の入射角度を変化させたときの角度スペクトル又は照射光の波長を変化させたときの波長スペクトルを測定し、共鳴ピークを与える共鳴入射角度又は共鳴波長を求めるスペクトル測定手段と、
d)既知の屈折率を有する基準液を被測定物として、前記スペクトル測定手段により測定された共鳴入射角度又は共鳴波長と屈折率との関係に基づいて、前記導波モード共鳴格子の設計上の理論値に基づいて計算される屈折率と共鳴入射角度又は共鳴波長との関係を示す分散曲線カーブを修正することで校正曲線を取得する校正曲線取得手段と、
e)未知試料を被測定物として前記スペクトル測定手段により測定された共鳴入射角度又は共鳴波長から、前記校正曲線を参照して、未知試料の屈折率を求める演算処理手段と、
を備えることを特徴とする、導波モード共鳴格子を用いた屈折率測定装置。
a) a waveguide mode resonance grating in which a multilayer structure of a grating layer and a waveguide layer or a single layer structure having both functions is formed on a substrate;
b) The substrate surface of the waveguide mode resonance grating or the measurement object in a state where the object to be measured is in contact with the surface opposite to the substrate across the multilayer structure or single layer structure of the waveguide mode resonance grating A light irradiation means for irradiating the object with light;
c) Resonance that gives a resonance peak by receiving reflected light from the light irradiation means and measuring the angle spectrum when the incident angle of the irradiation light is changed or the wavelength spectrum when the wavelength of the irradiation light is changed. Spectrum measuring means for determining an incident angle or a resonance wavelength;
d) Using a reference liquid having a known refractive index as an object to be measured, the waveguide mode resonant grating is designed based on the relationship between the resonant incident angle or resonant wavelength and refractive index measured by the spectral measuring means. A calibration curve acquisition means for acquiring a calibration curve by correcting a dispersion curve curve indicating a relationship between a refractive index calculated based on a theoretical value and a resonance incident angle or a resonance wavelength;
e) an arithmetic processing means for obtaining a refractive index of the unknown sample with reference to the calibration curve from a resonance incident angle or a resonance wavelength measured by the spectrum measuring means with the unknown sample as an object to be measured;
A refractive index measuring apparatus using a guided mode resonance grating.
請求項7又は8に記載の屈折率測定装置であって、同一の導波モード共鳴格子を用いて基準液の測定と未知試料の測定とを時分割で行うことを特徴とする、導波モード共鳴格子を用いた屈折率測定装置。   9. The refractive index measurement apparatus according to claim 7, wherein the reference liquid measurement and the unknown sample measurement are performed in a time-sharing manner using the same waveguide mode resonance grating. A refractive index measuring device using a resonant grating. 請求項7又は8に記載の屈折率測定方法であって、同一の導波モード共鳴格子の異なる部位を用いて、基準液の測定と未知試料の測定とを同時並行的に行うことを特徴とする、導波モード共鳴格子を用いた屈折率測定装置。   9. The refractive index measurement method according to claim 7, wherein the measurement of the reference liquid and the measurement of the unknown sample are simultaneously performed using different parts of the same waveguide mode resonance grating. A refractive index measurement device using a waveguide mode resonance grating. 請求項7乃至10のいずれかに記載の屈折率測定装置であって、前記基準液は屈折率が制御された市販の屈折液であることを特徴とする、導波モード共鳴格子を用いた屈折率測定装置。   The refractive index measuring apparatus according to claim 7, wherein the reference liquid is a commercially available refractive liquid with a controlled refractive index. Rate measuring device. 請求項7乃至11のいずれかに記載の屈折率測定装置であって、基準液及び未知試料の測定時に同時にそれぞれの温度を測定する温度検出手段をさらに備え、その温度の相違及び基準液の温度特性とに基づいて、未知試料の屈折率を補正することを特徴とする、導波モード共鳴格子を用いた屈折率測定装置。   The refractive index measuring apparatus according to any one of claims 7 to 11, further comprising temperature detecting means for measuring respective temperatures simultaneously when measuring the reference liquid and the unknown sample, wherein the temperature difference and the temperature of the reference liquid are measured. A refractive index measuring apparatus using a waveguide mode resonance grating, wherein the refractive index of an unknown sample is corrected based on the characteristics.
JP2008073939A 2008-03-21 2008-03-21 Refractive index measuring method and refractive index measuring apparatus using guided mode resonance grating Expired - Fee Related JP5256808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008073939A JP5256808B2 (en) 2008-03-21 2008-03-21 Refractive index measuring method and refractive index measuring apparatus using guided mode resonance grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008073939A JP5256808B2 (en) 2008-03-21 2008-03-21 Refractive index measuring method and refractive index measuring apparatus using guided mode resonance grating

Publications (3)

Publication Number Publication Date
JP2009229196A true JP2009229196A (en) 2009-10-08
JP2009229196A5 JP2009229196A5 (en) 2011-03-31
JP5256808B2 JP5256808B2 (en) 2013-08-07

Family

ID=41244776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008073939A Expired - Fee Related JP5256808B2 (en) 2008-03-21 2008-03-21 Refractive index measuring method and refractive index measuring apparatus using guided mode resonance grating

Country Status (1)

Country Link
JP (1) JP5256808B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058218A (en) * 2010-09-13 2012-03-22 Shimadzu Corp Refractive index measuring apparatus using guided-mode resonance grating and refractive index measuring method
WO2018071255A1 (en) * 2016-10-13 2018-04-19 Instrumentation Laboratory Company Total protein measurement using whole blood refractometry
CN111122504A (en) * 2020-01-13 2020-05-08 中国人民解放军国防科技大学 Double-strip-shaped medium grating liquid refractive index change detection device based on guided mode resonance
CN111208060A (en) * 2020-02-14 2020-05-29 复旦大学 Sensing chip and preparation method, detection system and detection method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159319A (en) * 1993-12-09 1995-06-23 Satoshi Kawada Sensor device
JP2004037425A (en) * 2002-07-08 2004-02-05 Fuji Photo Film Co Ltd Measuring device
JP2005516210A (en) * 2002-01-28 2005-06-02 エス アール ユー バイオシステムス,エル エル シー Guided-mode resonant filter biosensor using linear optical surface structure
JP2006220605A (en) * 2005-02-14 2006-08-24 Fuji Photo Film Co Ltd Measurement method and measurement device
JP2007309663A (en) * 2006-05-16 2007-11-29 Takasago Thermal Eng Co Ltd Asbestos sampler and asbestos sampling method
WO2008031071A1 (en) * 2006-09-08 2008-03-13 Robert Magnusson Guided-mode resonance sensors employing angular, spectral modal, and polarization diversity for high-precision sensing in compact formats

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159319A (en) * 1993-12-09 1995-06-23 Satoshi Kawada Sensor device
JP2005516210A (en) * 2002-01-28 2005-06-02 エス アール ユー バイオシステムス,エル エル シー Guided-mode resonant filter biosensor using linear optical surface structure
JP2004037425A (en) * 2002-07-08 2004-02-05 Fuji Photo Film Co Ltd Measuring device
JP2006220605A (en) * 2005-02-14 2006-08-24 Fuji Photo Film Co Ltd Measurement method and measurement device
JP2007309663A (en) * 2006-05-16 2007-11-29 Takasago Thermal Eng Co Ltd Asbestos sampler and asbestos sampling method
WO2008031071A1 (en) * 2006-09-08 2008-03-13 Robert Magnusson Guided-mode resonance sensors employing angular, spectral modal, and polarization diversity for high-precision sensing in compact formats

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012042199; 佐藤晃: '導波モード共鳴フィルターの屈折率依存特性' 電気学会電磁界理論研究会資料 , 20071018, P.173-177 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012058218A (en) * 2010-09-13 2012-03-22 Shimadzu Corp Refractive index measuring apparatus using guided-mode resonance grating and refractive index measuring method
WO2018071255A1 (en) * 2016-10-13 2018-04-19 Instrumentation Laboratory Company Total protein measurement using whole blood refractometry
US10168278B2 (en) 2016-10-13 2019-01-01 Instrumentation Laboratory Company Total protein measurement using whole blood refractometry
US10302559B2 (en) 2016-10-13 2019-05-28 Instrumentation Laboratory Company Total protein measurement using whole blood refractometry
CN109863386A (en) * 2016-10-13 2019-06-07 仪器实验室公司 It is measured using the gross protein of whole blood refraction measurement
JP2019536987A (en) * 2016-10-13 2019-12-19 インストゥルメンテーション ラボラトリー カンパニー Total protein measurement using whole blood refractometry
US10648907B2 (en) 2016-10-13 2020-05-12 Instrumentation Laboratory Company Total protein measurement using whole blood refractometry
AU2017342829B2 (en) * 2016-10-13 2020-09-03 Instrumentation Laboratory Company Total protein measurement using whole blood refractometry
JP2020173279A (en) * 2016-10-13 2020-10-22 インストゥルメンテーション ラボラトリー カンパニー Total protein measurement using whole blood refractometry
AU2019272066B2 (en) * 2016-10-13 2021-06-17 Instrumentation Laboratory Company Total protein measurement using whole blood refractometry
CN111122504A (en) * 2020-01-13 2020-05-08 中国人民解放军国防科技大学 Double-strip-shaped medium grating liquid refractive index change detection device based on guided mode resonance
CN111208060A (en) * 2020-02-14 2020-05-29 复旦大学 Sensing chip and preparation method, detection system and detection method thereof

Also Published As

Publication number Publication date
JP5256808B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
US10801956B2 (en) Resonant periodic structures and methods of using them as filters and sensors
AU2005263893B2 (en) Multiwavelength optical sensors
KR101257309B1 (en) Fiber-optic surface plasmon resonance sensor and sensing method using the same
JP4786651B2 (en) Light sensor
Wieduwilt et al. Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator
TW201502491A (en) Method for measuring refractive index, refractive index measuring device, and method for producing optical element
US9068950B2 (en) Vernier photonic sensor data-analysis
US20150198526A1 (en) Differential detection for surface plasmon resonance sensor and method
IL258195A (en) System and method for monitoring status of target
JP5256808B2 (en) Refractive index measuring method and refractive index measuring apparatus using guided mode resonance grating
JP2009092569A (en) Refractive index meter
JP2010210384A (en) Refractive index meter
US20170176324A1 (en) Parallel Optical Measurement System With Broadband Angle Selective Filters
ITAN20070019A1 (en) SPECTROPHOTOMETRIC REFRACTOMETER
US5502560A (en) Analytical sensor using grating light reflection spectroscopy
Hermannsson et al. Absolute analytical prediction of photonic crystal guided mode resonance wavelengths
Hermannsson et al. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors
JP5365594B2 (en) Refractive index measuring apparatus and refractive index measuring method using guided mode resonance grating
JP2009229196A5 (en)
US20160265910A1 (en) In-situ analysis of ice using surface acoustic wave spectroscopy
JP2006242798A (en) Film thickness and calculation method of optical constant
Kim et al. Sensitivity response to coating material thickness for an optical resonant reflective biosensor based on a guided mode resonance filter
WO2008130278A2 (en) Biosensor based on photonic crystal surface waves
Maleki et al. Gate-Controlled Graphene-based Guided Mode Resonance Methane Sensor for Implementation in Optical ICs
Ley et al. Surface plasmon resonance sensor of silver film based on kretchmann configuration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5256808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees