JP2009220392A - Drape forming method - Google Patents

Drape forming method Download PDF

Info

Publication number
JP2009220392A
JP2009220392A JP2008067223A JP2008067223A JP2009220392A JP 2009220392 A JP2009220392 A JP 2009220392A JP 2008067223 A JP2008067223 A JP 2008067223A JP 2008067223 A JP2008067223 A JP 2008067223A JP 2009220392 A JP2009220392 A JP 2009220392A
Authority
JP
Japan
Prior art keywords
prepreg
resin
less
laminated
drape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067223A
Other languages
Japanese (ja)
Inventor
Masahiro Moriyama
匡洋 森山
Takuya Karaki
琢也 唐木
Masahiro Nishihara
正浩 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008067223A priority Critical patent/JP2009220392A/en
Publication of JP2009220392A publication Critical patent/JP2009220392A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drape forming method for producing high quality shaped articles free of wrinkles or voids when bending a prepreg laminate. <P>SOLUTION: The drape forming method in which the prepreg laminate laminated into a planar shape is shaped into a columnar shape having bent portions in a crosssection on a desired mold and thereafter solidified by heating is characterized in that the viscosity of matrix resin used in prepregs at 40°C is 1,500 Pa s or more and 30,000 Pa s or less and the prepreg laminate is solidified by heating after shaping the same into the desired shape in 3 min or more and 25 min or less, using a vacuum degassing method, after heating the prepreg laminated bodies at 50°C or more and 100°C or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、平板状に積層したプリプレグ積層体を、所望の型上で横断面に少なくとも一つの屈曲部を有する柱状に賦形した後に加熱硬化させるドレープ成形方法に関する。   The present invention relates to a drape molding method in which a prepreg laminate laminated in a flat plate shape is shaped into a column having at least one bent portion in a cross section on a desired mold, and then heat-cured.

繊維強化複合材料(以下、FRPと略することもある)は比強度、比剛性に優れることから航空宇宙産業から一般産業用途特まで幅広く用いられている。特に補強繊維に炭素繊維を用いた炭素繊維強化複合材料(以下、CFRPと略することもある)は、特に軽量で強度、剛性に優れることから民間航空機に代表されるように航空産業に広く用いられ、近年、特に主翼や胴体など大型で長尺の部材にも用いられている。   Fiber reinforced composite materials (hereinafter sometimes abbreviated as FRP) are widely used from the aerospace industry to general industrial applications because of their excellent specific strength and specific rigidity. In particular, carbon fiber reinforced composite materials (hereinafter sometimes abbreviated as CFRP) using carbon fibers as reinforcing fibers are widely used in the aviation industry as represented by civil aircraft because they are particularly lightweight and have excellent strength and rigidity. In recent years, it is also used for large and long members such as main wings and fuselage.

長尺で横断面が屈曲部を有する大型部材の成形方法としては、プリプレグを一枚ずつ型に沿わせて積層し、成形するハンドレイアップ法や、未硬化状態のプリプレグを積層し、得られた積層体を金型などに置き、全体をバッグフィルムで覆い、全体を加熱または室温で真空脱気して成形を行い、金型などの形状に賦形した後に加熱硬化させる真空脱気ドレープ成形法(以下単にドレープ成形と略することもある)(例えば、特許文献1、2参照)が採用されている。前者のハンドレイアップ方では、糸乱れの無い均一な厚みを有する成形体が得られるが、積層に時間がかかりコストアップの要因となっている。一方、後者のドレープ成形法では、積層に時間がかからずコストアップの要因は解消されるが、ドレープ成形時にシワが発生し、積層体を所定の形状に賦形することが困難であるか、賦形したとしても得られた積層体はシワやボイドが生じ良質な積層体とならないことが多かった。
特開平6−071763号公報 特開平6−071742号公報
As a method for forming a long and large-sized member having a bent section, a prepreg is laminated one by one along the mold, and a hand lay-up method for forming, or an uncured prepreg is laminated and obtained. Place the laminated body on a mold, etc., cover the whole with a bag film, heat or vacuum deaerate at room temperature, mold it, shape it into a mold, etc. The method (hereinafter sometimes simply referred to as drape molding) (for example, see Patent Documents 1 and 2) is employed. In the former method of hand lay-up, a molded product having a uniform thickness without yarn disturbance can be obtained, but it takes time to laminate and causes a cost increase. On the other hand, the latter drape forming method does not take much time for lamination and eliminates the cost increase factor, but is wrinkle generated during drape forming and is it difficult to shape the laminate to a predetermined shape? Even when shaped, the resulting laminate often wrinkles and voids and did not become a good laminate.
Japanese Patent Laid-Open No. 6-071763 Japanese Patent Laid-Open No. 6-071742

本発明は、上記課題を解決すること、すなわち、プリプレグ積層体を曲げるに際し、シワやボイドの無い良質な成形体を得るためのドレープ成形方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems, that is, to provide a drape forming method for obtaining a high-quality formed body free from wrinkles and voids when bending a prepreg laminate.

本発明のドレープ成形方法は上記目的を達成するために次の構成を有する。すなわち、
平板状に積層したプリプレグ積層体を、所望の型上で横断面に屈曲部を有する柱状に賦形した後に加熱硬化させるドレープ成形方法であって、プリプレグに使用しているマトリックス樹脂の40℃における粘度が1500Pa・s以上30000Pa・s以下で、かつ該プリプレグ積層体を50℃以上100℃以下に加熱した後、真空脱気法を用いて3分以上25分以下の時間をかけて所望の型に賦形した後に加熱硬化させることを特徴とするドレープ成形方法。
In order to achieve the above object, the drape forming method of the present invention has the following configuration. That is,
A draping molding method in which a prepreg laminate laminated in a flat shape is shaped into a column having a bent portion in a cross-section on a desired mold and then heat-cured, and the matrix resin used in the prepreg at 40 ° C. After the viscosity is 1500 Pa · s or more and 30000 Pa · s or less and the prepreg laminate is heated to 50 ° C. or more and 100 ° C. or less, a desired mold is formed over a period of 3 minutes or more and 25 minutes or less using a vacuum degassing method. A drape forming method characterized by heat-curing after forming into a shape.

本発明により、プリプレグ積層体を曲げることにより、横断面に少なくとも一つの屈曲部を有する柱状の部材を所望の型に賦形した後に加熱硬化させるドレープ成形方法において、シワやボイドの無い良質な成形体が得られ、物性向上および大幅な成形コストダウンを可能にする効果をもたらす。   According to the present invention, in a draping molding method in which a columnar member having at least one bent portion in a cross section is formed into a desired mold by bending the prepreg laminate, and then heat-cured, a high quality molding free from wrinkles and voids. A body is obtained, which brings about an effect of improving physical properties and significantly reducing molding costs.

本発明は、平板状に積層したプリプレグ積層体を、所望の型上で横断面に少なくとも一つの屈曲部を有する柱状の部材を所望の型に賦形した後に加熱硬化させるドレープ成形方法に適用するものである。本発明に用いるプリプレグとは、一般に先進複合材料として用いられている強化繊維に樹脂を含浸した状態のものを言う。   The present invention is applied to a drape forming method in which a prepreg laminate laminated in a flat plate shape is heat-cured after a columnar member having at least one bent portion in a cross section on a desired die is formed into a desired die. Is. The prepreg used in the present invention refers to a prepreg in a state where resin is impregnated in a reinforcing fiber generally used as an advanced composite material.

プリプレグの強化繊維としては、炭素繊維、ガラス繊維、ボロン繊維、アラミド繊維、高強度ポリエチレン繊維等が用いられる。なかでも強度と剛性に優れる炭素繊維(以下CFと略することもある)が好ましく用いられる。   As the prepreg reinforcing fiber, carbon fiber, glass fiber, boron fiber, aramid fiber, high-strength polyethylene fiber, or the like is used. Among these, carbon fibers (hereinafter sometimes abbreviated as CF) having excellent strength and rigidity are preferably used.

プリプレグのマトリックス樹脂は特に限定されないが、熱により硬化する熱硬化性樹脂が好ましく用いられる。熱硬化性樹脂としては、具体的には、エポキシ樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、フェノール樹脂、メラミン樹脂、マレイミド樹脂、シアン酸エステル樹脂および尿素樹脂などが挙げられる。これらの中で、エポキシ樹脂、ベンゾオキサジン樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、フェノール樹脂およびこれらの樹脂の混合物は、高い力学特性を有し、好ましく用いられる。特に、エポキシ樹脂は部材に必要とされる力学特性とプリプレグの製造工程で必要とされる粘度やタックとのバランスが良く好ましく用いられる。   The matrix resin of the prepreg is not particularly limited, but a thermosetting resin that is cured by heat is preferably used. Specific examples of thermosetting resins include epoxy resins, benzoxazine resins, vinyl ester resins, unsaturated polyester resins, urethane resins, phenol resins, melamine resins, maleimide resins, cyanate ester resins, and urea resins. It is done. Among these, epoxy resins, benzoxazine resins, vinyl ester resins, unsaturated polyester resins, phenol resins and mixtures of these resins have high mechanical properties and are preferably used. In particular, the epoxy resin is preferably used because it has a good balance between the mechanical properties required for the member and the viscosity and tack required in the prepreg manufacturing process.

エポキシ樹脂としては、分子内に複数のエポキシ基を有する化合物が用いられる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノール化合物とジシクロペンタジエンの共重合体を原料とするエポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、およびこれらの樹脂の組み合わせが好適に用いられる。   As the epoxy resin, a compound having a plurality of epoxy groups in the molecule is used. For example, bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, naphthalene type epoxy resin, and a copolymer of a phenol compound and dicyclopentadiene are used as raw materials. Glycidyl ether type epoxy resins such as epoxy resins, naphthalene type epoxy resins and novolak type epoxy resins, glycidyl amine type epoxy resins, and combinations of these resins are preferably used.

特に、ビスフェノールA型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂およびビスフェノールF型エポキシ樹脂から選ばれる、もしくは、これらを組み合わせて得られるエポキシ樹脂を好ましくは5から50重量部と、グリシジルアミン型エポキシ樹脂を好ましくは50から95重量部含むエポキシ樹脂は、力学物性と取り扱い性のバランスに優れており、特に好ましく用いられる。   In particular, an epoxy resin selected from bisphenol A type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin and bisphenol F type epoxy resin, or a combination thereof, preferably 5 to 50 parts by weight, and glycidyl An epoxy resin containing 50 to 95 parts by weight of an amine type epoxy resin is excellent in the balance between mechanical properties and handleability, and is particularly preferably used.

エポキシ樹脂と組み合わせて用いられる硬化剤としては、例えば、芳香族アミン、脂肪族アミン、カルボン無水物およびルイス酸錯体などが挙げられる。またこれらの硬化剤は、硬化活性を高めるために適当な硬化助剤を組み合わせて用いることができる。エポキシ樹脂に硬化助剤を組み合わせる場合の好ましい例としては、ジシアンジアミドに、3−(3,4−ジクロロフェニル)−1、1−ジメチル尿素(DCMU)などの尿素誘導体を硬化助剤として組み合わせる例、芳香族アミンに酸フッ化ホウ素エチルアミン錯体を硬化助剤として組み合わせる例、およびカルボン酸無水物やノボラック樹脂に3級アミンを硬化助剤として組み合わせる例などが挙げられる。   Examples of the curing agent used in combination with the epoxy resin include aromatic amines, aliphatic amines, carboxylic anhydrides, and Lewis acid complexes. These curing agents can be used in combination with an appropriate curing aid in order to increase the curing activity. Preferred examples of the case where a curing aid is combined with an epoxy resin include an example of combining dicyandiamide with a urea derivative such as 3- (3,4-dichlorophenyl) -1,1-dimethylurea (DCMU) as a curing aid, Examples include combining a group amine with a boron oxyfluoride ethylamine complex as a curing aid, and combining a tertiary amine with a carboxylic acid anhydride or a novolak resin as a curing aid.

硬化後のマトリックス樹脂においては、溶解し粒子を形成していない熱可塑性樹脂をマトリックス樹脂に含んでいても良い。このような熱可塑性樹脂としては、主鎖に、炭素炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、尿素結合、チオエーテル結合、スルホン結合、イミダゾール結合およびカルボニル結合からなる群から選ばれた結合を有するものが挙げられる。特に、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルイミドおよびポリイミドからなる群から選ばれた1種以上の樹脂が好ましく用いられる。熱可塑性樹脂を混合させるときは、エポキシ樹脂100重量部に対して熱可塑性樹脂を好ましくは1から20重量部混合させることにより、エポキシ樹脂に適度な粘弾性や力学特性を与えることができる。   In the matrix resin after curing, the matrix resin may contain a thermoplastic resin that is dissolved and does not form particles. Such thermoplastic resins include carbon-carbon bonds, amide bonds, imide bonds, ester bonds, ether bonds, carbonate bonds, urethane bonds, urea bonds, thioether bonds, sulfone bonds, imidazole bonds, and carbonyl bonds in the main chain. Those having a bond selected from the group consisting of: In particular, at least one resin selected from the group consisting of polysulfone, polyethersulfone, polyetherimide, and polyimide is preferably used. When the thermoplastic resin is mixed, an appropriate viscoelasticity and mechanical properties can be imparted to the epoxy resin by preferably mixing 1 to 20 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the epoxy resin.

また、プリプレグの表面に微粒子を含有した樹脂の層がさらに存在していると、プリプレグを積層硬化した後に層間に微粒子が存在する層が形成され、耐衝撃性などの硬化がさらに付与されより好ましい。使用する微粒子は特に限定されないが、ポリアミド、ポリアリレート、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルフォン、ポリエーテルスルフォンおよびポリアラミドからなる群から選ばれた少なくとも1種の熱可塑性樹脂からなる微粒子が好ましく用いられる。   In addition, if a resin layer containing fine particles is further present on the surface of the prepreg, a layer in which fine particles are present between the layers is formed after the prepreg is laminated and cured, and it is more preferable that curing such as impact resistance is further imparted. . The fine particles to be used are not particularly limited, but fine particles comprising at least one thermoplastic resin selected from the group consisting of polyamide, polyarylate, polyamideimide, polyimide, polyetherimide, polysulfone, polyethersulfone and polyaramid are preferred. Used.

プリプレグの形態としては高性能な特性が要求される分野においては強化繊維を一方向に引き揃えたいわゆるUD(Uni Directional)プリプレグが好ましいが、用途によっては強化繊維が織物状であるプリプレグの使用も可能である。   In a field where high performance characteristics are required as a form of prepreg, a so-called UD (Uni Directional) prepreg in which reinforcing fibers are aligned in one direction is preferable, but depending on the application, use of a prepreg in which the reinforcing fibers are woven is also possible. Is possible.

本発明において、プリプレグは平板状に積層したのち、所望の型上で横断面に少なくとも一つの屈曲部を有する柱状に賦形される。UDプリプレグを用いる場合のプリプレグ積層体の積層構成は、擬似等方をはじめとする様々な積層構成を取りうる。また、織物プリプレグを用いる場合のプリプレグ積層体においても積層構成は特に限定されない。用途によっては、UDプリプレグと織物プリプレグを規則的にあるいは不規則に積層したプリプレグ積層体を使用しても良い。UDプリプレグを用いて積層するに際して、“はり”等の長尺物の長手方向に配列させた0度層の厚み5mm以下に対して少なくとも1層の10度から90度、好ましくは30度以上90度以下の角度に配列させた繊維層を存在させる積層構成が、所望の型上で屈曲部を有する柱状に賦形する時に0度層の繊維間広がりを抑制するために好ましい。   In the present invention, the prepreg is laminated in a flat plate shape, and then shaped into a column shape having at least one bent portion in a cross section on a desired mold. When the UD prepreg is used, the laminated structure of the prepreg laminated body can take various laminated structures including pseudo-isotropy. Further, the laminated structure is not particularly limited even in the prepreg laminate in the case of using the woven prepreg. Depending on the application, a prepreg laminate in which UD prepregs and woven prepregs are laminated regularly or irregularly may be used. When laminating using a UD prepreg, at least one layer is 10 to 90 degrees, preferably 30 to 90 degrees with respect to a thickness of 5 mm or less of a 0 degree layer arranged in the longitudinal direction of a long object such as a “beam”. A laminated structure in which fiber layers arranged at an angle of less than or equal to a degree are preferable in order to suppress the inter-fiber spread of the 0 degree layer when forming a column having a bent portion on a desired mold.

プリプレグ積層体の厚みは3mm以上100mm以下さらには5mm以上50mm以下の範囲が、部材としての剛性や強度を容易に確保することができて好ましい。   The thickness of the prepreg laminate is preferably 3 mm or more and 100 mm or less, and more preferably 5 mm or more and 50 mm or less because rigidity and strength as a member can be easily secured.

ドレープ成形は、様々な横断面の形状に適用可能であるが、具体的にはL字形、凹形、I形、扇形、半楕円形、Z形等が挙げられ、L字形、凹形、I形は特に頻繁に用いられる。また、これらを組み合わせた形状も好ましく用いられ、例えば、図4のように平板12と2つのL字形柱体13を組み合わせた形状、図5のように2枚の平板12と2つの凹形柱体14を組み合わせた形状、図6のように平板12とZ形柱体15と凹形柱体14とを組み合わせた形状などが挙げられる。いずれも組み合わせる平板および柱状体のうちどれか一つの柱状体の横断面に少なくとも一つの屈曲部を有している。   Drape molding can be applied to various cross-sectional shapes, and specific examples include L-shaped, concave, I-shaped, fan-shaped, semi-elliptical, Z-shaped, etc. L-shaped, concave, I The shape is used particularly frequently. A combination of these is also preferably used. For example, a combination of the flat plate 12 and the two L-shaped pillars 13 as shown in FIG. 4, and two flat plates 12 and two concave columns as shown in FIG. The shape which combined the body 14, the shape which combined the flat plate 12, the Z-shaped column 15, and the concave column 14 as shown in FIG. 6, etc. are mentioned. Both have at least one bent portion in the cross section of any one of the flat plate and the columnar body to be combined.

ドレープ成形においては、平板状に積層したプリプレグ積層体を、所望の型上で屈曲部を有する形状に賦形するために必要な圧力源としては、閉ざされた系の中に空気を除くことによる真空圧、外部からの気体による加圧、また液体の重力および外部からの加圧の併用などが適用できる。液体を加熱しておけば加熱下での加圧となる。これらの中で、最も簡便に行える成形方法として加熱下における真空脱気法が挙げられる。   In drape molding, the pressure source required to shape a prepreg laminate laminated in a flat shape into a shape having a bent portion on a desired mold is by removing air in a closed system. Vacuum pressure, pressurization with gas from the outside, or the combined use of liquid gravity and external pressurization can be applied. If the liquid is heated, it will be under pressure. Among these, the vacuum degassing method under heating is mentioned as the most simple forming method.

真空脱気法にてドレープ成形する場合、以下の方法で行うことが好ましい。図1により説明すると、まず、治具4を箱1底面の中央におき、プリプレグ積層体5を治具4の上に載せ、箱1を含めた全体をバッグフィルム6で覆い、箱1の壁にバッグフィルム6の端を装着して、箱1内の空気を抜く形で積層体を治具4に賦形する(賦形後の状態が図3である)。この箱全体をオーブンなどの中に入れ、加熱すると賦形時に積層したプリプレグ間の滑りが良好になりシワができにくくなり好ましい。このとき、箱1の壁の高さを、治具上に載せたプリプレグ積層体の高さの半分以上の高さにすると、プリプレグ積層体にシワが発生しにくくなるため好ましい。   When drape forming by a vacuum degassing method, it is preferable to carry out by the following method. Referring to FIG. 1, first, the jig 4 is placed in the center of the bottom of the box 1, the prepreg laminate 5 is placed on the jig 4, and the whole including the box 1 is covered with the bag film 6. The end of the bag film 6 is attached to and the laminate is shaped into the jig 4 in such a manner that the air in the box 1 is removed (the state after shaping is shown in FIG. 3). It is preferable that the whole box is put in an oven or the like and heated, because slippage between the prepregs laminated at the time of shaping becomes good and wrinkles are hardly formed. At this time, it is preferable to set the height of the wall of the box 1 to a height that is half or more of the height of the prepreg laminated body placed on the jig because wrinkles are less likely to occur in the prepreg laminated body.

そして本発明者らは、このドレープ成形において、シワやボイドの無い良質な成形体を得られる条件について鋭意検討したところ、賦形に有する時間、賦形時のプリプレグ積層体の温度、マトリックス樹脂の粘度が特定の範囲内であると良質な成形体を得られることを見出したのである。   And, the present inventors diligently studied the conditions for obtaining a good-quality molded product without wrinkles and voids in this drape molding, the time required for shaping, the temperature of the prepreg laminate during shaping, the matrix resin It has been found that a molded article of good quality can be obtained when the viscosity is within a specific range.

シワやボイドの無い良質な成形体を得るためには、真空脱気法を用いて3分以上25分以下の時間をかけて賦形することが重要である。この理由についてはまだ完全には解明されていないが、賦形に有する時間が25分以下であると樹脂がプリプレグから流れ出ないため、シワやボイドの無い良質な成形体が得られるものと考えられる。賦形時間は短いほど樹脂が流れ出しにくく、20分以下が特に好ましいが、あまりに短すぎるとプリプレグ積層体が完全に型に沿わず、成形圧力ムラによりボイドが発生することがあるため、3分以上とすることが重要である。また、25分を超える賦形時間であると、樹脂がフローしてプリプレグから流れ出してしまい、樹脂不足によってボイドが発生することがある。   In order to obtain a high-quality molded article free from wrinkles and voids, it is important to form the molded article by taking a time of 3 minutes to 25 minutes using a vacuum degassing method. Although the reason for this has not been fully elucidated yet, it is considered that if the time for shaping is 25 minutes or less, the resin does not flow out of the prepreg, so that a high-quality molded article free from wrinkles and voids can be obtained. . The shorter the shaping time, the more difficult the resin flows out, and 20 minutes or less is particularly preferable. However, if it is too short, the prepreg laminate does not completely conform to the mold, and voids may occur due to uneven molding pressure. Is important. If the shaping time exceeds 25 minutes, the resin may flow and flow out of the prepreg, and voids may occur due to insufficient resin.

賦形時のプリプレグ積層体の温度は50℃以上100℃以下が好ましく、60℃以上80℃以下であるとより好ましい。賦形時のプリプレグの温度が50℃を下回るとプリプレグ間のすべりが発生せずにシワが発生し、100℃を超えると賦形時に樹脂がフローしてプリプレグから流れ出てしまうことがある。   The temperature of the prepreg laminate during shaping is preferably 50 ° C. or higher and 100 ° C. or lower, and more preferably 60 ° C. or higher and 80 ° C. or lower. If the temperature of the prepreg at the time of shaping is less than 50 ° C., wrinkles will occur without slipping between the prepregs, and if it exceeds 100 ° C., the resin may flow and flow out of the prepreg at the time of shaping.

また、プリプレグに使用しているマトリックスの樹脂の粘度を測定し、該マトリックス樹脂の40℃における樹脂粘度は、1500Pa・s以上30000Pa・s以下であるものが好ましい。樹脂粘度が30000Pa・sを超えるとプリプレグ間のすべり性が低下してシワが発生する場合があり、1500Pa・s未満であると賦型時に樹脂がフローしてプリプレグから流れ出てしまうことがある。なお、樹脂粘度はレオメトリックス社製DSR−200または同等の性能を有する測定機器により、シェア速度10rad/秒の条件下で、25mm直径の2枚のディスクプレートを用い、ディスクプレート間隔1.0mmにて、40℃から80℃まで2℃/分の昇温速度で温度を上昇させながら測定した値である。   The viscosity of the matrix resin used in the prepreg is measured, and the resin viscosity at 40 ° C. of the matrix resin is preferably 1500 Pa · s or more and 30000 Pa · s or less. If the resin viscosity exceeds 30000 Pa · s, the slidability between prepregs may be reduced and wrinkles may occur. If it is less than 1500 Pa · s, the resin may flow and flow out of the prepreg during molding. The resin viscosity was measured using DSR-200 manufactured by Rheometrics Co., Ltd. or a measuring instrument having equivalent performance under the condition of a shear rate of 10 rad / sec. The value measured while increasing the temperature from 40 ° C. to 80 ° C. at a rate of temperature increase of 2 ° C./min.

以下、実施例によって本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
a.粒子の作製
4,4’−ジアミノ−3,3’ジメチルジシクロヘキシルメタンを含有するポリアミド(エムザベルケ社製“グリルアミド(登録商標、以下同じ)”−TR55)90重量部、エポキシ樹脂(ジャパンエポキシレジン(株)製“jER(登録商標、以下同じ)”828)8重量部および硬化剤(富士化成工業(株)製“トーマイド(登録商標、以下同じ)”#296)2重量部をクロロホルム300重量部とメタノール100重量部の混合溶媒中に添加して均一溶液を得た。次に該溶液を塗装用のスプレーガンを用いて霧状にして、よく攪拌した3000重量部のn−ヘキサンの壁面に向かって吹き付けて溶質を析出させた。析出した固体を濾別し、n−ヘキサンでよく洗浄した後、100℃24時間の真空乾燥を行い透明ポリアミドの粒子を得た。
b.樹脂組成物の調整
下記原料を混練しエポキシ樹脂組成物を得て、これを一次樹脂とした。まず、テトラグリシジルジアミノジフェニルメタンとビスフェノールA型エポキシ樹脂の混合物にポリエーテルスルホンを加熱下溶解し、70℃まで冷却後、3,3’−ジアミノジフェニルスルホンを分散させた。
テトラグリシジルジアミノジフェニルメタン(ELM434、住友化学工業(株)製)85.0部
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)製、“jER(登録商標)”828)15.0部
ポリエーテルスルホン(PES5003P、住友化学工業(株)製) 12.3部
3,3’−ジアミノジフェニルスルホン(和歌山精化(株)製) 36.0部
c.プリプレグの作製
(b)で調整した一次樹脂をリバースロールコーターを用いて離型紙上に塗布量が45.1g/mになるよう塗布して一次樹脂フィルムを作製した。
Example 1
a. Preparation of Particles 90 parts by weight of a polyamide containing 4,4′-diamino-3,3′dimethyldicyclohexylmethane (“Milamide (registered trademark, same applies hereinafter)”-TR55 manufactured by Mzavelke), epoxy resin (Japan Epoxy Resin Co., Ltd.) ) “JER (registered trademark, same applies hereinafter)” 828) 8 parts by weight and a curing agent (“Fuji Kasei Kogyo Co., Ltd.“ Tomide (registered trademark) same applies below ”# 296) 2 parts by weight of chloroform 300 parts by weight The mixture was added to 100 parts by weight of methanol to obtain a homogeneous solution. Next, the solution was made into a mist using a spray gun for coating, and sprayed toward the wall surface of 3000 parts by weight of n-hexane, which was well stirred, to precipitate a solute. The precipitated solid was separated by filtration, washed well with n-hexane, and then vacuum dried at 100 ° C. for 24 hours to obtain transparent polyamide particles.
b. Preparation of resin composition The following raw materials were kneaded to obtain an epoxy resin composition, which was used as a primary resin. First, polyethersulfone was dissolved under heating in a mixture of tetraglycidyldiaminodiphenylmethane and bisphenol A type epoxy resin, cooled to 70 ° C., and 3,3′-diaminodiphenylsulfone was dispersed therein.
Tetraglycidyldiaminodiphenylmethane (ELM434, manufactured by Sumitomo Chemical Co., Ltd.) 85.0 parts Bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., “jER (registered trademark)” 828) 15.0 parts polyethersulfone ( PES5003P, manufactured by Sumitomo Chemical Co., Ltd.) 12.3 parts 3,3′-diaminodiphenylsulfone (manufactured by Wakayama Seika Co., Ltd.) 36.0 parts c. The primary resin prepared in Preparation of the prepreg (b) the coating amount onto release paper using a reverse roll coater and coated so as to be 45.1 g / m 2 to prepare a primary resin film.

次に、一方向に引き揃えた炭素繊維(“トレカ”(登録商標)T800SC−24K−10E(東レ(株)製)を両側から、前記の一次樹脂フィルムで挟み、加熱加圧して樹脂を含浸させた。さらにその両側にaで作製した粒子を6g/m散布し、離型紙で挟んだ後に加熱加圧した。このようにして、炭素繊維目付190g/m、炭素繊維含有量55.6%のプリプレグを得た。
d.樹脂の粘度測定
(b)で調整した一次樹脂を、レオメトリックス社製DSR−200または同等の性能を有する測定機器により、シェア速度10rad/秒の条件下で、25mm直径の2枚のディスクプレートを用い、ディスクプレート間隔1.0mmにて、40℃から80℃まで2℃/分の昇温速度で温度を上昇させながら、各温度での粘度を測定した。
e.プリプレグのカットと積層
(c)で作製したプリプレグを、長手方向を0度とし、0度材として幅5cm、長さ50cmに8枚カットした。同様に長手方向を0度とし、45度材、―45度材、90度材をそれぞれやはり幅5cm、長さ50cmにそれぞれ8枚カットした。これら計32枚のプリプレグを[45/90/−45/0]4s(sは鏡面対称を示す)の積層構成に積層した。
f.ドレープ成形
(e)で積層した積層体を図1に示すように型にのせた。図1はこのドレープ成形装置について、治具の長手方向に対して垂直な断面図であり、図2は治具の長手方向の断面図である。ドレープ成型用のステンレス製の箱1の壁に穴をあけ、箱内の空気を抜きやすくするため穴全体を不織布2で壁の内側から多い、耐熱テープ3で不織布を打ち壁に貼り付けた。治具4を箱の壁に対して均等な間隔に置きそこを両面テープで固定した後、プリプレグ積層体5を治具上に置いた。プリプレグ積層体の位置は治具に対して均等な間隔とした。プリプレグ積層体のバッグフィルム6側にピールプライ7をのせた。プリプレグ積層基材体の上面の高さは箱1の高さと同一とした。箱1の上から全体を袋状のバッグフィルム6で覆い、フィルムの端を両面テープ8にて箱の壁外側に空気が漏れないように貼り付けた。箱の穴の空いてある部分をパイプ9で溶接し、その先端を耐圧ゴム管10で接続し耐圧ゴム管を介して真空ポンプ11につないだ。そこで、バッグフィルムがプリプレグ積層体の近くまで来るよう箱内の空気を真空ポンプにて抜いた(この状態が図1である)。そのままの状態で箱全体を60℃に加熱された乾燥器内に1時間加熱後、再び箱内の空気を真空ポンプにて抜きドレープ成型を行った。このとき真空ポンプのリークバルブを調整して20分間で真空圧がかかるように徐々に真空をひいていった。積層基材がジグの形状に沿い、ドレープ成形が終了した状態が図3である。乾燥器から箱を取り出し、真空状態を解除して室温まで冷却した。この賦形された積層基材をジグから取り出し、シート材を取り除いた後、賦形された積層機材を再度ジグ上にのせ、通常のオートクレーブ成形法を用い、0.6MPaの圧力下、180℃2時間の硬化条件にて成形体を作製した。できあがった成形板を長手方向に対し垂直にダイヤモンドカッターで切断し、シワの有無を観察したところ、シワは見られなかった。また、切断面をバフ研磨し顕微鏡観察を行ったところ、ボイドは確認されなかった。
Next, carbon fibers ("Treka" (registered trademark) T800SC-24K-10E (manufactured by Toray Industries, Inc.)) aligned in one direction are sandwiched between the primary resin films from both sides, and heated and pressed to impregnate the resin. Furthermore, 6 g / m 2 of the particles prepared in a were sprayed on both sides of the particles and sandwiched between release papers, followed by heating and pressurization, and thus a carbon fiber basis weight of 190 g / m 2 and a carbon fiber content of 55. 6% prepreg was obtained.
d. Viscosity measurement of resin The primary resin adjusted in (b) was measured by using DSR-200 manufactured by Rheometrics Co. The viscosity at each temperature was measured while increasing the temperature from 40 ° C. to 80 ° C. at a rate of temperature increase of 2 ° C./min.
e. Cut and Lamination of Prepreg Eight prepregs prepared in (c) were cut into a longitudinal direction of 0 degree and a 0 degree material having a width of 5 cm and a length of 50 cm. Similarly, the longitudinal direction was set to 0 degree, and the 45 degree material, the -45 degree material, and the 90 degree material were each cut into 8 pieces each having a width of 5 cm and a length of 50 cm. A total of 32 prepregs were laminated in a laminated configuration of [45/90 / −45 / 0] 4s (s represents mirror symmetry).
f. The laminate laminated by drape molding (e) was placed on a mold as shown in FIG. FIG. 1 is a cross-sectional view perpendicular to the longitudinal direction of the jig for this drape forming apparatus, and FIG. 2 is a cross-sectional view in the longitudinal direction of the jig. A hole was made in the wall of the stainless steel box 1 for drape molding, and the entire hole was made from the inside of the wall with the nonwoven fabric 2 in order to make it easy to vent the air in the box, and the nonwoven fabric was applied to the wall with the heat-resistant tape 3. After placing the jig 4 at an equal interval with respect to the wall of the box and fixing it with double-sided tape, the prepreg laminate 5 was placed on the jig. The positions of the prepreg laminate were set at an equal interval with respect to the jig. The peel ply 7 was placed on the bag film 6 side of the prepreg laminate. The height of the upper surface of the prepreg laminated base material was the same as the height of the box 1. The entire top of the box 1 was covered with a bag-like bag film 6, and the end of the film was affixed to the outside of the box wall with double-sided tape 8 so as not to leak air. The holed portion of the box was welded with a pipe 9 and the tip was connected with a pressure-resistant rubber tube 10 and connected to the vacuum pump 11 via the pressure-resistant rubber tube. Then, the air in a box was extracted with the vacuum pump so that a bag film might come to the vicinity of a prepreg laminated body (this state is FIG. 1). The whole box was heated in a drier heated to 60 ° C. for 1 hour as it was, and then the air in the box was again drawn by a vacuum pump and draped. At this time, the vacuum valve was gradually pulled so that the vacuum pressure was applied in 20 minutes by adjusting the leak valve of the vacuum pump. FIG. 3 shows a state in which the laminated base material follows the shape of the jig and the drape forming is finished. The box was removed from the dryer, the vacuum state was released, and the product was cooled to room temperature. After taking out the shaped laminated base material from the jig and removing the sheet material, the shaped laminated equipment is placed on the jig again, and using an ordinary autoclave molding method, 180 ° C. under a pressure of 0.6 MPa. A molded body was produced under curing conditions for 2 hours. The resulting molded plate was cut with a diamond cutter perpendicular to the longitudinal direction and observed for wrinkles. As a result, no wrinkles were found. Further, when the cut surface was buffed and observed under a microscope, no void was confirmed.

(実施例2)
真空脱気の時間を5分、賦形時の温度を80℃に変更した以外は全て実施例1と同様にしてドレープ成形を行った。得られた成形品をやはり実施例1と同様にダイヤモンドカッターで切断してバフ研磨し、シワとボイドの有無を確認した。
(Example 2)
Drape molding was performed in the same manner as in Example 1 except that the time for vacuum degassing was changed to 5 minutes and the temperature during shaping was changed to 80 ° C. The obtained molded product was cut with a diamond cutter and buffed in the same manner as in Example 1 to confirm the presence or absence of wrinkles and voids.

(比較例1)
真空脱気の時間を1分に変更した以外は全て実施例1と同様にしてドレープ成形を行った。得られた成形品をやはり実施例1と同様にダイヤモンドカッターで切断してバフ研磨し、シワとボイドの有無を確認した。
(Comparative Example 1)
Drape molding was performed in the same manner as in Example 1 except that the vacuum degassing time was changed to 1 minute. The obtained molded product was cut with a diamond cutter and buffed in the same manner as in Example 1 to confirm the presence or absence of wrinkles and voids.

(比較例2)
真空脱気の時間を30分に変更した以外は全て実施例1と同様にしてドレープ成形を行った。得られた成形品をやはり実施例1と同様にダイヤモンドカッターで切断してバフ研磨し、シワとボイドの有無を確認した。
(Comparative Example 2)
Drape molding was performed in the same manner as in Example 1 except that the vacuum degassing time was changed to 30 minutes. The obtained molded product was cut with a diamond cutter and buffed in the same manner as in Example 1 to confirm the presence or absence of wrinkles and voids.

(比較例3)
一次樹脂の組成を、
テトラグリシジルジアミノジフェニルメタン(ELM434、住友化学工業(株)製)85.0部
ビスフェノールA型エポキシ樹脂(東都化成(株)製、“YD(登録商標)”128)15.0部
ポリエーテルスルホン(PES5003P、住友化学工業(株)製) 16.0部
3,3’−ジアミノジフェニルスルホン(和歌山精化(株)製) 36.0部
に変更した以外は全て実施例1と同様にしてドレープ成形を行った。得られた成形品をやはり実施例1と同様にダイヤモンドカッターで切断してバフ研磨し、シワとボイドの有無を確認した。
(Comparative Example 3)
The composition of the primary resin
Tetraglycidyldiaminodiphenylmethane (ELM434, manufactured by Sumitomo Chemical Co., Ltd.) 85.0 parts Bisphenol A type epoxy resin (manufactured by Tohto Kasei Co., Ltd., “YD (registered trademark) 128) 15.0 parts polyethersulfone (PES5003P) 16.0 parts 3,3′-diaminodiphenyl sulfone (manufactured by Wakayama Seika Co., Ltd.) Except for changing to 36.0 parts, drape molding was carried out in the same manner as in Example 1. went. The obtained molded product was cut with a diamond cutter and buffed in the same manner as in Example 1 to confirm the presence or absence of wrinkles and voids.

(比較例4)
賦型時の温度を40℃に変更した以外は全て実施例1と同様にしてドレープ成形を行った。得られた成形品をやはり実施例1と同様にダイヤモンドカッターで切断してバフ研磨し、シワとボイドの有無を確認した。得られた結果を表1に示す。
(Comparative Example 4)
Drape molding was performed in the same manner as in Example 1 except that the temperature at the time of molding was changed to 40 ° C. The obtained molded product was cut with a diamond cutter and buffed in the same manner as in Example 1 to confirm the presence or absence of wrinkles and voids. The obtained results are shown in Table 1.

実施例1と比較例1、2との比較から、真空脱気の時間が3分未満もしくは25分を超えるとボイドが発生することが分かる。   From comparison between Example 1 and Comparative Examples 1 and 2, it can be seen that voids are generated when the vacuum degassing time is less than 3 minutes or more than 25 minutes.

実施例1と比較例3との比較から、真空脱気の時間と賦型時の温度が同じでも、40℃における樹脂粘度が30000Pa・sを超えるとシワが発生することが分かる。   From comparison between Example 1 and Comparative Example 3, it can be seen that wrinkles are generated when the resin viscosity at 40 ° C. exceeds 30000 Pa · s even when the time of vacuum degassing and the temperature at the time of molding are the same.

実施例2と比較例4との比較から、賦形時の温度が50℃未満の場合はシワが発生することが分かる。   From comparison between Example 2 and Comparative Example 4, it can be seen that wrinkles occur when the temperature during shaping is less than 50 ° C.

Figure 2009220392
Figure 2009220392

本発明の一実施態様に係るドレープ成形法に使用する成形装置の治具の長手方向に対して垂直な方向の断面図である。It is sectional drawing of a direction perpendicular | vertical with respect to the longitudinal direction of the jig | tool of the shaping | molding apparatus used for the drape shaping | molding method which concerns on one embodiment of this invention. 本発明の一実施態様に係るドレープ成形法に使用する成形装置の治具の長手方向の断面図である。It is sectional drawing of the longitudinal direction of the jig | tool of the shaping | molding apparatus used for the drape shaping | molding method which concerns on one embodiment of this invention. 本発明の一実施態様に係るドレープ成形法により賦形後の治具の長手方向に対して垂直な方向の断面図である。It is sectional drawing of the direction perpendicular | vertical with respect to the longitudinal direction of the jig | tool after shaping | molding by the drape forming method which concerns on one embodiment of this invention. 本発明の一実施態様に係るドレープ成形法により得られた柱状体を組み合わせた成形体の断面形状の一例を示す図である。It is a figure which shows an example of the cross-sectional shape of the molded object which combined the columnar body obtained by the drape forming method which concerns on one embodiment of this invention. 本発明の一実施態様に係るドレープ成形法により得られた柱状体を組み合わせた成形体の断面形状の別の一例を示す図である。It is a figure which shows another example of the cross-sectional shape of the molded object which combined the columnar body obtained by the drape molding method which concerns on one embodiment of this invention. 本発明の一実施態様に係るドレープ成形法により得られた柱状体を組み合わせた成形体の断面形状のさらに別の一例を示す図である。It is a figure which shows another example of the cross-sectional shape of the molded object which combined the columnar body obtained by the drape molding method which concerns on one embodiment of this invention.

符号の説明Explanation of symbols

1:ドレープ成型用のステンレス製の箱
2:不織布
3:耐熱テープ
4:治具
5:プリプレグ積層体
6:バッグフィルム
7:ピールプライ
8:両面テープ
9:パイプ
10:耐圧ゴム管
11:真空ポンプ
12:平板
13:L形柱体
14:凹形柱体
15:Z形柱体
1: Stainless steel box for drape molding 2: Nonwoven fabric
3: Heat-resistant tape 4: Jig 5: Pre-preg laminate 6: Bag film 7: Peel ply 8: Double-sided tape
9: Pipe 10: Pressure rubber tube 11: Vacuum pump 12: Flat plate 13: L-shaped column 14: Concave column 15: Z-shaped column

Claims (1)

平板状に積層したプリプレグ積層体を、所望の型上で横断面に屈曲部を有する柱状に賦形した後に加熱硬化させるドレープ成形方法であって、プリプレグに使用しているマトリックス樹脂の40℃における粘度が1500Pa・s以上30000Pa・s以下で、かつ該プリプレグ積層体を50℃以上100℃以下に加熱した後、真空脱気法を用いて3分以上25分以下の時間をかけて所望の型に賦形した後に加熱硬化させることを特徴とするドレープ成形方法。 A draping molding method in which a prepreg laminate laminated in a flat shape is shaped into a column having a bent portion in a cross section on a desired mold and then heat-cured, and the matrix resin used in the prepreg at 40 ° C. After the viscosity is 1500 Pa · s or more and 30000 Pa · s or less and the prepreg laminate is heated to 50 ° C. or more and 100 ° C. or less, a desired mold is formed over a period of 3 minutes or more and 25 minutes or less using a vacuum degassing method. A drape forming method characterized by heat-curing after forming into a shape.
JP2008067223A 2008-03-17 2008-03-17 Drape forming method Pending JP2009220392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067223A JP2009220392A (en) 2008-03-17 2008-03-17 Drape forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067223A JP2009220392A (en) 2008-03-17 2008-03-17 Drape forming method

Publications (1)

Publication Number Publication Date
JP2009220392A true JP2009220392A (en) 2009-10-01

Family

ID=41237716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067223A Pending JP2009220392A (en) 2008-03-17 2008-03-17 Drape forming method

Country Status (1)

Country Link
JP (1) JP2009220392A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519098A (en) * 2009-03-02 2012-08-23 ザ・ボーイング・カンパニー Method for producing contoured composite structure and structure produced by this method
JP2016168684A (en) * 2015-03-11 2016-09-23 富士重工業株式会社 Molding apparatus of composite material, and molding method of composite material
CN106142587A (en) * 2016-07-27 2016-11-23 中国商用飞机有限责任公司北京民用飞机技术研究中心 The double bag hot barrier film preformation method of a kind of composite
CN106414031A (en) * 2014-06-03 2017-02-15 吉凯恩航空服务结构公司 Apparatus and method for forming a flange
CN107825727A (en) * 2017-10-20 2018-03-23 中国商用飞机有限责任公司北京民用飞机技术研究中心 The forming method and shaped device and wallboard of preforming stringer L-shaped part and wallboard
JP2018165052A (en) * 2016-05-20 2018-10-25 ザ・ボーイング・カンパニーThe Boeing Company Granular prepreg molding assistant
JP2019511390A (en) * 2016-01-21 2019-04-25 サイテック インダストリーズ インコーポレイテッド Fabrication of complex shaped composite structures
CN109986799A (en) * 2017-12-29 2019-07-09 高级航空技术有限责任公司 Method and apparatus for manufacturing fiber preform
JP2020157615A (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Fiber-reinforced plastic composite material, fiber-reinforced plastic preform, and fiber-reinforced plastic intermediate base material
CN114889172A (en) * 2022-07-14 2022-08-12 成都市泰格尔航天航空科技有限公司 Self-adaptive rubber retaining strip for molding ultra-thick composite material part and using method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012519098A (en) * 2009-03-02 2012-08-23 ザ・ボーイング・カンパニー Method for producing contoured composite structure and structure produced by this method
CN106414031A (en) * 2014-06-03 2017-02-15 吉凯恩航空服务结构公司 Apparatus and method for forming a flange
CN106414031B (en) * 2014-06-03 2020-04-17 吉凯恩航空服务结构有限责任公司 Apparatus and method for forming a flange
JP2016168684A (en) * 2015-03-11 2016-09-23 富士重工業株式会社 Molding apparatus of composite material, and molding method of composite material
US10328615B2 (en) 2015-03-11 2019-06-25 Subaru Corporation Molding equipment of composite material and molding method of composite material
JP7000330B2 (en) 2016-01-21 2022-02-10 サイテック インダストリーズ インコーポレイテッド Manufacture of composite structures with complex shapes
JP2019511390A (en) * 2016-01-21 2019-04-25 サイテック インダストリーズ インコーポレイテッド Fabrication of complex shaped composite structures
JP2018165052A (en) * 2016-05-20 2018-10-25 ザ・ボーイング・カンパニーThe Boeing Company Granular prepreg molding assistant
US11365300B2 (en) 2016-05-20 2022-06-21 The Boeing Company Particulate prepreg forming aid
CN106142587A (en) * 2016-07-27 2016-11-23 中国商用飞机有限责任公司北京民用飞机技术研究中心 The double bag hot barrier film preformation method of a kind of composite
CN107825727A (en) * 2017-10-20 2018-03-23 中国商用飞机有限责任公司北京民用飞机技术研究中心 The forming method and shaped device and wallboard of preforming stringer L-shaped part and wallboard
CN109986799A (en) * 2017-12-29 2019-07-09 高级航空技术有限责任公司 Method and apparatus for manufacturing fiber preform
CN109986799B (en) * 2017-12-29 2022-04-26 高级航空技术有限责任公司 Method and apparatus for manufacturing fiber preform
JP2020157615A (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Fiber-reinforced plastic composite material, fiber-reinforced plastic preform, and fiber-reinforced plastic intermediate base material
JP7198701B2 (en) 2019-03-27 2023-01-04 日産自動車株式会社 Fiber-reinforced plastic composites, fiber-reinforced plastic preforms, and fiber-reinforced plastic intermediate substrates
CN114889172A (en) * 2022-07-14 2022-08-12 成都市泰格尔航天航空科技有限公司 Self-adaptive rubber retaining strip for molding ultra-thick composite material part and using method

Similar Documents

Publication Publication Date Title
JP2009220392A (en) Drape forming method
US10723087B2 (en) Prepreg and method for manufacturing same
JP5739361B2 (en) Fiber reinforced composite material
EP3072918B1 (en) Production method for fibre-reinforced composite material, prepreg, particle-containing resin composition, and fibre-reinforced composite material
KR102126294B1 (en) Improvements in or relating to fibre reinforced composites
CN109196026B (en) Prepreg and method for producing same
CA2776210C (en) Method for producing fibre-reinforced composite material, and heat-resistant mold material and heat-resistant structural material using the fiber-reinforced composite material
JP2009286895A (en) Prepreg and method for forming fiber-reinforced composite material
JP2008088276A (en) Partially impregnated prepreg and method for producing fiber-reinforced composite material by using the same
CN109415495B (en) Prepreg and fiber-reinforced composite material
WO2013122032A1 (en) Fiber-reinforced composite material
EP3197933B1 (en) Fast curing compositions
EP3331689A1 (en) Moulding materials with improved surface finish
JP5173358B2 (en) Prepreg with protective film
JP5441437B2 (en) Partially impregnated prepreg, method for producing the same, and method for producing a fiber-reinforced composite material using the same
JPWO2020059599A1 (en) Prepregs, prepreg laminates and fiber reinforced composites
JP5912920B2 (en) Fiber reinforced composite material
JP2021513578A (en) Prepreg stacks useful for the production of prepreg sheets and low void content fiber reinforced composites
JP5912922B2 (en) Fiber reinforced composite material
JP7239401B2 (en) Carbon fiber bundles, prepregs, fiber reinforced composite materials
JP6637503B2 (en) Epoxy resin composition for composite materials
JP2014162858A (en) Prepreg and production method of the same, and fiber reinforced composite material
JP2009051112A (en) Drape forming method
JP2006274110A (en) Prepreg and fiber-reinforced composite material
JP5912921B2 (en) Fiber reinforced composite material