JP2009219238A - Power conversion device and power generation conversion system - Google Patents

Power conversion device and power generation conversion system Download PDF

Info

Publication number
JP2009219238A
JP2009219238A JP2008059888A JP2008059888A JP2009219238A JP 2009219238 A JP2009219238 A JP 2009219238A JP 2008059888 A JP2008059888 A JP 2008059888A JP 2008059888 A JP2008059888 A JP 2008059888A JP 2009219238 A JP2009219238 A JP 2009219238A
Authority
JP
Japan
Prior art keywords
power
output
value
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008059888A
Other languages
Japanese (ja)
Other versions
JP5260092B2 (en
Inventor
Takashi Aihara
孝志 相原
Tomomichi Ito
智道 伊藤
Hiroaki Miyata
博昭 宮田
Masahiro Taniguchi
雅弘 谷口
Michiyuki Uchiyama
倫行 内山
Takayuki Onose
貴之 小野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008059888A priority Critical patent/JP5260092B2/en
Priority to CN2009100093804A priority patent/CN101534014B/en
Priority to CN201210250687.5A priority patent/CN102761136B/en
Publication of JP2009219238A publication Critical patent/JP2009219238A/en
Priority to JP2012279051A priority patent/JP5571163B2/en
Application granted granted Critical
Publication of JP5260092B2 publication Critical patent/JP5260092B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

<P>PROBLEM TO BE SOLVED: To improve operation continuity performance at the lowering of a voltage of an AC system, in a power conversion device which outputs power generated by a power supply to the AC system. <P>SOLUTION: The power conversion device includes: a power converter 11 which is connected to the AC system 2 at its one end, and connected to the power supply 3 at the other end, and controls the generated power of a generator; a power converter 10 which controls power outputted to the AC system; and a control part 200 which controls the power converters. A voltage from the AC system is calculated by an amplification calculator 2001, the amplification of the voltage is current-converted, and an upper limit value of power generated from the power supply 3 is limited by a limiter 2005. A maximum-power operation controller 2004 inputs a direct current and a panel voltage, and searches for a current command value Idcref which allows maximum power operation to be performed. The current command value Idcref is limited to a value between zero and an upper limit threshold, a difference between (IdcrefN) direct currents is taken, a voltage command value Vchop is generated by a current controller 2007, and the voltage command value is output to the power converter 11. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電源の電圧・電流を変換して連系する交流系統に電力を出力する電力変換装置に関する。   The present invention relates to a power converter that converts the voltage and current of a power supply to output power to an AC system that is connected.

太陽光発電システムや風力発電システムなどの分散電源システムの導入が世界的に進んでいる。分散電源システムが多く接続する系統において、系統電圧低下が発生したときに分散電源システムが脱落すると、電源消失によりさらに系統電圧の低下が進み、大規模な停電が発生する恐れがある。そのため、分散電源には系統電圧低下時でも発電を継続することが望ましい。
これら分散電源の多くは、電源から発電した電力をチョッパなどの発電電力制御用電力変換器により所定の電圧の直流電力に変換し、その直流電力を自励式電力変換器である系統連系用電力変換器で交流電力に変換して交流系統に出力する。系統連系用電力変換器と発電電力制御用電力変換器の接続端子には、直流電圧の変動を抑制する平滑コンデンサが並列に接続される。
自励式電力変換器は一般に、熱的制約により定格電流以上の電流を連続で出力することができない。そのため、系統事故などにより接続する系統電圧が低下すると、系統連系用電力変換器の出力電流は定格電流に制限されるため、系統電圧と系統連系用電力変換器出力電流の積である出力電力の上限値は低下する。
このとき、太陽光パネルや風車から発電した電力が系統連系用電力変換器の出力可能な電力を上回ると、系統連系用電力変換器の直流端子に並列接続される平滑コンデンサが充電される。平滑コンデンサが過度に充電されると系統連系用電力変換器や発電電力制御用電力変換装置のスイッチング素子の破損、平滑コンデンサの破損を生じる可能性がある。
過電圧から電力変換器を保護する方法が特許文献1に開示されている。文献1における第一の方法は、平滑コンデンサ電圧が所定の値を超えると、電力変換装置の制御器に発電電力制御用電力変換器を停止させる。第二の方法は、平滑コンデンサ電圧が電圧指令値と過電圧判定値の間である所定の値を超えると、発電電力制御用電力変換器の入力電流指令値上限値を制限する。
The introduction of distributed power systems such as solar power generation systems and wind power generation systems is progressing worldwide. In a system to which many distributed power supply systems are connected, if the distributed power supply system is dropped when a system voltage drop occurs, the system voltage may further drop due to power loss, and a large-scale power failure may occur. For this reason, it is desirable for the distributed power source to continue power generation even when the system voltage drops.
Many of these distributed power sources convert the power generated from the power source into DC power of a predetermined voltage by a power converter for power generation control such as a chopper, and the DC power is power for grid interconnection that is a self-excited power converter. It is converted into AC power by a converter and output to an AC system. A smoothing capacitor that suppresses fluctuations in DC voltage is connected in parallel to the connection terminals of the grid interconnection power converter and the generated power control power converter.
In general, a self-excited power converter cannot continuously output a current exceeding a rated current due to thermal restrictions. Therefore, when the grid voltage to be connected decreases due to a grid fault, etc., the output current of the grid interconnection power converter is limited to the rated current, so the output that is the product of the grid voltage and the grid interconnection power converter output current The upper limit value of power decreases.
At this time, when the power generated from the solar panel or the windmill exceeds the power that can be output from the grid interconnection power converter, the smoothing capacitor connected in parallel to the DC terminal of the grid interconnection power converter is charged. . If the smoothing capacitor is excessively charged, the switching element of the grid interconnection power converter or the power conversion device for power generation control may be damaged, or the smoothing capacitor may be damaged.
Patent Document 1 discloses a method for protecting a power converter from an overvoltage. In the first method in Document 1, when the smoothing capacitor voltage exceeds a predetermined value, the controller of the power conversion device stops the power converter for generating power control. The second method limits the input current command value upper limit value of the power converter for generated power control when the smoothing capacitor voltage exceeds a predetermined value between the voltage command value and the overvoltage determination value.

特開2000−20150号公報Japanese Unexamined Patent Publication No. 2000-20150

特許文献1記載の第一の方法では、発電が停止してしまい、分散電源システムの利用率が低下する。また発電が停止するため系統電圧がさらに低下するため電力系統の大規模停電を促進してしまう可能性がある。
特許文献1記載の第二の方法では、発電の継続が可能である。しかし、発電電力制御用電力変換器の遅れを考慮し、平滑コンデンサ電圧の過電圧判定値と発電電力の上限値を低下させる発電電力抑制判定値の間には余裕を持たせる必要がある。また、平滑コンデンサの電圧指令値と発電電力抑制判定値が近いと、制御の揺らぎにより高い頻度で発電電力を絞り込むことになるため、平均コンデンサの電圧指令値と発電電力抑制判定値の間にも余裕をもたせる必要がある。ゆえに、平滑コンデンサ電圧指令値を過電圧判定値よりかなり余裕を持たせて設計しなければならず、電力変換器のスイッチング素子の電圧利用率が低下する。
本発明の目的は、上記従来技術の問題点に鑑み、分散電源システムの電力変換器の電圧利用率を低下させずに、交流系統電圧低下時の運転継続性を向上できる電力変換装置およびその発電変換システムを提供することにある。
In the first method described in Patent Document 1, power generation stops and the utilization rate of the distributed power supply system decreases. Moreover, since power generation stops, the system voltage further decreases, which may promote a large-scale power outage in the power system.
In the second method described in Patent Document 1, power generation can be continued. However, in consideration of the delay of the power converter for generated power control, it is necessary to provide a margin between the overvoltage determination value of the smoothing capacitor voltage and the generated power suppression determination value that reduces the upper limit value of the generated power. Also, if the voltage command value of the smoothing capacitor is close to the generated power suppression judgment value, the generated power is narrowed down more frequently due to control fluctuations. It is necessary to have a margin. Therefore, it is necessary to design the smoothing capacitor voltage command value with a considerable margin from the overvoltage determination value, and the voltage utilization rate of the switching element of the power converter is reduced.
An object of the present invention is to solve the above-described problems of the prior art, a power conversion device capable of improving the operation continuity when the AC system voltage drops without lowering the voltage utilization rate of the power converter of the distributed power supply system, and power generation thereof To provide a conversion system.

本発明の目的は、接続する交流系統の電圧振幅を検出し、該電圧振幅が所定の値以下になった場合には系統連系用電力変換器の出力可能な電力以下に、電源からの発電電力を制限することによって達成できる。
より具体的には、接続する交流系統の電圧振幅を算出する手段と、発電電力制御用電力変換器の発電電力指令を制限する発電電力指令リミッタを備え、該電圧振幅が所定の値以下であれば該電圧振幅に応じて該リミッタの上限値を低くする。
または、電力変換装置の制御部に電源からの出力電流を制御する電流制御器と、該出力電流の指令値を制限する出力電流リミッタを備え、接続する交流系統の電圧振幅が所定の値以下であれば該電圧振幅に応じて該出力電流リミッタの上限値を低くする。
前記電源が太陽光発電パネルである場合は、太陽光発電パネルの最大電力追従制御を電流指令値の変更により実施し、該最大電力追従制御の出力である電流指令値を上記出力電流リミッタにより制限する。
系統連系用電力変換器の接続する交流系統が三相である電力変換装置においては、電源から発電する発電電力指令のリミッタ上限値もしくは該電源の出力電流指令のリミッタ上限値を、交流系統の正相電圧振幅に応じて低くする。
前記電源が回転型発電機である場合は、電力変換装置の制御部に発電電力制御用電力変換器に接続する電源の出力する有効電流を制御する電流制御器と、該有効電流指令値を制限する出力電流リミッタを備え、接続する交流系統の電圧振幅が所定の値以下であれば該電圧振幅に応じて有効電流リミッタの上限値を低くする。
前記電源が風車を備える風力発電機である場合は、該風車の羽の角度を変える手段を備え、前記制御部に入力される前記交流系統の電圧振幅が所定の値以下であれば前記風車の羽の角度を寝かせて風車の入力トルクを下げれば、発電機の発電電力を交流系統の電圧振幅に応じて小さくしても風車がオーバースピードになることを回避できる。
An object of the present invention is to detect the voltage amplitude of an AC system to be connected, and when the voltage amplitude falls below a predetermined value, the power generation from the power source is less than the power that can be output from the power converter for grid connection. This can be achieved by limiting the power.
More specifically, a means for calculating the voltage amplitude of the connected AC system and a generated power command limiter for limiting the generated power command of the power converter for generated power control are provided, and the voltage amplitude is less than a predetermined value. For example, the upper limit value of the limiter is lowered according to the voltage amplitude.
Alternatively, the control unit of the power converter includes a current controller that controls the output current from the power supply and an output current limiter that limits the command value of the output current, and the voltage amplitude of the connected AC system is less than a predetermined value. If there is, the upper limit value of the output current limiter is lowered according to the voltage amplitude.
When the power source is a photovoltaic power generation panel, the maximum power tracking control of the photovoltaic power generation panel is performed by changing the current command value, and the current command value that is the output of the maximum power tracking control is limited by the output current limiter. To do.
In a power conversion device in which the AC system to which the grid-connected power converter is connected is a three-phase system, the upper limit value of the generated power command generated from the power source or the upper limit value of the output current command of the power source is Decrease according to the positive phase voltage amplitude.
When the power source is a rotary generator, the control unit of the power conversion device controls the effective current output from the power source connected to the power converter for generated power control, and limits the effective current command value. If the voltage amplitude of the AC system to be connected is equal to or less than a predetermined value, the upper limit value of the effective current limiter is lowered according to the voltage amplitude.
When the power source is a wind power generator including a windmill, the power supply includes means for changing the angle of the wings of the windmill, and if the voltage amplitude of the AC system input to the control unit is equal to or less than a predetermined value, If the input torque of the wind turbine is lowered by laying down the wing angle, the wind turbine can be prevented from being overspeeded even if the power generated by the generator is reduced according to the voltage amplitude of the AC system.

本発明によれば、接続する交流系統の電圧振幅が低下した時、速やかに電源の発電電力を系統連系用電力変換器の出力可能な電力以下に制限することができる。これにより、平滑コンデンサの過電圧を防止することができ、交流系統の電圧低下発生時の運転継続性能を向上できる。また、平滑コンデンサの電圧上昇が起こる前に発電電力を制限することができるため、電力変換器の電圧利用率を向上することができる。 ADVANTAGE OF THE INVENTION According to this invention, when the voltage amplitude of the alternating current system to connect falls, the electric power generation of a power supply can be restrict | limited to below the electric power which can be output of the power converter for grid connection. Thereby, the overvoltage of the smoothing capacitor can be prevented, and the operation continuation performance when the voltage drop of the AC system occurs can be improved. In addition, since the generated power can be limited before the voltage increase of the smoothing capacitor occurs, the voltage utilization rate of the power converter can be improved.

以下、本発明の複数の実施の形態を図面に基づいて詳細に説明する。なお、実施例を説明する各図面では、同一の機能を有する要素には同一の符号を付してある。また、図1、図7、図11、図14に示されるIGBTと、該IGBTと逆並列に接続されたダイオードからなる並列体10m〜10p、11m、11n、30m〜30r、31m〜31rを、それぞれIGBT素子10m〜10p、IGBT素子11m、11n、IGBT素子30m〜30r、IGBT素子31m〜31rと呼ぶことにする。 Hereinafter, a plurality of embodiments of the present invention will be described in detail with reference to the drawings. In each drawing explaining the embodiment, elements having the same function are denoted by the same reference numerals. In addition, parallel bodies 10m to 10p, 11m, 11n, 30m to 30r, and 31m to 31r composed of IGBTs shown in FIG. 1, FIG. 7, FIG. 11, and FIG. These are respectively referred to as IGBT elements 10m to 10p, IGBT elements 11m and 11n, IGBT elements 30m to 30r, and IGBT elements 31m to 31r.

本実施例は太陽光発電パネルと交流系統に接続され、太陽光発電パネルで発電した電力を交流電力に変換し、交流系統に出力する電力変換装置である。   A present Example is a power converter device which is connected to a photovoltaic power generation panel and an AC system, converts power generated by the photovoltaic power generation panel into AC power, and outputs the AC power to the AC system.

すなわち、太陽光パネルからの発電電力を制御して該発電電力を直流電力に変換する発電電力制御用電力変換器と、前記発電電力制御用電力変換器の出力端に接続する平滑コンデンサと、前記発電電力制御用電力変換器と前記平滑コンデンサに接続して前記直流電力を交流電力に変換して前記交流系統に出力する系統連系電力変換器と、前記交流系統の電圧振幅を入力とし、該電圧振幅に応じて前記発電電力制御用電力変換器の発電電力上限値を変化させる発電電力制限手段を含む制御部を備え、前記発電電力制限手段は前記電圧振幅が所定の設定値より小さい場合は、該電圧振幅に応じて前記発電電力制御用電力変換器の発電電力上限値を小さくし、前記平滑コンデンサの過充電を抑制する。
この電力変換装置によれば、電圧利用率を低減させずに交流系統の電圧が低下したときの運転継続性を向上することができる。
That is, the generated power control power converter that controls the generated power from the solar panel and converts the generated power into DC power, the smoothing capacitor connected to the output terminal of the generated power control power converter, A grid-connected power converter that is connected to the power converter for generated power control and the smoothing capacitor to convert the DC power into AC power and outputs the AC power, and the voltage amplitude of the AC system is input, A control unit including a generated power limiting unit that changes a generated power upper limit value of the power converter for generated power control according to a voltage amplitude, and the generated power limiting unit is configured to reduce the voltage amplitude smaller than a predetermined set value. The generated power upper limit value of the power converter for generated power control is reduced according to the voltage amplitude, and the overcharge of the smoothing capacitor is suppressed.
According to this power conversion device, it is possible to improve the operation continuity when the voltage of the AC system is lowered without reducing the voltage utilization rate.

図1は本実施例の電力変換装置の主回路の構成を示し、電力変換装置1は太陽光発電パネル3と、交流系統2を接続している。
太陽光発電パネル3の正極は、逆流防止用ダイオード15、昇圧リアクトル14を介して発電電力制御用電力変換器11の入力端子11Aに接続される。また、太陽光発電パネル3の負極は発電電力制御用電力変換器11の入力端子11Bに接続される。
発電電力制御用電力変換器11はIGBT素子11m、11nにより構成される昇圧チョッパであり、発電電力制御用電力変換器11を構成するIGBT素子11m、11nは電力変換装置1の制御器200から出力されるゲート信号によりPWM制御される。
制御器200は端子11A−11B間の出力電圧をPWM制御することにより太陽光発電パネル3から入力する電力を制御し、その電力を出力端子11P、11Nに出力する。出力端子11P、11Nの間には平滑コンデンサ12が接続され、発電電力制御用電力変換器11の出力電圧を平滑化する。
系統連系用電力変換器10の入力端子10Pは、端子11Pに、入力端子10Nは端子11Nに接続され、発電電力制御用電力変換器11の出力電力を受け取る。また、系統連系用電力変換器10の出力端子10U、10Vは、連系インピーダンス13を介して交流系統2に接続される。
系統連系用電力変換器10は単相インバータであり、系統連系用電力変換器10を構成するIGBT素子10m〜10pのIGBTは電力変換装置1の制御器200から出力されるゲート信号によりPWM制御され、出力端子10Uと10Vの間に交流電圧を出力する。
制御器200は出力端子10U−10V間の出力電圧を、IGBT素子10m〜10pのPWM制御により平滑コンデンサ12の端子電圧を一定にするように交流系統2に出力する電力を制御する。これにより系統連系用電力変換器10は、発電電力制御用電力変換器11より出力された電力を交流系統2に出力する。
次に、本実施例の電力変換装置1におけるセンサおよび制御部200の機能について説明する。図2は実施例1における制御部の詳細な構成を示している。
電力変換装置1には、逆流防止用ダイオード15のアノード端子と太陽光発電パネルの陰極間の電圧を検出する電圧センサ23、昇圧リアクトル14を流れる電流を検出する電流センサ22、平滑コンデンサ12の端子電圧を検出する電圧センサ26、連系インピーダンス13を流れる電流を検出する電流センサ21、交流系統2の電圧を検出する電圧センサ20を備え、上記センサの出力は制御器200に入力される。制御器200は、上記センサからの入力に従い、発電電力制御用電力変換器11および系統連系用電力変換器10のIGBT素子をPWM制御するためのゲート信号を算出し、出力する。
FIG. 1 shows a configuration of a main circuit of a power conversion device according to the present embodiment. The power conversion device 1 connects a photovoltaic power generation panel 3 and an AC system 2.
The positive electrode of the photovoltaic power generation panel 3 is connected to the input terminal 11 </ b> A of the power converter 11 for controlling the generated power via the backflow preventing diode 15 and the step-up reactor 14. The negative electrode of the photovoltaic power generation panel 3 is connected to the input terminal 11B of the power converter 11 for controlling the generated power.
The power converter 11 for generated power control is a step-up chopper composed of IGBT elements 11m and 11n. The IGBT elements 11m and 11n constituting the power converter 11 for generated power control are output from the controller 200 of the power converter 1. PWM control is performed by the gate signal.
The controller 200 controls the electric power input from the photovoltaic power generation panel 3 by PWM controlling the output voltage between the terminals 11A-11B, and outputs the electric power to the output terminals 11P and 11N. A smoothing capacitor 12 is connected between the output terminals 11P and 11N to smooth the output voltage of the power converter 11 for controlling generated power.
The input terminal 10P of the grid interconnection power converter 10 is connected to the terminal 11P, and the input terminal 10N is connected to the terminal 11N, and receives the output power of the power converter 11 for generating power control. Further, the output terminals 10U, 10V of the grid interconnection power converter 10 are connected to the AC grid 2 via the interconnection impedance 13.
The grid interconnection power converter 10 is a single-phase inverter, and the IGBT elements 10m to 10p constituting the grid interconnection power converter 10 are PWMed by a gate signal output from the controller 200 of the power conversion apparatus 1. The AC voltage is output between the output terminals 10U and 10V.
The controller 200 controls the power output to the AC system 2 so that the output voltage between the output terminals 10U to 10V is constant by the PWM control of the IGBT elements 10m to 10p so that the terminal voltage of the smoothing capacitor 12 becomes constant. As a result, the grid interconnection power converter 10 outputs the power output from the generated power control power converter 11 to the AC system 2.
Next, functions of the sensor and the control unit 200 in the power conversion device 1 of the present embodiment will be described. FIG. 2 shows a detailed configuration of the control unit in the first embodiment.
The power converter 1 includes a voltage sensor 23 that detects a voltage between the anode terminal of the backflow prevention diode 15 and the cathode of the photovoltaic power generation panel, a current sensor 22 that detects a current flowing through the boost reactor 14, and a terminal of the smoothing capacitor 12. A voltage sensor 26 for detecting a voltage, a current sensor 21 for detecting a current flowing through the interconnection impedance 13, and a voltage sensor 20 for detecting a voltage of the AC system 2 are provided, and the output of the sensor is input to the controller 200. The controller 200 calculates and outputs a gate signal for PWM control of the IGBT elements of the generated power control power converter 11 and the grid interconnection power converter 10 in accordance with the input from the sensor.

まず、系統連系用電力変換器11の制御動作について説明する。電圧センサ26の出力である直流電圧は、制御器200に取り込まれる。制御器200は、あらかじめ定めた直流電圧指令値と電圧センサ26による直流電圧の偏差を算出し、その偏差を電圧制御器2008に出力する。
電圧制御器2008は該偏差から平滑コンデンサ12端子の直流電圧が直流電圧指令値に追従するような交流電流指令値Iacrefを算出する。電流制御器2009は交流電流指令値Iacrefと電流センサ21の出力の偏差を入力し、交流電流指令値Iacrefと電流センサ21の出力が一致するような交流電圧指令値Vinvを算出し、PWM制御器2010に出力する。
PWM制御器2010は電流制御器2009の出力Vinvと三角波キャリアと大小比較することでIGBT素子10m〜10pのゲート信号を算出し、系統連系用電力変換器10に出力する。
次に本実施例の新規な点である、発電制御用電力変換器11の制御動作について説明する。本実施例の発電制御用電力変換器11の制御方法の特徴は、(1)最大電力追従運転演算の出力が太陽光発電パネルの出力電流指令値である点と、(2)交流系統2の電圧振幅に応じて該出力電流指令値のリミッタ上限値を変化させる点とにある。
制御部200は太陽光発電パネル3の出力電力が最大になるように太陽光発電パネルの出力電流指令値を変化させる電力最大化制御器2004と、該出力電流指令値と電流検出器22により検出した太陽光パネルの出力電流を一致させるように、発電電力用電力変換器11の太陽光パネル側出力電圧を制御する電流制御器2005を備える。ここで、太陽光パネル側出力電圧とは,発電電力制御用電力変換器11の端子11Aと11Bの間に出力する電圧のことである。
まず、最大電力追従運転演算について説明する。太陽光発電パネルより得られる電力は、ある電圧において極大値を持つ。そのため、従来太陽光発電パネルの端子電圧を変化させることにより最大電力運転の電圧を探索する方法が用いられてきた。端子電圧の変化方法としては、発電電力制御用電力変換器11の端子11Aと端子11Bの間の電圧を変化させる方法や、太陽光発電パネルの出力電流制御をマイナーループとして持つ太陽光発電パネル端子電圧制御の電圧指令値を変化させる方法がある。
本実施例では、太陽光発電パネルの出力電力を可及的速やかに変化させることを目的とし、太陽光発電パネルの最大電力運転を、太陽光発電パネル3の電流指令値変化によって最大電力運転を探索する方法とする。
図3に太陽光発電パネル3の出力電流と出力電圧、出力電力の関係の一例を示す。図3より、ある出力電流において発電電力が極大値をとる。ゆえに、電流指令値を変化させることにより最大電力運転探索が可能である。
本実施例の電力変換装置1は、電流センサ22の出力値と電圧センサ23の出力値より最大電力運転制御器2004を用いて最大電力運転を実施する。最大電力運転制御器2004は電流センサ22と電圧センサ23の出力値を入力とし、太陽光発電パネル3の出力電流指令値Idcrefを算出し、出力電流指令値リミッタ2005に出力する。
図4に最大電力運転制御器の演算手順を示す。最大電力運転制御器2004はStep1〜Step9までの処理を実施することにより最大電力運転を実現する電流指令値Idcrefを探索する。
まず、太陽光発電パネル3の出力電流と出力電圧から現時点の発電電力Pnowを算出する(Step1)。次に算出した発電電力Pnowが前回算出した発電電力Poldと比較し(Step2)、また、前回電流値Idc_oldと現在の電流値Idc_nowを比較する(Step3、Step4)。PoldよりPnowが大きくかつIdc_oldよりIdc_nowが大きい場合、およびPoldよりPnowが小さくかつIdc_oldよりIdc_nowが小さい場合は、太陽光発電パネル3の出力電流指令値Idcrefを前回値より所定の値ΔIだけ増やす(Step5)。
PoldよりPnowが大きくかつIdc_oldよりIdc_nowが小さい場合(Step3)、およびPoldよりPnowが小さくかつIdc_oldよりIdc_nowが大きい場合(Step4)は、太陽光発電パネル3の出力電流指令値Idcrefを前回値より所定の値ΔIだけ減らす(Step6)。Step5もしくはStep6により算出された出力電流指令値Idcrefを出力電流指令値リミッタ2005に出力し(Step7)、前回発電電力と前回電流指令値を更新した後(Step8)、所定の時間が経過した後(Step9)、Step1の処理を再度実行する。
上記処理により算出された出力電流指令値Idcrefに太陽光発電パネル3の出力電流が追従するように、電流制御器2006は発電電力制御用電力変換器11の端子11Aと11B間に出力する電圧指令値Vchopを算出する。
PWM制御器2007は電流制御器2006の出力Vchopと三角波キャリアと大小比較することでIGBT素子11m〜11nのゲート信号を算出し、発電電力制御用電力変換器11に出力する。以上の制御により、太陽光発電パネル3の出力電流指令値の変更により最大電力運転が可能となる。
次に2点目の新規な点である交流系統2の電圧振幅に応じて太陽光発電パネル3の出力電流指令上限値を変化させる制御方法について説明する。本機能は、交流系統2の電圧振幅が低下すると系統連系用電力変換器10が交流系統2に出力可能な電力が低下し、太陽光発電パネル3から発電した電力が交流系統2に出力可能な電力が上回り、平滑コンデンサ12が過電圧になることを回避するものである。以下、本制御動作を説明する。
交流系統2の電圧は電圧センサ20により検出され、検出値は電圧振幅算出器2001に出力される。電圧振幅算出器2001は交流系統2の電圧振幅を算出し、電流換算器2003に出力する。ここで、電圧振幅は実効値演算、1/4サイクル遅れの値を用いて自乗和平方根、基本波に対するフーリエ正弦係数とフーリエ余弦係数の自乗和平方根などによって算出してもよい。
図5に、交流系統の電圧振幅値と太陽光パネル出力電流指令上限値の関係図を示す。図5に示す関係図に基づいて、電流換算器2003は太陽光発電パネル3の出力電流指令上限値を算出し、出力電流指令値リミッタ2005に出力する。ここで、本実施例の系統連系用電力変換器10は交流系統2の電圧振幅が0.9puの場合でも電力変換装置1の定格出力電力を出力できるものとした。交流系統2の電圧振幅が1.0pu以上でなければ系統連系用電力変換器10が電力変換装置1の定格出力電力を出力できない場合は、電流換算器2003の入力―出力関係を図6のようにすれば良い。
出力電流指令値リミッタ2005は最大電力運転制御器2004の出力値Idcrefを、下限を0、上限を電流換算器2003の出力値として制限し、その出力を新たな太陽光発電パネル3出力電流指令値とする。
このように、接続する交流系統2の電圧振幅に応じて太陽光発電パネル3の出力電流上限値を制限することにより、交流系統2の電圧振幅が低下したときには速やかに太陽光発電パネル3の発電電力を制限することができる。そのため、平滑コンデンサ12の電圧が上昇することを回避することができ、発電電力制御用電力変換器11と系統連系用電力変換器10の電圧利用率を下げずに交流系統2の電圧振幅が低下した場合の電力変換装置1の運転継続性を向上することができる。
本実施例では、交流系統2の電圧振幅だけにより太陽光発電パネル3の出力電流指令値上限値を算出したが、図25に示すように太陽光発電パネル3の出力電圧と出力電流から太陽光発電パネル3の開放時出力電圧を推定する開放時電圧推定器2013を備え、太陽光発電パネル3の出力電流指令上限値を、系統連系用電力変換器10の出力可能な最大の電力を開放時電圧推定器2013で推定した電圧で除算した値を太陽光発電パネル3出力電流値としても良い。具体的には推定器2013は、出力電圧からパネル3の投下内部抵抗値と出力電流値の積を減算することで、パネル3の開放時電圧を算出する。
また、図22に示すように、最適電流算出器2101を備える。最適電流算出器2101は系統電圧振幅と直流電流とパネル電圧と等価内部抵抗から、系統連系用電力変換器の有効電力出力と平衡する太陽電池パネルの電力出力を得られるような電流値を算出し、該電流値をリミッタ2005の上限値として出力する構成としてもよい。
First, the control operation of the grid interconnection power converter 11 will be described. The DC voltage that is the output of the voltage sensor 26 is taken into the controller 200. The controller 200 calculates a predetermined DC voltage command value and a DC voltage deviation by the voltage sensor 26, and outputs the deviation to the voltage controller 2008.
The voltage controller 2008 calculates an AC current command value Iacref from which the DC voltage at the smoothing capacitor 12 terminal follows the DC voltage command value. The current controller 2009 receives the deviation between the AC current command value Iacref and the output of the current sensor 21, calculates the AC voltage command value Vinv so that the AC current command value Iacref and the output of the current sensor 21 match, and the PWM controller. To 2010.
The PWM controller 2010 compares the output Vinv of the current controller 2009 with the triangular wave carrier to calculate the gate signal of the IGBT elements 10m to 10p, and outputs the gate signal to the grid interconnection power converter 10.
Next, the control operation of the power converter 11 for power generation control, which is a novel point of the present embodiment, will be described. The characteristics of the control method of the power converter 11 for power generation control of the present embodiment are as follows: (1) the output of the maximum power follow-up operation calculation is the output current command value of the photovoltaic power generation panel; and (2) the AC system 2 The upper limit value of the output current command value is changed according to the voltage amplitude.
The control unit 200 detects by the power maximization controller 2004 that changes the output current command value of the photovoltaic power generation panel 3 so that the output power of the photovoltaic power generation panel 3 becomes maximum, and the output current command value and the current detector 22. A current controller 2005 that controls the solar panel-side output voltage of the power converter 11 for generated power so as to match the output currents of the solar panels. Here, the solar panel-side output voltage is a voltage output between the terminals 11A and 11B of the power converter 11 for controlling the generated power.
First, the maximum power follow-up operation calculation will be described. The electric power obtained from the photovoltaic power generation panel has a maximum value at a certain voltage. For this reason, a method of searching for the voltage for maximum power operation by changing the terminal voltage of the photovoltaic power generation panel has been used. As a method for changing the terminal voltage, a method for changing the voltage between the terminal 11A and the terminal 11B of the power converter 11 for controlling the generated power, or a photovoltaic panel terminal having the output current control of the photovoltaic panel as a minor loop. There is a method of changing a voltage command value for voltage control.
In this embodiment, for the purpose of changing the output power of the photovoltaic power generation panel as quickly as possible, the maximum power operation of the photovoltaic power generation panel is performed by changing the current command value of the photovoltaic power generation panel 3. A search method is used.
FIG. 3 shows an example of the relationship between the output current, output voltage, and output power of the photovoltaic power generation panel 3. From FIG. 3, the generated power takes a maximum value at a certain output current. Therefore, the maximum power operation search can be performed by changing the current command value.
The power conversion apparatus 1 according to the present embodiment performs maximum power operation using the maximum power operation controller 2004 based on the output value of the current sensor 22 and the output value of the voltage sensor 23. The maximum power operation controller 2004 receives the output values of the current sensor 22 and the voltage sensor 23, calculates the output current command value Idcref of the photovoltaic power generation panel 3, and outputs it to the output current command value limiter 2005.
FIG. 4 shows the calculation procedure of the maximum power operation controller. The maximum power operation controller 2004 searches the current command value Idcref that realizes the maximum power operation by performing the processing from Step 1 to Step 9.
First, the current generated power Pnow is calculated from the output current and output voltage of the photovoltaic power generation panel 3 (Step 1). Next, the calculated generated power Pnow is compared with the previously calculated generated power Pold (Step 2), and the previous current value Idc_old is compared with the current current value Idc_now (Step 3, Step 4). When Pnow is larger than Pold and Idc_now is larger than Idc_old, and when Pnow is smaller than Pold and Idc_now is smaller than Idc_old, the output current command value Idcref of the photovoltaic power generation panel 3 is increased by a predetermined value ΔI from the previous value ( Step5).
When Pnow is larger than Pold and Idc_now is smaller than Idc_old (Step 3), and when Pnow is smaller than Pold and Idc_now is larger than Idc_old (Step 4), the output current command value Idcref of the photovoltaic power generation panel 3 is predetermined from the previous value. Is decreased by ΔI (Step 6). The output current command value Idcref calculated in Step 5 or Step 6 is output to the output current command value limiter 2005 (Step 7), the last generated power and the previous current command value are updated (Step 8), and a predetermined time has elapsed (Step 8). Step 9) and Step 1 are executed again.
The current controller 2006 outputs a voltage command between the terminals 11A and 11B of the power converter 11 for power generation control so that the output current of the photovoltaic power generation panel 3 follows the output current command value Idcref calculated by the above processing. Calculate the value Vchop.
The PWM controller 2007 calculates the gate signal of the IGBT elements 11m to 11n by comparing the output Vchop of the current controller 2006 with the triangular wave carrier, and outputs it to the power converter 11 for controlling the generated power. With the above control, the maximum power operation can be performed by changing the output current command value of the photovoltaic power generation panel 3.
Next, a control method for changing the output current command upper limit value of the photovoltaic power generation panel 3 according to the voltage amplitude of the AC system 2 which is the second new point will be described. In this function, when the voltage amplitude of the AC system 2 decreases, the power that the grid interconnection power converter 10 can output to the AC system 2 decreases, and the power generated from the photovoltaic power generation panel 3 can be output to the AC system 2. Therefore, it is possible to prevent the smoothing capacitor 12 from being overvoltaged. Hereinafter, this control operation will be described.
The voltage of the AC system 2 is detected by the voltage sensor 20, and the detected value is output to the voltage amplitude calculator 2001. The voltage amplitude calculator 2001 calculates the voltage amplitude of the AC system 2 and outputs it to the current converter 2003. Here, the voltage amplitude may be calculated by effective value calculation, a square sum of squares using a value of a ¼ cycle delay, a square sum of squares of Fourier sine coefficients and Fourier cosine coefficients for a fundamental wave, or the like.
FIG. 5 shows a relationship diagram between the voltage amplitude value of the AC system and the solar panel output current command upper limit value. Based on the relationship diagram shown in FIG. 5, the current converter 2003 calculates the output current command upper limit value of the photovoltaic power generation panel 3 and outputs it to the output current command value limiter 2005. Here, the grid interconnection power converter 10 according to the present embodiment can output the rated output power of the power converter 1 even when the voltage amplitude of the AC grid 2 is 0.9 pu. If the grid-connected power converter 10 cannot output the rated output power of the power converter 1 unless the voltage amplitude of the AC system 2 is 1.0 pu or more, the input-output relationship of the current converter 2003 is as shown in FIG. You can do it.
The output current command value limiter 2005 limits the output value Idcref of the maximum power operation controller 2004 to 0 as the lower limit and as the output value of the current converter 2003 as the upper limit, and outputs the new solar panel 3 output current command value. And
In this way, by limiting the output current upper limit value of the photovoltaic power generation panel 3 in accordance with the voltage amplitude of the connected AC system 2, the power generation of the photovoltaic panel 3 is promptly performed when the voltage amplitude of the AC system 2 decreases. Power can be limited. Therefore, it is possible to avoid an increase in the voltage of the smoothing capacitor 12, and the voltage amplitude of the AC system 2 can be reduced without lowering the voltage utilization rate of the power converter 11 for power generation control and the power converter 10 for grid connection. It is possible to improve the continuity of operation of the power conversion device 1 when it is lowered.
In this embodiment, the upper limit value of the output current command value of the photovoltaic power generation panel 3 is calculated based only on the voltage amplitude of the AC system 2, but as shown in FIG. The open-circuit voltage estimator 2013 for estimating the open-circuit output voltage of the power generation panel 3 is provided, and the output current command upper limit value of the solar power generation panel 3 is opened to the maximum power that can be output by the grid interconnection power converter 10. A value divided by the voltage estimated by the hourly voltage estimator 2013 may be used as the photovoltaic panel 3 output current value. Specifically, the estimator 2013 calculates the open voltage of the panel 3 by subtracting the product of the dropped internal resistance value of the panel 3 and the output current value from the output voltage.
Further, as shown in FIG. 22, an optimum current calculator 2101 is provided. The optimum current calculator 2101 calculates a current value from the grid voltage amplitude, DC current, panel voltage, and equivalent internal resistance so as to obtain a solar panel power output balanced with the grid power converter power output. The current value may be output as the upper limit value of the limiter 2005.

また、電圧振幅をp.u.値で表してV[p.u.]、系統連系用電力変換器の有効電力出力をp.u.値で表してPc[p.u.]とすると、系統連系用電力変換器の電流がリミッタにより1.0p.u.に制限されていれば、V=Pcの関係が成り立つ。したがって、図23に示すように、系統電圧と系統電流から有効電力演算器2102を用いて、交流系統2に出力する有効電力を演算し、交流系統の電圧振幅の代わりに使用して最適電流指令値上限値を演算してもよい。
また、交流系統2の電圧に高調波が含まれ、電圧振幅算出器2001が脈動する場合は、電圧振幅算出器2001(図25)にローパスフィルタ処理、もしくは交流系統2の基本波周期を窓とする移動平均処理を施し、その出力を電流換算器2003に出力しても良い。
以上より、接続する交流系統2の電圧振幅に応じて太陽光発電パネル3の出力電流上限値を制限することにより、交流系統2の電圧振幅が低下したときには速やかに太陽光発電パネル3の発電電力を制限することができる。そのため、平滑コンデンサ12の電圧が上昇することを回避することができ、発電電力制御用電力変換器11と系統連系用電力変換器10の電圧利用率を下げずに交流系統2の電圧振幅が低下した場合の電力変換装置1の運転継続性を向上することができる。
Also, if the voltage amplitude is expressed as pu value and V [pu], and the active power output of the grid interconnection power converter is expressed as pu value and Pc [pu], the current of the grid interconnection power converter is limited. If it is limited to 1.0 pu, the relationship V = Pc holds. Therefore, as shown in FIG. 23, the active power to be output to the AC system 2 is calculated from the system voltage and system current using the active power calculator 2102 and used in place of the AC system voltage amplitude to obtain the optimum current command. An upper limit value may be calculated.
Further, when the harmonics are included in the voltage of the AC system 2 and the voltage amplitude calculator 2001 pulsates, the voltage amplitude calculator 2001 (FIG. 25) uses the low-pass filter processing or the fundamental wave period of the AC system 2 as a window. The moving average processing may be performed, and the output may be output to the current converter 2003.
From the above, by limiting the output current upper limit value of the photovoltaic power generation panel 3 in accordance with the voltage amplitude of the connected AC system 2, the generated power of the photovoltaic power generation panel 3 can be promptly reduced when the voltage amplitude of the AC system 2 decreases. Can be limited. Therefore, it is possible to avoid an increase in the voltage of the smoothing capacitor 12, and the voltage amplitude of the AC system 2 can be reduced without lowering the voltage utilization rate of the power converter 11 for power generation control and the power converter 10 for grid connection. It is possible to improve the continuity of operation of the power conversion device 1 when it is lowered.

次に本発明の実施例2を説明する。図7は実施例2における電力変換装置の主回路構成を示す。本実施例において、本発明の実施例1と同じものは同一の符号で示し、説明を省略する。
本実施例は、交流系統2が3相の交流系統であり、発電電流制限手段2003は電流指令値リミッタ2005の上限値を交流系統の正相電圧振幅に応じて低下させることを特徴とする。
本実施例の電力変換装置1の発電電力制御用電力変換器11は実施例1と同様である。また、実施例1と同様に発電電力制御用電力変換器11は太陽光発電パネル3に接続され、系統連系用電力変換器30は平滑コンデンサ12の端子電圧を所定の電圧に追従するよう交流系統2に電力を出力する。
実施例1との相違点は、実施例2は接続する交流系統が3相であり、系統連系用電力変換器30がIGBT素子30m〜30rにより構成される3相インバータとなる点である。また、実施例1は太陽光発電パネル3からの発電電力を交流系統2の電圧振幅に応じて制限する制御動作であるのに対し、実施例2は交流系統2の正相電圧により太陽光発電パネル3の発電電力を制限する制御動作を行う。
図8は実施例2の制御部の詳細を示す構成図である。実施例2の電力変換装置1は、実施例1と同様に電流換算器2003の出力により太陽光発電パネル3の出力電流指令上限値を制限する。本実施例と実施例1との相違は電流換算器2003の入力が異なる。
電力変換装置1が接続する交流系統2が3相の場合、交流系統2の相電圧は同一送電線に接続する単相負荷のアンバランスなどにより不平衡になる場合がある。その場合、交流系統2の電圧振幅は相によりアンバランスとなる。この状態で合成電圧ベクトルの振幅で太陽光発電パネル3の出力電流上限値を設定すると、出力電流上限値が交流系統2の基本波周波数の倍周波数で脈動するため、太陽光発電パネル3の出力電流制御がリミッタの動作に追従できず、電流指令上限値制限による発電電力抑制が実現できなくなる恐れがある。仮にリミッタの動作に太陽光発電パネル3の出力電流制御が追従したとしても、平滑コンデンサ12の端子電圧が変動して系統連系用電力変換器30の運転に支障を来たす恐れがある。
本実施例では、太陽光発電パネル3の出力電流上限値を、交流系統2の電圧の平衡成分である正相電圧により制限する。具体的には、電圧センサ20により検出した電圧を正相電圧振幅算出器2016に入力し、正相電圧振幅算出器2016は算出した正相電圧振幅を電流換算器2003に出力する。
図9に正相電圧振幅算出器の構成を示す。正相電圧振幅算出器2016は交流系統2の正相電圧を算出するもので、3相の電圧検出値を2相/3相変換器20161にてαβ成分であるVα、Vβに変換する。3相電圧検出値は位相検出器20162にも入力され、位相検出器20162は正相電圧の位相を算出する。
2相/3相変換器20161の出力と、位相検出器20162の出力はd−q変換器20163に入力され、d−q変換器20163はd軸電圧Vd、q軸電圧Vqを算出する。算出したVd、Vqは窓が交流系統2の基本波周期である位相平均20164Aと20164Bで移動平均処理する。交流系統2の電圧が不平衡の場合は、Vd、Vqに交流系統2の基本波の倍周波数成分として現れるが、移動平均20164A、20164Bを施すことにより除去することができる。
また、交流系統2の電圧に高調波成分が含まれる場合は、該高調波成分はVd、Vqに基本波の整数倍の脈動として現れるため、移動平均20164A、位相平均20164Bにより除去することができる。ゆえに、移動平均20164A、20164Bの出力値V1_re、V1_imには交流系統2の正相電圧のみを抽出することができる。以上より、正相電圧の振幅はV1_re、V1_imは二乗和の平方根を算出することにより得ることができる。
正相電圧の振幅は交流系統2が不平衡であっても一定である。ゆえに一定の値に太陽光発電パネル3の出力電流指令上限値を制限できる。これにより、発電電力制御用電力変換器11の出力電力が脈動することを防止することができるため、系統連系用電力変換器30の運転に支障を来たすことを回避することができる。
本実施例では、電流換算器2003の正相電圧を図9に示すブロックにより算出したが、図10に示すブロックによっても良い。すなわち、移動平均20164A、20164Bに代えて、カットオフ周波数が交流系統2の基本波周波数より低いローパスフィルタ20168A、20168Bを用いて算出しても良い。
また、図20に示すように、電流換算器2003に代えて最適電流算出器2101を備えても良い。最適電流算出器2101は系統電圧振幅と直流電流とパネル電圧と等価内部抵抗2100から、系統連系用電力変換器の有効電力出力と平衡する太陽電池パネルの電力出力を得られるような電流値を算出し、該値をリミッタ2005の上限値として出力する構成としてもよい。
Next, a second embodiment of the present invention will be described. FIG. 7 shows a main circuit configuration of the power conversion device according to the second embodiment. In the present embodiment, the same components as those in the first embodiment of the present invention are denoted by the same reference numerals, and description thereof is omitted.
The present embodiment is characterized in that the AC system 2 is a three-phase AC system, and the generated current limiting means 2003 lowers the upper limit value of the current command value limiter 2005 according to the positive phase voltage amplitude of the AC system.
The power converter 11 for controlling generated power of the power converter 1 of the present embodiment is the same as that of the first embodiment. As in the first embodiment, the power converter 11 for controlling the generated power is connected to the photovoltaic power generation panel 3, and the grid-connected power converter 30 is AC so that the terminal voltage of the smoothing capacitor 12 follows a predetermined voltage. Power is output to system 2.
The difference from the first embodiment is that in the second embodiment, the AC system to be connected is a three-phase, and the grid interconnection power converter 30 is a three-phase inverter constituted by IGBT elements 30m to 30r. Further, the first embodiment is a control operation that limits the generated power from the photovoltaic power generation panel 3 in accordance with the voltage amplitude of the AC system 2, whereas the second embodiment uses the positive phase voltage of the AC system 2 for photovoltaic power generation. A control operation for limiting the generated power of the panel 3 is performed.
FIG. 8 is a configuration diagram illustrating details of the control unit according to the second embodiment. The power conversion device 1 of the second embodiment limits the output current command upper limit value of the photovoltaic power generation panel 3 by the output of the current converter 2003 as in the first embodiment. The difference between the present embodiment and the first embodiment is that the input of the current converter 2003 is different.
When the AC system 2 to which the power conversion device 1 is connected is three-phase, the phase voltage of the AC system 2 may become unbalanced due to unbalance of a single-phase load connected to the same transmission line. In that case, the voltage amplitude of the AC system 2 is unbalanced depending on the phase. If the output current upper limit value of the photovoltaic power generation panel 3 is set with the amplitude of the combined voltage vector in this state, the output current upper limit value pulsates at a frequency twice the fundamental frequency of the AC system 2, so the output of the photovoltaic power generation panel 3 There is a possibility that the current control cannot follow the operation of the limiter, and the generated power suppression by the current command upper limit restriction cannot be realized. Even if the output current control of the photovoltaic power generation panel 3 follows the operation of the limiter, the terminal voltage of the smoothing capacitor 12 may fluctuate and hinder the operation of the grid interconnection power converter 30.
In this embodiment, the output current upper limit value of the photovoltaic power generation panel 3 is limited by the positive phase voltage that is an equilibrium component of the voltage of the AC system 2. Specifically, the voltage detected by the voltage sensor 20 is input to the positive phase voltage amplitude calculator 2016, and the positive phase voltage amplitude calculator 2016 outputs the calculated positive phase voltage amplitude to the current converter 2003.
FIG. 9 shows the configuration of the positive phase voltage amplitude calculator. The positive phase voltage amplitude calculator 2016 calculates the positive phase voltage of the AC system 2 and converts the detected voltage of three phases into Vα and Vβ which are αβ components by a two-phase / three-phase converter 20161. The three-phase voltage detection value is also input to the phase detector 20162, and the phase detector 20162 calculates the phase of the positive phase voltage.
The output of the 2-phase / 3-phase converter 20161 and the output of the phase detector 20162 are input to the d-q converter 20163, and the d-q converter 20163 calculates the d-axis voltage Vd and the q-axis voltage Vq. The calculated Vd and Vq are subjected to moving average processing using phase averages 20164A and 20164B in which the window is the fundamental wave period of the AC system 2. When the voltage of the AC system 2 is unbalanced, it appears as a double frequency component of the fundamental wave of the AC system 2 in Vd and Vq, but can be removed by applying moving averages 20164A and 20164B.
Further, when a harmonic component is included in the voltage of the AC system 2, the harmonic component appears as a pulsation that is an integral multiple of the fundamental wave in Vd and Vq, and therefore can be removed by the moving average 20164A and the phase average 20164B. . Therefore, only the positive phase voltage of the AC system 2 can be extracted from the output values V1_re and V1_im of the moving averages 20164A and 20164B. From the above, the amplitude of the positive phase voltage can be obtained by calculating V1_re and V1_im by calculating the square root of the sum of squares.
The amplitude of the positive phase voltage is constant even when the AC system 2 is unbalanced. Therefore, the output current command upper limit value of the photovoltaic power generation panel 3 can be limited to a constant value. Thereby, since it is possible to prevent the output power of the power converter 11 for generated power control from pulsating, it is possible to prevent the operation of the grid-connected power converter 30 from being hindered.
In this embodiment, the positive phase voltage of the current converter 2003 is calculated by the block shown in FIG. 9, but the block shown in FIG. 10 may be used. That is, instead of the moving averages 20164A and 20164B, the low-pass filters 20168A and 20168B whose cutoff frequency is lower than the fundamental frequency of the AC system 2 may be used for calculation.
Further, as shown in FIG. 20, an optimum current calculator 2101 may be provided instead of the current converter 2003. The optimum current calculator 2101 has a current value that can obtain the power output of the solar cell panel balanced with the effective power output of the power converter for grid connection from the system voltage amplitude, DC current, panel voltage, and equivalent internal resistance 2100. It may be configured to calculate and output the value as the upper limit value of the limiter 2005.

また、正相電圧振幅をp.u.値で表してV1[p.u.]、系統連系用電力変換器の有効電力出力をp.u.値で表してPc[p.u.]とすると、系統連系用電力変換器の電流がリミッタにより1.0p.u.に制限されていれば、V1=Pcの関係が成り立つ。したがって、図21に示すように、系統電圧と系統電流から有効電力演算器2102を用いて、交流系統2に出力する有効電力を演算し、前記交流系統の正相電圧振幅の代わりに使用して最適電流指令値上限値を演算してもよい。
以上より、接続する交流系統2の電圧振幅に応じて太陽光発電パネル3の出力電流上限値を制限することにより、交流系統2の電圧振幅が低下したときには速やかに太陽光発電パネル3の発電電力を制限することができる。そのため、平滑コンデンサ12の電圧が上昇することを回避することができ、発電電力制御用電力変換器11と系統連系用電力変換器30の電圧利用率を下げずに交流系統2の電圧振幅が低下した場合の電力変換装置1の運転継続性を向上することができる。
さらに、本実施例によれば交流系統2の電圧が不平衡の場合でも太陽光パネル3の出力電流上限値を一定の値とすることができるため、太陽光発電パネル3の脈動する発電電力制限を回避することができ、系統連系用電力変換器30の安定な運転が可能となる。
In addition, if the positive phase voltage amplitude is expressed as pu value and V1 [pu], and the active power output of the grid interconnection power converter is expressed as pu value and Pc [pu], the current of the grid interconnection power converter Is limited to 1.0 pu by the limiter, the relationship of V1 = Pc is established. Therefore, as shown in FIG. 21, the active power output to the AC system 2 is calculated from the system voltage and system current using the active power calculator 2102 and used instead of the positive phase voltage amplitude of the AC system. An optimal current command value upper limit value may be calculated.
From the above, by limiting the output current upper limit value of the photovoltaic power generation panel 3 in accordance with the voltage amplitude of the connected AC system 2, the generated power of the photovoltaic power generation panel 3 can be promptly reduced when the voltage amplitude of the AC system 2 decreases. Can be limited. Therefore, it is possible to avoid an increase in the voltage of the smoothing capacitor 12, and the voltage amplitude of the AC system 2 can be reduced without lowering the voltage utilization rate of the power converter 11 for power generation control and the power converter 30 for grid connection. It is possible to improve the continuity of operation of the power conversion device 1 when it is lowered.
Furthermore, according to the present embodiment, since the upper limit value of the output current of the solar panel 3 can be a constant value even when the voltage of the AC system 2 is unbalanced, the generated power limit of the photovoltaic power generation panel 3 that pulsates is limited. Thus, stable operation of the grid interconnection power converter 30 becomes possible.

図11は実施例3による電力変換装置の主要部の構成を示す。本実施例において、実施例1、2と同じものは同一の符号で示し、説明を省略する。
電力変換装置1の系統連系用電力変換器30は実施例2と同様である。また、系統連系用電力変換器30は交流系統2に接続され、平滑コンデンサ12の端子電圧を所定の電圧に追従するよう交流系統2に電力を出力する。
実施例1との相違点は、実施例3では発電電力制御用電力変換器11の接続する電源が直流電源5となる。また、実施例2の電力変換装置は太陽光発電パネル3の最大電力追従運転をすることに対し、実施例3の電力変換装置は外部から与えられる有効電力指令値に追従して直流電源5の発電電力を制御する電力制御器を備える。
直流電源5の発電した電力は、発電電力制御用電力変換器11により昇圧され、さらに昇圧した直流電力を系統連系用電力変換器30が交流電力に変換して交流系統2に出力する。
図12は実施例3の制御部の構成を示している。乗算器2023は電圧センサ23により検出した直流電源5の直流電圧と、電流センサ22により検出した直流電源5の出力電流を乗算し、直流電源5より発電された電力を算出する。外部より与えられる直流電源5の発電電力指令は、発電電力リミッタ2022により制限される。
発電電力制御器2024は、上記制限された発電電力指令に、乗算器2023で算出した電力を一致させるよう、直流電源5の出力電流指令値Idcrefを算出し、電流制御器2006は出力電流指令値Idcrefと直流電源5の出力電流検出値が一致するよう発電制御用電力変換器11の出力電圧指令値Vchopを算出する。
出力電圧指令値VchopはPWM制御器2007に出力される。PWM制御器2007は電流制御器2006の出力Vchopと三角波キャリアと大小比較することでIGBT素子11m〜11nのゲート信号を算出し、発電電力制御用電力変換器11に出力する。
これにより、端子11A、11B間には電圧指令値に追従した電圧を出力することができる。以上の動作原理により電源の出力電流は、電流指令値に追従するように制御できる。
ところで、電流指令値Idrefは電源から出力する有効電力(または無効電力)が指令値に追従するよう発電電力制御器2024(またはAQR)により算出された電流指令値である。 ゆえに、電力変換装置1は、直流電源5の出力する有効電力(または無効電力)を指令値に追従するよう制御することができる。
一方、交流系統2の電圧は電圧センサ20により検出され、その出力は正相電圧振幅算出器2016に入力される。正相電圧振幅算出器2016は交流系統2の正相電圧を算出し、その出力を電力換算器2025に出力する。
電力換算器2025は、図13に示す関係図に基づき、交流系統電圧振幅から直流電源5の発電電力指令上限値を算出し、発電電力リミッタ2022に出力する。発電電力リミッタ2022は電力換算器2025の出力を上限値として外部から与えられた発電電力指令を制限する。
上記の制御器構成を取ることにより、交流系統2の電圧が低下した場合、速やかに直流電源5から発電する電力指令を低下させることが可能となる。
実施例3では電力指令値の上限値を直接制限するため、電源の電流指令値を制限する実施例1や実施例2に比べて、より精度高く発電電力を制限することが可能となる。実施例3では接続する電源を直流電源としたが、直流電源5の変わりにNaS電池や燃料電池であっても良い。
以上より、接続する交流系統2の電圧振幅に応じて太陽光発電パネル3の出力電流上限値を制限することにより、交流系統2の電圧振幅が低下したときには速やかに直流電源5の発電電力を制限することができる。そのため、平滑コンデンサ12の電圧が上昇することを回避することができ、発電電力制御用電力変換器11と系統連系用電力変換器30の電圧利用率を下げずに交流系統2の電圧振幅が低下した場合の電力変換装置1の運転継続性を向上することができる。
さらに本実施例によれば、電力指令値の上限値を直接制限するため、電源の電流指令値を制限する実施例1や実施例2に比べて、より精度高く発電電力を制限することが可能となる。
FIG. 11 shows a configuration of a main part of the power conversion apparatus according to the third embodiment. In this embodiment, the same parts as those in Embodiments 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
The grid connection power converter 30 of the power converter 1 is the same as that of the second embodiment. The grid interconnection power converter 30 is connected to the AC system 2 and outputs power to the AC system 2 so that the terminal voltage of the smoothing capacitor 12 follows a predetermined voltage.
The difference from the first embodiment is that in the third embodiment, the power source connected to the power converter 11 for controlling the generated power is the DC power source 5. Further, the power conversion device of the second embodiment performs the maximum power follow-up operation of the photovoltaic power generation panel 3, whereas the power conversion device of the third embodiment follows the active power command value given from the outside and A power controller for controlling the generated power is provided.
The power generated by the DC power supply 5 is boosted by the power converter 11 for controlling the generated power, and the boosted DC power is converted into AC power by the grid interconnection power converter 30 and output to the AC grid 2.
FIG. 12 shows the configuration of the control unit of the third embodiment. The multiplier 2023 multiplies the DC voltage of the DC power supply 5 detected by the voltage sensor 23 and the output current of the DC power supply 5 detected by the current sensor 22, and calculates the electric power generated from the DC power supply 5. The generated power command of the DC power source 5 given from the outside is limited by the generated power limiter 2022.
The generated power controller 2024 calculates the output current command value Idcref of the DC power supply 5 so that the power calculated by the multiplier 2023 matches the limited generated power command, and the current controller 2006 outputs the output current command value. The output voltage command value Vchop of the power converter 11 for power generation control is calculated so that Idcref and the output current detection value of the DC power supply 5 match.
The output voltage command value Vchop is output to the PWM controller 2007. The PWM controller 2007 calculates the gate signal of the IGBT elements 11m to 11n by comparing the output Vchop of the current controller 2006 with the triangular wave carrier, and outputs it to the power converter 11 for controlling the generated power.
Thereby, a voltage following the voltage command value can be output between the terminals 11A and 11B. With the above operation principle, the output current of the power supply can be controlled to follow the current command value.
By the way, the current command value Idref is a current command value calculated by the generated power controller 2024 (or AQR) so that the active power (or reactive power) output from the power source follows the command value. Therefore, the power conversion device 1 can control the active power (or reactive power) output from the DC power supply 5 to follow the command value.
On the other hand, the voltage of the AC system 2 is detected by the voltage sensor 20, and the output is input to the positive phase voltage amplitude calculator 2016. The positive phase voltage amplitude calculator 2016 calculates the positive phase voltage of the AC system 2 and outputs the output to the power converter 2025.
Based on the relationship diagram shown in FIG. 13, the power converter 2025 calculates the generated power command upper limit value of the DC power supply 5 from the AC system voltage amplitude and outputs it to the generated power limiter 2022. The generated power limiter 2022 limits the generated power command given from the outside with the output of the power converter 2025 as the upper limit value.
By adopting the above controller configuration, when the voltage of the AC system 2 decreases, it is possible to quickly decrease the power command generated from the DC power supply 5.
Since the upper limit value of the power command value is directly limited in the third embodiment, the generated power can be more accurately limited as compared to the first and second embodiments that limit the current command value of the power source. In the third embodiment, the power source to be connected is a DC power source, but a NaS battery or a fuel cell may be used instead of the DC power source 5.
As described above, by limiting the output current upper limit value of the photovoltaic power generation panel 3 according to the voltage amplitude of the connected AC system 2, when the voltage amplitude of the AC system 2 decreases, the generated power of the DC power supply 5 is quickly limited. can do. Therefore, it is possible to avoid an increase in the voltage of the smoothing capacitor 12, and the voltage amplitude of the AC system 2 can be reduced without lowering the voltage utilization rate of the power converter 11 for power generation control and the power converter 30 for grid connection. It is possible to improve the continuity of operation of the power conversion device 1 when it is lowered.
Furthermore, according to the present embodiment, since the upper limit value of the power command value is directly limited, it is possible to limit the generated power with higher accuracy than in the first and second embodiments that limit the current command value of the power source. It becomes.

図14は本発明の実施例4による主要部の構成を示す。本実施例において、実施例3と同じものは同一の符号で示し、説明を省略する。本実施例は電源が風車とそのピッチ角制御手段を持つ風力発電機であり、交流系統が三相の場合である。
本実施例の電力変換装置1の、系統連系用電力変換器30は実施例3と同様である。また、系統連系用電力変換器30は交流系統2に接続され、平滑コンデンサ12の端子電圧を所定の電圧に一致させるよう交流系統2に電力を出力する。
実施例3との主回路における相違点は、実施例4が発電電力制御用電力変換器31がIGBT素子31m〜31rにより構成される三相コンバータである点と、電源が回転型発電機である同期発電機4により発電する風力発電システムである点である。
また、発電電力制御用電力変換器31が接続する風車の羽43a、43bにはピッチ角を調整するピッチ角調整機構42a、42bが設けられ、外部から与えられる指令によりピッチ角を調整することが可能な構造を持つ。
制御機能については、本実施例の電力変換装置1が同期発電機4から受け取る有効電力と無効電力を制御する制御器と、有効電力制御器から出力される有効電流指令値を制限する有効電流リミッタと、交流系統2の正相電圧に応じて該有効電流指令値上限値を低下させ、さらにピッチ角調整機構42a、42bにピッチ角を寝かせる機能を有する点が異なる。
図15は実施例4による電力変換装置の制御機能の詳細構成を示す。同期発電機4の回転子41には風力の羽の軸が接続され、軸が回転することにより発電する。回転子41には位置センサ24が備えられ、その出力は制御器200に入力される。また、発電機の出力電圧は電圧センサ25により、出力電流は電流センサ22により検出し、その出力は制御器200に入力される。
制御器200は電圧センサ25と電流センサ22の出力を有効電力・無効電力算出器(PQ検出器)2026に入力し、同期発電機4の出力する有効電力値P、無効電力値Qを算出する。
有効電力・無効電力算出器2026により算出された有効電力値Pと、外部より与えられる有効電力指令値Prefは有効電力制御器2027に入力され、有効電力制御器2027は有効電力値Pを有効電力指令値Prefに一致するよう同期発電機4の出力する有効電流指令値Idrefを算出する。
同様に、有効電力・無効電力算出器2026により算出された無効電力Qと、外部より与えられた無効電力指令値Qrefは無効電力制御器2028に入力され、無効電力制御器2028は無効電力値Qを無効電力指令値Qrefに一致するよう同期発電機4の出力する無効電流指令値Iqrefを算出する。
有効電流指令値Idrefは、有効電流指令値リミッタ2005に入力される。有効電流指令値リミッタ2005の上限値は、実施例2で示した方法と同様に、正相電圧振幅算出器2016により算出された交流系統2の正相電圧振幅値に応じて低く設定する。
一方、位置センサ25により検出した回転子41の位置検出値は位相検出器2020に入力され、位置検出器2020は回転子41の位相角を算出する。位相検出器2020の出力と電流センサ22はd−q変換器2021に入力され、d−q変換器2021は電流センサ22の出力値をd−q変換し、発電機出力電流の有効電流値Id、無効電流値Iqを算出する。
電流制御器2006は、有効電流指令値リミッタ2005の出力と有効電流値Idを、無効電力制御器2026の出力Iqrefと無効電流値Iqを一致させるように発電電力制御用電力変換器31の発電機4側出力電圧指令値Vconvを算出する。
次に、本実施例で新規な点であるピッチ角調整信号発生器の動作、およびピッチ角調整動作について説明する。
交流系統2の正相電圧振幅値は正相電圧振幅算出器2016により算出され、ピッチ角調整信号発生器2029に出力される。電流換算器2003の出力が低下を開始する正相電圧振幅の閾値をV1_Lとすると、ピッチ角調整信号発生器2029は正相電圧振幅算出器2016の出力がV1_L以下のとき、風車のピッチ角調整機構42a、42bにピッチ角調整信号を出力する。ピッチ角調整機構42a、42bは、制御器200よりピッチ角調整信号を入力すると、羽43a、43bの風に対する角度を寝かせ、風圧を逃がすことができる状態にする。
上記動作をさせることにより、発電電力制御用電力変換器31が系統連系用電力変換器30に出力する電力を、系統連系用電力変換器30の出力可能な電力以下に抑制することができる。
風車が交流系統2の電圧に関係なく運転を続けた場合、発電電力制御用電力変換器31の有効電流指令上限値が抑制されると、機械的入力が電気的出力を超えるため、風車がオーバースピードになり、システム運用に影響を及ぼす可能性がある。本実施例の電力変換装置を用いれば、制御器200により風車の羽43a、43bのピッチ角を風に対して寝かせることにより風車の機械的入力を制限するため、発電電力制御用電力変換器31に出力する電力が抑制されても風車のオーバースピードを抑制することができる。
ここで、本実施例ではピッチ角調整信号発生器2029は正相電圧振幅算出器2016の出力がV1_L以下のときにピッチ角調整機構42a、42bにピッチ角調整信号を出力するとしたが、制御器200はピッチ角調整信号発生器2029の代わりにピッチ角調整信号発生器2030を備えても良い。図16に示すように、ピッチ角調整信号発生器2030は入力発電機4の有効電力算出値と交流系統2の正相電圧振幅値をp.u.化演算器2031a、2031bによりそれぞれp.u.化し、正相電圧振幅値のp.u.値が有効電力算出値のp.u.値を比較器2031Cで比較する。その結果、正相電圧振幅値が有効電力算出値より小さい場合のみピッチ角調整信号を出力する構成としても良い。なお、正相電圧振幅値のp.u.値は、例えば系統定格電圧における正相電圧値を基準とし、有効電力算出値のp.u.値は、例えば定格出力時の有効電力値を基準とする。
また、制御器200はピッチ角調整信号発生器2029の代わりにピッチ角調整信号発生器2031を備えても良い。図17に示すように、ピッチ角調整信号発生器2031は交流系統2の正相電圧振幅値を比較器2031a、2031b、2031cによって複数の閾値と比較する。その比較結果を2031dに出力し、比較器2031a、2031b、2031cの出力に応じてピッチ角調整機構42a、42bの調整する角度を変えても良い。なお、正相電圧振幅が閾値(V1_L1、V1_L2、V1_L3)より大きい場合、比較器2031a、2031b、2031cは1を出力、その他の場合は0を出力する。ピッチ角調整信号発生器2031を図17のように構成することにより、風車のピッチ各を徐々にねかせることが可能になり、ショックの少ない制御が実現できる。
本実施例では、同期発電機4の出力する有効電流指令値Idrefは有効電力制御器2027により算出されるが、図18Aに示すように制御器200が風車の回転速度を算出する速度算出器2032と、回転速度を制御する速度制御器2033を備え、該速度制御器2033が、外部より与えられる回転速度指令と、風車回転速度と、が一致するように有効電流指令値を算出する構成としても良い。この構成とすることで、瞬低時の運転継続性能向上に加えて、定常時の風車回転速度を制御対象とすることができ、風車回転速度を安定を増すことができる。
また、図18Bに示すように制御器200が風車の回転速度を算出する速度算出器2032と、回転速度を制御する速度制御器2033を備え、速度制御器2033が、外部より与えられる回転速度指令と、風車回転速度と、が一致するように有効電力制御器2027に与える有効電力指令値を算出する構成としても良い。この構成とすることで、瞬低時の運転継続性能向上に加えて、定常時の発電電力を制御対象とすることができ、発電電力制御性能を向上させることができる。
以上より、本実施例によれば接続する交流系統2の正相電圧振幅に応じて風力発電システムの同期発電機4の出力する有効電流を抑制することができるため、交流系統2の正相電圧振幅が低下したときには速やかに同期発電機4の発電電力を制限することができる。これにより、平滑コンデンサ12の電圧が上昇することを回避することができ、発電電力制御用電力変換器31と系統連系用電力変換器30の電圧利用率を下げずに交流系統2の正相電圧振幅が低下した場合の電力変換装置1の運転継続性を向上することができる。
さらに、本実施例によれば電力変換装置1の発電電力を制限するのと同時に風車の羽のピッチ角を調整して風車の機械的入力を制限することができるため、風車のオーバースピードを回避することができる。
FIG. 14 shows a configuration of a main part according to the fourth embodiment of the present invention. In the present embodiment, the same components as those in the third embodiment are denoted by the same reference numerals, and description thereof is omitted. In this embodiment, the power source is a wind turbine having a windmill and its pitch angle control means, and the AC system is a three-phase system.
The grid connection power converter 30 of the power converter 1 of the present embodiment is the same as that of the third embodiment. The grid interconnection power converter 30 is connected to the AC grid 2 and outputs power to the AC grid 2 so that the terminal voltage of the smoothing capacitor 12 matches a predetermined voltage.
The difference in the main circuit from the third embodiment is that the fourth embodiment is a three-phase converter in which the power converter 31 for controlling generated power is composed of IGBT elements 31m to 31r, and the power source is a rotary generator. This is a wind power generation system that generates power using the synchronous generator 4.
The wind turbine blades 43a and 43b connected to the power converter 31 for generating power control are provided with pitch angle adjusting mechanisms 42a and 42b for adjusting the pitch angle, and the pitch angle can be adjusted by a command given from the outside. Has a possible structure.
Regarding the control function, a controller that controls the active power and reactive power received from the synchronous generator 4 by the power conversion device 1 of the present embodiment, and an active current limiter that limits the active current command value output from the active power controller. And the point that the effective current command value upper limit value is lowered according to the positive phase voltage of the AC system 2, and the pitch angle adjusting mechanisms 42a and 42b have a function of laying down the pitch angle.
FIG. 15 shows a detailed configuration of a control function of the power conversion device according to the fourth embodiment. The rotor 41 of the synchronous generator 4 is connected to a shaft of wind power wings, and generates electricity by rotating the shaft. The rotor 41 is provided with a position sensor 24, and its output is input to the controller 200. Further, the output voltage of the generator is detected by the voltage sensor 25, the output current is detected by the current sensor 22, and the output is input to the controller 200.
The controller 200 inputs the outputs of the voltage sensor 25 and the current sensor 22 to the active power / reactive power calculator (PQ detector) 2026 and calculates the active power value P and the reactive power value Q output from the synchronous generator 4. .
The active power value P calculated by the active power / reactive power calculator 2026 and the active power command value Pref given from the outside are input to the active power controller 2027, and the active power controller 2027 converts the active power value P to the active power. The active current command value Idref output from the synchronous generator 4 is calculated so as to coincide with the command value Pref.
Similarly, the reactive power Q calculated by the active power / reactive power calculator 2026 and the reactive power command value Qref given from the outside are input to the reactive power controller 2028, and the reactive power controller 2028 receives the reactive power value Q The reactive current command value Iqref output from the synchronous generator 4 is calculated so as to match the reactive power command value Qref.
The effective current command value Idref is input to the effective current command value limiter 2005. The upper limit value of the effective current command value limiter 2005 is set low according to the positive phase voltage amplitude value of the AC system 2 calculated by the positive phase voltage amplitude calculator 2016, as in the method shown in the second embodiment.
On the other hand, the position detection value of the rotor 41 detected by the position sensor 25 is input to the phase detector 2020, and the position detector 2020 calculates the phase angle of the rotor 41. The output of the phase detector 2020 and the current sensor 22 are input to the dq converter 2021, and the dq converter 2021 performs dq conversion on the output value of the current sensor 22, and the effective current value Id of the generator output current. Then, the reactive current value Iq is calculated.
The current controller 2006 generates the generator of the power converter 31 for generating power control so that the output of the active current command value limiter 2005 and the active current value Id match the output Iqref of the reactive power controller 2026 and the reactive current value Iq. A 4-side output voltage command value Vconv is calculated.
Next, the operation of the pitch angle adjustment signal generator and the pitch angle adjustment operation, which are novel in this embodiment, will be described.
The positive phase voltage amplitude value of the AC system 2 is calculated by the positive phase voltage amplitude calculator 2016 and output to the pitch angle adjustment signal generator 2029. When the threshold value of the positive phase voltage amplitude at which the output of the current converter 2003 starts to decrease is V1_L, the pitch angle adjustment signal generator 2029 adjusts the pitch angle of the windmill when the output of the positive phase voltage amplitude calculator 2016 is equal to or lower than V1_L. A pitch angle adjustment signal is output to the mechanisms 42a and 42b. When the pitch angle adjustment mechanism 42a, 42b receives a pitch angle adjustment signal from the controller 200, the pitch angle adjustment mechanism 42a, 42b lays down the angle of the wings 43a, 43b with respect to the wind and allows the wind pressure to escape.
By performing the above operation, the power output from the power converter 31 for controlling the generated power to the power converter 30 for the grid connection can be suppressed below the power that can be output from the power converter 30 for the grid connection. .
When the windmill continues to operate regardless of the voltage of the AC system 2, the mechanical input exceeds the electrical output when the effective current command upper limit value of the power converter 31 for generated power control is suppressed. Speed and may affect system operation. If the power converter of the present embodiment is used, the controller 200 limits the mechanical input of the windmill by laying the pitch angle of the windmill blades 43a, 43b against the wind. Even if the power output to is suppressed, the overspeed of the windmill can be suppressed.
In this embodiment, the pitch angle adjustment signal generator 2029 outputs a pitch angle adjustment signal to the pitch angle adjustment mechanisms 42a and 42b when the output of the positive phase voltage amplitude calculator 2016 is equal to or lower than V1_L. 200 may include a pitch angle adjustment signal generator 2030 instead of the pitch angle adjustment signal generator 2029. As shown in FIG. 16, the pitch angle adjustment signal generator 2030 converts the active power calculation value of the input generator 4 and the positive phase voltage amplitude value of the AC system 2 to pu by the pu conversion calculators 2031 a and 2031 b, respectively. The pu value of the amplitude value is compared with the pu value of the calculated active power by the comparator 2031C. As a result, the pitch angle adjustment signal may be output only when the positive phase voltage amplitude value is smaller than the active power calculation value. The pu value of the positive phase voltage amplitude value is based on the positive phase voltage value at the system rated voltage, for example, and the pu value of the active power calculation value is based on the active power value at the rated output, for example.
The controller 200 may include a pitch angle adjustment signal generator 2031 instead of the pitch angle adjustment signal generator 2029. As shown in FIG. 17, the pitch angle adjustment signal generator 2031 compares the positive-phase voltage amplitude value of the AC system 2 with a plurality of threshold values by the comparators 2031a, 2031b, and 2031c. The comparison result may be output to 2031d, and the adjustment angles of the pitch angle adjustment mechanisms 42a and 42b may be changed according to the outputs of the comparators 2031a, 2031b, and 2031c. When the positive phase voltage amplitude is larger than the threshold values (V1_L1, V1_L2, V1_L3), the comparators 2031a, 2031b, and 2031c output 1; otherwise, 0 is output. By configuring the pitch angle adjustment signal generator 2031 as shown in FIG. 17, it becomes possible to gradually overwhelm each pitch of the windmill, and control with less shock can be realized.
In the present embodiment, the active current command value Idref output from the synchronous generator 4 is calculated by the active power controller 2027. However, as shown in FIG. 18A, the controller 200 calculates the rotation speed of the windmill. And a speed controller 2033 for controlling the rotational speed, and the speed controller 2033 may calculate the effective current command value so that the rotational speed command given from the outside matches the windmill rotational speed. good. By adopting this configuration, in addition to improving the operation continuation performance at the time of a sag, it is possible to control the wind turbine rotation speed at the steady state and increase the stability of the wind turbine rotation speed.
Further, as shown in FIG. 18B, the controller 200 includes a speed calculator 2032 for calculating the rotational speed of the windmill and a speed controller 2033 for controlling the rotational speed. The speed controller 2033 receives a rotational speed command given from the outside. The active power command value given to the active power controller 2027 may be calculated so that the wind turbine rotational speed and the wind turbine rotational speed coincide with each other. By adopting this configuration, in addition to improving the operation continuation performance at the time of a sag, it is possible to control the generated power at the normal time and improve the generated power control performance.
From the above, according to the present embodiment, since the effective current output from the synchronous generator 4 of the wind power generation system can be suppressed according to the positive phase voltage amplitude of the connected AC system 2, the positive phase voltage of the AC system 2 can be suppressed. When the amplitude decreases, the generated power of the synchronous generator 4 can be quickly limited. Thereby, it is possible to avoid an increase in the voltage of the smoothing capacitor 12, and the positive phase of the AC system 2 without reducing the voltage utilization rate of the power converter 31 for power generation control and the power converter 30 for grid connection. The continuity of operation of the power conversion device 1 when the voltage amplitude is reduced can be improved.
Furthermore, according to the present embodiment, it is possible to limit the mechanical input of the windmill by adjusting the pitch angle of the windmill wing at the same time as limiting the generated power of the power converter 1, thereby avoiding overspeed of the windmill. can do.

図19は本発明の実施例5による電力変換システムの構成を示す。本実施例において、実施例3と同じものは同一の符号で示し、説明を省略する。
実施例4記載の電力変換装置との相違点は、実施例5記載の電力変換装置1の発電電力制御用電力変換器31を制御する制御器200Aと、系統連系用電力変換器30を制御する制御器200Bをもつ点にある。
海洋風力発電システムなどにおいては、海に設置された風車で発電した電力を直流で送電するシステムがあり、その場合、発電用電力変換器31と系統連系用電力変換器30が直流送電線50P、50Nで連系され、物理的に離れた場所に設置される場合がある。本実施例は、上記状況でも交流系統3で電圧低下が発生した場合に、発電システムとしての運転継続性を向上する電力変換システムを提案するものである。
電力変換装置1の発電電力制御用電力変換器31は制御器200Aにより制御され、系統連系用電力変換装置30は制御器200Bにより制御される。交流系統3の正相電圧は制御器200Bの正相電圧振幅算出器2016により算出され、シリアル変換器300B1に出力される。
シリアル変換器300B1は正相電圧振幅算出器2016の出力をシリアル通信形式に変換し、E/O変換器300B2に出力する。E/O変換器300B2はシリアル変換器300B1の出力を光信号に変換し、その光を、ライトガイド300Cを介して制御器200Aに備えられたO/E変換器300A1に出力する。
O/E変換器300A1は光信号を電気信号に変換し、その出力を復元器300A2に出力する。復元器300A2はシリアル信号化された電気信号から交流系統3の正相電圧振幅値に復元し、その出力を発電電力制御用電力変換器31の有効電流指令上限値を算出する電流換算器2003と、風車の羽のピッチ角を調整する信号を算出するピッチ角調整信号発生器2029と、に出力する。
以上のように、発電電力制御用電力変換器と系統連系用電力変換器が地理的に離れている場合でも、制御器が通信機能を有することにより交流系統2の正相電圧振幅値を発電電力制御用電力変換器の制御器に交流系統2の正相電圧振幅値を伝達できる。
本実施例では、ライトガイドを用いたシリアル通信により交流系統2の正相電圧振幅値を発電電力制御用電力変換器31の制御器200Aに伝達したが、無線による通信によって制御器200Bから制御器200Aへ交流系統2の正相電圧振幅値を伝達しても良い。
以上より、本実施例によれば接続する交流系統2の正相電圧振幅に応じて風力発電システムの同期発電機4の出力する有効電流を抑制することができるため、交流系統2の正相電圧振幅が低下したときには速やかに同期発電機4の発電電力を制限することができる。これにより、平滑コンデンサ12の電圧が上昇することを回避することができ、発電電力制御用電力変換器31と系統連系用電力変換器30の電圧利用率を下げずに交流系統2の正相電圧振幅が低下した場合の電力変換装置1の運転継続性を向上することができる。
さらに、本実施例によれば発電電力制御用電力変換器31と系統連系用電力変換器30が地理的に離れた場所に設置されていても、交流系統2の正相電圧振幅を発電電力制御用電力変換器31に送信することができ、運転継続性の向上を維持できる。
FIG. 19 shows a configuration of a power conversion system according to the fifth embodiment of the present invention. In the present embodiment, the same components as those in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.
The difference from the power conversion device described in the fourth embodiment is that the controller 200A that controls the power converter 31 for power generation control of the power conversion device 1 described in the fifth embodiment and the power converter 30 for grid interconnection are controlled. It has a controller 200B to perform.
In the offshore wind power generation system and the like, there is a system that transmits the electric power generated by the windmill installed in the sea with a direct current. In this case, the power converter 31 for power generation and the power converter 30 for the grid connection are connected to a direct current transmission line 50P. , 50N, and may be installed in physically separated locations. The present embodiment proposes a power conversion system that improves operation continuity as a power generation system when a voltage drop occurs in the AC system 3 even in the above situation.
The power converter 31 for controlling the generated power of the power converter 1 is controlled by the controller 200A, and the grid-connected power converter 30 is controlled by the controller 200B. The positive phase voltage of AC system 3 is calculated by positive phase voltage amplitude calculator 2016 of controller 200B and output to serial converter 300B1.
The serial converter 300B1 converts the output of the positive phase voltage amplitude calculator 2016 into a serial communication format and outputs it to the E / O converter 300B2. The E / O converter 300B2 converts the output of the serial converter 300B1 into an optical signal, and outputs the light to the O / E converter 300A1 provided in the controller 200A via the light guide 300C.
The O / E converter 300A1 converts the optical signal into an electrical signal and outputs the output to the decompressor 300A2. The restorer 300A2 restores the positive phase voltage amplitude value of the AC system 3 from the serialized electrical signal, and outputs the output from the current converter 2003 that calculates the effective current command upper limit value of the power converter 31 for generated power control. And a pitch angle adjustment signal generator 2029 for calculating a signal for adjusting the pitch angle of the windmill wings.
As described above, even when the power converter for generating power control and the power converter for grid interconnection are geographically separated, the controller has a communication function to generate the positive phase voltage amplitude value of the AC system 2. The positive phase voltage amplitude value of the AC system 2 can be transmitted to the controller of the power converter for power control.
In this embodiment, the positive phase voltage amplitude value of the AC system 2 is transmitted to the controller 200A of the power converter 31 for power generation control by serial communication using a light guide. However, the controller 200B transmits the controller to the controller 200 by wireless communication. The positive phase voltage amplitude value of AC system 2 may be transmitted to 200A.
From the above, according to the present embodiment, since the effective current output from the synchronous generator 4 of the wind power generation system can be suppressed according to the positive phase voltage amplitude of the connected AC system 2, the positive phase voltage of the AC system 2 can be suppressed. When the amplitude decreases, the generated power of the synchronous generator 4 can be quickly limited. Thereby, it is possible to avoid an increase in the voltage of the smoothing capacitor 12, and the positive phase of the AC system 2 without reducing the voltage utilization rate of the power converter 31 for power generation control and the power converter 30 for grid connection. The continuity of operation of the power conversion device 1 when the voltage amplitude is reduced can be improved.
Furthermore, according to the present embodiment, even if the power converter 31 for controlling generated power and the power converter 30 for grid connection are installed in geographically separated locations, the positive phase voltage amplitude of the AC system 2 is generated by the generated power. It can transmit to the power converter 31 for control, and the improvement of driving | operation continuity can be maintained.

図24は本発明の実施例6による電力変換システムの構成を示す。本実施例において、実施例5と同じものは同一の符号で示し、説明を省略する。
実施例5記載の電力変換装置との相違点は、実施例6は電源が太陽光発電パネルである点と、発電電力制御用電力変換器31が実施例1〜3と同じ直流−直流の変換装置である点である。
太陽光発電パネルは、砂漠などに設置され、需要地まで発電した電力を直流で送電するシステムが考えられ、その場合、発電用電力変換器31と系統連系用電力変換器30が直流送電線50P、50Nで連系され、物理的に離れた場所に設置される場合がある。本実施例は、上記状況でも交流系統3で電圧低下が発生した場合にも発電システムとしての運転継続性を向上する電力変換システムを提案するものである。
正相電圧振幅演算器2016は、本実施例では、系統連系電力変換装置の制御装置200dに組み込まれている。実施例5と同様に正相電圧振幅演算値がシリアル通信により、発電電力制御用電力変換器の制御装置200cに渡され、実施例2と同様に、発電電力制御用電力変換器11と系統連系用電力変換器30の電圧利用率を下げずに交流系統2の電圧振幅が低下した場合の電力変換装置1の運転継続性を向上することができる。
さらに、本実施例によれば発電電力制御用電力変換器31と系統連系用電力変換器30が地理的に離れた場所に設置されていても、交流系統2の正相電圧振幅を発電電力制御用電力変換器31に送信することができ、運転継続性の向上を維持できる。
また、本実施例においても、実施例2と同様に系統電圧振幅と直流電流とパネル電圧から、系統電力変換器の有効電力出力と平衡する太陽電池パネルの電力出力を得られる電流値をリミッタの上限値としてもよい。さらに、系統電圧と系統電流から有効電力演算器を用いて、有効電力を演算し、前期交流系統の電圧振幅の代わりに使用して最適電流指令値上限値を演算してもよい。
FIG. 24 shows a configuration of a power conversion system according to the sixth embodiment of the present invention. In the present embodiment, the same components as those in the fifth embodiment are denoted by the same reference numerals, and description thereof is omitted.
The difference from the power conversion device described in the fifth embodiment is that the power source in the sixth embodiment is a photovoltaic power generation panel, and the DC-DC conversion in which the power converter 31 for controlling generated power is the same as in the first to third embodiments. It is a device.
The solar power generation panel is installed in a desert or the like, and a system for transmitting the power generated to the demand area with a direct current is conceivable. In this case, the power converter 31 for power generation and the power converter 30 for the grid interconnection are connected to a direct current transmission line. There are cases where they are connected by 50P and 50N and installed in physically separated locations. The present embodiment proposes a power conversion system that improves the continuity of operation as a power generation system even when a voltage drop occurs in the AC system 3 even in the above situation.
The positive phase voltage amplitude calculator 2016 is incorporated in the control device 200d of the grid interconnection power converter in this embodiment. As in the fifth embodiment, the calculation value of the positive phase voltage amplitude is transferred to the control device 200c of the power converter for generated power control by serial communication, and the power converter for power generation control 11 and the power converter 11 are connected to the system in the same manner as in the second embodiment. It is possible to improve the continuity of operation of the power conversion device 1 when the voltage amplitude of the AC system 2 decreases without reducing the voltage utilization rate of the system power converter 30.
Furthermore, according to the present embodiment, even if the power converter 31 for controlling generated power and the power converter 30 for grid connection are installed in geographically separated locations, the positive phase voltage amplitude of the AC system 2 is generated by the generated power. It can transmit to the power converter 31 for control, and the improvement of driving | operation continuity can be maintained.
Also in this embodiment, the current value that can obtain the power output of the solar cell panel that balances the effective power output of the system power converter from the system voltage amplitude, the direct current, and the panel voltage as in the case of the embodiment 2. It is good also as an upper limit. Further, the active power may be calculated from the system voltage and system current using an active power calculator, and the optimum current command value upper limit value may be calculated using instead of the voltage amplitude of the previous AC system.

本発明の実施例1による電力変換装置の主要部の構成図。The block diagram of the principal part of the power converter device by Example 1 of this invention. 実施例1の制御部の詳細を示す構成図。FIG. 3 is a configuration diagram illustrating details of a control unit according to the first embodiment. 最大電力追従運転の電流と電圧および電力の関係図。FIG. 4 is a relationship diagram of current, voltage and power in maximum power following operation. 実施例1の最大電力追従運転の処理を示すフロー図。FIG. 3 is a flowchart showing processing of maximum power follow-up operation of the first embodiment. 実施例1の交流系統の電圧振幅と太陽光発電パネルの出力電流指令上限値との関係図。The relationship figure of the voltage amplitude of the alternating current system of Example 1, and the output electric current command upper limit of a photovoltaic power generation panel. 実施例1の交流系統の電圧振幅と太陽光発電パネルの出力電流指令上限値との別の関係図。The another relationship figure of the voltage amplitude of the alternating current system of Example 1, and the output electric current command upper limit of a photovoltaic power generation panel. 本発明の実施例2による電力変換装置の主要部の構成図。The block diagram of the principal part of the power converter device by Example 2 of this invention. 実施例2の制御部の詳細を示す構成図。The block diagram which shows the detail of the control part of Example 2. FIG. 実施例2の正相電圧振幅算器の構成図。The block diagram of the positive phase voltage amplitude calculator of Example 2. FIG. 実施例2の正相電圧振幅算器の別の構成図。FIG. 6 is another configuration diagram of the positive phase voltage amplitude calculator of the second embodiment. 本発明の実施例3による電力変換装置の主要部の構成図。The block diagram of the principal part of the power converter device by Example 3 of this invention. 実施例3の制御部の詳細を示す構成図。FIG. 9 is a configuration diagram illustrating details of a control unit according to a third embodiment. 交流系統の正相電圧振幅と出力電力指令上限値の関係図。FIG. 5 is a relationship diagram between the positive phase voltage amplitude of the AC system and the output power command upper limit value. 本発明の実施例4による風力発電の電力変換装置の主要構成図。The main block diagram of the power converter device of the wind power generation by Example 4 of this invention. 実施例4の制御部の詳細を示す構成図。The block diagram which shows the detail of the control part of Example 4. FIG. 実施例4のピッチ角調整信号発生器の別の構成図。FIG. 10 is another configuration diagram of the pitch angle adjustment signal generator according to the fourth embodiment. 実施例4のピッチ角調整信号発生器の更に別の構成図。FIG. 10 is still another configuration diagram of the pitch angle adjustment signal generator according to the fourth embodiment. 実施例4の制御部の別の形態の詳細を示す構成図。The block diagram which shows the detail of another form of the control part of Example 4. FIG. 実施例4の制御部の更に別の形態の詳細を示す構成図。The block diagram which shows the detail of another form of the control part of Example 4. FIG. 本発明の実施例5による電力変換システムの構成図。The block diagram of the power conversion system by Example 5 of this invention. 実施例2の制御部の別の形態を示す構成図。The block diagram which shows another form of the control part of Example 2. FIG. 実施例2制御部の更に別の形態を示す構成図。The block diagram which shows another form of Example 2 control part. 実施例1の制御部の別の形態を示す構成図。The block diagram which shows another form of the control part of Example 1. FIG. 実施例1の制御部の更に別の形態を示す構成図。The block diagram which shows another form of the control part of Example 1. FIG. 本発明の実施例6による電力変換システムの構成図。The block diagram of the power conversion system by Example 6 of this invention. 実施例1の制御部の他の形態を示す構成図。The block diagram which shows the other form of the control part of Example 1. FIG.

符号の説明Explanation of symbols

1…電力変換装置、2…交流系統、3…太陽光発電パネル、4…同期発電機、5…直流電源、10,30…系統連系用電力変換器、11,31…発電電力制御用電力変換器、12…平滑コンデンサ、13…連系インピーダンス、14…昇圧リアクトル、15…逆流防止用ダイオード、20,23,25,26…電圧センサ、21,22…電流センサ、24…位置センサ、41…同期発電機回転子、50P,50N…直流送電線、200,200A,200B,200c,200d…制御器、2001…振幅算出器、2003…電流換算器、2004…最大電力運転制御器、2005…出力電流指令値リミッタ、2006…電流制御器、2007,2010…PWM制御器、2008…電圧制御器、2009…電流制御器。   DESCRIPTION OF SYMBOLS 1 ... Power converter device, 2 ... AC system, 3 ... Photovoltaic power generation panel, 4 ... Synchronous generator, 5 ... DC power supply, 10, 30 ... Power converter for system connection, 11, 31 ... Electric power for power generation control Converter, 12 ... smoothing capacitor, 13 ... interconnection impedance, 14 ... step-up reactor, 15 ... backflow prevention diode, 20, 23, 25, 26 ... voltage sensor, 21, 22 ... current sensor, 24 ... position sensor, 41 ... Synchronous generator rotor, 50P, 50N ... DC transmission line, 200, 200A, 200B, 200c, 200d ... Controller, 2001 ... Amplitude calculator, 2003 ... Current converter, 2004 ... Maximum power operation controller, 2005 ... Output current command value limiter, 2006 ... current controller, 2007, 2010 ... PWM controller, 2008 ... voltage controller, 2009 ... current controller.

Claims (23)

電源から入力する電力を制御して交流系統に出力する電力変換装置において、
前記電源の発電電力を制御して該発電電力を直流電力に変換する発電電力制御用電力変換器と、
前記発電電力制御用電力変換器の出力端に接続する平滑コンデンサと、
前記発電電力制御用電力変換器と前記平滑コンデンサに接続して前記直流電力を交流電力に変換して前記交流系統に出力する系統連系電力変換器と、
前記交流系統の電圧振幅を検出する手段と、
前記電圧振幅を入力とし、該電圧振幅に応じて前記発電電力制御用電力変換器の発電電力上限値を変化させる発電電力制限手段を含む制御部を備え、
前記発電電力制限手段は前記電圧振幅が所定の設定値より小さい場合は、該電圧振幅に応じて前記発電電力制御用電力変換器の発電電力上限値を小さくし、前記平滑コンデンサの過充電を抑制することを特徴とする電力変換装置。
In the power converter that controls the power input from the power source and outputs it to the AC system,
A power converter for controlling generated power for controlling the generated power of the power source and converting the generated power into DC power;
A smoothing capacitor connected to the output end of the power converter for power generation control;
A grid-connected power converter that is connected to the power converter for controlling generated power and the smoothing capacitor, converts the DC power into AC power, and outputs the AC power, and
Means for detecting the voltage amplitude of the AC system;
A control unit including a generated power limiting means that takes the voltage amplitude as an input and changes a generated power upper limit value of the power converter for generating power control according to the voltage amplitude;
When the voltage amplitude is smaller than a predetermined set value, the generated power limiting means reduces the upper limit value of the generated power of the power converter for generated power control according to the voltage amplitude and suppresses overcharging of the smoothing capacitor. The power converter characterized by doing.
太陽光発電パネルから得た直流電力を交流電力に変換し、交流系統に出力する電力変換装置において、
半導体スイッチングのオン・オフを制御することにより太陽光発電パネルの出力電圧を変化させ、かつ発電電力を制御する発電電力制御用電力変換器と、
前記太陽光発電パネルの出力電圧を検出する電圧検出器と、出力電流を検出する電流検出器と、
前記発電電力制御用電力変換器を制御する制御部を備え、
前記制御部は太陽光発電パネルの出力電力が最大になるように太陽光発電パネルの出力電流指令値を変化させる電力最大化制御器と、該出力電流指令値と前記電流検出器により検出した太陽光パネルの出力電流を一致させるように、前記発電電力制御用電力変換器の太陽光パネル側出力電圧を制御する電流制御器を備えることを特徴とする電力変換装置。
In the power converter that converts the DC power obtained from the photovoltaic power generation panel into AC power and outputs it to the AC system,
A power converter for controlling generated power that changes the output voltage of the photovoltaic power generation panel by controlling on / off of semiconductor switching and controls the generated power;
A voltage detector for detecting an output voltage of the photovoltaic panel, a current detector for detecting an output current,
A control unit for controlling the power converter for generating power control;
The control unit is a power maximization controller that changes the output current command value of the photovoltaic power generation panel so that the output power of the photovoltaic power generation panel is maximized, and the solar detected by the output current command value and the current detector. A power converter comprising a current controller for controlling a solar panel side output voltage of the power converter for generated power control so as to make the output currents of the light panel coincide.
電源から入力する電力を制御して交流系統に出力する電力変換装置において、
前記電源の発電電力を制御して該発電電力を直流電力に変換する発電電力制御用電力変換器と、
前記発電電力制御用電力変換器の出力端に接続する平滑コンデンサと、
前記発電電力制御用電力変換器と前記平滑コンデンサに接続して前記直流電力を交流電力に変換して前記交流系統に出力する系統連系電力変換器と、を備え、
前記交流系統の電圧振幅を検出する手段と、
前記電源の出力電流を検出する電流検出器と、
前記電源の出力電流指令値を制限する電流指令値リミッタと、
前記電流検出器により検出した電流検出値が前記電流指令値リミッタの出力に一致するように前記発電電力制御用電力変換器の電源側出力電圧を調整する電流制御器と、
前記電圧振幅を入力とし、該電圧振幅に応じて前記出力電流指令値の上限値を変化させる発電電流制限手段と、を制御部に備え、
前記交流系統の電圧振幅が所定の値より小さい場合は、前記発電電流制限手段が該電圧振幅に応じて前記電流指令値リミッタの上限値を低くすることにより前記電源からの発電電力を制限し、該発電電力の制限により平滑コンデンサの過充電を抑制することを特徴とする電力変換装置。
In the power converter that controls the power input from the power source and outputs it to the AC system,
A power converter for controlling generated power for controlling the generated power of the power source and converting the generated power into DC power;
A smoothing capacitor connected to the output end of the power converter for power generation control;
A grid-connected power converter connected to the power converter for generated power control and connected to the smoothing capacitor to convert the DC power into AC power and output it to the AC system,
Means for detecting the voltage amplitude of the AC system;
A current detector for detecting an output current of the power source;
A current command value limiter for limiting the output current command value of the power supply;
A current controller for adjusting a power supply side output voltage of the power converter for generated power control so that a current detection value detected by the current detector matches an output of the current command value limiter;
The control unit comprises the generated current limiting means that takes the voltage amplitude as input and changes the upper limit value of the output current command value according to the voltage amplitude,
When the voltage amplitude of the AC system is smaller than a predetermined value, the generated current limiting means limits the generated power from the power source by lowering the upper limit value of the current command value limiter according to the voltage amplitude, A power converter that suppresses overcharge of a smoothing capacitor by limiting the generated power.
請求項1記載の電力変換装置であって、
前記電源からの出力電力を算出する電力算出手段と、出力電流を検出する電流検出器と、
前記電源の出力電力指令値を制限する電力指令値リミッタと、
前記電力算出手段により算出した電力検出値が前記電力指令値リミッタの出力に一致するように電源出力電流指令値を算出する電力制御器と、
該電力制御器の出力である電源出力電流指令値に、前記電流検出器により検出した電流検出値が一致するよう前記発電電力制御用電力変換器の電源側出力電圧を調整する電流制御器と、を備え、
前記交流系統の電圧振幅が所定の値より小さい場合は、前記発電電力制限手段が該電圧振幅に応じて前記電力指令値リミッタの上限値を低くすることで平滑コンデンサの過充電を抑制することを特徴とする電力変換装置。
The power conversion device according to claim 1,
Power calculating means for calculating output power from the power source, a current detector for detecting output current,
A power command value limiter for limiting the output power command value of the power source;
A power controller that calculates a power output current command value so that a power detection value calculated by the power calculation means matches an output of the power command value limiter;
A current controller that adjusts a power supply side output voltage of the power converter for power generation control so that a current detection value detected by the current detector matches a power output current command value that is an output of the power controller; With
When the voltage amplitude of the AC system is smaller than a predetermined value, the generated power limiting means suppresses overcharge of the smoothing capacitor by lowering the upper limit value of the power command value limiter according to the voltage amplitude. A power conversion device.
請求項3記載の電力変換装置であって、
前記電源が太陽光発電パネルであり、該太陽光発電パネルの出力電圧を検出する電圧検出器と、該太陽光発電パネルの出力電流を検出する電流検出器と、前記発電電力制御用電力変換器を制御する制御部を備え、
前記制御部は、前記電流指令値リミッタの入力である電流指令値を、太陽光発電パネルの出力電力が最大になるように算出することを特徴とする電力変換装置。
The power conversion device according to claim 3,
The power source is a photovoltaic power generation panel, a voltage detector for detecting an output voltage of the photovoltaic power generation panel, a current detector for detecting an output current of the photovoltaic power generation panel, and the power converter for generating power control A control unit for controlling
The said control part calculates the electric current command value which is an input of the said electric current command value limiter so that the output electric power of a photovoltaic power generation panel may become the maximum, The power converter device characterized by the above-mentioned.
請求項4記載の電力変換装置であって、
前記交流系統が3相の交流系統であり、前記発電電力制限手段は前記電力指令値リミッタの上限値を交流系統の正相電圧振幅に応じて低下させることを特徴とする電力変換装置。
The power conversion device according to claim 4,
The power system is characterized in that the AC system is a three-phase AC system, and the generated power limiting means reduces the upper limit value of the power command value limiter according to the positive phase voltage amplitude of the AC system.
請求項3記載の電力変換装置であって、
前記交流系統が3相の交流系統であり、前記発電電流制限手段は前記電流指令値リミッタの上限値を交流系統の正相電圧振幅に応じて低下させることを特徴とする電力変換装置。
The power conversion device according to claim 3,
The power system is characterized in that the AC system is a three-phase AC system, and the generated current limiting means reduces the upper limit value of the current command value limiter according to the positive phase voltage amplitude of the AC system.
請求項5記載の電力変換装置であって、
前記交流系統が3相の交流系統であり、前記発電電流制限手段は前記電流指令値リミッタの上限値を交流系統の正相電圧振幅に応じて低下させることを特徴とする電力変換装置。
The power conversion device according to claim 5,
The power system is characterized in that the AC system is a three-phase AC system, and the generated current limiting means reduces the upper limit value of the current command value limiter according to the positive phase voltage amplitude of the AC system.
請求項3記載の電力変換装置であって、
前記電源が回転型発電機であり、前記交流系統は単相または三相であり、
前記制御部は前記電源の出力する電流の有効電流を制限する有効電流指令値リミッタと、
該有効電流指令値リミッタの出力と該電源の出力電流の有効電流が一致するように、前記発電電力制御用電力変換器の電源側出力電圧を調整する電流制御器と、を備え、
前記交流系統の電圧振幅に応じて、該電圧振幅が所定の設定値より小さい場合は、前記発電電流制限手段が該電圧振幅に応じて前記有効電流指令値リミッタの上限値を低くすることで平滑コンデンサの過充電を抑制することを特徴とする電力変換装置。
The power conversion device according to claim 3,
The power source is a rotary generator, and the AC system is single-phase or three-phase,
The control unit is an active current command value limiter that limits the effective current of the current output from the power source;
A current controller that adjusts the power supply side output voltage of the power converter for generated power control so that the output of the active current command value limiter and the effective current of the output current of the power supply match,
If the voltage amplitude is smaller than a predetermined set value according to the voltage amplitude of the AC system, the generated current limiting means smoothes by reducing the upper limit value of the effective current command value limiter according to the voltage amplitude. A power converter characterized by suppressing overcharge of a capacitor.
請求項9記載の電力変換装置であって、
前記電源が風車を含む風力発電装置であり、該風車は羽の角度を変える手段を備え、
前記交流系統の電圧振幅が所定の値以下であれば風車の羽を風向に対して寝かせる指令を出力する手段を有することを特徴とする電力変換装置。
The power conversion device according to claim 9, wherein
The power source is a wind turbine generator including a windmill, the windmill comprises means for changing the angle of the wings;
A power converter comprising: means for outputting a command to lay a windmill blade against the wind direction if the voltage amplitude of the AC system is equal to or less than a predetermined value.
請求項5記載の電力変換装置であって、
前記制御部に、前記太陽光発電パネルの出力電圧と出力電流の検出値から該太陽光発電パネルの開放時出力電圧を推定する手段と、
該開放時出力電圧の推定値を用いて太陽光発電パネル出力電流指令値の上限値を補正する出力電流指令上限値補正手段と、を備え、
該出力電流上限値補正手段は、前記発電電流制限手段の出力値を太陽光発電パネル開放時出力電圧推定値で除算し、該除算した値に比例した値を新たな電流指令値上限値とすることを特徴とする電力変換装置。
The power conversion device according to claim 5,
Means for estimating the output voltage at the time of opening of the photovoltaic power generation panel from the detected value of the output voltage and output current of the photovoltaic power generation panel to the control unit;
Output current command upper limit correction means for correcting the upper limit of the photovoltaic power generation panel output current command value using the estimated value of the output voltage at the time of opening,
The output current upper limit correcting means divides the output value of the generated current limiting means by the estimated output voltage when the photovoltaic power generation panel is open, and sets a value proportional to the divided value as a new current command value upper limit value. The power converter characterized by the above-mentioned.
請求項5に記載の電力変換装置であって、
前記交流系統は単相または三相であり、
前記制御部に、太陽光発電パネル出力電流指令値の上限値を補正する出力電流指令上限値補正手段を備え、
該出力電流上限値補正手段は、前記交流系統の電圧振幅と、前記太陽光発電パネルの出力電圧及び出力電流の検出値と、太陽光発電パネルの等価内部抵抗値とから、系統連系電力変換器から出力される有効電力と太陽光発電パネルから出力される電力が平衡する電流値を計算し、これを電流指令値上限値とすることを特徴とする電力変換装置。
The power conversion device according to claim 5,
The AC system is single-phase or three-phase,
The control unit includes an output current command upper limit correction means for correcting an upper limit value of the photovoltaic power generation panel output current command value,
The output current upper limit correction means converts the grid-connected power conversion from the voltage amplitude of the AC system, the detected values of the output voltage and output current of the photovoltaic power generation panel, and the equivalent internal resistance value of the photovoltaic power generation panel. A power conversion device characterized by calculating a current value at which active power output from a power generator and power output from a photovoltaic power generation panel are balanced, and setting this as a current command value upper limit value.
請求項12に記載の電力変換装置であって、
前記系統連系電力変換器の出力有効電力を検出する手段を備え、
該出力有効電力値を用いて、系統連系電力変換器から出力される有効電力と太陽光発電パネルから出力される電力が平衡する電流値を計算し、これを電流指令値上限値とすることを特徴とする電力変換装置。
The power conversion device according to claim 12, wherein
Means for detecting the output active power of the grid-connected power converter;
Using the output active power value, calculate a current value that balances the active power output from the grid-connected power converter and the power output from the photovoltaic power generation panel, and sets this as the current command value upper limit value. The power converter characterized by this.
請求項4に記載の電力変換装置であって、
系統連系電力変換器と、発電電力制御用電力変換器がそれぞれ異なる制御部を備え、系統連系電力変換器が連系系統の電圧振幅値を通信によって発電電力制御用電力変換器に送信することを特徴とする電力変換装置。
The power conversion device according to claim 4,
The grid-connected power converter and the power converter for generated power control have different control units, and the grid-connected power converter transmits the voltage amplitude value of the grid-connected system to the power converter for generated power control by communication. The power converter characterized by the above-mentioned.
請求項14に記載の電力変換装置であって、
前記電源が風車を持つ風力発電装置であり、該風車は羽の角度を変える手段を備え、
系統連系電力変換器から発電電力制御用電力変換器へ通信によって送信された前記交流系統の電圧振幅が所定の設定値以下であれば風車の羽を風向に対して寝かせる指令を出力する手段を有することを特徴とする電力変換装置。
The power conversion device according to claim 14,
The power source is a wind power generator having a windmill, the windmill comprises means for changing the angle of the wings;
Means for outputting a command to lay the windmill wings against the wind direction if the voltage amplitude of the AC system transmitted by communication from the grid-connected power converter to the power converter for controlling generated power is equal to or less than a predetermined set value. A power conversion device comprising:
請求項14に記載の電力変換装置であって、
前記電源が太陽光発電パネルであり、系統連系電力変換器から発電電力制御用電力変換器へ通信によって送信された前記交流系統の電圧振幅を用いて、前記発電電力制限手段が該電圧振幅に応じて前記電力指令値リミッタの上限値を低くすることを特徴とする電力変換装置。
The power conversion device according to claim 14,
The power source is a photovoltaic power generation panel, and the generated power limiting means uses the voltage amplitude of the AC system transmitted by communication from the grid-connected power converter to the power converter for generated power control. Accordingly, the upper limit value of the power command value limiter is lowered accordingly.
請求項16に記載の電力変換装置であって、
前記制御部に、太陽光発電パネル出力電流指令値の上限値を補正する出力電流指令上限値補正手段を備え、
該出力電流上限値補正手段は、系統連系電力変換器から発電電力制御用電力変換器へ通信によって送信された前記交流系統の電圧振幅と、前記太陽光発電パネルの出力電圧と出力電流の検出値と、太陽光発電パネルの等価内部抵抗値とから、系統連系電力変換装置から出力される有効電力と太陽光発電パネルから出力される電力が平衡する電流値を計算し、これを電流指令値上限値とすることを特徴とする電力変換装置。
The power conversion device according to claim 16, comprising:
The control unit includes an output current command upper limit correction means for correcting an upper limit value of the photovoltaic power generation panel output current command value,
The output current upper limit correction means detects the voltage amplitude of the AC system, the output voltage of the photovoltaic power generation panel, and the output current transmitted by communication from the grid-connected power converter to the power converter for generated power control. Value and the equivalent internal resistance value of the photovoltaic power generation panel, calculate the current value that balances the active power output from the grid-connected power converter and the power output from the photovoltaic power generation panel, and uses this as the current command A power converter characterized by having a value upper limit value.
請求項9に記載の電力変換装置であって、
前記回転型発電機は風車によって回転される風力発電機であり、該風車は羽の角度を変える手段と、
前記交流系統の正相電圧振幅に応じて前記有効電流指令値の上限値を変化させる前記発電電流制限手段と、
前記正相電圧のp.u.値と風力発電機の発電電力のp.u.値を比較する比較器を含み、正相電圧のp.u.値が発電電力のp.u.値より小さい場合に風車の羽を風向に対して寝かせて発電電力を抑制する手段を備えることを特徴とする電力変換装置。
The power conversion device according to claim 9,
The rotary generator is a wind generator rotated by a windmill, the windmill changing the angle of the wings;
The generated current limiting means for changing the upper limit value of the active current command value according to the positive phase voltage amplitude of the AC system;
A comparator for comparing the pu value of the positive phase voltage and the pu value of the generated power of the wind power generator, and when the pu value of the positive phase voltage is smaller than the pu value of the generated power, the windmill blade is laid down against the wind direction And a means for suppressing generated power.
請求項9記載の電力変換装置であって、
前記回転型発電機は風車によって回転される風力発電機であり、該風車は羽の角度を変える手段と、
前記交流系統の正相電圧振幅に応じて前記有効電流指令値の上限値を変化させる前記発電電流制限手段と、
前記正相電圧と複数の閾値を比較し、その比較結果により羽の角度を変えることを特徴とする電力変換装置。
The power conversion device according to claim 9, wherein
The rotary generator is a wind generator rotated by a windmill, the windmill changing the angle of the wings;
The generated current limiting means for changing the upper limit value of the active current command value according to the positive phase voltage amplitude of the AC system;
A power conversion device, wherein the positive phase voltage is compared with a plurality of threshold values, and the angle of the wing is changed according to the comparison result.
請求項3に記載の電力変換装置あって、
前記電圧振幅を検出する電圧振幅検出手段の出力を入力し、フィルタ処理を行った値を出力するローパスフィルタを備え、前記交流系統の電圧に含まれる高調波を除去することを特徴とする電力変換装置。
The power conversion device according to claim 3,
A power conversion comprising: a low-pass filter that inputs an output of the voltage amplitude detection means for detecting the voltage amplitude and outputs a filtered value; and removes harmonics included in the voltage of the AC system apparatus.
請求項3に記載の電力変換装置であって、
前記電圧振幅を検出する電圧振幅検出手段の出力を入力し、移動平均処理を行った値を出力する移動平均処理手段を備え、前記交流系統の電圧に含まれる高調波を除去することを特徴とする電力変換装置。
The power conversion device according to claim 3,
It comprises a moving average processing means for inputting an output of the voltage amplitude detecting means for detecting the voltage amplitude and outputting a value obtained by performing a moving average process, and removing harmonics contained in the voltage of the AC system. Power converter.
請求項5記載の電力変換装置を備え、
前記太陽光発電パネルの出力電圧を検出する電圧検出器と、出力電流を検出する電流検出器を備え、
前記制御部は、前記電流指令値リミッタの入力である電流指令値を、前記太陽光発電パネルの出力電圧と出力電流から得られる太陽光発電パネルの出力電力が最大になるように算出することを特徴とする太陽光発電変換システム。
A power conversion device according to claim 5,
A voltage detector for detecting an output voltage of the photovoltaic power generation panel; and a current detector for detecting an output current;
The control unit calculates a current command value that is an input of the current command value limiter so that the output power of the photovoltaic power generation panel obtained from the output voltage and output current of the photovoltaic power generation panel is maximized. A featured solar power conversion system.
請求項9記載の電力変換装置を備え、
前記回転型発電機は風車によって回転される風力発電機であり、該風車は羽の角度を変える手段を備え、
前記交流系統の電圧振幅が所定の設定値以下であれば風車の羽を風向に対して寝かせて発電電力を抑制することを特徴とする風力発電変換システム。
A power conversion device according to claim 9,
The rotary generator is a wind generator rotated by a windmill, the windmill comprising means for changing the angle of the wings;
If the voltage amplitude of the AC system is equal to or less than a predetermined set value, the wind power generation conversion system is characterized in that the generated power is suppressed by laying the wings of the windmill against the wind direction.
JP2008059888A 2008-03-10 2008-03-10 Power conversion device and power generation conversion system Expired - Fee Related JP5260092B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008059888A JP5260092B2 (en) 2008-03-10 2008-03-10 Power conversion device and power generation conversion system
CN2009100093804A CN101534014B (en) 2008-03-10 2009-02-20 Power conversion device
CN201210250687.5A CN102761136B (en) 2008-03-10 2009-02-20 Power inverter and power generation conversion system
JP2012279051A JP5571163B2 (en) 2008-03-10 2012-12-21 Power conversion device and power generation conversion system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008059888A JP5260092B2 (en) 2008-03-10 2008-03-10 Power conversion device and power generation conversion system
JP2012279051A JP5571163B2 (en) 2008-03-10 2012-12-21 Power conversion device and power generation conversion system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012279051A Division JP5571163B2 (en) 2008-03-10 2012-12-21 Power conversion device and power generation conversion system

Publications (2)

Publication Number Publication Date
JP2009219238A true JP2009219238A (en) 2009-09-24
JP5260092B2 JP5260092B2 (en) 2013-08-14

Family

ID=59297975

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008059888A Expired - Fee Related JP5260092B2 (en) 2008-03-10 2008-03-10 Power conversion device and power generation conversion system
JP2012279051A Active JP5571163B2 (en) 2008-03-10 2012-12-21 Power conversion device and power generation conversion system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012279051A Active JP5571163B2 (en) 2008-03-10 2012-12-21 Power conversion device and power generation conversion system

Country Status (2)

Country Link
JP (2) JP5260092B2 (en)
CN (2) CN102761136B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083077A (en) * 2009-10-05 2011-04-21 Mitsubishi Electric Corp System for separation control of electric power system
JP2012055036A (en) * 2010-08-31 2012-03-15 Central Res Inst Of Electric Power Ind Operation stabilization method of power conditioner at time of brownout recovery, power conditioner carrying out the same, and program for operation stabilization of power conditioner at time of brownout recovery
JP2012135194A (en) * 2010-12-22 2012-07-12 General Electric Co <Ge> Power conversion system and method
JP2012135196A (en) * 2010-12-21 2012-07-12 General Electric Co <Ge> Methods and systems for operating two-stage power converter
JP2012155581A (en) * 2011-01-27 2012-08-16 Hitachi Ltd Power conversion device
CN102780221A (en) * 2012-07-20 2012-11-14 上海交通大学 System and method for controlling online type photovoltaic power generation microgrid without storage device
JP2013115914A (en) * 2011-11-28 2013-06-10 Kyocera Corp Power conditioner and method of controlling the same
CN103262379A (en) * 2010-12-16 2013-08-21 株式会社日立制作所 Power conversion device, control device for power conversion device, and control method for power conversion device
JP2013206352A (en) * 2012-03-29 2013-10-07 Denso Wave Inc Maximum power point detection method and maximum power point detector
JP2014517665A (en) * 2011-04-14 2014-07-17 ルノー エス.ア.エス. Device for charging a vehicle battery based on a single-phase power supply network and method for controlling the device
JP2014183612A (en) * 2013-03-18 2014-09-29 Sharp Corp Dc-dc conversion apparatus, power conversion apparatus, dispersed power supply system, and control method for dc-dc conversion apparatus
JP2015018555A (en) * 2013-07-10 2015-01-29 エルエス産電株式会社Lsis Co., Ltd. Photovoltaic system
JP2015170111A (en) * 2014-03-06 2015-09-28 株式会社日本自動車部品総合研究所 Power conversion equipment
JP2015233363A (en) * 2014-06-09 2015-12-24 三菱電機株式会社 Power conversion device
CN106817912A (en) * 2015-10-01 2017-06-09 株式会社东芝 Power-supply system
JP2019004651A (en) * 2017-06-19 2019-01-10 田淵電機株式会社 System interconnection electric power conversion system
WO2020204010A1 (en) * 2019-03-29 2020-10-08 国立大学法人東北大学 Electric power converting device, and electricity generating system

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2800978A1 (en) * 2012-01-05 2014-11-12 American Power Conversion Corporation Calibration of current sensors in parallel power converters
WO2015004999A1 (en) * 2013-07-10 2015-01-15 三菱電機株式会社 Power control system
JP6176121B2 (en) 2014-01-10 2017-08-09 住友電気工業株式会社 Power converter and three-phase AC power supply
KR101595802B1 (en) 2014-04-21 2016-02-19 디아이케이(주) Mass Energy Storage System for driving equal control among inverters
JP6303819B2 (en) 2014-05-29 2018-04-04 住友電気工業株式会社 Power converter and three-phase AC power supply
CN104320030B (en) * 2014-09-19 2017-06-27 北京天诚同创电气有限公司 The control method and control device of the commutating voltage of permanent magnet synchronous wind generator
WO2016098200A1 (en) * 2014-12-17 2016-06-23 東芝三菱電機産業システム株式会社 Control system for solar power plant
JP6463976B2 (en) * 2015-01-30 2019-02-06 株式会社日立製作所 Power conversion device and solar power generation system thereof
CN105098768B (en) * 2015-05-28 2017-09-19 华北电力大学 Microgrid current transformer seamless switching control strategy based on capacitance current
JP6656085B2 (en) * 2016-05-26 2020-03-04 京セラ株式会社 Power storage device, power conditioner and distributed power system
KR101918842B1 (en) 2017-03-31 2019-02-08 주식회사 인진 System and method for cotrolling wave power generation facilities
US10488372B2 (en) * 2017-08-16 2019-11-26 General Electric Company Systems and methods for detecting damage in rotary machines
KR102027554B1 (en) 2018-02-12 2019-10-01 주식회사 인진 Wave energy generation system and controlling method for the wave energy generation system
KR102027552B1 (en) 2018-03-09 2019-10-01 주식회사 인진 Wave energy generation system and controlling method for the wave energy generation system
KR102027553B1 (en) 2018-03-09 2019-10-01 주식회사 인진 Wave energy generation system and controlling method for the wave energy generation system
JP6559388B1 (en) 2018-04-12 2019-08-14 三菱電機株式会社 Power conversion system
US10355583B1 (en) * 2018-05-21 2019-07-16 Power Integrations, Inc. Power converter fault detection by counting request pulses
JP7357236B2 (en) * 2019-02-06 2023-10-06 パナソニックIpマネジメント株式会社 power system
US11437806B2 (en) 2019-06-05 2022-09-06 Eaton Intelligent Power Limited Protection of an electrical apparatus
CN113227934B (en) * 2019-07-02 2022-11-04 东芝三菱电机产业系统株式会社 Electric power system
EP4007150A4 (en) * 2019-07-22 2023-02-08 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion system
CN112928958B (en) * 2019-12-06 2022-10-14 新疆金风科技股份有限公司 Method for controlling the voltage at the converter side and corresponding controller
CN110996453B (en) * 2019-12-30 2021-09-17 浙江晶日科技股份有限公司 Lamp control method and system
CN111949064B (en) * 2020-06-30 2022-03-04 上海空间电源研究所 Analog control system circuit for realizing high-precision MPPT technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069400U (en) * 1992-06-30 1994-02-04 神鋼電機株式会社 Power generator
JP2000020150A (en) * 1998-06-30 2000-01-21 Toshiba Fa Syst Eng Corp Solar power generation inverter device
JP2001320834A (en) * 2000-05-09 2001-11-16 Canon Inc System interconnection inverter unit, system interconnection power system, photovoltaic power generation system and method for detecting service interruption of system
JP2004282871A (en) * 2003-03-14 2004-10-07 Ishikawajima Harima Heavy Ind Co Ltd Output stabilizer and control method therefor for distributed power source
JP2008042999A (en) * 2006-08-02 2008-02-21 Matsushita Electric Works Ltd Power supply device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192130A (en) * 1984-10-11 1986-05-10 関西電力株式会社 Power supply device
JPS62185600A (en) * 1986-02-10 1987-08-13 Ishikawajima Harima Heavy Ind Co Ltd Wind power generator
JP3298450B2 (en) * 1997-03-19 2002-07-02 株式会社日立製作所 Air conditioner and power converter
JPH1150945A (en) * 1997-08-04 1999-02-23 Mitsubishi Heavy Ind Ltd Method for controlling power generating amount of wind power generator
JP2002271991A (en) * 2001-03-14 2002-09-20 Kyocera Corp Photovoltaic power generating system, starting method therefor, and computer-readable storage medium
JP4151575B2 (en) * 2003-12-19 2008-09-17 株式会社日立製作所 Power converter
JP4649940B2 (en) * 2004-10-14 2011-03-16 ダイキン工業株式会社 CONVERTER CONTROL METHOD AND CONVERTER CONTROL DEVICE
JP2007097311A (en) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd System linking interactive device
JP4719567B2 (en) * 2005-12-21 2011-07-06 日立オートモティブシステムズ株式会社 Bidirectional DC-DC converter and control method thereof
CN1992496B (en) * 2006-03-08 2010-05-12 合肥阳光电源有限公司 Control structure of double-fed AC-DC-AC converter for wind power generation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069400U (en) * 1992-06-30 1994-02-04 神鋼電機株式会社 Power generator
JP2000020150A (en) * 1998-06-30 2000-01-21 Toshiba Fa Syst Eng Corp Solar power generation inverter device
JP2001320834A (en) * 2000-05-09 2001-11-16 Canon Inc System interconnection inverter unit, system interconnection power system, photovoltaic power generation system and method for detecting service interruption of system
JP2004282871A (en) * 2003-03-14 2004-10-07 Ishikawajima Harima Heavy Ind Co Ltd Output stabilizer and control method therefor for distributed power source
JP2008042999A (en) * 2006-08-02 2008-02-21 Matsushita Electric Works Ltd Power supply device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083077A (en) * 2009-10-05 2011-04-21 Mitsubishi Electric Corp System for separation control of electric power system
JP2012055036A (en) * 2010-08-31 2012-03-15 Central Res Inst Of Electric Power Ind Operation stabilization method of power conditioner at time of brownout recovery, power conditioner carrying out the same, and program for operation stabilization of power conditioner at time of brownout recovery
US9413173B2 (en) 2010-12-16 2016-08-09 Hitachi, Ltd. Power conversion device, control device for power conversion device, and control method for power conversion device
CN103262379A (en) * 2010-12-16 2013-08-21 株式会社日立制作所 Power conversion device, control device for power conversion device, and control method for power conversion device
JP2012135196A (en) * 2010-12-21 2012-07-12 General Electric Co <Ge> Methods and systems for operating two-stage power converter
JP2012135194A (en) * 2010-12-22 2012-07-12 General Electric Co <Ge> Power conversion system and method
JP2012155581A (en) * 2011-01-27 2012-08-16 Hitachi Ltd Power conversion device
JP2014517665A (en) * 2011-04-14 2014-07-17 ルノー エス.ア.エス. Device for charging a vehicle battery based on a single-phase power supply network and method for controlling the device
JP2013115914A (en) * 2011-11-28 2013-06-10 Kyocera Corp Power conditioner and method of controlling the same
JP2013206352A (en) * 2012-03-29 2013-10-07 Denso Wave Inc Maximum power point detection method and maximum power point detector
CN102780221A (en) * 2012-07-20 2012-11-14 上海交通大学 System and method for controlling online type photovoltaic power generation microgrid without storage device
JP2014183612A (en) * 2013-03-18 2014-09-29 Sharp Corp Dc-dc conversion apparatus, power conversion apparatus, dispersed power supply system, and control method for dc-dc conversion apparatus
JP2015018555A (en) * 2013-07-10 2015-01-29 エルエス産電株式会社Lsis Co., Ltd. Photovoltaic system
US9583645B2 (en) 2013-07-10 2017-02-28 Lsis Co., Ltd. Photovoltaic system
JP2015170111A (en) * 2014-03-06 2015-09-28 株式会社日本自動車部品総合研究所 Power conversion equipment
JP2015233363A (en) * 2014-06-09 2015-12-24 三菱電機株式会社 Power conversion device
CN106817912A (en) * 2015-10-01 2017-06-09 株式会社东芝 Power-supply system
JP2019004651A (en) * 2017-06-19 2019-01-10 田淵電機株式会社 System interconnection electric power conversion system
WO2020204010A1 (en) * 2019-03-29 2020-10-08 国立大学法人東北大学 Electric power converting device, and electricity generating system
EP3952097A4 (en) * 2019-03-29 2022-05-11 Tohoku University Electric power converting device, and electricity generating system
US11444552B2 (en) 2019-03-29 2022-09-13 Tohoku University Electric power converting device, and electricity generating system

Also Published As

Publication number Publication date
CN102761136A (en) 2012-10-31
JP2013066378A (en) 2013-04-11
JP5260092B2 (en) 2013-08-14
CN101534014A (en) 2009-09-16
JP5571163B2 (en) 2014-08-13
CN101534014B (en) 2012-09-05
CN102761136B (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5571163B2 (en) Power conversion device and power generation conversion system
US9252601B2 (en) Method for controlling a power converter in a wind turbine generator
EP2621046B1 (en) System and method for reactive power regulation
US11715958B2 (en) System and method for power control of an inverter-based resource with a grid-forming converter
JP5830484B2 (en) Reactive power ratio controller, reactive power ratio control method, and power generation system using the same
US20230041049A1 (en) System and method for providing grid-forming control for a double-fed wind turbine generator
JP4683012B2 (en) Wind power generator
EP4024695A1 (en) Method for operating doubly-fed wind turbine generator as a virtual synchronous machine to provide grid-forming control thereof
JP2007089399A (en) Wind power apparatus
US11689022B2 (en) Voltage control loop for mitigating flicker in a grid-forming inverter-based resource
US11671039B2 (en) System and method for operating an asynchronous inverter-based resource as a virtual synchronous machine to provide grid-forming control thereof
US20230126579A1 (en) Adaptive gain control for a reactive power regulator of an inverter-based resource
US11456645B2 (en) System and method for operating an asynchronous inverter-based resource as a virtual synchronous machine with storage
US11843252B2 (en) System and method for damping sub-synchronous control interactions in a grid-forming inverter-based resource
US11626736B2 (en) Method for controlling negative-sequence current for grid-forming controls of inverter-based resources
Roga et al. Energy Converters for Wind Turbines: Implementation of Control Methods
Huang et al. Generator side converters coordinated control Strategy based on VSC-HVDC DD-PMSG wind turbine series-parallel connection
Sharma et al. Control of doubly fed induction generator in standalone wind energy conversion system
EP4175105A2 (en) System and method for reducing instability in reactive power command of an inverter-based resource
US20230125298A1 (en) System and method for dynamically estimating active power capability of an inverter-based resource

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees