JP2009216399A - High precision analytical method for cations by ion chromatograph method - Google Patents

High precision analytical method for cations by ion chromatograph method Download PDF

Info

Publication number
JP2009216399A
JP2009216399A JP2008057162A JP2008057162A JP2009216399A JP 2009216399 A JP2009216399 A JP 2009216399A JP 2008057162 A JP2008057162 A JP 2008057162A JP 2008057162 A JP2008057162 A JP 2008057162A JP 2009216399 A JP2009216399 A JP 2009216399A
Authority
JP
Japan
Prior art keywords
suppressor
mobile phase
flow path
cations
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008057162A
Other languages
Japanese (ja)
Other versions
JP5309617B2 (en
Inventor
Tomomichi Nihei
知倫 二瓶
Masahito Inoue
雅仁 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008057162A priority Critical patent/JP5309617B2/en
Publication of JP2009216399A publication Critical patent/JP2009216399A/en
Application granted granted Critical
Publication of JP5309617B2 publication Critical patent/JP5309617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high precision analytical method for cations, capable of performing continuous measurement without causing the clogging of the flow channel of a suppressor when the constituent element of the positive polar material of a lithium secondary cell is analyzed by an ion chromatograph method. <P>SOLUTION: A fraction containing no measuring target element is discharged to a drain 13 by changing over the flow channel switching valve 12, which is provided between a separation column 5 and the suppressor 6 corresponding to the holding time of the component element in a sample solution, using an ion chromatograph apparatus equipped with the separation column 5 filled with a cation exchange resin and the anion exchange suppressor 6 and only a fraction containing the measuring target element is selectively introduced into the suppressor 6 by the mobile phase sent by a mobile phase sending auxiliary pump 14. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、イオンクロマトグラフ法による陽イオンの高精度分析法に関するものであり、特にリチウム二次電池用正極材料中のリチウムイオンを高精度で分析する方法に関するものである。   The present invention relates to a high-accuracy analysis method of cations by ion chromatography, and particularly relates to a method for analyzing lithium ions in a positive electrode material for a lithium secondary battery with high accuracy.

リチウム二次電池は、軽量性や充放電サイクル特性に優れることから、パソコン、ビデオカメラ、携帯電話等の携帯型電子機器に搭載されている。最近では、世界的な環境問題や資源枯渇問題を背景に自動車分野でも注目され、燃料電池自動車やハイブリッド自動車への搭載が鋭意検討されている。   Lithium secondary batteries are excellent in light weight and charge / discharge cycle characteristics, and are therefore mounted in portable electronic devices such as personal computers, video cameras, and mobile phones. Recently, attention has been paid to the automobile field against the background of global environmental problems and resource depletion problems, and installation in fuel cell vehicles and hybrid vehicles has been intensively studied.

一般的に、リチウム二次電池は、金属酸化物等からなる正極、炭素からなる負極、有機溶媒にリチウム塩を溶解した電解液、及びセパレータで構成されている。正極材料としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等の含リチウム遷移金属酸化物が一般的であるが、これら化合物を構成する元素の組成管理並びに組成コントロール技術が容量密度、充放電サイクル寿命、安全性、経済性等の特性において極めて重要である。   Generally, a lithium secondary battery includes a positive electrode made of a metal oxide, a negative electrode made of carbon, an electrolytic solution in which a lithium salt is dissolved in an organic solvent, and a separator. As the positive electrode material, lithium-containing transition metal oxides such as lithium cobaltate, lithium manganate and lithium nickelate are common, but the composition management and composition control technology of the elements constituting these compounds are capacity density, charge / discharge It is extremely important in characteristics such as cycle life, safety and economy.

従来、リチウム二次電池の正極材料を構成するリチウム等の金属元素の濃度測定には、試料を酸やアルカリ等を用いて分解して溶液とし、得られた溶液中の測定対象元素を誘導結合プラズマ発光分光分析法やフレーム原子吸光法、炎光法あるいは滴定法によって検出、測定する方法が適用されている。これらの分析方法は金属元素の検出手段として一般的であるが、特にリチウムの測定においては、比較的精度の高い滴定法や重量法の適用が困難であり、また結合プラズマ発光分光分析法やフレーム原子吸光法では共存元素の影響やプラズマ、フレームのゆらぎの影響を受けやすい。   Conventionally, the concentration of metal elements such as lithium constituting the positive electrode material of a lithium secondary battery is measured by decomposing the sample with acid or alkali to form a solution, and the element to be measured in the resulting solution is inductively coupled A method of detecting and measuring by plasma emission spectroscopic analysis, flame atomic absorption method, flame light method or titration method is applied. These analytical methods are generally used as metal element detection means. However, it is difficult to apply a highly accurate titration method or gravimetric method, particularly in the measurement of lithium. Atomic absorption is easily affected by coexisting elements, plasma and flame fluctuations.

そのため、上記分析方法における繰返し測定精度は、相対標準偏差(以後、RSDと略記する)で1%以上であった。このように大きな正極材料構成元素の分析誤差は、現状の電池開発あるいは製造分野において容認されるものではなく、より一層の分析精度向上が求められている。即ち、正極材料の組成管理に現在要求されている具体的な測定精度は、一元素当たりRSDで0.2%以下と極めて厳しいものである。   Therefore, the repeated measurement accuracy in the above analysis method was 1% or more in terms of relative standard deviation (hereinafter abbreviated as RSD). Such an analysis error of a large positive electrode material constituent element is not accepted in the current battery development or manufacturing field, and further improvement in analysis accuracy is required. In other words, the specific measurement accuracy currently required for the composition management of the positive electrode material is extremely strict with an RSD of 0.2% or less per element.

このような現状から、上記リチウム二次電池正極材料の測定について、特開平11−287793号公報や特開2002−174446号公報には、イオンクロマトグラフ法を適用する方法が記載されている。イオンクロマトグラフ法によれば、リチウムの繰返し測定精度としてRSDで0.2%程度が期待できる。しかしながら、発明者らの綿密な調査によれば、特に陰イオン交換性のサプレッサを装備したイオンクロマトグラフ装置では、ニッケル、コバルト、マンガン等の特定の共存元素の影響によって安定的な連続測定が困難になる場合があった。   From such a current state, regarding the measurement of the lithium secondary battery positive electrode material, Japanese Patent Application Laid-Open No. 11-287793 and Japanese Patent Application Laid-Open No. 2002-174446 describe a method of applying an ion chromatography method. According to the ion chromatograph method, the lithium repeat measurement accuracy can be expected to be about 0.2% by RSD. However, according to a thorough investigation by the inventors, particularly in an ion chromatograph equipped with an anion exchange suppressor, stable continuous measurement is difficult due to the influence of specific coexisting elements such as nickel, cobalt and manganese. There was a case.

特開平11−287793号公報JP-A-11-287793 特開2002−174446号公報JP 2002-174446 A

上記したように、従来のイオンクロマトグラフ法によりリチウム二次電池の正極材料の構成元素を分析する場合、コバルト等の特定の元素が共存していると、送液圧力あるいは送液流量が不安定となり、測定精度が著しく低下しやすい。そして、精度低下を引き起こしたサプレッサ内の流路をシュウ酸で洗浄すると、ニッケルやコバルト等の共存元素が洗液中から検出され、更に洗浄直後のサプレッサを用いた測定では測定精度に著しい改善が認められる。これらの事実から、次のような理由により測定精度が低下したものと推測される。   As described above, when analyzing the constituent elements of the positive electrode material of a lithium secondary battery by the conventional ion chromatograph method, if a specific element such as cobalt coexists, the liquid feeding pressure or the liquid feeding flow rate is unstable. Thus, the measurement accuracy is likely to be significantly reduced. When the flow path in the suppressor that caused the accuracy drop is washed with oxalic acid, coexisting elements such as nickel and cobalt are detected in the washing solution, and the measurement using the suppressor immediately after washing significantly improves the measurement accuracy. Is recognized. From these facts, it is presumed that the measurement accuracy has decreased for the following reasons.

即ち、電気伝導度検出器を装備したイオンクロマトグラフ装置では、移動相のイオン種に起因するバックグラウンド電気伝導度の上昇を低減するため、サプレッサが用いられる。そして、例えば移動相には強酸や有機酸が一般的に使用されるが、サプレッサは移動相に起因するイオン種、例えば硝酸イオンやメタンスルホン酸イオンを、陰イオン交換膜を通して水酸化物イオンと交換することで移動相から除去する機能を有する。   That is, in an ion chromatograph apparatus equipped with an electrical conductivity detector, a suppressor is used to reduce an increase in background electrical conductivity caused by the ion species of the mobile phase. For example, strong acids and organic acids are generally used for the mobile phase, but suppressors use ionic species such as nitrate ions and methanesulfonate ions from the mobile phase through the anion exchange membrane and hydroxide ions. It has a function of removing from the mobile phase by exchange.

この作用によって、バックグラウンド電気伝導度が著しく低下して高いSN比を得ることが可能となるが、イオン交換によって水酸化物イオンが移動相に導入されるため、サプレッサ内の流路のpHは次第にアルカリ性となる。サプレッサ内の流路のpHがアルカリ性になると、試料溶液中に共存するニッケルやコバルト等が加水分解反応によって水酸化物の沈殿を生成し、流路の閉塞を引き起こすため、送液圧力あるいは送液流量が不安定となり、測定精度が著しく低下するものと考えられる。   This action makes it possible to obtain a high signal-to-noise ratio by significantly reducing the background electrical conductivity. However, since hydroxide ions are introduced into the mobile phase by ion exchange, the pH of the flow path in the suppressor is Gradually it becomes alkaline. When the pH of the flow path in the suppressor becomes alkaline, nickel or cobalt coexisting in the sample solution generates hydroxide precipitates due to the hydrolysis reaction, causing the flow path to be clogged. It is considered that the flow rate becomes unstable and the measurement accuracy is significantly reduced.

本発明は、このような現状に鑑み、特にリチウム二次電池の正極材料の構成元素をイオンクロマトグラフ法により分析する場合において、サプレッサ内の流路のpHがアルカリ性になっても流路の閉塞が起こらず、連続的な測定が可能である陽イオンの高精度な分析方法を提供することを目的とする。   In view of such a current situation, the present invention provides a blockage of the flow path even when the pH of the flow path in the suppressor becomes alkaline, particularly when the constituent elements of the positive electrode material of the lithium secondary battery are analyzed by ion chromatography. An object of the present invention is to provide a highly accurate analysis method of cations that does not occur and can be continuously measured.

上記目的を達成するため、本発明が提供する陽イオンの高精度分析方法は、陽イオン交換樹脂を充填した分離カラム及び陰イオン交換性のサプレッサを装備したイオンクロマトグラフ装置を用い、移動相送液ポンプで移動相と共に送られる試料溶液中の陽イオン濃度を検出する分析方法において、分離カラムとサプレッサの間に流路切替バルブ設け、試料溶液中の成分元素の保持時間に応じて流路切替バルブを切り替えることにより、測定対象元素を含まないフラクションは系外に排出し、測定対象元素を含むフラクションのみをサプレッサ内に選択的に導入することを特徴とする。   In order to achieve the above object, the high-accuracy analysis method for cations provided by the present invention uses a separation column packed with a cation exchange resin and an ion chromatograph apparatus equipped with an anion exchange suppressor, and a mobile phase transfer. In the analysis method that detects the cation concentration in the sample solution sent together with the mobile phase with the liquid pump, a flow path switching valve is provided between the separation column and the suppressor, and the flow path is switched according to the retention time of the component elements in the sample solution. By switching the valve, the fraction not containing the element to be measured is discharged out of the system, and only the fraction containing the element to be measured is selectively introduced into the suppressor.

上記本発明による陽イオンの高精度分析方法においては、前記流路切替バルブの切り替えによって、測定対象元素を含まないフラクションを系外に排出すると同時に、移動相送液補助ポンプにより分離カラムを経ることなく送液される移動相によって測定対象元素を含むフラクションをサプレッサに導入することを特徴とするものである。また、上記本発明による陽イオンの高精度分析方法では、前記陽イオンの検出が電気伝導度検出器によって行われる場合に、より一層の効果が期待できる。   In the cation high-accuracy analysis method according to the present invention, the fraction not containing the element to be measured is discharged out of the system by switching the flow path switching valve, and at the same time, passed through the separation column by the mobile phase liquid feeding auxiliary pump. The fraction containing the element to be measured is introduced into the suppressor by the mobile phase that is sent without any problem. In the method for analyzing cations with high accuracy according to the present invention, a further effect can be expected when the cations are detected by an electric conductivity detector.

上記本発明による陽イオンの高精度分析方法においては、前記試料溶液が、リチウム二次電池用正極材料を分解して溶液としたものであることが好ましい。その場合、前記測定対象元素は、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アンモニウムの少なくとも1種であることが望ましい。また、前記試料溶液が、測定対象元素以外の元素として、アルミニウム、ニッケル、コバルト、マンガン、鉄の少なくとも1種を含む場合に特に有効である。   In the cation high-accuracy analysis method according to the present invention, the sample solution is preferably a solution obtained by decomposing a positive electrode material for a lithium secondary battery. In that case, the element to be measured is preferably at least one of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, and ammonium. Moreover, it is particularly effective when the sample solution contains at least one of aluminum, nickel, cobalt, manganese, and iron as an element other than the element to be measured.

本発明によれば、試料溶液中の陽イオンをイオンクロマトグラフ法により測定する際に、サプレッサ内の流路のpHがアルカリ性になっても流路の閉塞が起こらず、極めて高精度で且つ連続的に長期間安定した測定が可能となる。従って、本発明の陽イオンの高精度分析方法は、極めて高精度な測定が要求されるリチウム二次電池用正極材料中のリチウムの測定に特に有用である。   According to the present invention, when cations in a sample solution are measured by ion chromatography, even if the pH of the flow path in the suppressor becomes alkaline, the flow path is not clogged, and it is extremely highly accurate and continuous. Long-term stable measurement is possible. Therefore, the high-accuracy analysis method for cations of the present invention is particularly useful for the measurement of lithium in the positive electrode material for lithium secondary batteries, which requires extremely high-precision measurement.

本発明による陽イオンの高精度分析方法について、図面を参照しつつ具体的に説明する。図1は、本発明方法に用いる代表的なイオンクロマトグラフ装置の流路図である。この装置は、一般的なイオンクロマトグラフ装置と同様に、移動相を貯留する移動相タンク1、移動相を圧送するための移動相送液ポンプ2、移動相に試料溶液を導入するインジェクタ3、移動相中の異物除去を目的とするプレカラム4、陽イオン交換樹脂が充填された分離カラム5、バックグラウンド電気伝導度の低減を目的とする陰イオン交換性のサプレッサ6、測定対象元素の検出器としての電気伝導度検出器7を備えている。   The high-accuracy analysis method of cations according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a flow chart of a typical ion chromatograph apparatus used in the method of the present invention. This apparatus, like a general ion chromatograph apparatus, has a mobile phase tank 1 for storing a mobile phase, a mobile phase liquid feed pump 2 for pumping the mobile phase, an injector 3 for introducing a sample solution into the mobile phase, Pre-column 4 for removing foreign substances in the mobile phase, separation column 5 filled with a cation exchange resin, anion-exchange suppressor 6 for reducing background conductivity, detector for the element to be measured The electrical conductivity detector 7 is provided.

更に、本発明のイオンクロマトグラフ装置では、移動相流路の切り替えを行うための流路切替バルブ12が、分離カラム5とサプレッサ6との間に設けてある。この流路切替バルブ12を切り替えることによって、測定対象元素を含まないフラクションを系外のドレン13に排出すると同時に、移動相送液補助ポンプ14により移動相タンク1から送液される移動相によって、測定対象元素を含むフラクションをサプレッサ6に導入するようになっている。   Furthermore, in the ion chromatograph apparatus of the present invention, the flow path switching valve 12 for switching the mobile phase flow path is provided between the separation column 5 and the suppressor 6. By switching this flow path switching valve 12, the fraction not containing the element to be measured is discharged to the drain 13 outside the system, and at the same time, depending on the mobile phase fed from the mobile phase tank 1 by the mobile phase feed auxiliary pump 14, A fraction containing the element to be measured is introduced into the suppressor 6.

更に詳しく説明すると、通常の状態においては、移動相タンク1に貯留された移動相は、送液ポンプ2によって一定の圧力と流量で送液されてインジェクタ3に導かれる。インジェクタ3で移動相に試料溶液が導入された後、試料溶液を含む移動相はプレカラム4で異物が除去され、陽イオン交換樹脂が充填された分離カラム5に入る。この分離カラム5において、イオン交換樹脂と相互作用を有する成分元素は保持されるが、試料溶液中の各成分元素は選択係数の差に基づいて保持時間が異なるため、成分元素ごとに分離される。   More specifically, in a normal state, the mobile phase stored in the mobile phase tank 1 is fed at a constant pressure and flow rate by the liquid feed pump 2 and guided to the injector 3. After the sample solution is introduced into the mobile phase by the injector 3, the mobile phase containing the sample solution is removed by the pre-column 4 and then enters the separation column 5 filled with the cation exchange resin. In this separation column 5, the component elements that interact with the ion exchange resin are retained, but each component element in the sample solution is separated for each component element because the retention time differs based on the difference in the selection coefficient. .

分離カラム5を通過した試料溶液を含む移動相は、流路切替バルブ12が図1に実線で示した接続点1−4の流路を形成する位置にあるとき、流路切替バルブ12を通って陰イオン交換性のサプレッサ6に導かれ、移動相に含まれる陰イオンが水酸化物イオンと交換除去された後、電気伝度検出器7に導入されて測定対象元素の電気伝導度が測定され、ドレン8に排出される。この操作を標準試料溶液について行い、横軸を標準溶液の濃度及び縦軸を電気伝導度として検量線を作成した後、試料溶液について測定した電気伝導度から測定対象元素の濃度を算出することができる。尚、サプレッサ6には再生液タンク9から再生液送液ポンプ10によって再生液が連続的に送液され、サプレッサ6の再生が行われた後、ドレン11に排出される。   The mobile phase containing the sample solution that has passed through the separation column 5 passes through the flow path switching valve 12 when the flow path switching valve 12 is in a position that forms a flow path at the connection point 1-4 shown by a solid line in FIG. Then, after being introduced to the anion-exchange suppressor 6, the anion contained in the mobile phase is exchanged and removed with hydroxide ions, and then introduced into the electrical conductivity detector 7 to measure the electrical conductivity of the element to be measured. And discharged to the drain 8. After performing this operation on the standard sample solution, creating a calibration curve with the horizontal axis as the concentration of the standard solution and the vertical axis as the electric conductivity, the concentration of the element to be measured can be calculated from the electric conductivity measured for the sample solution. it can. Incidentally, the regenerating liquid is continuously fed from the regenerating liquid tank 9 to the suppressor 6 by the regenerating liquid feed pump 10, and after the repressor 6 is regenerated, it is discharged to the drain 11.

しかるに、陽イオン交換モードのイオンクロマトグラフ法では、酸性の移動相が一般的に使用されるため、サプレッサの前段における移動相のpHは酸性に維持される。一方、サプレッサ内では、陰イオン交換反応によって移動相中の陰イオンが水酸化物イオンと交換されるため移動相のpHが上昇し、サプレッサから後段の移動相ではpHが中性から弱アルカリ性に維持される。このとき、試料溶液中に、中性あるいは弱アルカリ性下で、加水分解反応等により水酸化物等の沈殿を形成するイオン種が含まれている場合、その沈殿物がサプレッサ内の流路に堆積して流路が閉塞するため、送液圧力及び送液量が著しく変動して安定な測定が困難となる。このような現象を引き起こすイオン種としてはアルミニウム、ニッケル、コバルト、マンガン、鉄などが挙げられ、これらの元素を含むリチウム二次電池用正極材料のリチウムをイオンクロマトグラフ法で測定した場合、サプレッサの流路閉塞により安定な測定が困難となる。   However, in the ion chromatographic method in the cation exchange mode, since an acidic mobile phase is generally used, the pH of the mobile phase in the front stage of the suppressor is maintained acidic. On the other hand, in the suppressor, the anion in the mobile phase is exchanged for hydroxide ions by the anion exchange reaction, so that the pH of the mobile phase rises. From the suppressor to the downstream mobile phase, the pH changes from neutral to weakly alkaline. Maintained. At this time, if the sample solution contains ionic species that form a precipitate such as hydroxide under neutrality or weak alkalinity by hydrolysis reaction, the deposit accumulates in the flow path in the suppressor. Since the flow path is closed, the liquid supply pressure and the liquid supply amount fluctuate remarkably, and stable measurement becomes difficult. Examples of ionic species that cause such a phenomenon include aluminum, nickel, cobalt, manganese, and iron. When lithium of a positive electrode material for lithium secondary batteries containing these elements is measured by an ion chromatography method, Stable measurement becomes difficult due to the blockage of the flow path.

この現象を解消するため、本発明においては、上述し且つ図1に示すように、イオンクロマトグラフ装置の分離カラム5とサプレッサ6との間に、流路切替バルブ12を設ける。そして、測定対象元素を含まないフラクション(中性あるいはアルカリ性下で沈殿反応を引き起こすイオン種を含む)が分離カラム5からサプレッサ6に導入される前に、流路切替バルブ12の切り替によって、接続点1−4の実線で図示した流路を接続点1−2の点線で図示した流路に切り替え、測定対象元素を含まないフラクションをドレン13に排出する。このとき同時に接続点3−4の点線で図示した流路が形成され、この流路に移動相送液補助ポンプ14の駆動によって移動相タンク1から移動相を送液することにより、流路切替バルブ12の切り替えの前後において同一の移動相が連続的にサプレッサ6に送液される。   In order to eliminate this phenomenon, in the present invention, as described above and as shown in FIG. 1, a flow path switching valve 12 is provided between the separation column 5 and the suppressor 6 of the ion chromatograph apparatus. Then, before the fraction containing the element to be measured (including ionic species that cause a precipitation reaction under neutrality or alkalinity) is introduced from the separation column 5 to the suppressor 6, the connection point is changed by switching the flow path switching valve 12. The flow path illustrated by the solid line 1-4 is switched to the flow path illustrated by the dotted line at the connection point 1-2, and the fraction not including the measurement target element is discharged to the drain 13. At the same time, the flow path illustrated by the dotted line of the connection point 3-4 is formed, and the flow path is switched by feeding the mobile phase from the mobile phase tank 1 by driving the mobile phase liquid supply auxiliary pump 14 to this flow path. The same mobile phase is continuously sent to the suppressor 6 before and after the valve 12 is switched.

測定対象元素を含まないフラクションがドレン13に排出され、沈殿反応を引き起こすイオン種の排出が終了した後、流路切替バルブ12を動作させることによって接続点1−2の流路から接続点1−4の流路に戻し、分離カラム5を通過した移動相をサプレッサ6に導入する。以上の流路切替操作によって、サプレッサ6の流路閉塞を引き起こし且つ測定に不要なイオン種を系外に排出することが可能となる。尚、この流路切替操作は、測定対象元素を含むフラクションをサプレッサ6に導入する前後のいずれで実施しても問題はない。   After the fraction not containing the element to be measured is discharged to the drain 13 and the discharge of the ionic species causing the precipitation reaction is finished, the flow path switching valve 12 is operated to connect the connection point 1- 4, the mobile phase that has passed through the separation column 5 is introduced into the suppressor 6. Through the above-described channel switching operation, it becomes possible to block the channel of the suppressor 6 and discharge ion species unnecessary for measurement out of the system. It should be noted that there is no problem if this flow path switching operation is performed either before or after the fraction containing the element to be measured is introduced into the suppressor 6.

上記流路切替バルブ12の切替動作に伴い、極短時間ではあるが移動相の乱れが生じる。これによってクロマトグラムに僅かなピークが出現するが、極短時間で電気伝導度は安定なバックグラウンド位置まで回復する。また、保持時間についても測定対象元素とそれ以外の成分とでは判別が容易であるため、実用上弊害は認められない。   With the switching operation of the flow path switching valve 12, the mobile phase is disturbed for a very short time. As a result, a slight peak appears in the chromatogram, but the electrical conductivity recovers to a stable background position in a very short time. Further, since the holding time can be easily discriminated between the element to be measured and the other components, no practical adverse effect is recognized.

尚、上記具体例の説明においては、図1に示すように流路切替バルブ12として4方バルブを使用しているが、流路切替バルブの形態には特に制約はなく、例えば6方バルブを使用することも可能である。例えば、6方バルブを用いる場合には、図2に示すように、流路切替バルブ15である6方バルブに接続点4−5の点線で図示したバイパスラインを設ければ良い。尚、流路切替バルブ以外に図1と図2に根本的な差異はなく、同じ部分には同じ符号を付してある。   In the description of the above specific example, a four-way valve is used as the flow path switching valve 12 as shown in FIG. 1, but there is no particular limitation on the form of the flow path switching valve. For example, a six-way valve is used. It is also possible to use it. For example, when using a 6-way valve, as shown in FIG. 2, the 6-way valve that is the flow path switching valve 15 may be provided with a bypass line illustrated by a dotted line at connection point 4-5. In addition, there is no fundamental difference between FIG. 1 and FIG. 2 other than the flow path switching valve, and the same parts are denoted by the same reference numerals.

また、図2に示すように、移動相送液補助ポンプ14と流路切替バルブ15の間に、流路の空気抜きを目的として3方バルブからなる流路切替バルブ16を設けることができる。この流路切替バルブ16は、流路切替バルブ15の切り替えの際に、接続点2−3の点線で図示した流路に切り替えることで移動相をドレン17に排出して空気抜きを行った後、接続点2−1の実線で図示した流路に戻して、移動相を流路切替バルブ15に送液する。   As shown in FIG. 2, a flow path switching valve 16 composed of a three-way valve can be provided between the mobile phase liquid supply auxiliary pump 14 and the flow path switching valve 15 for the purpose of venting the flow path. When the flow path switching valve 16 is switched, the mobile phase is discharged to the drain 17 by performing switching to the flow path illustrated by the dotted line of the connection point 2-3 to perform air venting. The mobile phase is returned to the flow path switching valve 15 by returning to the flow path shown by the solid line of the connection point 2-1.

次に、本発明方法における他の諸条件について説明する。試料溶液には特に制限はなく、河川水や排水等の溶液の他、固体試料を酸あるいはアルカリを用いて分解し、溶液としたものでも良い。ただし、夾雑成分が高濃度で共存すると、測定対象成分の測定が困難となる場合があるため、純水による希釈や前処理カラム等を利用して夾雑成分を分離することが好ましい。   Next, other conditions in the method of the present invention will be described. The sample solution is not particularly limited, and may be a solution obtained by decomposing a solid sample using an acid or alkali in addition to a solution such as river water or drainage. However, if the contaminant component coexists at a high concentration, it may be difficult to measure the measurement target component. Therefore, it is preferable to separate the contaminant component by using dilution with pure water, a pretreatment column, or the like.

リチウム二次電池用正極材料の分析では、硝酸及び過酸化水素水等を使用して分解し、適宜希釈して得られた溶液を試料溶液とする。尚、高濃度の有機溶媒あるいは酸化剤が含まれる場合には、イオン交換樹脂の著しい劣化を引き起こす可能性があるため、事前に分離又は還元処理によって酸化力の低減を図ることが望ましい。また、未分解物等の粒子が存在すると、イオンクロマトグラフ装置の流路の閉塞を引き起こすため、孔径0.45μm程度のメンブレンフィルターで除去することが好ましい。   In the analysis of the positive electrode material for a lithium secondary battery, a solution obtained by decomposing and appropriately diluting using nitric acid and hydrogen peroxide water is used as a sample solution. In addition, when a high concentration organic solvent or oxidizing agent is contained, it may cause significant deterioration of the ion exchange resin. Therefore, it is desirable to reduce the oxidizing power in advance by separation or reduction treatment. In addition, if particles such as undecomposed matter are present, the flow path of the ion chromatograph apparatus is blocked, and therefore, it is preferable to remove it with a membrane filter having a pore diameter of about 0.45 μm.

移動相は、強酸あるいは有機酸等が一般的であるが、特に制約はない。代表的なものとしては、無機酸としては硝酸、塩酸、硫酸など、有機酸としてはメタンスルホン酸やシュウ酸などがあり、これらを単独で又は混合して使用できる。測定対象成分の分離度を改善するため、エチレンジアミン四酢酸(EDTA)等の錯形成剤等を添加することもできる。ただし、移動相及び試料溶液に腐食性の化合物が含まれる場合には、イオンクロマトグラフ装置の流路に高耐食性の材料を使用することが好ましく、例えば、ポリエーテルエチルケトン(PEEK)やポリテトラフルオロエチレン(PTFE)等が一般的に用いられる。   The mobile phase is generally a strong acid or an organic acid, but is not particularly limited. Typical examples include nitric acid, hydrochloric acid, and sulfuric acid as inorganic acids, and methanesulfonic acid and oxalic acid as organic acids, which can be used alone or in combination. In order to improve the degree of separation of the components to be measured, a complexing agent such as ethylenediaminetetraacetic acid (EDTA) can be added. However, when a corrosive compound is contained in the mobile phase and the sample solution, it is preferable to use a highly corrosion-resistant material for the flow path of the ion chromatograph apparatus. For example, polyether ethyl ketone (PEEK) or polytetra Fluoroethylene (PTFE) or the like is generally used.

分離カラムに使用する陽イオン交換樹脂には、強酸性イオン交換樹脂、弱酸性イオン交換樹脂のいずれも使用できる。使用履歴によっては測定対象成分の分離度が低下する可能性があるため、定期的に標準溶液等で分離度を検査することが必要である。尚、分離カラムの保護のためプレカラムが一般的に用いられ、本発明においてもプレカラムの使用を制限するものではない。尚、プレカラムと分離カラムは、所定温度に保持するため通常は恒温槽内に設置される。   As the cation exchange resin used for the separation column, either a strong acid ion exchange resin or a weak acid ion exchange resin can be used. Depending on the usage history, there is a possibility that the degree of separation of the component to be measured may decrease, so it is necessary to periodically inspect the degree of separation with a standard solution or the like. A precolumn is generally used for protecting the separation column, and the use of the precolumn is not limited in the present invention. The pre-column and the separation column are usually installed in a thermostat in order to maintain a predetermined temperature.

サプレッサとしては、上記具体例で説明した膜透析形サプレッサの他、イオン交換樹脂を充填したカラムを用いたカラム除去形、イオン交換樹脂粒子を移動相に懸濁させて使用するサスペンジョン樹脂吸着形等があるが、バックグラウンドの低減が達成される方式を任意に選択して使用すれば良い。   As the suppressor, in addition to the membrane dialysis suppressor described in the above specific example, a column removal type using a column filled with an ion exchange resin, a suspension resin adsorption type using ion exchange resin particles suspended in a mobile phase, etc. However, any method that achieves a reduction in background may be selected and used.

尚、膜透析形及びカラム除去形のいずれのサプレッサについても、再生法に水酸化テトラメチルアンモニウムや水酸化ナトリウム等を通液して再生する化学的な再生法の他、イオンクロマト装置から排出された移動相又は水を電気分解することによって得られたアルカリを使用する電気的な再生法のいずれを採用しても問題はない。ただし、検出される電気伝導度の安定性は、一般的には化学的再生法が優れているため、より高精度分析が要求される場合は化学的再生法を適用することが好ましい。   In addition, both membrane dialysis and column removal suppressors are discharged from the ion chromatograph as well as the chemical regeneration method in which regeneration is performed by passing tetramethylammonium hydroxide or sodium hydroxide through the regeneration method. There is no problem even if any of the electric regeneration methods using the alkali obtained by electrolyzing the mobile phase or water is employed. However, since the chemical regeneration method is generally excellent in the stability of the detected electrical conductivity, it is preferable to apply the chemical regeneration method when higher accuracy analysis is required.

また、移動相速度や試料注入量などのイオンクロマトグラフに係る条件についても、特に制約はなく、測定対象成分と共存する他の陽イオンとが十分分離される測定条件を選定すればよい。   Moreover, there are no particular restrictions on the conditions relating to the ion chromatograph, such as the mobile phase velocity and the sample injection amount, and it is only necessary to select measurement conditions that sufficiently separate other cations coexisting with the measurement target component.

[実施例1]
リチウム、ニッケル及びコバルトを含むリチウム二次電池用正極材料の粉末を1.0g秤量し、清浄な300mlガラス製ビーカーに入れて硝酸10mlと過酸化水素水2mlを加え、約300℃のホットプレートで加熱して分解した。放冷後、更に過酸化水素水2mlを加え、上記と同様に加熱して分解した。この操作を少なくとも2回繰り返すことで試料を完全に分解した。
[Example 1]
Weigh 1.0 g of the positive electrode material powder for lithium secondary battery containing lithium, nickel and cobalt, put it in a clean 300 ml glass beaker, add 10 ml of nitric acid and 2 ml of hydrogen peroxide, and use a hot plate at about 300 ° C. Decomposed by heating. After allowing to cool, 2 ml of hydrogen peroxide was further added, and the mixture was heated and decomposed in the same manner as described above. The sample was completely decomposed by repeating this operation at least twice.

得られた溶液を室温まで冷却した後、溶液を容量100mlの全量フラスコに移し入れ、純水を加えて溶液量を100mlに合わせた。次いで、10mlの全量ピペットを用いて溶液の10mlを正確に分取し、これを容量200ml全量フラスコに移し入れ、純水を加えて溶液量を200mlに合わせた。更に、10mlの全量ピペットを用いて、この溶液の10mlを正確に分取し、容量100mlの全量フラスコに移し入れ、上記と同様に純水を加えて容量を100mlに合わせ、これを試料溶液とした。   After cooling the obtained solution to room temperature, the solution was transferred to a 100-ml volumetric flask and pure water was added to adjust the solution volume to 100 ml. Subsequently, 10 ml of the solution was accurately collected using a 10 ml volumetric pipette, transferred to a 200 ml volumetric flask, and pure water was added to adjust the volume of the solution to 200 ml. Furthermore, using a 10 ml total volume pipette, accurately dispense 10 ml of this solution, transfer it to a 100 ml volumetric flask, add pure water to adjust the volume to 100 ml in the same manner as above, and use this as the sample solution. did.

得られた試料溶液について、図2のイオンクロマトグラフ装置を用いてリチウムの測定を行った。実際に使用したイオンクロマトグラフ装置は、Dionex社製のICS−1000である。また、プレカラムはIonPacCG16、分離カラムはIonPacCS16、サプレッサはCMMSIII−4mmであり、いずれもDionex社製である。   About the obtained sample solution, lithium was measured using the ion chromatograph apparatus of FIG. The ion chromatograph apparatus actually used is ICS-1000 manufactured by Dionex. The precolumn is IonPacCG16, the separation column is IonPacCS16, and the suppressor is CMMSIII-4 mm, both of which are manufactured by Dionex.

流路切替バルブ15として6方バルブを使用し、接続点4−5間はPEEK製チューブを接続してバイパスラインとした。また、移動相送液補助ポンプ14と流路切替バルブ15の間に、流路の空気抜きを目的として3方バルブからなる流路切替バルブ16を設置した。空気抜きの動作時は接続点2−3の点線で図示した流路に切り替え、測定時には接続点2−1の実線で図示した流路を使用した。尚、サプレッサ6は膜透析型陰イオン交換サプレッサであり、再生には水酸化テトラメチルアンモニウムによる化学的再生法を採用した。   A 6-way valve was used as the flow path switching valve 15, and a PEEK tube was connected between the connection points 4-5 to form a bypass line. Further, between the mobile phase liquid supply auxiliary pump 14 and the flow path switching valve 15, a flow path switching valve 16 comprising a three-way valve was installed for the purpose of venting the flow path. During the air venting operation, the flow path is switched to the flow path indicated by the dotted line at the connection point 2-3, and at the time of measurement, the flow path illustrated by the solid line at the connection point 2-1 was used. The suppressor 6 is a membrane dialysis type anion exchange suppressor, and a chemical regeneration method using tetramethylammonium hydroxide was adopted for regeneration.

移動相には40mMメタンスルホン酸溶液を用い、移動相流量を1.0ml/minとした。サプレッサの再生液には80mM水酸化テトラメチルアンモニウム溶液を用い、再生液の制御圧力を5psiとした。試料溶液注入量50μl、カラム温度35℃、測定時間15minの条件にてリチウムの測定を行った。尚、リチウム濃度は検量線法によって算出した。また、検量線は0mg/l、2mg/l、4mg/l、6mg/lの4点とした。   A 40 mM methanesulfonic acid solution was used as the mobile phase, and the mobile phase flow rate was 1.0 ml / min. An 80 mM tetramethylammonium hydroxide solution was used as the regeneration solution for the suppressor, and the control pressure of the regeneration solution was 5 psi. Lithium was measured under the conditions of a sample solution injection amount of 50 μl, a column temperature of 35 ° C., and a measurement time of 15 min. The lithium concentration was calculated by a calibration curve method. The calibration curve was set to 4 points of 0 mg / l, 2 mg / l, 4 mg / l and 6 mg / l.

上記した測定条件において、リチウムの保持時間は4.7minであった。一方、試料溶液中に共存するニッケル及びコバルトの保持時間は、ニッケルが12.0min及びコバルトが11.5minであった。サプレッサ前段の移動相のpHは約1.5でありニッケル及びコバルトが沈殿する可能性はないが、サプレッサから流出した移動相のpHは約8.5と高くニッケル及びコバルトが沈殿するpHであるため、サプレッサ内の流路の閉塞を防止する目的で流路の切り替えを行った。   Under the measurement conditions described above, the lithium retention time was 4.7 min. On the other hand, the retention times of nickel and cobalt coexisting in the sample solution were 12.0 min for nickel and 11.5 min for cobalt. The pH of the mobile phase before the suppressor is about 1.5 and there is no possibility of precipitation of nickel and cobalt, but the pH of the mobile phase flowing out of the suppressor is as high as about 8.5 and is the pH at which nickel and cobalt are precipitated. Therefore, the channel was switched for the purpose of preventing the blockage of the channel in the suppressor.

即ち、リチウムを含むフラクションがサプレッサ6に導入されるまでの保持時間0〜10minの間は、流路切替バルブ15を接続点1−6、接続点2−3及び接続点4−5の実線で示した流路として測定を行った。その後、保持時間10〜15minの間は、流路切替バルブ15を切り替えて、接続点1−2、接続点3−4及び接続点5−6の点線で図示した流路とし、ニッケル及びコバルトが含まれるフランクションをドレン13に排出すると同時に、流路切替バルブ16の接続点2−1の流路で送液した移動相をサプレッサ6に導入した。保持時間15minの後は、再び流路切替バルブ15を実線で図示した流路に戻した。   That is, during the holding time of 0 to 10 minutes until the fraction containing lithium is introduced into the suppressor 6, the flow path switching valve 15 is indicated by the solid lines of the connection point 1-6, the connection point 2-3, and the connection point 4-5. Measurements were made as indicated channels. Thereafter, during the holding time of 10 to 15 minutes, the flow path switching valve 15 is switched to form the flow path illustrated by the dotted lines of the connection point 1-2, the connection point 3-4, and the connection point 5-6. At the same time that the contained fraction was discharged to the drain 13, the mobile phase fed through the flow path at the connection point 2-1 of the flow path switching valve 16 was introduced into the suppressor 6. After the holding time of 15 minutes, the flow path switching valve 15 was returned to the flow path shown by the solid line again.

この実施例1で得られたクロマトグラムを図3に示す。ピーク1はリチウムであり、ピーク2は流路切替バルブによる流路変更によって生じたバックグラウンドの変動に起因するピークである。しかし、流路変更による出現したピーク2は僅かであり、極短時間で安定したバックグラウンドに戻るうえ、テーリング等も認められず実用上何ら問題は認められなかった。   The chromatogram obtained in Example 1 is shown in FIG. Peak 1 is lithium, and peak 2 is a peak due to background fluctuation caused by the flow path change by the flow path switching valve. However, the peak 2 that appeared due to the change of the flow path was slight, and it returned to a stable background in an extremely short time, and no tailing was observed, and no problem was found in practice.

また、上記測定条件の下で、同一試料溶液を200回連続して測定した。その間、サプレッサ等を含むイオンクロマトグラフ装置の流路の圧力をモニターした結果、圧力は1350±20psiとほぼ一定であった。また、得られたリチウムの測定精度は、RSDで0.08%と極めて高精度であった。   Further, the same sample solution was continuously measured 200 times under the above measurement conditions. Meanwhile, as a result of monitoring the pressure of the flow path of the ion chromatograph apparatus including the suppressor and the like, the pressure was almost constant at 1350 ± 20 psi. Moreover, the measurement accuracy of the obtained lithium was 0.08% in RSD and extremely high accuracy.

[実施例2]
上記実施例1と同様にして、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アンモニウムについても測定を行った。ただし、カリウムとマグネシウムでは移動相に30mMメタンスルホン酸を使用し、ルビジウム及びセシウムでは移動相に50mMメタンスルホン酸を使用した。
[Example 2]
In the same manner as in Example 1, measurement was also performed on sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, and ammonium. However, 30 mM methanesulfonic acid was used for the mobile phase for potassium and magnesium, and 50 mM methanesulfonic acid was used for the mobile phase for rubidium and cesium.

その結果、得られた測定精度はRSDで、ナトリウムが0.10%、カリウムが0.10%、ルビジウムが0.09%、セシウムが0.18%、マグネシウムが0.08%、カルシウムが0.09%、ストロンチウムが0.12%、バリウムが0.11%、及びアンモニウムが0.10%であった。   As a result, the measurement accuracy obtained was RSD, 0.10% for sodium, 0.10% for potassium, 0.09% for rubidium, 0.18% for cesium, 0.08% for magnesium and 0 for calcium. 0.09%, strontium 0.12%, barium 0.11%, and ammonium 0.10%.

[比較例1]
図2に示したイオンクロマトグラフ装置において、流路切替バルブ15、16及び移動相送液補助ポンプ14を装備していない従来の装置を使用し、分離カラム5と膜透析型陰イオン交換サプレッサ6を直接接続した以外は上記実施例1と同様にして、リチウムの測定を行った。
[Comparative Example 1]
In the ion chromatograph apparatus shown in FIG. 2, a conventional apparatus not equipped with the flow path switching valves 15 and 16 and the mobile phase liquid feeding auxiliary pump 14 is used, and the separation column 5 and the membrane dialysis type anion exchange suppressor 6 are used. The lithium was measured in the same manner as in Example 1 except that was directly connected.

上記実施例1と同一の試料溶液を連続して測定したところ、約15回の測定で流路の圧力は1350psiから1400psiに上昇した。更に測定を続けたところ、約20回の測定で流路の圧力は1600psiまで上昇して、サプレッサ本体から液漏れが発生した。圧力が1600psiまで上昇した後、サプレッサを取り外して流路を0.2Mシュウ酸で約60min洗浄し、再度装着して測定を試みたが、同様の圧力上昇が発生してしまい連続測定は困難であった。   When the same sample solution as in Example 1 was continuously measured, the flow path pressure increased from 1350 psi to 1400 psi after approximately 15 measurements. When the measurement was further continued, the pressure in the flow path increased to 1600 psi after about 20 measurements, and liquid leakage occurred from the suppressor body. After the pressure increased to 1600 psi, the suppressor was removed and the flow path was washed with 0.2 M oxalic acid for about 60 minutes and mounted again, and measurement was attempted, but the same pressure increase occurred and continuous measurement was difficult. there were.

圧力上昇が認められた測定値を異常値として棄却し、流路の圧力が1350±50psiの区間を正常値として採用した。繰返し試験して得られた50回の測定値から測定精度を求めた結果、RSDで0.28%であった。以上の結果から、連続的に安定な測定を行うことは困難であり、また測定精度も不十分であることが分った。   A measured value in which a pressure increase was recognized was rejected as an abnormal value, and a section where the pressure in the flow path was 1350 ± 50 psi was adopted as a normal value. As a result of obtaining the measurement accuracy from 50 measurement values obtained by repeated tests, the RSD was 0.28%. From the above results, it has been found that it is difficult to perform continuous and stable measurement, and the measurement accuracy is insufficient.

本発明方法の実施に用いるイオンクロマトグラフ装置の流路図である。It is a channel diagram of the ion chromatograph apparatus used for implementation of the method of the present invention. 本発明方法の実施に用いる別のイオンクロマトグラフ装置の流路図である。It is a flow-path figure of another ion chromatograph apparatus used for implementation of the method of this invention. 本発明の実施例1で得られたイオンクロマトグラムである。It is an ion chromatogram obtained in Example 1 of this invention.

符号の説明Explanation of symbols

1 移動相タンク
2 移動相送液ポンプ
3 インジェクタ
4 プレカラム
5 分離カラム
6 サプレッサ
7 電気伝導度検出器
9 再生液タンク
10 再生液送液ポンプ
12、15、16 流路切替バルブ
14 移動相送液補助ポンプ
DESCRIPTION OF SYMBOLS 1 Mobile phase tank 2 Mobile phase liquid feed pump 3 Injector 4 Precolumn 5 Separation column 6 Suppressor 7 Electrical conductivity detector 9 Regeneration liquid tank 10 Regeneration liquid liquid feed pump 12, 15, 16 Flow path switching valve 14 Mobile phase liquid supply assistance pump

Claims (6)

陽イオン交換樹脂を充填した分離カラム及び陰イオン交換性のサプレッサを装備したイオンクロマトグラフ装置を用い、移動相送液ポンプで移動相と共に送られる試料溶液中の陽イオン濃度を検出する分析方法において、分離カラムとサプレッサの間に流路切替バルブを設け、試料溶液中の成分元素の保持時間に応じて流路切替バルブを切り替えることにより、測定対象元素を含まないフラクションは系外に排出し、測定対象元素を含むフラクションのみをサプレッサ内に選択的に導入することを特徴とする陽イオンの高精度分析方法。   In an analytical method for detecting the concentration of cations in a sample solution sent together with a mobile phase using a mobile phase pump by using an ion chromatograph equipped with a separation column packed with a cation exchange resin and an anion exchange suppressor In addition, by providing a flow path switching valve between the separation column and the suppressor and switching the flow path switching valve according to the retention time of the component elements in the sample solution, the fraction not containing the measurement target element is discharged out of the system, A highly accurate analysis method for cations, wherein only a fraction containing an element to be measured is selectively introduced into a suppressor. 前記流路切替バルブの切り替えによって、測定対象元素を含まないフラクションをドレンに系外に排出すると同時に、移動相送液補助ポンプにより分離カラムを経ることなく送液される移動相によって測定対象元素を含むフラクションをサプレッサに導入することを特徴とする、請求項1に記載の陽イオンの高精度分析方法。   By switching the flow path switching valve, the fraction not containing the element to be measured is discharged out of the system to the drain, and at the same time, the element to be measured is transferred by the mobile phase fed by the mobile phase feed auxiliary pump without passing through the separation column. The high-accuracy analysis method for cations according to claim 1, wherein a fraction containing them is introduced into a suppressor. 前記陽イオンの検出が電気伝導度検出器によって行われることを特徴とする、請求項1又は2に記載の陽イオンの高精度分析方法。   The method for high-accuracy analysis of cations according to claim 1 or 2, wherein detection of the cations is performed by an electric conductivity detector. 前記試料溶液が、リチウム二次電池用正極材料を分解して溶液としたものであることを特徴とする、請求項1〜3のいずれかに記載の陽イオンの高精度分析方法。   4. The method for highly accurate analysis of cations according to claim 1, wherein the sample solution is a solution obtained by decomposing a positive electrode material for a lithium secondary battery. 前記測定対象元素が、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アンモニウムの少なくとも1種であること特徴とする、請求項1〜4のいずれかに記載の陽イオンの高精度分析方法。   5. The cation according to claim 1, wherein the measurement target element is at least one of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, and ammonium. High-precision analysis method. 試料溶液が、測定対象元素以外の元素として、アルミニウム、ニッケル、コバルト、マンガン、鉄の少なくとも1種を含むことを特徴とする、請求項1〜5のいずれかに記載の陽イオンの高精度分析方法。   The high-accuracy analysis of a cation according to any one of claims 1 to 5, wherein the sample solution contains at least one of aluminum, nickel, cobalt, manganese, and iron as an element other than the element to be measured. Method.
JP2008057162A 2008-03-07 2008-03-07 Highly accurate analysis method of cations by ion chromatography Active JP5309617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057162A JP5309617B2 (en) 2008-03-07 2008-03-07 Highly accurate analysis method of cations by ion chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057162A JP5309617B2 (en) 2008-03-07 2008-03-07 Highly accurate analysis method of cations by ion chromatography

Publications (2)

Publication Number Publication Date
JP2009216399A true JP2009216399A (en) 2009-09-24
JP5309617B2 JP5309617B2 (en) 2013-10-09

Family

ID=41188431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057162A Active JP5309617B2 (en) 2008-03-07 2008-03-07 Highly accurate analysis method of cations by ion chromatography

Country Status (1)

Country Link
JP (1) JP5309617B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237433A (en) * 2014-08-28 2014-12-24 浙江大学 On-line pretreatment ion chromatogram column switching system for detecting conventional cations in biodiesel samples and detection method of on-line pretreatment ion chromatogram column switching system
JP2016524165A (en) * 2013-07-10 2016-08-12 ウィズテック インク Liquid chromatography device for rapid measurement
CN112816583A (en) * 2020-12-31 2021-05-18 杭州谱育科技发展有限公司 Ion chromatograph operating method and ion chromatograph
CN113917066A (en) * 2020-12-29 2022-01-11 中国水产科学研究院黄海水产研究所 Method for synchronously detecting MMA (methyl methacrylate) in atmosphere by adopting ion chromatography+、DMA+、TMA+And DEA+Method (2)
CN115166097A (en) * 2022-07-26 2022-10-11 中国地质调查局西安地质调查中心(西北地质科技创新中心) Method for reducing equipment damage and simultaneously separating Li and K in geological sample

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174446A (en) * 1999-12-20 2001-06-29 Seimi Chem Co Ltd Cation quantitatively analyzing method by ion chromatography
JP2005240588A (en) * 2004-02-24 2005-09-08 Mitsubishi Heavy Ind Ltd Power generation device and method and device for monitoring water quality of the power generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174446A (en) * 1999-12-20 2001-06-29 Seimi Chem Co Ltd Cation quantitatively analyzing method by ion chromatography
JP2005240588A (en) * 2004-02-24 2005-09-08 Mitsubishi Heavy Ind Ltd Power generation device and method and device for monitoring water quality of the power generation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524165A (en) * 2013-07-10 2016-08-12 ウィズテック インク Liquid chromatography device for rapid measurement
CN104237433A (en) * 2014-08-28 2014-12-24 浙江大学 On-line pretreatment ion chromatogram column switching system for detecting conventional cations in biodiesel samples and detection method of on-line pretreatment ion chromatogram column switching system
CN113917066A (en) * 2020-12-29 2022-01-11 中国水产科学研究院黄海水产研究所 Method for synchronously detecting MMA (methyl methacrylate) in atmosphere by adopting ion chromatography+、DMA+、TMA+And DEA+Method (2)
CN112816583A (en) * 2020-12-31 2021-05-18 杭州谱育科技发展有限公司 Ion chromatograph operating method and ion chromatograph
CN115166097A (en) * 2022-07-26 2022-10-11 中国地质调查局西安地质调查中心(西北地质科技创新中心) Method for reducing equipment damage and simultaneously separating Li and K in geological sample
CN115166097B (en) * 2022-07-26 2024-01-23 中国地质调查局西安地质调查中心(西北地质科技创新中心) Method for reducing equipment damage and separating Li and K in geological sample

Also Published As

Publication number Publication date
JP5309617B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
EP1924852B1 (en) Recycling of suppressor regenerants
JP5309617B2 (en) Highly accurate analysis method of cations by ion chromatography
EP1924853B1 (en) Ion chromatography system including sample pretreatment and using a single pump
EP1463686B1 (en) Chromatography apparatus and electrolytic method for purifying an aqueous stream containing a contaminant ion
US10241070B2 (en) Electrolytic four-channel device and method
EP2257798B1 (en) Ion chromatography system with eluent recycle
US11332391B2 (en) Ion exchange based volatile component removal device for ion chromatography
JP5120124B2 (en) High-precision analysis of lithium by ion chromatography
JP2002048774A (en) Ion chromatograph system for exchanging ion-exchange material in suppressor and suppressor means
KR101495005B1 (en) Method and System for Detecting Trace Boron for SG Tube Leakage On-line Monitoring in Mixed Solution
EP3816622A1 (en) Interface system and corresponding method
US9134264B2 (en) Monitoring method
CN102183600A (en) Ion chromatography-valve changeover analysis system
JP2006078226A (en) Ion quantitative analyzing method and fluorine ion quantitative analyzing method
KR101441610B1 (en) Method for evaluating of anion exchange resin performance and Online performance evaluation instrument
JP4962020B2 (en) Metal ion measuring method and measuring apparatus
JP2009236739A (en) Electrical conductivity detection device
CN219449884U (en) Eluent generation box and electrolytic eluent generator
CN115963221A (en) Multi-channel ion chromatography detection system and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5309617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150