JP2009215938A - Evaporated fuel treatment device - Google Patents

Evaporated fuel treatment device Download PDF

Info

Publication number
JP2009215938A
JP2009215938A JP2008059423A JP2008059423A JP2009215938A JP 2009215938 A JP2009215938 A JP 2009215938A JP 2008059423 A JP2008059423 A JP 2008059423A JP 2008059423 A JP2008059423 A JP 2008059423A JP 2009215938 A JP2009215938 A JP 2009215938A
Authority
JP
Japan
Prior art keywords
canister
processing apparatus
evaporative fuel
storage material
fuel processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008059423A
Other languages
Japanese (ja)
Other versions
JP4964808B2 (en
Inventor
Shota Yamanaka
翔太 山中
Masamitsu Hayakawa
昌光 早川
Kazusato Kasuya
一郷 糟谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Original Assignee
Aisan Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP2008059423A priority Critical patent/JP4964808B2/en
Priority to US12/396,530 priority patent/US7909919B2/en
Publication of JP2009215938A publication Critical patent/JP2009215938A/en
Application granted granted Critical
Publication of JP4964808B2 publication Critical patent/JP4964808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a closed vessel capable of absorbing volume increase of thermal storage medium with a simple structure. <P>SOLUTION: This evaporated fuel treatment device is provided with a canister filled with adsorbent capable of adsorbing evaporated fuel in a fuel tank, and the thermal storage medium 17 inhibiting temperature change of an inside of the canister with using latent heat of coagulation and dissolution. The heat storage medium 17 is installed in the canister under a condition that the same is stored in the closed vessel 40. A space S capable of absorbing volume increase of the thermal storage medium 17 is provided between an inner wall surface of the closed vessel 40 and a surface of the thermal storage medium 17 in the closed vessel 40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料タンク内の蒸発燃料を吸着可能な吸着材が充填されているキャニスタと、凝固、あるいは溶融する際の潜熱を利用して前記キャニスタ内の温度変化を抑制する蓄熱材とを備える蒸発燃料処理装置に関する。   The present invention includes a canister filled with an adsorbent capable of adsorbing evaporated fuel in a fuel tank, and a heat storage material that suppresses temperature change in the canister using latent heat when solidifying or melting. The present invention relates to a fuel vapor processing apparatus.

これに関連する従来の蒸発燃料処理装置が特許文献1に記載されている。
この蒸発燃料処理装置では、キャニスタ内の温度変化を抑制する潜熱蓄熱材(凝固、あるいは溶融する際の潜熱を利用する蓄熱材)を密閉容器に収納した状態で前記キャニスタ内に設置している。
A conventional evaporative fuel processing apparatus related to this is described in Patent Document 1.
In this fuel vapor processing apparatus, a latent heat storage material (a heat storage material that uses latent heat when solidifying or melting) that suppresses temperature changes in the canister is installed in the canister in a state of being housed in an airtight container.

US005861050AUS005861050A

前記潜熱蓄熱材は、一般的に、熱を吸収して溶融する際に膨張するため、密閉容器には、その潜熱蓄熱材の体積増加分を吸収する機構が必要である。しかし、上記した蒸発燃料処理装置では潜熱蓄熱材の体積増加分を吸収する機構が明確でない。   Since the latent heat storage material generally expands when it absorbs and melts heat, the sealed container needs a mechanism for absorbing the volume increase of the latent heat storage material. However, the mechanism for absorbing the volume increase of the latent heat storage material is not clear in the above evaporative fuel processing apparatus.

本発明は、上記問題点を解決するためになされたものであり、本発明の技術的課題は、簡単な構成で蓄熱材の体積増加分を吸収できる密閉容器を製造できるようにすることである。   The present invention has been made to solve the above problems, and a technical problem of the present invention is to be able to manufacture a sealed container capable of absorbing the volume increase of the heat storage material with a simple configuration. .

上記した課題は、各請求項の発明によって解決される。
請求項1の発明は、燃料タンク内の蒸発燃料を吸着可能な吸着材が充填されているキャニスタと、凝固、あるいは溶融する際の潜熱を利用して前記キャニスタ内の温度変化を抑制する蓄熱材とを備える蒸発燃料処理装置であって、前記蓄熱材は密閉容器に収納された状態で前記キャニスタ内に設置されており、前記密閉容器内には、前記蓄熱材の体積増加分を吸収できる空間がその密閉容器の内壁面と前記蓄熱材の表面との間に設けられていることを特徴とする。
The above-described problems are solved by the inventions of the claims.
The invention according to claim 1 is a canister filled with an adsorbent capable of adsorbing evaporated fuel in a fuel tank, and a heat storage material that suppresses temperature change in the canister by using latent heat when solidifying or melting. The heat storage material is installed in the canister in a state of being housed in a sealed container, and the space in which the volume increase of the heat storage material can be absorbed in the sealed container Is provided between the inner wall surface of the sealed container and the surface of the heat storage material.

本発明によると、密閉容器内には蓄熱材の体積増加分を吸収できる空間がその密閉容器の内壁面と前記蓄熱材の表面との間に設けられている。このため、例えば、蓄熱材が固体の状態から溶融して液体になる際に体積が増加しても、その体積増加分が前記空間内の気体の圧縮分により吸収されて、前記密閉容器に無理な力が加わらない。   According to this invention, the space which can absorb the volume increase of a thermal storage material is provided in the airtight container between the inner wall surface of the airtight container, and the surface of the said thermal storage material. For this reason, for example, even when the heat storage material melts from a solid state and becomes a liquid, the volume increases, the increase in volume is absorbed by the compressed gas in the space, and the sealed container is impossible. The power is not added.

請求項2の発明によると、密閉容器の外壁面には、凹凸が形成されていることを特徴とする。
このため、蓄熱材とキャニスタの吸着材との間の熱交換性が向上する。
請求項3の発明によると、密閉容器の内壁面には、凹凸が形成されていることを特徴とする。
このため、蓄熱材が液相状態のときに密閉容器が傾斜しても、内部の蓄熱材が密閉容器の一端側に集中し難くなる。
請求項4の発明によると、密閉容器は、蓋状の上側パネルの周縁部と、浅い開放容器状に形成された下側パネルの周縁部とが相互に接合されることで扁平に形成されて、前記キャニスタに対してほぼ水平に取付けられる構成であり、前記下側パネルの表面積が上側パネルの表面積よりも大きく設定されていることを特徴とする。
このように、蓄熱材が液相状態のときに溜まる下側パネルの表面積が上側パネルの表面積よりも大きいため、熱交換性を高くできる。
According to invention of Claim 2, the unevenness | corrugation is formed in the outer wall surface of an airtight container, It is characterized by the above-mentioned.
For this reason, the heat exchange property between the heat storage material and the adsorbent of the canister is improved.
According to invention of Claim 3, the unevenness | corrugation is formed in the inner wall face of an airtight container, It is characterized by the above-mentioned.
For this reason, even if the sealed container is inclined when the heat storage material is in a liquid phase, the internal heat storage material is less likely to concentrate on one end side of the sealed container.
According to the invention of claim 4, the sealed container is formed flat by joining the peripheral part of the lid-like upper panel and the peripheral part of the lower panel formed in a shallow open container shape to each other. The surface of the lower panel is set to be larger than the surface area of the upper panel.
Thus, since the surface area of the lower panel which accumulates when the heat storage material is in a liquid phase state is larger than the surface area of the upper panel, heat exchange can be enhanced.

請求項5の発明によると、密閉容器の前記空間内には、不活性ガスが充填されていることを特徴とする。
このため、蓄熱材の劣化を防止できる。また、不活性ガスの漏れ検査をすることで、密閉容器の密閉状態を検査することができる。
請求項6の発明によると、複数の密閉容器が、上下方向に間隔をおいて重ねられた状態で前記キャニスタ内に取付けられていることを特徴とする。
即ち、下段に配置された密閉容器の上側パネルの上方に上段の密閉容器の下側パネルが配置されるため、キャニスタの吸着材は下段の密閉容器の上側パネルと上段の密閉容器の下側パネル間に挟まれる。このため、上側パネルと下側パネルとで熱交換効果が異なっていても、キャニスタの吸着材はほぼ均等に蓄熱材と熱交換を行なうことができる。
According to the invention of claim 5, the space of the sealed container is filled with an inert gas.
For this reason, deterioration of the heat storage material can be prevented. Further, the sealed state of the sealed container can be checked by performing an inert gas leak test.
According to a sixth aspect of the present invention, the plurality of sealed containers are attached to the canister in a state where they are stacked at intervals in the vertical direction.
That is, since the lower panel of the upper sealed container is disposed above the upper panel of the sealed container disposed in the lower stage, the adsorbent for the canister is the upper panel of the lower sealed container and the lower panel of the upper sealed container. Sandwiched between them. For this reason, even if the heat exchange effect differs between the upper panel and the lower panel, the adsorbent of the canister can exchange heat with the heat storage material substantially evenly.

本発明によると、簡単な構成で蓄熱材の体積増加分を吸収することができるため、蓄熱材を収納する密閉容器に無理な力が加わらない。   According to the present invention, an increase in the volume of the heat storage material can be absorbed with a simple configuration, and therefore an unreasonable force is not applied to the sealed container that stores the heat storage material.

(実施形態1)
以下、図1から図5に基づいて本発明の実施形態1に係る蒸発燃料処理装置の説明を行なう。本実施形態に係る蒸発燃料処理装置は、自動車等の車両に搭載される装置であり、図1に本実施形態に係る蒸発燃料処理装置で使用されるキャニスタの全体構成図(下方視平面図)が示されている。また、図2は図1のII-II矢視断面図である。図3、図4は主密閉容器の平面図、断面図等、図5は補助密閉容器の平面図、断面図等である。
(Embodiment 1)
Hereinafter, the evaporated fuel processing apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5. The evaporative fuel processing apparatus according to the present embodiment is an apparatus mounted on a vehicle such as an automobile. FIG. 1 is an overall configuration diagram of a canister used in the evaporative fuel processing apparatus according to the present embodiment (plan view from below). It is shown. 2 is a cross-sectional view taken along the line II-II in FIG. 3 and 4 are a plan view and a sectional view of the main sealed container, and FIG. 5 is a plan view and a sectional view of the auxiliary sealed container.

<蒸発燃料処理装置の概要について>
蒸発燃料処理装置は、燃料タンク(図示省略)内で発生した蒸発燃料が大気に漏れ出るのを防止する装置であり、前記蒸発燃料を吸着する吸着材12が充填されたキャニスタ20と、前記キャニスタ20と前記燃料タンクとを連通させる蒸発燃料通路(図示省略)と、前記キャニスタ20とエンジンの吸気通路とを連通させるパージ通路(図示省略)等から構成されている。
蒸発燃料処理装置では、エンジンの停止中は、燃料タンク内の蒸発燃料が前記蒸発燃料通路を介してキャニスタ20内に導かれ、その蒸発燃料が前記吸着材12によって吸着される。また、エンジンの運転中は、外部からキャニスタ20内を通り、パージ通路を介してエンジンの吸気通路に流れ込む空気により、前記吸着材12に吸着された蒸発燃料がパージされる。即ち、キャニスタ20の吸着材12に吸着された蒸発燃料は外部の空気にパージされることで吸着材12から離脱し、エンジンの吸気通路に供給される。上記構成により、燃料タンク内で発生した蒸発燃料の大気流出を防止できる。
<About the Evaporative Fuel Treatment System>
The evaporative fuel processing apparatus is an apparatus for preventing evaporative fuel generated in a fuel tank (not shown) from leaking into the atmosphere, and a canister 20 filled with an adsorbent 12 that adsorbs the evaporative fuel, and the canister 20 and an evaporative fuel passage (not shown) for communicating the fuel tank, a purge passage (not shown) for communicating the canister 20 and the intake passage of the engine, and the like.
In the evaporated fuel processing apparatus, while the engine is stopped, the evaporated fuel in the fuel tank is guided into the canister 20 through the evaporated fuel passage, and the evaporated fuel is adsorbed by the adsorbent 12. Further, during the operation of the engine, the evaporated fuel adsorbed on the adsorbent 12 is purged by the air that flows from the outside into the canister 20 and flows into the intake passage of the engine via the purge passage. In other words, the evaporated fuel adsorbed by the adsorbent 12 of the canister 20 is purged from the adsorbent 12 by being purged with external air, and supplied to the intake passage of the engine. With the above configuration, it is possible to prevent the evaporated fuel generated in the fuel tank from flowing out to the atmosphere.

<キャニスタ20について>
キャニスタ20は、図1、図2に示すように、内部が複数に仕切られた容器本体部21と、その容器本体部21の開口(図1において下端側)を塞ぐ蓋部22とから構成されている。容器本体部21の内部は、図2に示すように、仕切り壁21wによって横断面形状略角形の主室24と、横断面形状略円形の副室25とに仕切られている。そして、前記副室25が、図1に示すように、バッファープレート23により第1副室25aと第2副室25bとに仕切られている。
容器本体部21には、蓋部22と反対側の底壁部にタンクポート241とパージポート242、及び大気ポート251が並んで形成されている。そして、前記大気ポート251は、多数の細かい開口を備える多孔板25xを介して第1副室25aと連通している。また、前記タンクポート241とパージポート242とは、同じく多数の細かい開口を備える多孔板24xを介して主室24と連通している。前記容器本体部21の主室24側の底壁部には、主室24内に突出するように隔壁24kが形成されており、その隔壁24kによってタンクポート241と連通する主室24の内部空間と、パージポート242と連通する主室24の内部空間とが隔てられている。
<About the canister 20>
As shown in FIGS. 1 and 2, the canister 20 includes a container body 21 that is partitioned into a plurality of parts, and a lid 22 that closes an opening (the lower end side in FIG. 1) of the container body 21. ing. As shown in FIG. 2, the inside of the container main body 21 is partitioned by a partition wall 21w into a main chamber 24 having a substantially rectangular cross section and a sub chamber 25 having a substantially circular cross section. The sub chamber 25 is partitioned into a first sub chamber 25a and a second sub chamber 25b by a buffer plate 23 as shown in FIG.
In the container main body 21, a tank port 241, a purge port 242, and an atmospheric port 251 are formed side by side on the bottom wall portion opposite to the lid portion 22. The atmospheric port 251 communicates with the first sub chamber 25a through a perforated plate 25x having a large number of fine openings. The tank port 241 and the purge port 242 communicate with the main chamber 24 through a perforated plate 24x having a large number of fine openings. A partition wall 24k is formed on the bottom wall portion of the container body 21 on the main chamber 24 side so as to protrude into the main chamber 24, and the inner space of the main chamber 24 communicating with the tank port 241 by the partition wall 24k. And the internal space of the main chamber 24 communicating with the purge port 242 are separated.

容器本体部21の主室24には、蓋部22が開放されている状態で、図2に示すように、後記する蓄熱材17を内蔵する複数(例えば、三個)の主密閉容器40が上下方向に間隔をおいた状態で取付けられる。そして、前記主密閉容器40の相互間、及び主密閉容器40と主室24の内壁面との間の空間に吸着材12が充填される。
吸着材12は、蒸発燃料を吸着するとともに、空気パージされることで吸着した蒸発燃料を離脱可能な活性炭等により構成されている。ここで、前記多孔板24xの開口は、吸着材12よりも十分小さな寸法に設定されており、前記吸着材12を主室24内に保持できるように構成されている。
容器本体部21の主室24の開口は、主密閉容器40の取付け完了、及び吸着材12の充填後に、図1に示すように、内蓋板27によって塞がれる。内蓋板27は、第1フィルタ27fと多孔板27xとから構成される通気性の蓋板であり、吸着材12を主室24内に保持する働きをする。内蓋板27は、主室24の開口を塞いだ状態で、その主室24の内壁面に沿って摺動可能に構成されている。そして、前記内蓋板27の背面中央に、その内蓋板27を押圧する方向に付勢されたコイルスプリング27sの一端が装着されている。このため、容器本体部21の開口が蓋部22によって閉じられると、コイルスプリング27sの他端が蓋部22の内壁面によって押圧される。これにより、内蓋板27はコイルスプリング27sによって主室24内に押し込まれる方向の力を受ける。この結果、吸着材12の粒子間に不必要な空間が形成されることがなく、通気抵抗をほぼ一定にできる。
In the main chamber 24 of the container main body 21, a plurality of (for example, three) main sealed containers 40 containing a heat storage material 17 to be described later are provided as shown in FIG. 2 with the lid 22 open. It can be installed with a space in the vertical direction. The adsorbent 12 is filled in the space between the main sealed containers 40 and the space between the main sealed container 40 and the inner wall surface of the main chamber 24.
The adsorbent 12 is made of activated carbon or the like that adsorbs the evaporated fuel and is capable of releasing the adsorbed evaporated fuel by air purging. Here, the opening of the porous plate 24x is set to a size sufficiently smaller than the adsorbent 12, and is configured so that the adsorbent 12 can be held in the main chamber 24.
As shown in FIG. 1, the opening of the main chamber 24 of the container main body 21 is closed by the inner lid plate 27 after the completion of the attachment of the main sealed container 40 and the filling of the adsorbent 12. The inner lid plate 27 is a breathable lid plate composed of the first filter 27 f and the porous plate 27 x and functions to hold the adsorbent 12 in the main chamber 24. The inner lid plate 27 is configured to be slidable along the inner wall surface of the main chamber 24 in a state where the opening of the main chamber 24 is closed. One end of a coil spring 27s biased in the direction of pressing the inner lid plate 27 is attached to the center of the back surface of the inner lid plate 27. For this reason, when the opening of the container body 21 is closed by the lid 22, the other end of the coil spring 27 s is pressed by the inner wall surface of the lid 22. Thereby, the inner lid plate 27 receives a force in a direction to be pushed into the main chamber 24 by the coil spring 27s. As a result, an unnecessary space is not formed between the particles of the adsorbent 12, and the ventilation resistance can be made substantially constant.

容器本体部21の副室25は、前述のように、バッファープレート23により第1副室25aと第2副室25bとに仕切られており、図1に示すように、そのバッファープレート23の第2副室25b側に第2フィルタ23fが装着されている。
容器本体部21の第2副室25bには、蓋部22が開放されている状態で、図2に示すように、蓄熱材17を内蔵する複数(例えば、二個)の補助密閉容器50が上下方向に間隔をおいた状態で取付けられる。そして、前記補助密閉容器50の相互間、及び補助密閉容器50と第2副室25bの内壁面との間の空間に吸着材12が充填される。
さらに、第2副室25bの開口は、補助密閉容器50の取付け完了、及び吸着材12の充填後に、図1に示すように、内蓋板29によって塞がれる。内蓋板29は、第3フィルタ29fと多孔板29xとから構成される通気性の蓋板であり、吸着材12を第2副室25b内に保持する働きをする。
内蓋板29は、前記第2副室25bの開口を塞いだ状態で、その第2副室25bの内壁面に沿って摺動可能なように構成されている。そして、前記内蓋板29の背面中央に、その内蓋板29を押圧する方向に付勢されたコイルスプリング29sの一端が装着されている。このため、容器本体部21の開口が蓋部22によって閉じられると、内蓋板29はコイルスプリング29sにより第2副室25bの内部に押し込まれる方向の力を受ける。
ここで、前記第2副室25bを塞ぐ内蓋板29、及び前記主室24を塞ぐ内蓋板27と前記蓋部22とにより構成される空間26は、主室24と第2副室25bとを連通させる拡散空間26として機能する。
As described above, the sub chamber 25 of the container body 21 is divided into the first sub chamber 25a and the second sub chamber 25b by the buffer plate 23. As shown in FIG. A second filter 23f is mounted on the second sub chamber 25b side.
In the second sub chamber 25b of the container main body 21, a plurality of (for example, two) auxiliary sealed containers 50 containing the heat storage material 17 are provided as shown in FIG. It can be installed with a space in the vertical direction. Then, the adsorbent 12 is filled into the space between the auxiliary sealed containers 50 and between the auxiliary sealed container 50 and the inner wall surface of the second sub chamber 25b.
Further, the opening of the second sub chamber 25b is closed by the inner lid plate 29 as shown in FIG. 1 after the auxiliary sealed container 50 is completely attached and the adsorbent 12 is filled. The inner lid plate 29 is a breathable lid plate composed of the third filter 29f and the porous plate 29x, and functions to hold the adsorbent 12 in the second sub chamber 25b.
The inner lid plate 29 is configured to be slidable along the inner wall surface of the second sub chamber 25b in a state where the opening of the second sub chamber 25b is closed. One end of a coil spring 29s biased in the direction of pressing the inner lid plate 29 is attached to the center of the back surface of the inner lid plate 29. For this reason, when the opening of the container main body 21 is closed by the lid portion 22, the inner lid plate 29 receives a force in a direction to be pushed into the second sub chamber 25b by the coil spring 29s.
Here, the space 26 formed by the inner lid plate 29 that closes the second sub chamber 25b and the inner lid plate 27 that closes the main chamber 24 and the lid portion 22 is the main chamber 24 and the second sub chamber 25b. It functions as a diffusion space 26 that communicates with each other.

<蓄熱材17、主密閉容器40、補助密閉容器50について>
蓄熱材17は、凝固、あるいは溶融する際の潜熱を利用してキャニスタ20内の温度変化を抑制する部材である。本実施形態では、例えば、融点が18℃のヘキサデカン(C1634)等が使用される。このため、キャニスタ20内の温度が上昇して18℃を超えると、蓄熱材17が溶融する際にキャニスタ20内の熱を奪うことで、キャニスタ20内の温度上昇が抑制される。逆に、キャニスタ20内の温度が低下して18℃以下になると、蓄熱材17が凝固する際に熱を放出し、キャニスタ20内の温度低下を抑えることができる。
主密閉容器40は、蓄熱材17を収納する容器であり、図3(A)(B)、図4に示すように、蓋状に形成された上側パネル42のフランジ部42eと、浅い開放容器状に形成された下側パネル44のフランジ部44eとが接合されることにより構成される。上側パネル42は、図3(A)に示すように、例えば、ステンレス板により長方形状に形成されて、その周縁部分が一定幅のフランジ部42eとなる。上側パネル42には、フランジ部42eによって囲まれた範囲内に、断面角形でその上側パネル42の長手方向に延びる溝部42mと突条部42pとが一定幅で交互に形成されている。ここで、上側パネル42は、ステンレス板をプレス成形することにより構成されるため、その上側パネル42の表面側で突条部42pとなる部位は裏面側で溝部になり、表面側で溝部42mとなる部位は裏面側で突条部となる。
<Regarding the heat storage material 17, the main sealed container 40, and the auxiliary sealed container 50>
The heat storage material 17 is a member that suppresses a temperature change in the canister 20 by using latent heat at the time of solidification or melting. In the present embodiment, for example, hexadecane (C 16 H 34 ) having a melting point of 18 ° C. is used. For this reason, when the temperature in the canister 20 rises and exceeds 18 ° C., the heat in the canister 20 is taken away when the heat storage material 17 melts, thereby suppressing the temperature rise in the canister 20. Conversely, when the temperature in the canister 20 decreases to 18 ° C. or less, heat is released when the heat storage material 17 solidifies, and the temperature decrease in the canister 20 can be suppressed.
The main sealed container 40 is a container for storing the heat storage material 17, and as shown in FIGS. 3A, 3B and 4, the flange portion 42e of the upper panel 42 formed in a lid shape and a shallow open container. It is comprised by joining the flange part 44e of the lower panel 44 formed in the shape. As shown in FIG. 3A, the upper panel 42 is formed in a rectangular shape by, for example, a stainless steel plate, and a peripheral portion thereof becomes a flange portion 42e having a constant width. In the upper panel 42, grooves 42m and ridges 42p having a square cross section and extending in the longitudinal direction of the upper panel 42 are alternately formed with a constant width within a range surrounded by the flange 42e. Here, since the upper panel 42 is configured by press-molding a stainless steel plate, the portion that becomes the protruding portion 42p on the front surface side of the upper panel 42 becomes a groove portion on the back surface side, and the groove portion 42m on the front surface side. The part which becomes becomes a protrusion part on the back side.

下側パネル44は、図3(B)、図4に示すように、例えば、ステンレス板により長方形の浅い箱状に形成されており、その周縁部分が一定幅のフランジ部44eとなる。そして、下側パネル44の底板の部分に、断面角形でその下側パネル44の長手方向に延びる溝部44mと突条部44pとが一定幅で交互に形成されている。下側パネル44は、上側パネル42と同様に、ステンレス板をプレス成形することにより構成されるため、その下側パネル44の下面側(図4参照 主密閉容器40の外面側)で突条部44pとなる部位は上面側(主密閉容器40の内面側)で溝部になり、前記下面側で溝部44mとなる部位は上面側で突条部となる。
下側パネル44の幅寸法、長さ寸法は、上側パネル42の幅寸法、長さ寸法と等しい値に設定されており、下側パネル44の溝部44mと突条部44pの幅寸法は、上側パネル42の溝部42mと突条部42pの幅寸法と等しい値に設定されている。
即ち、上側パネル42のフランジ部42e、下側パネル44のフランジ部44eが本発明の周縁部に相当し、上側パネル42の溝部42mと突条部42p、下側パネル44の溝部44mと突条部44pとが本発明の凹凸に相当する。
As shown in FIGS. 3B and 4, the lower panel 44 is formed in a rectangular shallow box shape, for example, by a stainless steel plate, and a peripheral portion thereof becomes a flange portion 44 e having a constant width. Then, in the bottom plate portion of the lower panel 44, grooves 44m and ridges 44p having a square cross section and extending in the longitudinal direction of the lower panel 44 are alternately formed with a constant width. Since the lower panel 44 is configured by press-molding a stainless steel plate in the same manner as the upper panel 42, the ridge portion is formed on the lower surface side of the lower panel 44 (see FIG. 4, the outer surface side of the main hermetic container 40). The part which becomes 44p becomes a groove part on the upper surface side (the inner surface side of the main sealed container 40), and the part which becomes the groove part 44m on the lower surface side becomes a ridge part on the upper surface side.
The width dimension and length dimension of the lower panel 44 are set to the same value as the width dimension and length dimension of the upper panel 42, and the width dimension of the groove 44m and the protrusion 44p of the lower panel 44 is the upper dimension. It is set to a value equal to the width dimension of the groove 42m and the protrusion 42p of the panel 42.
That is, the flange portion 42e of the upper panel 42 and the flange portion 44e of the lower panel 44 correspond to the peripheral portion of the present invention, and the groove portion 42m and the protrusion portion 42p of the upper panel 42, and the groove portion 44m and the protrusion portion of the lower panel 44. The portion 44p corresponds to the unevenness of the present invention.

下側パネル44のフランジ部44eと上側パネル42のフランジ部42eとは、図3(B)等に示すように、主密閉容器40内に蓄熱材17が収納された状態でレーザー溶接等により接合され、空間Sの部分にヘリウムガスが充填される。
主密閉容器40は、図2に示すように、その主密閉容器40の幅方向両側に形成されたフランジ部42e,44eがキャニスタ20の主室24の内壁面幅方向両側に形成された一組のレール状溝部245に嵌め込まれる。これにより、主密閉容器40は、主室24内にほぼ水平な状態で取付けられる。ここで、レール状溝部245は、主室24の内壁面に三組形成されており、上段、中段、及び下段のレール状溝部245が高さ方向に等しい間隔をおいて形成されている。
As shown in FIG. 3B, the flange portion 44e of the lower panel 44 and the flange portion 42e of the upper panel 42 are joined by laser welding or the like in a state where the heat storage material 17 is stored in the main hermetic container 40. The space S is filled with helium gas.
As shown in FIG. 2, the main airtight container 40 is a set in which flange portions 42 e and 44 e formed on both sides in the width direction of the main airtight container 40 are formed on both sides in the inner wall surface width direction of the main chamber 24 of the canister 20. Is fitted into the rail-shaped groove 245. Thereby, the main hermetic container 40 is attached in the main chamber 24 in a substantially horizontal state. Here, three sets of rail-shaped groove portions 245 are formed on the inner wall surface of the main chamber 24, and the upper, middle, and lower rail-shaped groove portions 245 are formed at equal intervals in the height direction.

補助密閉容器50は、主密閉容器40と同様に蓄熱材17を収納する容器であり、図5(B)等に示すように、主密閉容器40と等しい構成で、主密閉容器40よりも小型に形成されている。このため、主密閉容器40と同じ構成部分については同じ符号を付して説明を省略する。
補助密閉容器50は、図2に示すように、その補助密閉容器50の幅方向両側に形成されたフランジ部42e,44eがキャニスタ20の第2副室25b内に位置するバッファープレート23の内壁面幅方向両側に形成された一組のレール状溝部255に嵌め込まれる。これにより、補助密閉容器50は、第2副室25b内にほぼ水平な状態で取付けられる。ここで、レール状溝部255は、第2副室25b内のバッファープレート23の内壁面に二組形成されており、上下のレール状溝部245が高さ方向に所定の間隔をおいて形成されている。
The auxiliary sealed container 50 is a container that stores the heat storage material 17 in the same manner as the main sealed container 40. The auxiliary sealed container 50 has the same configuration as the main sealed container 40 and is smaller than the main sealed container 40 as shown in FIG. Is formed. For this reason, about the same component as the main airtight container 40, the same code | symbol is attached | subjected and description is abbreviate | omitted.
As shown in FIG. 2, the auxiliary sealed container 50 has an inner wall surface of the buffer plate 23 in which flange portions 42 e and 44 e formed on both sides in the width direction of the auxiliary sealed container 50 are located in the second sub chamber 25 b of the canister 20. It fits into a set of rail-shaped groove portions 255 formed on both sides in the width direction. Thereby, the auxiliary sealed container 50 is attached in a substantially horizontal state in the second sub chamber 25b. Here, two sets of rail-shaped groove portions 255 are formed on the inner wall surface of the buffer plate 23 in the second sub chamber 25b, and the upper and lower rail-shaped groove portions 245 are formed at predetermined intervals in the height direction. Yes.

<蒸発燃料処理装置の動作について>
先ず、エンジンが停止しているときの蒸発燃料処理装置の動作について説明する。
燃料タンク内で発生した蒸発燃料は、図1の白抜き矢印に示すように、蒸発燃料通路によりキャニスタ20のタンクポート241から主室24内に導かれ、主室24内の吸着材12に吸着される。そして、主室24内の吸着材12で吸着しきれなかった蒸発燃料が拡散空間26を介して第2副室25bに導かれる。前記吸着材12に蒸発燃料が吸着されると、吸着材12の温度が上昇して吸着効率が徐々に低下する。しかし、キャニスタ20内には、主密閉容器40、及び補助密閉容器50を介して蓄熱材17が収納されているため、キャニスタ20内の温度が上昇して18℃を超えると、蓄熱材17が溶融する際にキャニスタ20内の熱を奪い、キャニスタ20内の温度上昇を抑えることができる。このため、吸着材12の蒸発燃料の吸着効率低下を抑えることができる。
ここで、蓄熱材17が溶融する際、蓄熱材17の体積が増加するが、主密閉容器40、及び補助密閉容器50の内部には空間Sが設けられているため、蓄熱材17の体積増加分が前記空間S内のヘリウムガスの圧縮分によって吸収され、主密閉容器40、及び補助密閉容器50に無理な力が加わらない。
<Operation of Evaporative Fuel Treatment Device>
First, the operation of the evaporated fuel processing device when the engine is stopped will be described.
The evaporated fuel generated in the fuel tank is guided into the main chamber 24 from the tank port 241 of the canister 20 through the evaporated fuel passage and is adsorbed by the adsorbent 12 in the main chamber 24 as shown by the white arrow in FIG. Is done. Then, the evaporated fuel that could not be adsorbed by the adsorbent 12 in the main chamber 24 is guided to the second sub chamber 25 b through the diffusion space 26. When evaporated fuel is adsorbed on the adsorbent 12, the temperature of the adsorbent 12 rises and the adsorption efficiency gradually decreases. However, since the heat storage material 17 is accommodated in the canister 20 via the main sealed container 40 and the auxiliary sealed container 50, when the temperature in the canister 20 rises and exceeds 18 ° C., the heat storage material 17 When melting, the heat in the canister 20 can be removed, and the temperature rise in the canister 20 can be suppressed. For this reason, a decrease in the adsorption efficiency of the evaporated fuel of the adsorbent 12 can be suppressed.
Here, when the heat storage material 17 melts, the volume of the heat storage material 17 increases. However, since the space S is provided inside the main sealed container 40 and the auxiliary sealed container 50, the volume of the heat storage material 17 increases. The portion is absorbed by the compressed portion of the helium gas in the space S, and an excessive force is not applied to the main sealed container 40 and the auxiliary sealed container 50.

エンジンの運転中は、吸気通路内の負圧がパージ通路からパージポート242を介してキャニスタ20の主室24、拡散空間26、第2副室25b及び第1副室25aに加わる。これにより、図1の太線矢印に示すように、大気ポート251からキャニスタ20の第1副室25aに空気が流入し、その空気が第2副室25b、拡散空間26、主室24を通り、パージポート242、パージ通路を介して吸気通路まで流れるようになる。これにより、キャニスタ20の吸着材12に吸着されている蒸発燃料がパージされ、そのパージされた蒸発燃料が空気と共に吸気通路内に導かれる。
前記吸着材12に吸着されている蒸発燃料がパージされて、蒸発燃料が吸着材12から離脱すると、前記吸着材12の温度が低下して蒸発燃料の離脱効率が徐々に低下する。しかし、キャニスタ20内の温度が低下して18℃以下になると、蓄熱材17が凝固する際に熱を放出し、キャニスタ20内の温度低下を抑える。このため、吸着材12の蒸発燃料の離脱効率低下を抑制することができる。
During operation of the engine, negative pressure in the intake passage is applied to the main chamber 24, the diffusion space 26, the second sub chamber 25b, and the first sub chamber 25a of the canister 20 through the purge passage through the purge port 242. As a result, as shown by the thick arrows in FIG. 1, air flows from the atmospheric port 251 into the first sub chamber 25a of the canister 20, and the air passes through the second sub chamber 25b, the diffusion space 26, and the main chamber 24, It flows to the intake passage through the purge port 242 and the purge passage. Thereby, the evaporated fuel adsorbed on the adsorbent 12 of the canister 20 is purged, and the purged evaporated fuel is guided into the intake passage together with air.
When the evaporated fuel adsorbed on the adsorbent 12 is purged and the evaporated fuel is desorbed from the adsorbent 12, the temperature of the adsorbent 12 is lowered and the evaporative fuel desorption efficiency is gradually decreased. However, when the temperature in the canister 20 decreases to 18 ° C. or less, heat is released when the heat storage material 17 is solidified, and the temperature decrease in the canister 20 is suppressed. For this reason, it is possible to suppress a decrease in the evaporative fuel removal efficiency of the adsorbent 12.

<蒸発燃料処理装置の長所について>
本実施形態に係る蒸発燃料処理装置によると、密閉容器40,50内には蓄熱材17の体積増加分を吸収できる空間Sがその密閉容器40,50の内壁面と蓄熱材17の表面との間に設けられている。このため、例えば、蓄熱材17が固体の状態から溶融して液体になる際に体積が増加しても、その体積増加分が空間S内の気体の圧縮分により吸収されて、密閉容器40,50に無理な力が加わらない。
また、密閉容器40,50の外壁面には、溝部44m、突条部44pが形成されているため、蓄熱材17とキャニスタ20の吸着材12との間の熱交換性が向上する。
また、密閉容器40,50の内壁面にも、溝部44m、突条部44pが形成されているため、蓄熱材17が液相状態のときに密閉容器40,50が傾斜しても、内部の蓄熱材17が密閉容器40,50の一端側に集中し難くなる。
<Advantages of evaporative fuel treatment equipment>
According to the fuel vapor processing apparatus according to the present embodiment, the space S that can absorb the increased volume of the heat storage material 17 is formed in the sealed containers 40 and 50 between the inner wall surface of the sealed containers 40 and 50 and the surface of the heat storage material 17. It is provided in between. For this reason, for example, even when the heat storage material 17 is melted from a solid state to become a liquid and the volume increases, the volume increase is absorbed by the compressed gas in the space S, and the sealed container 40, Unreasonable power is not added to 50.
Moreover, since the groove part 44m and the protrusion part 44p are formed in the outer wall surface of the airtight containers 40 and 50, the heat exchange property between the heat storage material 17 and the adsorbent 12 of the canister 20 improves.
Moreover, since the groove part 44m and the protrusion part 44p are formed also in the inner wall surface of the airtight containers 40 and 50, even if the airtight container 40 and 50 incline when the thermal storage material 17 is a liquid phase state, It becomes difficult for the heat storage material 17 to concentrate on one end side of the sealed containers 40 and 50.

また、密閉容器40,50は扁平に形成されて、キャニスタ20に対してほぼ水平に取付けられる構成であり、下側パネル44の表面積が上側パネル42の表面積よりも大きく設定されている。このように、蓄熱材17が液相状態のときに溜まる下側パネル44の表面積が上側パネル42の表面積よりも大きいため、熱交換性を高くできる。
また、密閉容器40,50の空間S内には、ヘリウムガス等の不活性ガスが充填されているため、蓄熱材17の劣化を防止できる。また、前記不活性ガスの漏れ検査をすることで、密閉容器40,50の密閉状態を検査することができる。
また、キャニスタ20の吸着材12は下段の密閉容器40,50の上側パネル42と上段の密閉容器40,50の下側パネル44間に挟まれるため、上側パネル42と下側パネル44とで熱交換効果が異なっていても、吸着材12はほぼ均等に蓄熱材17と熱交換できるようになる。
Further, the sealed containers 40 and 50 are formed flat and attached to the canister 20 almost horizontally, and the surface area of the lower panel 44 is set larger than the surface area of the upper panel 42. As described above, since the surface area of the lower panel 44 accumulated when the heat storage material 17 is in the liquid phase state is larger than the surface area of the upper panel 42, the heat exchange property can be increased.
Further, since the space S of the sealed containers 40 and 50 is filled with an inert gas such as helium gas, the heat storage material 17 can be prevented from being deteriorated. Moreover, the sealed state of the airtight containers 40 and 50 can be inspected by inspecting the leakage of the inert gas.
Further, since the adsorbent 12 of the canister 20 is sandwiched between the upper panel 42 of the lower sealed containers 40, 50 and the lower panel 44 of the upper sealed containers 40, 50, the upper panel 42 and the lower panel 44 generate heat. Even if the exchange effects are different, the adsorbent 12 can exchange heat with the heat storage material 17 almost equally.

<変更例>
本発明は上記した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における変更が可能である。例えば、本実施形態では、蓄熱材17として融点が18℃のヘキサデカンを使用する例を示したが、キャニスタ20内の制御温度に応じて蓄熱材の材質を変更することも可能である。例えば、融点が22℃のヘプタデカン(C1736)等を使用することも可能である。
また、密閉容器40,50の凹凸を、断面角形の溝部44m、突条部44pにより構成する例を示したが、前記凹凸を突起や窪み状に形成することも可能である。また、密閉容器40,50の表面にフィン等を設けることも可能である。
また、密閉容器40,50を扁平箱形に形成する例を示したが、密閉容器40,50の形状は適宜変更可能である。
また、密閉容器40,50内に充填する不活性ガスとしてヘリウムガスを使用する例を示したが、ヘリウムガスの代わりにアルゴンガスや窒素等を使用することも可能である。
<Example of change>
The present invention is not limited to the above-described embodiment, and modifications can be made without departing from the gist of the present invention. For example, in the present embodiment, an example in which hexadecane having a melting point of 18 ° C. is used as the heat storage material 17, but the material of the heat storage material can be changed according to the control temperature in the canister 20. For example, heptadecane (C 17 H 36 ) having a melting point of 22 ° C. can be used.
Moreover, although the example which comprises the unevenness | corrugation of the airtight containers 40 and 50 by the groove part 44m of the square cross section and the protrusion part 44p was shown, it is also possible to form the said unevenness | corrugation in a protrusion and a hollow shape. It is also possible to provide fins or the like on the surfaces of the sealed containers 40 and 50.
Moreover, although the example which forms the airtight containers 40 and 50 in a flat box shape was shown, the shape of the airtight containers 40 and 50 can be changed suitably.
Moreover, although the example which uses helium gas as an inert gas with which it fills in the airtight containers 40 and 50 was shown, argon gas, nitrogen, etc. can also be used instead of helium gas.

本発明の実施形態1に係る蒸発燃料処理装置で使用されるキャニスタの全体構成図(下方視平面図)である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram (downward plan view) of the canister used with the evaporative fuel processing apparatus which concerns on Embodiment 1 of this invention. 図1のII-II矢視断面図である。It is the II-II arrow sectional drawing of FIG. 主密閉容器の上方から見た平面図(A図)、断面図(B図)である。It is the top view (A figure) seen from the upper direction of the main airtight container, and sectional drawing (B figure). 主密閉容器の下方から見た平面図である。It is the top view seen from the lower part of the main airtight container. 補助密閉容器の上方から見た平面図(A図)、断面図(B図)、及び下方から見た平面図(C図)である。It is the top view (A figure) seen from the upper direction of an auxiliary | assistant airtight container, sectional drawing (B figure), and the top view (C figure) seen from the downward direction.

符号の説明Explanation of symbols

12・・・吸着材
17・・・蓄熱材
20・・・キャニスタ
40・・・主密閉容器
42・・・上側パネル
42m・・溝部(凹凸)
42p ・・突条部(凹凸)
42e・・フランジ部(周縁部)
44・・・下側パネル
44e・・フランジ部(周縁部)
50・・・補助密閉容器
S・・・・空間
12 ... Adsorbent 17 ... Thermal storage material 20 ... Canister 40 ... Main airtight container 42 ... Upper panel 42m ... Groove (unevenness)
42p ..Ridge (unevenness)
42e ・ ・ Flange part (peripheral part)
44 ... Lower panel 44e..Flange (periphery)
50 ... auxiliary sealed container S ... space

Claims (6)

燃料タンク内の蒸発燃料を吸着可能な吸着材が充填されているキャニスタと、凝固、あるいは溶融する際の潜熱を利用して前記キャニスタ内の温度変化を抑制する蓄熱材とを備える蒸発燃料処理装置であって、
前記蓄熱材は密閉容器に収納された状態で前記キャニスタ内に設置されており、
前記密閉容器内には、前記蓄熱材の体積増加分を吸収できる空間がその密閉容器の内壁面と前記蓄熱材の表面との間に設けられていることを特徴とする蒸発燃料処理装置。
An evaporative fuel processing apparatus comprising: a canister filled with an adsorbent capable of adsorbing evaporated fuel in a fuel tank; and a heat storage material that suppresses temperature change in the canister by using latent heat when solidifying or melting. Because
The heat storage material is installed in the canister in a state of being stored in a sealed container,
An evaporative fuel processing apparatus, wherein a space capable of absorbing the increased volume of the heat storage material is provided in the sealed container between the inner wall surface of the sealed container and the surface of the heat storage material.
請求項1に記載の蒸発燃料処理装置であって、
前記密閉容器の外壁面には、凹凸が形成されていることを特徴とする蒸発燃料処理装置。
It is an evaporative fuel processing apparatus of Claim 1, Comprising:
The evaporative fuel processing apparatus is characterized in that irregularities are formed on an outer wall surface of the sealed container.
請求項1又は請求項2のいずれかに記載の蒸発燃料処理装置であって、
前記密閉容器の内壁面には、凹凸が形成されていることを特徴とする蒸発燃料処理装置。
An evaporative fuel processing apparatus according to claim 1 or 2,
The evaporative fuel processing apparatus is characterized in that irregularities are formed on an inner wall surface of the sealed container.
請求項1から請求項3のいずれかに記載の蒸発燃料処理装置であって、
密閉容器は、蓋状の上側パネルの周縁部と、浅い開放容器状に形成された下側パネルの周縁部とが相互に接合されることで扁平に形成されて、前記キャニスタに対してほぼ水平に取付けられる構成であり、前記下側パネルの表面積が上側パネルの表面積よりも大きく設定されていることを特徴とする蒸発燃料処理装置。
It is an evaporative fuel processing apparatus in any one of Claims 1-3, Comprising:
The airtight container is formed flat by joining the peripheral edge of the lid-shaped upper panel and the peripheral edge of the lower panel formed in a shallow open container shape, and is substantially horizontal to the canister. The evaporative fuel processing apparatus is characterized in that the surface area of the lower panel is set larger than the surface area of the upper panel.
請求項1から請求項4のいずれかに記載の蒸発燃料処理装置であって、
前記密閉容器の前記空間内には、不活性ガスが充填されていることを特徴とする蒸発燃料処理装置。
An evaporative fuel processing apparatus according to any one of claims 1 to 4,
An evaporative fuel processing apparatus, wherein the space of the sealed container is filled with an inert gas.
請求項4又は請求項5のいずれかに記載の蒸発燃料処理装置であって、
複数の前記密閉容器が、上下方向に間隔をおいて重ねられた状態で前記キャニスタ内に取付けられていることを特徴とする蒸発燃料処理装置。
An evaporative fuel processing apparatus according to any one of claims 4 and 5,
An evaporative fuel processing apparatus, wherein a plurality of the sealed containers are attached in the canister in a state where they are stacked in the vertical direction at intervals.
JP2008059423A 2008-03-10 2008-03-10 Evaporative fuel processing equipment Active JP4964808B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008059423A JP4964808B2 (en) 2008-03-10 2008-03-10 Evaporative fuel processing equipment
US12/396,530 US7909919B2 (en) 2008-03-10 2009-03-03 Vaporized fuel treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008059423A JP4964808B2 (en) 2008-03-10 2008-03-10 Evaporative fuel processing equipment

Publications (2)

Publication Number Publication Date
JP2009215938A true JP2009215938A (en) 2009-09-24
JP4964808B2 JP4964808B2 (en) 2012-07-04

Family

ID=41188049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008059423A Active JP4964808B2 (en) 2008-03-10 2008-03-10 Evaporative fuel processing equipment

Country Status (1)

Country Link
JP (1) JP4964808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078650A (en) * 2013-10-17 2015-04-23 愛三工業株式会社 Heat storage material for canister

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964689A (en) * 1982-10-06 1984-04-12 Hitachi Ltd Heat storing container
JPS6283107U (en) * 1985-11-15 1987-05-27
JPS6457095A (en) * 1987-08-27 1989-03-03 Diesel Kiki Co Lamination type heat exchanger
JPS6466461A (en) * 1987-09-07 1989-03-13 Aisan Ind Canister
JPH0926277A (en) * 1995-07-10 1997-01-28 Mitsubishi Chem Corp Heat storage capsule
US5861050A (en) * 1996-11-08 1999-01-19 Store Heat And Produce Energy, Inc. Thermally-managed fuel vapor recovery canister
JPH1144494A (en) * 1997-07-23 1999-02-16 Mitsubishi Chem Eng Corp Heat storage device
JP2003003914A (en) * 2001-06-26 2003-01-08 Nissan Motor Co Ltd Vaporized fuel disposition device
US6695896B2 (en) * 2001-03-06 2004-02-24 Honda Giken Kogyo Kabushiki Kaisha Evaporated fuel treatment apparatus
JP2006063859A (en) * 2004-08-26 2006-03-09 Kuraray Chem Corp Evaporating fuel gas adsorbent and evaporating fuel gas collecting device
JP2006233962A (en) * 2005-01-28 2006-09-07 Aisan Ind Co Ltd Canister and method for manufacturing canister
JP2007155197A (en) * 2005-12-05 2007-06-21 Matsushita Electric Ind Co Ltd Heat storage device
JP2008038688A (en) * 2006-08-03 2008-02-21 Toyota Motor Corp Canister

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964689A (en) * 1982-10-06 1984-04-12 Hitachi Ltd Heat storing container
JPS6283107U (en) * 1985-11-15 1987-05-27
JPS6457095A (en) * 1987-08-27 1989-03-03 Diesel Kiki Co Lamination type heat exchanger
JPS6466461A (en) * 1987-09-07 1989-03-13 Aisan Ind Canister
JPH0926277A (en) * 1995-07-10 1997-01-28 Mitsubishi Chem Corp Heat storage capsule
US5861050A (en) * 1996-11-08 1999-01-19 Store Heat And Produce Energy, Inc. Thermally-managed fuel vapor recovery canister
JPH1144494A (en) * 1997-07-23 1999-02-16 Mitsubishi Chem Eng Corp Heat storage device
US6695896B2 (en) * 2001-03-06 2004-02-24 Honda Giken Kogyo Kabushiki Kaisha Evaporated fuel treatment apparatus
JP2003003914A (en) * 2001-06-26 2003-01-08 Nissan Motor Co Ltd Vaporized fuel disposition device
JP2006063859A (en) * 2004-08-26 2006-03-09 Kuraray Chem Corp Evaporating fuel gas adsorbent and evaporating fuel gas collecting device
JP2006233962A (en) * 2005-01-28 2006-09-07 Aisan Ind Co Ltd Canister and method for manufacturing canister
JP2007155197A (en) * 2005-12-05 2007-06-21 Matsushita Electric Ind Co Ltd Heat storage device
JP2008038688A (en) * 2006-08-03 2008-02-21 Toyota Motor Corp Canister

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015078650A (en) * 2013-10-17 2015-04-23 愛三工業株式会社 Heat storage material for canister
US9631584B2 (en) 2013-10-17 2017-04-25 Aisan Kogyo Kabushiki Kaisha Heat storage member for canister

Also Published As

Publication number Publication date
JP4964808B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US7909919B2 (en) Vaporized fuel treatment apparatus
JP4708283B2 (en) Canister
US5861050A (en) Thermally-managed fuel vapor recovery canister
JP5148352B2 (en) Canister
JP3995881B2 (en) Canister for evaporative fuel treatment
JP2012149620A (en) Canister
US9631584B2 (en) Heat storage member for canister
JP5220631B2 (en) Evaporative fuel processing equipment
US8506691B2 (en) Shaped heat storage materials including heat transfer members
CA2553569A1 (en) X-spring volume compensator for automotive carbon canister
JP2006233962A (en) Canister and method for manufacturing canister
JP6933658B2 (en) Canister
JP5107216B2 (en) Evaporative fuel processing equipment
JP2008215808A (en) Cooling element equipped with adsorbent and method for vacuumizing the cooling element
JP4964808B2 (en) Evaporative fuel processing equipment
JP2006207485A (en) Canister
JP2005325708A (en) Canister
JP2009287395A (en) Canister
JP2005325707A (en) Canister
JP2010096117A (en) Vaporized fuel treatment device
JP5179965B2 (en) Canister
JP4439995B2 (en) Canister
JP5128528B2 (en) Method for manufacturing canister regenerator and canister regenerator
JP5796878B2 (en) Refrigerant adsorbent filling container, bleed air recovery device, turbo chiller and refrigerant recovery device equipped with the same
JP2011247121A (en) Canister

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Ref document number: 4964808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250