JP2009212176A - Semiconductor laser - Google Patents

Semiconductor laser Download PDF

Info

Publication number
JP2009212176A
JP2009212176A JP2008051572A JP2008051572A JP2009212176A JP 2009212176 A JP2009212176 A JP 2009212176A JP 2008051572 A JP2008051572 A JP 2008051572A JP 2008051572 A JP2008051572 A JP 2008051572A JP 2009212176 A JP2009212176 A JP 2009212176A
Authority
JP
Japan
Prior art keywords
electrode
mesa
semiconductor laser
sides
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008051572A
Other languages
Japanese (ja)
Inventor
Hiroaki Senda
浩明 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008051572A priority Critical patent/JP2009212176A/en
Publication of JP2009212176A publication Critical patent/JP2009212176A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode structure of DFB-LD, which can fuse an electrode on an active layer side of the DFB-LD to an electrode on a heatsink for high heat exhaust characteristics and high single mode characteristics yield as well. <P>SOLUTION: In a semiconductor laser 1, a mesa structure is formed on its surface and an electrode pad 5 having sufficient area is formed directly above the mesa as well as on both sides of a separation groove 3. The electrode directly above the mesa and the electrodes on both sides of the separation groove are connected together through electrodes formed, being divided in two or more pieces, in the grooves on both sides of the mesa. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は半導体レーザに関する。   The present invention relates to a semiconductor laser.

最近の高速、大容量なWDM(波長分割多重)光ネットワークの普及に伴い、光通信装置には広範囲な温度での省電力動作が求められている。   With the recent widespread use of high-speed, large-capacity WDM (wavelength division multiplexing) optical networks, optical communication devices are required to operate in a wide range of temperatures.

特にアクセスネットワークで使用される一芯双方向光トランシーバでは、半導体レーザ素子は、ペルチェ素子等を用いた冷却等の温度調整無しに−40〜+85℃の広範な温度での動作が求められる。   In particular, in a single-core bidirectional optical transceiver used in an access network, a semiconductor laser element is required to operate in a wide temperature range of −40 to + 85 ° C. without temperature adjustment such as cooling using a Peltier element or the like.

特に20km程度の距離で用いられる光トランシーバの光源には、一般に線幅が狭く、単一モード発振する分布帰還型半導体レーザ(DFB−LD)が用いられており、この種類のLDは、実装による応力印加に対して非常に敏感に軸モード特性が変化する。通常、単一軸モード発振を維持するため、活性層を含む発光部側を避けて基板側をヒートシンク上にハンダ融着して使用する。   In particular, as a light source of an optical transceiver used at a distance of about 20 km, a distributed feedback semiconductor laser (DFB-LD) that generally has a narrow line width and oscillates in a single mode is used. The axial mode characteristics change very sensitively to stress application. Usually, in order to maintain single-axis mode oscillation, the substrate side is solder-fused onto a heat sink while avoiding the light emitting part side including the active layer.

なお、特許文献1には、従来のアレイ型レーザダイオードの構造が開示されており、特許文献2には、従来の光半導体モジュールが開示されている。   Patent Document 1 discloses the structure of a conventional array type laser diode, and Patent Document 2 discloses a conventional optical semiconductor module.

特開平11−233877号公報Japanese Patent Laid-Open No. 11-233877 特開2002−314184号公報JP 2002-314184 A

しかしながら、上述の活性層を含む発光部側を避けて基板側をヒートシンク上にハンダ融着場合には、発熱するLD発光部がヒートシンクから遠いため、活性層側をヒートシンク上に融着した場合と比較して排熱特性が劣るため、LDの光出力特性は低下する。   However, when soldering the substrate side on the heat sink while avoiding the light emitting part side including the active layer described above, since the LD light emitting part that generates heat is far from the heat sink, the active layer side is fused on the heat sink. Since the exhaust heat characteristic is inferior to that of the LD, the light output characteristic of the LD is lowered.

一方、一芯双方向光トランシーバの中にはPLCを利用した光モジュールを採用しているものもあり、PLCを構成する光導波路とDFB−LDとの結合効率を一定の水準に維持するためには、PLC上の電極とLDの活性層側電極とを融着してLD基板の研磨厚バラ付きの影響を排除することが望ましい。   On the other hand, some single-core bidirectional optical transceivers employ an optical module using a PLC, in order to maintain the coupling efficiency between the optical waveguide constituting the PLC and the DFB-LD at a certain level. It is desirable to eliminate the influence of the variation in polishing thickness of the LD substrate by fusing the electrode on the PLC and the active layer side electrode of the LD.

すなわち、PLC利用の光モジュールでは、排熱効率、結合効率何れの観点からも活性層側の電極をPLC上の電極に融着する方が有利であるが、単一モード発振を維持する観点からは基板側の電極をPLC上の電極に融着する方が有利であり、二律背反が生じる。   That is, in an optical module using PLC, it is more advantageous to fuse the electrode on the active layer side to the electrode on the PLC from the viewpoint of either exhaust heat efficiency or coupling efficiency, but from the viewpoint of maintaining single mode oscillation. It is advantageous to fuse the electrode on the substrate side to the electrode on the PLC, resulting in a trade-off.

上記内容から、通常、単一モード特性が必要な通信用半導体レーザでは図3に示す電極構造が、高温高出力特性が必要な高出力半導体レーザでは図4に示す電極構造が用いられ、前者は基板側、後者は活性層側をヒートシンク、若しくはPLC上に実装して利用されるのが一般的である。   From the above description, the electrode structure shown in FIG. 3 is usually used for a communication semiconductor laser that requires single mode characteristics, and the electrode structure shown in FIG. 4 is used for a high output semiconductor laser that requires high temperature and high output characteristics. The substrate side, the latter, is generally used by mounting the active layer side on a heat sink or PLC.

図3において、1は端面発光型半導体レーザであり、2は活性層であり、3は分離溝であり、4は誘電体等の保護膜であり、5は電極であり、31は引出し電極である。   In FIG. 3, 1 is an edge-emitting semiconductor laser, 2 is an active layer, 3 is a separation groove, 4 is a protective film such as a dielectric, 5 is an electrode, and 31 is an extraction electrode. is there.

また、図4において、1は端面発光型半導体レーザであり、2は活性層であり、3は分離溝であり、4は誘電体等の保護膜であり、5は電極である。   In FIG. 4, 1 is an edge-emitting semiconductor laser, 2 is an active layer, 3 is a separation groove, 4 is a protective film such as a dielectric, and 5 is an electrode.

すなわち、半導体レーザの温度特性の向上には、活性層の発熱による活性層温度の上昇を抑制するための排熱特性の向上が必須であり、排熱特性の向上にはLD活性層側の電極をヒートシンク上、若しくはPLC上の電極に直接融着することが有効である。   That is, in order to improve the temperature characteristics of the semiconductor laser, it is essential to improve the exhaust heat characteristics in order to suppress the rise of the active layer temperature due to the heat generation of the active layer. It is effective to fuse the electrode directly to the electrode on the heat sink or PLC.

しかし、上記の構造例では、DFB−LDを構成する半導体、ハンダ、PLCを構成するSiそれぞれの熱膨張係数の不一致から、DFB−LDの活性層に強い応力が印加されて回折格子近傍の屈折率が変化し、発振条件が影響を受けて高い確率で単一モード発振特性が劣化する。このため、高い排熱効率を維持や、高い結合効率を維持しつつ、単一モード発振特性を高歩留りで維持することは非常に困難である。   However, in the above structural example, due to the mismatch of the thermal expansion coefficients of the semiconductors constituting the DFB-LD, the solder, and the Si constituting the PLC, a strong stress is applied to the active layer of the DFB-LD to cause refraction near the diffraction grating. The rate changes and the oscillation condition is affected, and the single mode oscillation characteristic is degraded with high probability. For this reason, it is very difficult to maintain the single mode oscillation characteristic at a high yield while maintaining high exhaust heat efficiency and high coupling efficiency.

また、特許文献1や特許文献2に記載の発明でも同様の問題がある。
(発明の目的)
本発明の目的は、DFB−LDの活性層側の電極をヒートシンク上の電極に融着可能で、高い排熱特性と高い単一モード特性歩留りとを両立可能なDFB−LDの電極構造を提供することである。
The inventions described in Patent Document 1 and Patent Document 2 also have the same problem.
(Object of invention)
An object of the present invention is to provide an electrode structure of a DFB-LD in which an active layer side electrode of the DFB-LD can be fused to an electrode on a heat sink, and both a high heat removal characteristic and a high single mode characteristic yield can be achieved. It is to be.

上記課題を解決するにあたり、本発明の半導体レーザは、表面にメサ構造が形成され、メサ直上および分離溝の両側に十分な面積の電極パッドが形成され、かつ、メサ直上の電極と分離溝の両側の電極とがメサ両側の溝内に2つ以上に分割して形成された電極群を介して接続されていることを特徴とする。
(作用)
本発明によれば、メサ両脇に電極パッドを形成し、かつ、分離溝内部に適切な間隔で分割された電極を形成することで、DFB−LDの活性層側の電極とヒートシンク、若しくはPLC表面の電極とを直接ハンダ融着しても、融着時に溶融したハンダがメサ側部の分離溝に入り込まず、ハンダが溝に入り込んだ場合と比較して、メサ内部の活性層に掛かる応力が大幅に低減される。その結果、DFB−LDをPLCにハンダ融着した後でも高い歩留まりで単一モード特性を維持することが可能となり、高い排熱特性、若しくは高い結合特性との両立が実現できる。
In solving the above-described problems, the semiconductor laser of the present invention has a mesa structure formed on the surface, electrode pads having a sufficient area directly on the mesa and on both sides of the separation groove, and the electrodes on the mesa and the separation groove. The electrodes on both sides are connected to each other through two or more electrode groups formed in the grooves on both sides of the mesa.
(Function)
According to the present invention, an electrode pad is formed on both sides of the mesa, and an electrode divided at an appropriate interval is formed inside the separation groove, whereby the active layer side electrode and heat sink of the DFB-LD, or the PLC Even if the electrode on the surface is directly soldered, the solder melted at the time of fusion does not enter the separation groove on the side of the mesa, and the stress applied to the active layer inside the mesa compared to when the solder enters the groove Is greatly reduced. As a result, it is possible to maintain single mode characteristics with a high yield even after the DFB-LD is soldered to the PLC, and it is possible to achieve both high heat exhaustion characteristics or high coupling characteristics.

本発明によれば、DFB−LDの活性層側の電極をヒートシンク上の電極に融着可能で、高い排熱特性と高い単一モード特性歩留りとを両立可能なDFB−LDの電極構造を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode structure of DFB-LD which can fuse | bond the electrode of the active layer side of DFB-LD to the electrode on a heat sink, and can make a high heat exhaust characteristic and a high single mode characteristic yield compatible is provided. can do.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明は、端面発光型半導体レーザ素子の電極構造、およびその実装方法に関し、特に活性層を含むメサ構造上の電極とその他の領域との電極とが複数に分割された電極で接続され、排熱効率に優れ、かつ、平面光回路(PLC)と組み合わせて使用するのに適した電極構造、およびその実装方法に関する。
(構成の説明)
次に、本発明の一実施の形態について図面を参照して説明する。
The present invention relates to an electrode structure of an edge-emitting semiconductor laser device and a mounting method thereof, and in particular, an electrode on a mesa structure including an active layer and an electrode in another region are connected by a plurality of divided electrodes and discharged. The present invention relates to an electrode structure excellent in thermal efficiency and suitable for use in combination with a planar optical circuit (PLC), and a mounting method thereof.
(Description of configuration)
Next, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の第一の実施形態の分布帰還形半導体レーザの概略斜視図である。   FIG. 1 is a schematic perspective view of a distributed feedback semiconductor laser according to a first embodiment of the present invention.

図1において、1は端面発光型半導体レーザであり、2は活性層であり、3は分離溝であり、4は誘電体等の保護膜であり、5は電極であり、6は分離スリットである。   In FIG. 1, 1 is an edge emitting semiconductor laser, 2 is an active layer, 3 is a separation groove, 4 is a protective film such as a dielectric, 5 is an electrode, and 6 is a separation slit. is there.

端面発光型半導体レーザ1の活性層2の両側には分離溝3が設けられ、表面を誘電体等の保護膜4で活性層2直上以外の領域を被覆し、その上の活性層2直上とその他の領域に電極5を形成する。   Separation grooves 3 are provided on both sides of the active layer 2 of the edge-emitting semiconductor laser 1, and the surface is covered with a protective film 4 such as a dielectric, except for the region immediately above the active layer 2. Electrodes 5 are formed in other regions.

電極5は活性層2両側のそれぞれの分離溝3中で、分離スリット6により複数の領域に分割されている。電極5の分割形状は、誘電体等の保護膜4および電極5の両者のハンダ濡れ性、および分離溝形状により、ハンダ融着時に分離溝3にハンダが流れ込まないように最適化する。図1には示していないが、半導体レーザ1の裏面にも電極が形成され、活性層に電流が流れる構造となっている。   The electrode 5 is divided into a plurality of regions by separation slits 6 in the separation grooves 3 on both sides of the active layer 2. The division shape of the electrode 5 is optimized so that the solder does not flow into the separation groove 3 during solder fusion by the solder wettability of both the protective film 4 such as a dielectric and the electrode 5 and the shape of the separation groove. Although not shown in FIG. 1, an electrode is also formed on the back surface of the semiconductor laser 1 so that a current flows through the active layer.

図2は、図1に示した半導体レーザのPLCへの実装形態を示す概略斜視図である。   FIG. 2 is a schematic perspective view showing a mounting form of the semiconductor laser shown in FIG. 1 on a PLC.

図2において、11は図1に示した半導体レーザであり、12はSi基板であり、13はPLC電極であり、14はハンダである。   2, 11 is the semiconductor laser shown in FIG. 1, 12 is a Si substrate, 13 is a PLC electrode, and 14 is solder.

本発明によれば、活性層2上のメサ両脇に電極パッド5を形成し、かつ、分離溝3内部に適切な間隔で分割された電極5を形成することで、DFB−LDの活性層2側の電極とヒートシンク12、若しくはPLC13表面の電極とを直接ハンダ14で融着しても、融着時に溶融したハンダ14がメサ側部の分離溝3に入り込まず、ハンダ14が溝3に入り込んだ場合と比較して、メサ内部の活性層2に掛かる応力が大幅に低減される。   According to the present invention, the electrode pad 5 is formed on both sides of the mesa on the active layer 2 and the electrode 5 divided at an appropriate interval is formed inside the separation groove 3, thereby enabling the active layer of the DFB-LD. Even if the electrode on the 2 side and the heat sink 12 or the electrode on the surface of the PLC 13 are directly fused with the solder 14, the solder 14 melted at the time of the fusion does not enter the separation groove 3 on the mesa side, and the solder 14 enters the groove 3. Compared with the case of entering, the stress applied to the active layer 2 inside the mesa is greatly reduced.

その結果、DFB−LDをPLCにハンダ14で融着した後でも高い歩留まりで単一モード特性を維持することが可能となり、高い排熱特性、若しくは高い結合特性との両立が実現できる。   As a result, even after the DFB-LD is fused to the PLC with the solder 14, it is possible to maintain the single mode characteristics with a high yield, and it is possible to realize both high heat exhaustion characteristics or high coupling characteristics.

半導体レーザとヒートシンク(Si基板)との融着時に、ハンダがメサ側部の分離溝に入り込むと応力歪を生じレーザの特性が劣化するという問題がある。電極金属は熱伝導性に優れ、できるだけ広い面積で形成したいが、金属はハンダに対する濡れ性が大きく、図4の構造では、溝部3にハンダが吸われてしまう。   When the semiconductor laser and the heat sink (Si substrate) are fused, if the solder enters the separation groove on the side of the mesa, there is a problem that stress distortion occurs and the characteristics of the laser deteriorate. The electrode metal is excellent in thermal conductivity and is desired to be formed in as wide an area as possible. However, the metal has high wettability with respect to the solder, and in the structure shown in FIG.

そこで、本発明では、溝部分の電極金属を図1のように分断する。露出した部分(保護膜4、通常SiO、SiN等が用いられる)のハンダ濡れ性は極めて低いので、ハンダ自身の表面張力により溝部3内の電極部分にもハンダが乗らなくなる。 Therefore, in the present invention, the electrode metal in the groove portion is divided as shown in FIG. Solder wettability of the exposed portion (protective film 4, usually SiO 2 , SiN or the like is used) is extremely low, so that the solder does not get on the electrode portion in the groove portion 3 due to the surface tension of the solder itself.

従って溝部3がハンダで埋まることがなくなり熱応力の影響を回避することができる。   Therefore, the groove 3 is not filled with solder, and the influence of thermal stress can be avoided.

また、図3の電極構造では、導通はとれるものの、放熱面積が少なく、放熱性が不十分である。なおこれはヒートシンクをレーザ素子の下側に装着する構造で放熱効率は高くない。   Further, in the electrode structure of FIG. 3, although conduction can be obtained, the heat radiation area is small and the heat radiation property is insufficient. This is a structure in which a heat sink is mounted on the lower side of the laser element, and the heat dissipation efficiency is not high.

一方、本発明の構造では、図2のようにレーザ素子11を上下逆にして活性層2側が基板に装着されるように実装する場合に有効であり(たとえば、PLCへの実装)、放熱性の点でも有利である。   On the other hand, the structure of the present invention is effective when mounting the laser element 11 upside down as shown in FIG. 2 so that the active layer 2 side is mounted on the substrate (for example, mounting on a PLC), and heat dissipation. This is also advantageous.

本発明は、温度調整装置を使わずに、広い温度範囲で利用可能な半導体レーザモジュール、また、それを用いた光トランシーバを提供できる。   The present invention can provide a semiconductor laser module that can be used in a wide temperature range without using a temperature control device, and an optical transceiver using the semiconductor laser module.

本発明の応力低減電極型半導体レーザの第1の実施形態を示す概略斜視図である。1 is a schematic perspective view showing a first embodiment of a stress-reducing electrode type semiconductor laser according to the present invention. 本発明の応力低減電極型半導体レーザの第1の実施形態を用いたPLCへの実装形態を示す概略斜視図である。It is a schematic perspective view which shows the mounting form to PLC using 1st Embodiment of the stress reduction electrode type semiconductor laser of this invention. 半導体レーザ電極構造の構造例1の概略斜視図である。It is a schematic perspective view of Structural Example 1 with a semiconductor laser electrode structure. 半導体レーザ電極構造の構造例2の概略斜視図である。It is a schematic perspective view of the structural example 2 of a semiconductor laser electrode structure.

符号の説明Explanation of symbols

1 端面発光型半導体レーザ
2 活性層
3 分離溝
4 誘電体膜
5 電極
6 分離スリット
11 応力低減電極型半導体レーザ
12 Si基板
13 PLC電極
14 ハンダ
31 引出し電極
DESCRIPTION OF SYMBOLS 1 End surface emitting semiconductor laser 2 Active layer 3 Separation groove 4 Dielectric film 5 Electrode 6 Separation slit 11 Stress reduction electrode type semiconductor laser 12 Si substrate 13 PLC electrode 14 Solder 31 Extraction electrode

Claims (6)

表面にメサ構造が形成され、前記メサ直上および分離溝の両側に電極パッドが形成され、かつ、前記メサ直上の電極と前記分離溝の両側の電極とが前記メサ両側の前記溝内に2つ以上に分割して形成された電極群を介して接続されていることを特徴とする半導体レーザ。   A mesa structure is formed on the surface, electrode pads are formed immediately above the mesa and on both sides of the separation groove, and two electrodes on the mesa and electrodes on both sides of the separation groove are in the groove on both sides of the mesa. A semiconductor laser, wherein the semiconductor lasers are connected via an electrode group formed as described above. 前記メサ構造が、活性層を含む光導波路の両脇に分離溝を設けて形成されることを特徴とする請求項1に記載の半導体レーザ。   2. The semiconductor laser according to claim 1, wherein the mesa structure is formed by providing separation grooves on both sides of an optical waveguide including an active layer. 前記メサ構造の側をハンダによってヒートシンクに融着されて成ることを特徴とする請求項1または2に記載の半導体レーザ。   3. The semiconductor laser according to claim 1, wherein the mesa structure side is fused to a heat sink by solder. 表面にメサ構造を形成し、前記メサ直上および分離溝の両側に電極パッドを形成し、かつ、前記メサ直上の電極と前記分離溝の両側の電極とを前記メサ両側の前記溝内に2つ以上に分割して形成した電極群を介して接続することを特徴とする半導体レーザの製造方法。   A mesa structure is formed on the surface, electrode pads are formed immediately above the mesa and on both sides of the separation groove, and two electrodes on the mesa and electrodes on both sides of the separation groove are formed in the groove on both sides of the mesa. A method of manufacturing a semiconductor laser, characterized in that the connection is made through the electrode group formed as described above. 前記メサ構造を、活性層を含む光導波路の両脇に分離溝を設けて形成することを特徴とする請求項4に記載の半導体レーザの製造方法。   5. The method of manufacturing a semiconductor laser according to claim 4, wherein the mesa structure is formed by providing separation grooves on both sides of an optical waveguide including an active layer. 前記メサ構造の側をハンダによってヒートシンクに融着することを特徴とする請求項4または5に記載の半導体レーザの製造方法。   6. The method of manufacturing a semiconductor laser according to claim 4, wherein the mesa structure side is fused to a heat sink by solder.
JP2008051572A 2008-03-03 2008-03-03 Semiconductor laser Pending JP2009212176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051572A JP2009212176A (en) 2008-03-03 2008-03-03 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051572A JP2009212176A (en) 2008-03-03 2008-03-03 Semiconductor laser

Publications (1)

Publication Number Publication Date
JP2009212176A true JP2009212176A (en) 2009-09-17

Family

ID=41185065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051572A Pending JP2009212176A (en) 2008-03-03 2008-03-03 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2009212176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256712A (en) * 2011-06-09 2012-12-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical device
JP2015061023A (en) * 2013-09-20 2015-03-30 日本オクラロ株式会社 Semiconductor optical element and optical module
WO2018012289A1 (en) * 2016-07-14 2018-01-18 パナソニック株式会社 Nitride semiconductor laser and nitride semiconductor laser device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022574A (en) * 1996-06-28 1998-01-23 Fuji Photo Film Co Ltd Semiconductor laser
JP2003110196A (en) * 2001-09-28 2003-04-11 Toshiba Corp Vertical cavity surface-emitting semiconductor light emitting element
JP2003347653A (en) * 2002-05-30 2003-12-05 Sumitomo Electric Ind Ltd Semiconductor optical device
JP2004014659A (en) * 2002-06-05 2004-01-15 Hitachi Ltd Semiconductor laser equipment
JP2007103804A (en) * 2005-10-06 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor laser device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022574A (en) * 1996-06-28 1998-01-23 Fuji Photo Film Co Ltd Semiconductor laser
JP2003110196A (en) * 2001-09-28 2003-04-11 Toshiba Corp Vertical cavity surface-emitting semiconductor light emitting element
JP2003347653A (en) * 2002-05-30 2003-12-05 Sumitomo Electric Ind Ltd Semiconductor optical device
JP2004014659A (en) * 2002-06-05 2004-01-15 Hitachi Ltd Semiconductor laser equipment
JP2007103804A (en) * 2005-10-06 2007-04-19 Matsushita Electric Ind Co Ltd Semiconductor laser device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256712A (en) * 2011-06-09 2012-12-27 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical device
JP2015061023A (en) * 2013-09-20 2015-03-30 日本オクラロ株式会社 Semiconductor optical element and optical module
WO2018012289A1 (en) * 2016-07-14 2018-01-18 パナソニック株式会社 Nitride semiconductor laser and nitride semiconductor laser device
JPWO2018012289A1 (en) * 2016-07-14 2019-04-25 パナソニック株式会社 Nitride semiconductor laser and nitride semiconductor laser device
US10892597B2 (en) 2016-07-14 2021-01-12 Panasonic Corporation Nitride semiconductor laser and nitride semiconductor laser device

Similar Documents

Publication Publication Date Title
US9882646B2 (en) System and method for reduced power consumption and heat removal in optical and optoelectronic devices and subassemblies
US8259765B2 (en) Passive phase control in an external cavity laser
KR101788540B1 (en) Optical transmitter module with temperature device and method of manufacturing the same
US20140204967A1 (en) Thermal Shunt
US8488918B2 (en) Semiconductor optical device, optical transmitter module, optical transceiver module, and optical transmission equipment
JP2017041618A (en) Optical module
US20150318665A1 (en) Thermal Shunt
US6489677B2 (en) Optical semiconductor device package and optical semiconductor module having the same
JP6231389B2 (en) Semiconductor optical device and optical module
JP5834461B2 (en) Semiconductor laser module and manufacturing method thereof
JP4964659B2 (en) Semiconductor laser device, mounting method of semiconductor laser device, and printer
JP2008182019A (en) Optical transmitting module, optical transmitting device
JP6652856B2 (en) Semiconductor laser module and method of manufacturing the same
JP2009212176A (en) Semiconductor laser
JP2010199324A (en) Mounting structure of semiconductor laser element array
JPH0974250A (en) Semiconductor optical module
CA2855913C (en) Semiconductor laser excitation solid-state laser
WO2018142499A1 (en) Wavelength-variable light source
KR101378297B1 (en) Optical transmission apparatus include cooler
JP4573882B2 (en) Semiconductor laser device
JP4286097B2 (en) Semiconductor laser device and semiconductor laser device
JP2010034137A (en) Semiconductor laser device
JP6260167B2 (en) Photoelectric fusion module
JP2013197256A (en) Semiconductor laser module and manufacturing method therefor
US20210367406A1 (en) Semiconductor laser, operating method for a semiconductor laser, and method for determining the optimum fill factor of a semiconductor laser

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120920