JP2009198115A - Hot water storage type hot water supply system and control method of hot water storage type hot water supply system - Google Patents

Hot water storage type hot water supply system and control method of hot water storage type hot water supply system Download PDF

Info

Publication number
JP2009198115A
JP2009198115A JP2008041604A JP2008041604A JP2009198115A JP 2009198115 A JP2009198115 A JP 2009198115A JP 2008041604 A JP2008041604 A JP 2008041604A JP 2008041604 A JP2008041604 A JP 2008041604A JP 2009198115 A JP2009198115 A JP 2009198115A
Authority
JP
Japan
Prior art keywords
hot water
storage tank
temperature
water storage
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008041604A
Other languages
Japanese (ja)
Other versions
JP5141293B2 (en
Inventor
Takayuki Onodera
Toshiyuki Sakuma
利幸 佐久間
高之 小野寺
Original Assignee
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, 三菱電機株式会社 filed Critical Mitsubishi Electric Corp
Priority to JP2008041604A priority Critical patent/JP5141293B2/en
Publication of JP2009198115A publication Critical patent/JP2009198115A/en
Application granted granted Critical
Publication of JP5141293B2 publication Critical patent/JP5141293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of being contrary to energy saving due to the reduction of COP, since an original water temperature boiled up by a heat pump is raised at last by the recovery of waste heat, when boiled up by the heat pump after raising the water temperature in a hot water storage tank by recovering waste heat to the hot water storage tank, in a conventional hot water storage type hot water supply system. <P>SOLUTION: This hot water storage type hot water supply system successively performs tank boiling-up operation for heating water in the hot water storage tank 1 by a heat pump unit 50, and heat recovery boiling-up operation for heating the water in the hot water storage tank 1 by exchanging heat between the water in the hot water storage tank 1 and bathtub water 22 by a heat exchanger 6, a tank side circulating pump 7 and a bath side circulating pump 23. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、貯湯タンクを有する貯湯式給湯システムに関するものである。   The present invention relates to a hot water storage type hot water supply system having a hot water storage tank.
従来の貯湯式給湯システムは、貯湯タンク内の湯を給湯や湯張りで使用したあと、浴槽に湯張りした浴槽水の熱エネルギーを貯湯タンク内の湯水に熱交換により回収して貯湯タンク内の湯水の温度を少しでも上昇させ、その後の加熱手段による貯湯タンクの沸き上げの際に省エネを図るような廃熱回収機能を備えていた。(例えば、特許文献1参照)   In the conventional hot water storage hot water system, the hot water in the hot water storage tank is used for hot water supply or hot water filling, and then the thermal energy of the hot water in the hot water tank is recovered by exchanging heat into the hot water in the hot water storage tank. It was equipped with a waste heat recovery function to increase the temperature of hot water as much as possible and to save energy when the hot water storage tank was subsequently heated by a heating means. (For example, see Patent Document 1)
特開2004−257692号公報(第1頁、図1)Japanese Patent Laying-Open No. 2004-257692 (first page, FIG. 1)
上記のような従来の貯湯式給湯システムは、深夜電力時間帯(主に23時から翌朝7時)の電気料金の安い時間帯に貯湯タンクの沸き上げをシーズヒーター等の一般的な電気ヒーターで行っているが、より省エネ性を高める手段としてヒートポンプを加熱手段に利用することが求められており、最近の貯湯式給湯システムにおいては自然冷媒を利用したヒートポンプでの加熱手段が広く普及している。   The conventional hot water storage hot water system as described above uses a common electric heater, such as a sheathed heater, to boil up the hot water storage tank during the low electricity hours in the midnight power hours (mainly from 23:00 to 7:00 the next morning). However, it is required to use a heat pump as a heating means as a means for improving energy saving, and in recent hot water storage hot water supply systems, a heating means using a heat pump using a natural refrigerant is widely spread. .
ところが、自然冷媒のヒートポンプには、沸き上げる水の元の温度が高いほど効率が低下するという特性がある。すなわち、沸き上げる元の水温が5℃から20℃程度であれば、ヒートポンプの効率指標であるCOP(COP=ヒートポンプによる加熱熱量/使用エネルギー量)は3程度を確保でき使用したエネルギーの約3倍の高効率を確保できるが、元の水温がそれ以上になるとCOPが急速に悪化し30℃付近ではCOPが2以下となる場合もある。したがって、従来のように貯湯タンクに廃熱回収を行って貯湯タンク内の水温を上昇させたあとでヒートポンプによる沸き上げを行うと、ヒートポンプで沸き上げる元の水温を廃熱回収により上昇させてしまっていることになり、廃熱回収により省エネを図るつもりが、COPを低下させてしまい省エネに逆行するという問題点があった。   However, the natural refrigerant heat pump has a characteristic that the efficiency decreases as the original temperature of the boiling water increases. In other words, if the original water temperature to be boiled is about 5 to 20 ° C., the COP (COP = heat heat amount by heat pump / amount of energy used), which is an efficiency index of the heat pump, can be secured at about 3, and about 3 times the energy used. However, when the original water temperature is higher than that, the COP deteriorates rapidly, and the COP may be 2 or less near 30 ° C. Therefore, if waste heat is recovered in the hot water storage tank and the water temperature in the hot water storage tank is raised after the heat pump is boiled up as before, the original water temperature boiled up by the heat pump is raised by waste heat recovery. As a result, there was a problem in that although the intention was to save energy by recovering waste heat, the COP was lowered and the energy saving was reversed.
また、廃熱回収により貯湯タンク内の水に熱回収し、貯湯タンク内に中温水(一般的には浴槽から熱回収するので約30℃程度となる温水)を貯湯しても、元々沸き上げで貯湯した高温の湯(一般的には90℃程度)のほうが密度差で相対的に軽いので貯湯タンクの上部に位置することになる。ところが貯湯タンクの出湯口は上部にしかないので、熱回収して得た中温水を利用するには、その前に沸き上げた高温の湯を使い切る必要があり、効率的に中温水を利用することができないだけでなく、中温水を使い切れずに貯湯タンクに残った状態でヒートポンプによる沸き上げを行うと、ヒートポンプで沸き上げる元の水温を廃熱回収により上昇させてしまっていることになり、廃熱回収により省エネを図るつもりが、COPを低下させてしまい省エネに逆行するという問題点もあった。   In addition, heat is recovered to the water in the hot water storage tank by waste heat recovery, and even if hot water is stored in the hot water storage tank (generally, hot water that is about 30 ° C because it is recovered from the bathtub), The hot water (generally about 90 ° C.) stored in is relatively lighter due to the density difference, so it is located at the upper part of the hot water storage tank. However, since the hot water outlet of the hot water storage tank is only at the top, it is necessary to use up the hot water boiled up before using the hot water obtained by heat recovery. In addition to not being able to use the medium-temperature water, if the heat pump is boiled with the hot water remaining in the hot water storage tank, the original water temperature boiled by the heat pump will be raised by waste heat recovery, and will be discarded. Although there was a problem that energy saving was attempted by heat recovery, the COP was lowered and the energy saving was reversed.
本発明は、上記のような課題を解決するためになされたもので、ヒートポンプのCOPを低下させることなく廃熱回収を行うとともに、廃熱回収で得られた熱エネルギーを有効利用し、ヒートポンプにより沸き上げた湯の効率的な利用を行うことのできる省エネ性に優れた貯湯式給湯システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and performs waste heat recovery without lowering the COP of the heat pump, and effectively uses the heat energy obtained by the waste heat recovery. An object of the present invention is to provide a hot water storage type hot water supply system excellent in energy saving that can efficiently use boiling water.
本発明に係る貯湯式給湯システムは、貯湯タンク下部の水を取り出して加熱し貯湯タンク上部へ戻す、貯湯タンクの外部に設けられた加熱手段と、貯湯タンク下部と貯湯タンク中間部に設けられた中間接続口とを連通する熱回収回路を流れる湯水と浴槽に湯張りされた浴槽水とを熱交換する熱交換器と、熱回収回路内の温水を循環させる熱回収ポンプと、浴槽水を浴槽水ポンプにより循環して熱交換器で熱交換を行う浴槽水循環回路と、加熱手段、熱回収ポンプおよび浴槽水ポンプを制御する制御手段と、を備え、制御手段は、加熱手段により貯湯タンク内の水の加熱を行うタンク沸上動作、及び、熱交換器、熱回収ポンプおよび浴槽水ポンプにより貯湯タンク内の水と浴槽水とを熱交換し、貯湯タンク内の水の加熱を行う熱回収沸上動作、を順に行うものである。   The hot water storage type hot water supply system according to the present invention is provided in the heating means provided outside the hot water storage tank, which takes out the water in the lower part of the hot water storage tank and heats it back to the upper part of the hot water storage tank. A heat exchanger for exchanging heat between the hot water flowing through the heat recovery circuit communicating with the intermediate connection port and the bath water filled in the bathtub, a heat recovery pump for circulating the hot water in the heat recovery circuit, and the bathtub water in the bathtub A bath water circulation circuit that circulates by a water pump and exchanges heat by a heat exchanger, and a heating means, a heat recovery pump, and a control means for controlling the bathtub water pump, and the control means is provided in the hot water storage tank by the heating means. Tank boiling operation to heat water, and heat recovery boiling to heat the water in the hot water tank by exchanging heat between the water in the hot water tank and the bath water by the heat exchanger, heat recovery pump and bathtub water pump Operation on the It is performed in the order.
本発明によれば、ヒートポンプのCOPを低下させることなく廃熱回収を行うことのできる省エネ性に優れた貯湯式給湯システムを提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the hot water storage type hot-water supply system excellent in the energy-saving property which can perform waste heat collection | recovery, without reducing COP of a heat pump.
実施の形態1.
図1は本発明の実施の形態に係る貯湯式給湯システムの構成図、図2から図4は図1の要部拡大図、図5から図14は図1の貯湯式給湯システムの各動作状態を示す説明図、図15から図17は本発明に実施の形態に係わるタンク沸上動作および熱回収動作のフローチャートである。以下、図1を中心に説明し、図2から図17までの図で図1と同一部分または相当部分は同一符号を付し説明を省略する。図1において、貯湯式給湯システム100は、貯湯タンクユニット40とヒートポンプユニット50とから構成されている。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a hot water storage type hot water supply system according to an embodiment of the present invention, FIGS. 2 to 4 are enlarged views of essential parts of FIG. 1, and FIGS. 5 to 14 are operating states of the hot water storage type hot water supply system of FIG. FIG. 15 to FIG. 17 are flowcharts of the tank boiling operation and the heat recovery operation according to the embodiment of the present invention. In the following, description will be made mainly with reference to FIG. 1, and in the drawings from FIG. 2 to FIG. In FIG. 1, a hot water storage hot water supply system 100 includes a hot water storage tank unit 40 and a heat pump unit 50.
図1において、貯湯タンクユニット40には貯湯タンク1が内蔵されており、貯湯タンク1の下部には外部の給水源に接続された給水配管2が接続されている。この給水配管2からは、一般側給水分岐配管2aと、ふろ側給水分岐配管2bが分岐している。また、貯湯タンク1の上部には給湯配管8が接続されていて、この給湯配管8は一般側給湯分岐配管8aとふろ側給湯分岐配管8bに分岐している。また、給水配管2から貯湯タンク1に給水された水は減圧弁(図示せず)で所定圧に減圧され、貯湯タンク1は常に満水状態となっている。   In FIG. 1, a hot water storage tank unit 40 includes a hot water storage tank 1, and a water supply pipe 2 connected to an external water supply source is connected to the lower part of the hot water storage tank 1. From this water supply pipe 2, a general side water supply branch pipe 2a and a bath side water supply branch pipe 2b are branched. A hot water supply pipe 8 is connected to the upper part of the hot water storage tank 1, and the hot water supply pipe 8 branches into a general side hot water supply branch pipe 8a and a bath side hot water supply branch pipe 8b. Further, the water supplied from the water supply pipe 2 to the hot water storage tank 1 is decompressed to a predetermined pressure by a pressure reducing valve (not shown), and the hot water storage tank 1 is always full.
追焚循環回路4は、貯湯タンク1上部と、貯湯タンク1下部から容量で約60L程度上の位置となるタンク循環戻り口1bとに接続されている。この追焚循環回路4には、貯湯タンク1内に貯湯された湯と浴槽21内の浴槽水22とを熱交換する熱交換器6と、貯湯タンク1内の湯を追焚循環回路4に循環させるタンク側循環ポンプ7とが、貯湯タンク1の上部からこの順で設けられている。また、タンク循環戻り口1bの近傍の貯湯タンク1上には貯湯タンク1内の湯温を検出する貯湯温度センサ1aが取り付けられている。   The memorial circulation circuit 4 is connected to the upper part of the hot water storage tank 1 and the tank circulation return port 1b located approximately 60L above the hot water storage tank 1 in terms of capacity. In the memory circulation circuit 4, the heat exchanger 6 for exchanging heat between the hot water stored in the hot water storage tank 1 and the bath water 22 in the bathtub 21, and the hot water in the hot water storage tank 1 are transferred to the memory circulation circuit 4. A tank-side circulation pump 7 for circulation is provided in this order from the top of the hot water storage tank 1. A hot water storage temperature sensor 1a for detecting the hot water temperature in the hot water storage tank 1 is mounted on the hot water storage tank 1 in the vicinity of the tank circulation return port 1b.
また、追焚循環回路4の貯湯タンク1上部と熱交換器6との間には三方弁5が接続されており、この三方弁5は熱回収分岐配管4aにより給水配管2とも接続されている。この三方弁5は、貯湯タンク1上部から湯を取り出し三方弁5、熱交換器6、タンク側循環ポンプ7、タンク循環戻り口1bへと循環させる追焚循環回路4の経路と、貯湯タンク1下部から水を取り出して給水配管2、熱回収分岐配管4aを経由して三方弁5に入り、さらに熱交換器6、タンク側循環ポンプ7を経由してタンク循環戻り口1bへ循環させる熱回収回路との2つの経路を切り替えるようになっている。また、熱交換器6とタンク側循環ポンプ7との間には内部を流れる湯水の温度を検出するタンク側循環温度センサ25が取り付けられている。   Further, a three-way valve 5 is connected between the upper part of the hot water storage tank 1 of the memorial circuit 4 and the heat exchanger 6, and this three-way valve 5 is also connected to the water supply pipe 2 by a heat recovery branch pipe 4a. . This three-way valve 5 takes out hot water from the upper part of the hot water storage tank 1 and circulates it to the three-way valve 5, heat exchanger 6, tank side circulation pump 7, tank circulation return port 1 b, and hot water storage tank 1. Heat recovery from which water is taken out from the lower part, enters the three-way valve 5 via the water supply pipe 2 and the heat recovery branch pipe 4a, and further circulates to the tank circulation return port 1b via the heat exchanger 6 and the tank side circulation pump 7. Two paths to the circuit are switched. Further, a tank side circulation temperature sensor 25 for detecting the temperature of hot water flowing inside is attached between the heat exchanger 6 and the tank side circulation pump 7.
浴槽21には、熱交換器6の二次側に接続されるふろ循環回路20が接続され、ふろ循環回路20には、熱交換器6と浴槽21との間に浴槽水22を循環させるふろ側循環ポンプ23が設けられている。また、ふろ循環回路20上の浴槽21から熱交換器6方向に循環する熱交換器6の手前には、ふろ循環回路20内を流れる湯水の温度を検出する、ふろ循環温度センサ24が取り付けられている。   A bath circulation circuit 20 connected to a secondary side of the heat exchanger 6 is connected to the bathtub 21, and a bath water 22 is circulated between the heat exchanger 6 and the bathtub 21 in the bath circulation circuit 20. A side circulation pump 23 is provided. Further, a bath circulation temperature sensor 24 for detecting the temperature of hot water flowing in the bath circulation circuit 20 is attached in front of the heat exchanger 6 that circulates from the bathtub 21 on the bath circulation circuit 20 toward the heat exchanger 6. ing.
ヒートポンプユニット50には、加熱循環回路3が接続され、この加熱循環回路3は貯湯タンク1の上下部と接続されており、加熱循環回路3にはヒートポンプユニット50内に循環ポンプ(図示せず)が設けられ、貯湯タンク1の下部から水を導き、ヒートポンプにより外気との熱交換を行い、水を高温の湯に沸き上げ、貯湯タンク1の上部に戻している。なお、ヒートポンプユニット50の冷媒には自然冷媒である二酸化炭素が用いられている。   A heating circulation circuit 3 is connected to the heat pump unit 50, and the heating circulation circuit 3 is connected to the upper and lower portions of the hot water storage tank 1. The heating circulation circuit 3 has a circulation pump (not shown) in the heat pump unit 50. The water is led from the lower part of the hot water storage tank 1, heat exchange with the outside air is performed by a heat pump, the water is boiled into hot water, and returned to the upper part of the hot water storage tank 1. Note that carbon dioxide, which is a natural refrigerant, is used as the refrigerant of the heat pump unit 50.
給湯用混合弁9は、一般側給水分岐配管2aと一般側給湯分岐配管8aの間に接続され、タンク循環戻り口1bより上方で貯湯タンク1に接続され貯湯タンク1内の湯水を取り出す給湯用中温水取出配管10にも接続されている。この給湯用混合弁9は、一般側給水分岐配管2aから供給される水と、一般側給湯分岐配管8aから供給される貯湯タンク1上部の湯と、給湯用中温水取出配管10から供給される貯湯タンク1の中ほどからの湯の3つの湯水を適宜混合し、一般給湯配管11を経由して使用先である蛇口12などの出湯口から出湯する湯温を調整する。なお、給湯用混合弁9と一般給湯配管11との接続位置近傍には給湯温度センサ13が取り付けられており、給湯温度センサ13は給湯混合弁9での出湯湯温を検出する。また、給湯用中温水取出配管10の貯湯タンク1との接続位置近傍には給湯用中温水取出配管10で取出す貯湯タンク1内の湯温を検出する給湯用中温水温度センサ1cが取り付けられている。   The hot water mixing valve 9 is connected between the general side water supply branch pipe 2a and the general side hot water supply branch pipe 8a, and is connected to the hot water storage tank 1 above the tank circulation return port 1b to extract hot water in the hot water storage tank 1. It is also connected to the medium temperature water extraction pipe 10. The hot water supply mixing valve 9 is supplied from the water supplied from the general-side hot water supply branch pipe 2a, the hot water in the upper portion of the hot water storage tank 1 supplied from the general-side hot water supply branch pipe 8a, and the hot-water supply intermediate hot water outlet pipe 10. Three hot waters from the middle of the hot water storage tank 1 are mixed as appropriate, and the temperature of hot water discharged from a hot water outlet such as a faucet 12 that is used is adjusted via a general hot water supply pipe 11. A hot water supply temperature sensor 13 is attached in the vicinity of the connection position between the hot water supply mixing valve 9 and the general hot water supply pipe 11, and the hot water supply temperature sensor 13 detects the hot water temperature at the hot water supply mixing valve 9. In addition, a hot water supply intermediate hot water temperature sensor 1c for detecting the hot water temperature in the hot water storage tank 1 taken out by the hot water supply intermediate hot water extraction pipe 10 is attached in the vicinity of the connection position of the hot water supply intermediate hot water extraction pipe 10 to the hot water storage tank 1. Yes.
ふろ用混合弁14は、ふろ側給水分岐配管2bとふろ側給湯分岐配管8bの間に接続され、給湯用中温水取出配管10よりも上方で貯湯タンク1に接続され貯湯タンク1内の湯水を取り出すふろ用中温水取出配管15にも接続されている。このふろ用混合弁14は、ふろ側給水分岐配管2bから供給される水と、ふろ側給湯分岐配管8bから供給される貯湯タンク1上部の湯と、ふろ用中温水取出配管15から供給される貯湯タンク1の中ほどからの湯の3つの湯水を適宜混合し、ふろ給湯配管16、ふろ循環回路20を経由し浴槽21への湯張りを行う湯温を調整する。なお、ふろ給湯配管16には、ふろ側混合弁14の後には、ふろ側混合弁14での出湯温度を検出する湯張り温度センサ17と、ふろ循環回路20を経由しての浴槽21への出湯を開放、遮断するふろ電磁弁18と、ふろ循環回路20を経由しての浴槽21への湯張り湯量を検出する流量センサ19が、この順で備えられている。また、ふろ用中温水取出配管15の貯湯タンク1との接続位置近傍にはふろ用中温水取出配管15で取出す貯湯タンク1内の湯温を検出するふろ用中温水温度センサ1dが取り付けられている。   The bath mixing valve 14 is connected between the bath-side water supply branching pipe 2b and the bath-side hot water supply branching pipe 8b, and is connected to the hot water storage tank 1 above the hot water supply intermediate hot water extraction pipe 10 to supply hot water in the hot water storage tank 1. It is also connected to an intermediate hot water outlet pipe 15 for taking out the bath. The bath mixing valve 14 is supplied from the water supplied from the bath-side water supply branch pipe 2b, hot water in the upper portion of the hot water storage tank 1 supplied from the bath-side hot water supply branch pipe 8b, and the intermediate temperature hot water outlet pipe 15 from the bath. Three hot waters from the middle of the hot water storage tank 1 are mixed as appropriate, and the hot water temperature for filling the bathtub 21 via the bath hot water supply pipe 16 and the bath circulation circuit 20 is adjusted. In the hot water supply pipe 16, the hot water temperature sensor 17 for detecting the temperature of the hot water at the hot water side mixing valve 14 and the bathtub 21 via the hot water circulation circuit 20 are provided after the hot water side mixing valve 14. A bath solenoid valve 18 that opens and shuts off the hot water and a flow rate sensor 19 that detects the amount of hot water supplied to the bathtub 21 via the bath circulation circuit 20 are provided in this order. In addition, an intermediate hot water temperature sensor 1d for detecting the hot water in the hot water storage tank 1 taken out by the intermediate hot water outlet piping 15 is attached in the vicinity of the connection position of the intermediate hot water outlet piping 15 with the hot water storage tank 1. Yes.
リモコン31では、使用者が蛇口12からの出湯温度や浴槽21への湯張り量および湯張り温度、貯湯タンク1の沸き上げ設定や湯張り操作、追焚き操作など貯湯式給湯システム100の操作および設定の入力を行う。制御装置30は、時計機能を有し時刻に基づいた動作制御を行う。また、制御装置30は、リモコン31で設定された出湯温度や湯張り量および各種の制御情報を記憶部30bに記憶するとともに、貯湯温度センサ1a、給湯用中温水温度センサ1c、ふろ用中温水温度センサ1d、給湯温度センサ13、湯張り温度センサ17、流量センサ19、ふろ循環温度センサ24、タンク側循環温度センサ25の検出値に基づいて判断部30aを用いて判断し、三方弁5、タンク側循環ポンプ7、給湯用混合弁9、ふろ用混合弁14、ふろ電磁弁18、ふろ側循環ポンプ23、ヒートポンプユニット50などを制御し、貯湯式給湯システム100全体の動作を制御する。   The remote controller 31 allows the user to operate the hot water storage hot water supply system 100 such as the temperature of the hot water from the faucet 12, the amount and temperature of the hot water to the bathtub 21, the setting of the hot water tank 1, the hot water operation, and the reheating operation. Enter the settings. The control device 30 has a clock function and performs operation control based on time. In addition, the control device 30 stores the hot water temperature and the amount of hot water set by the remote controller 31 and various control information in the storage unit 30b, as well as the hot water storage temperature sensor 1a, the hot and cold hot water temperature sensor 1c, and the hot water warm water. Based on the detection values of the temperature sensor 1d, hot water supply temperature sensor 13, hot water temperature sensor 17, flow rate sensor 19, bath circulation temperature sensor 24, tank side circulation temperature sensor 25, the three-way valve 5, The tank-side circulation pump 7, the hot water supply mixing valve 9, the bath mixing valve 14, the bath solenoid valve 18, the bath side circulation pump 23, the heat pump unit 50, and the like are controlled to control the operation of the hot water storage hot water supply system 100 as a whole.
次に、本実施の形態における貯湯式給湯システムの動作について、図1の構成に基づいて、図2から図17を適宜の動作ごとに用いて詳細に説明する。   Next, the operation of the hot water storage type hot water supply system in the present embodiment will be described in detail based on the configuration of FIG. 1 using FIGS. 2 to 17 for each appropriate operation.
まず、貯湯タンク1の水を沸き上げるタンク沸上動作について、図2から図4と図15、図16のフローチャートを用いて説明する。図2から図4は、図1の貯湯タンク1周辺とヒートポンプユニット50の部分を拡大した要部拡大図である。各図において図1と同一部分または相当部分は同一符号を付し説明を省略する。   First, the tank boiling operation for boiling water in the hot water storage tank 1 will be described with reference to the flowcharts of FIGS. 2 to 4, 15, and 16. FIGS. 2 to 4 are enlarged views of main parts in which the vicinity of the hot water storage tank 1 and the heat pump unit 50 in FIG. 1 are enlarged. In each figure, the same or corresponding parts as in FIG.
図2は23時より少し前の貯湯タンク1内の状態を示している。図2のように、貯湯タンク1内は前日の深夜時間帯(23時から翌朝7時)に約90℃に沸き上げた湯のうち使用しなかった残りが若干放熱して約80℃の湯として上方に残っているが、大部分は使用され、下部は給水配管2から供給された約10℃の水で満たされている状態である。なお、貯湯タンク1内の約80℃の温水と約10℃の水の間には、その密度差により温度境界層が生じ互いに混ざり合いにくい状態となっている。   FIG. 2 shows a state in the hot water storage tank 1 slightly before 23:00. As shown in FIG. 2, in the hot water storage tank 1, the hot water boiled up to about 90 ° C. in the midnight time zone of the previous day (from 23:00 to 7:00 in the next morning) was radiated slightly and the remaining hot water was about 80 ° C. However, most of them are used, and the lower part is filled with about 10 ° C. water supplied from the water supply pipe 2. Note that a temperature boundary layer is formed between the hot water of about 80 ° C. and the water of about 10 ° C. in the hot water storage tank 1 due to the density difference, so that they are hardly mixed with each other.
ここでタンク沸上動作について図16のフローチャートを用いて説明する。図16はタンク沸上動作を示すフローチャートである。図16において、ステップS60がタンク沸上動作開始の位置であり、タンク沸上動作を開始するとステップS61に至る。   Here, the tank boiling operation will be described with reference to the flowchart of FIG. FIG. 16 is a flowchart showing the tank boiling operation. In FIG. 16, step S60 is a position for starting the tank boiling operation, and when the tank boiling operation is started, step S61 is reached.
ステップS61では、現在時刻が深夜電力時間帯の23時から翌朝7時の電気代の安い時間帯になったかどうかを、制御装置30の判断部30aが判断し、23時になっていれば「Y」方向に進みステップS62に至り、23時になっていなければ「N」方向に進みステップS61でループ状態となる。   In step S61, the determination unit 30a of the control device 30 determines whether or not the current time is a time zone in which the electricity bill is cheap from 23:00 in the midnight power time zone to 7:00 in the next morning. ”Direction to step S62, and if it is not 23:00, it proceeds to“ N ”direction and enters a loop state in step S61.
ステップS62では、現在時刻が23時となったので制御装置30はヒートポンプユニット50を動作させ、あらかじめ設定され記憶部30bに記憶された沸上温度(ここでは90℃)を目標温度としヒートポンプユニット50による沸上動作を開始する。このヒートポンプユニット50による沸上動作は図3に示すように、貯湯タンク1の下部から加熱循環回路3でヒートポンプユニット50に内蔵された循環ポンプ(図示せず)により水を取出し、ヒートポンプにより取り出した水と外気との熱交換を行い、水を90℃の湯に沸き上げ、再び加熱循環回路3により貯湯タンク1の上部に戻すという動作である。(図3の太線で流路を示し、流れの方向を矢印で記載)このとき貯湯タンク1の上部に90℃の湯が戻されてゆくので、貯湯タンク1上部に若干残っていた約80℃の湯と混ざり合いながら図3のように約90℃の湯となって、その貯湯領域は徐々に貯湯タンク1上部から下部方向に温度境界層を維持した状態で増加する。この状態を継続し図16のステップS63に至る。   In step S62, since the current time is 23:00, the control device 30 operates the heat pump unit 50 and sets the boiling temperature (90 ° C. in this case) preset and stored in the storage unit 30b as the target temperature. Start boiling operation by. As shown in FIG. 3, in the boiling operation by the heat pump unit 50, water is taken out from the lower part of the hot water storage tank 1 by a circulation pump (not shown) built in the heat pump unit 50 in the heating circulation circuit 3, and taken out by the heat pump. In this operation, heat is exchanged between water and the outside air, the water is boiled up to 90 ° C. and returned to the upper part of the hot water storage tank 1 by the heating circuit 3 again. (The flow path is indicated by a bold line in FIG. 3 and the direction of flow is indicated by an arrow) At this time, the hot water of 90 ° C. is returned to the upper portion of the hot water storage tank 1, so As shown in FIG. 3, the hot water storage area gradually increases from the upper part of the hot water storage tank 1 to the lower part while maintaining the temperature boundary layer. This state is continued and step S63 in FIG. 16 is reached.
ステップS63では、貯湯タンク1内のタンク循環戻り口1b近傍に取り付けられた貯湯温度センサ1aが検出する検出温度Tが、制御装置30の記憶部30bにあらかじめ記憶されたタンク沸上動作停止温度T1(ここでは90℃)となったかどうかを制御装置30の判断部30aにより比較判断する。すなわち、図4のように、ヒートポンプユニット50での沸上動作を継続していき約90℃の湯の貯湯領域が貯湯温度センサ1a付近まで到達すると、制御装置30は貯湯温度センサ1aにより貯湯タンク1内の検出温度Tを90℃として検出する。(図4の太線で流路を示し、流れの方向を矢印で記載)次に制御装置30は記憶部30bに記憶されたタンク沸上動作停止温度T1と検出温度Tを比較し、T=T1となっているので図16のステップS63の「Y」方向に進みステップS64に至る。また、図4の状態に至らない(貯湯温度センサ1aでの検出温度TがT1に満たない)場合は、「N」方向に進みステップS63でループ状態となる。   In step S63, the detected temperature T detected by the hot water storage temperature sensor 1a attached in the vicinity of the tank circulation return port 1b in the hot water storage tank 1 is the tank boiling operation stop temperature T1 stored in advance in the storage unit 30b of the control device 30. The determination unit 30a of the control device 30 makes a comparative determination as to whether or not the temperature has reached 90 ° C. here. That is, as shown in FIG. 4, when the boiling operation of the heat pump unit 50 is continued and the hot water storage area of about 90 ° C. reaches the vicinity of the hot water temperature sensor 1a, the controller 30 uses the hot water temperature sensor 1a to The detected temperature T in 1 is detected as 90 ° C. (The flow path is indicated by a bold line in FIG. 4 and the direction of flow is indicated by an arrow) Next, the control device 30 compares the tank boiling operation stop temperature T1 stored in the storage unit 30b with the detected temperature T, and T = T1 Therefore, the process proceeds in the “Y” direction of step S63 in FIG. 16 to reach step S64. If the state shown in FIG. 4 is not reached (the temperature T detected by the hot water storage temperature sensor 1a is less than T1), the process proceeds in the “N” direction and the loop state is set in step S63.
ステップS64では、貯湯温度センサ1aによる貯湯タンク1内のタンク循環戻り口1b近傍までの貯湯温度が90℃となったので、制御装置30はヒートポンプユニット50による沸上動作を停止する。すなわち、ヒートポンプによる大気との熱交換を停止し、循環ポンプ(図示せず)による加熱循環回路3の循環動作を停止する。以上の動作のあとステップS65に至り、タンク沸上動作が完了する。このタンク沸上動作の完了は制御装置30の記憶部30bにタンク沸上動作完了として記憶される。   In step S64, since the hot water storage temperature up to the vicinity of the tank circulation return port 1b in the hot water storage tank 1 by the hot water storage temperature sensor 1a has reached 90 ° C., the control device 30 stops the boiling operation by the heat pump unit 50. That is, the heat exchange with the atmosphere by the heat pump is stopped, and the circulation operation of the heating circulation circuit 3 by the circulation pump (not shown) is stopped. After the above operation, step S65 is reached, and the tank boiling operation is completed. Completion of the tank boiling operation is stored in the storage unit 30b of the control device 30 as completion of the tank boiling operation.
このとき、貯湯タンク1のタンク循環戻り口1bより下方はヒートポンプユニット50による沸き上げが行われていない約10℃の水が、タンク循環戻り口1bの貯湯タンク1の取り付け高さ近傍から貯湯タンク1下部の給水配管2の接続位置までの間の容量分(ここでは約60L)だけ残留することになる。   At this time, water below the tank circulation return port 1b of the hot water storage tank 1 is heated at about 10 ° C. not heated by the heat pump unit 50 from the vicinity of the mounting height of the hot water storage tank 1 at the tank circulation return port 1b. Only the capacity (about 60 L in this case) up to the connection position of the lower 1 water supply pipe 2 remains.
また、ヒートポンプによる沸上では、ヒートポンプユニット50に加熱循環回路3から入る水温が低いので、沸き上げの加熱効率は低下することなくCOPの悪化を招かず、きわめて効率のよい沸き上げ運転を実施している。   In addition, since the water temperature entering the heat pump circuit 50 from the heating circuit 3 is low in boiling by the heat pump, the heating efficiency of the boiling is not lowered, the COP is not deteriorated, and an extremely efficient boiling operation is performed. ing.
なお、このタンク沸上動作は、図15のフローチャートでは、ステップS90のタンク沸上動作ステップとなる。続いて、図15のフローチャートで示すステップS91の熱回収沸上ステップの動作へと移るが、以下その詳細内容について説明する。   This tank boiling operation is the tank boiling operation step of step S90 in the flowchart of FIG. Subsequently, the operation moves to the operation of the heat recovery boiling step of step S91 shown in the flowchart of FIG.
浴槽21内の浴槽水22の熱エネルギーを貯湯タンク1内の水に熱交換し貯湯タンク1の水を沸き上げる熱回収動作について、図5から図7と図17のフローチャートを用いて説明する。図5から図7は、貯湯式給湯システム100の熱回収動作時の流路を太線で示し、各々の湯水の流れを矢印で示した図である。各図において図1と同一部分または相当部分は同一符号を付し説明を省略する。   A heat recovery operation for exchanging heat energy of the bathtub water 22 in the bathtub 21 to water in the hot water storage tank 1 to boil the water in the hot water storage tank 1 will be described with reference to the flowcharts of FIGS. FIG. 5 to FIG. 7 are diagrams in which the flow path during the heat recovery operation of the hot water storage hot water supply system 100 is indicated by a thick line, and the flow of each hot water is indicated by an arrow. In each figure, the same or corresponding parts as in FIG.
図5は、タンク沸上動作の完了直後を示す図であり、浴槽21には前日の夜に約42℃で240Lの湯張りを行った浴槽水22が自然放熱により約35℃となった状態で残り湯として残留している状態を示している。   FIG. 5 is a diagram showing a state immediately after the completion of the tank boiling operation, and the bath water 22 that has been subjected to 240 L hot water filling at about 42 ° C. the night before is about 35 ° C. due to natural heat dissipation. Shows the state of remaining hot water.
ここで熱回収動作について図17のフローチャートを用いて説明する。図17は熱回収動作を示すフローチャートである。図17において、ステップS70が熱回収動作開始の位置であり、熱回収動作を開始するとステップS71に至る。   Here, the heat recovery operation will be described with reference to the flowchart of FIG. FIG. 17 is a flowchart showing the heat recovery operation. In FIG. 17, step S70 is a position for starting the heat recovery operation. When the heat recovery operation is started, the process reaches step S71.
ステップS71では、タンク沸上動作が完了しているかどうかを、制御装置30の記憶部30bの完了記憶データ有無により判断部30aが判断し、完了していれば「Y」方向に進みステップS72に至り、タンク沸き上げ動作完了の記憶部30bの記憶をリセットして消去する。また、完了していない場合は完了するまで「N」方向に進みステップS71でループ状態となる。   In step S71, whether or not the tank boiling operation has been completed is determined by the determination unit 30a based on the presence / absence of stored data in the storage unit 30b of the control device 30, and if completed, the process proceeds in the “Y” direction to step S72. Finally, the storage in the storage unit 30b that has completed the tank boiling operation is reset and erased. If it is not completed, the process proceeds in the “N” direction until completion, and a loop state is set in step S71.
ステップS72では、図5のように三方弁5を熱回収分岐配管4a側に切り替え、タンク側循環ポンプ7を動作させる。すると、図5の太線と矢印で示すように、貯湯タンク1下部の約10℃の水が給水配管2から取り出され、熱回収分岐配管4a、三方弁5、熱交換器6の一次側、タンク側循環ポンプ7という経路で再びタンク循環戻り口1bから貯湯タンク1に戻る熱回収回路で循環を開始する。このあと、ステップS73に至る。   In step S72, as shown in FIG. 5, the three-way valve 5 is switched to the heat recovery branch pipe 4a side, and the tank side circulation pump 7 is operated. Then, as shown by the thick line and the arrow in FIG. 5, water at about 10 ° C. at the lower part of the hot water storage tank 1 is taken out from the water supply pipe 2, and the heat recovery branch pipe 4a, the three-way valve 5, the primary side of the heat exchanger 6, the tank Circulation is started again in the heat recovery circuit that returns from the tank circulation return port 1b to the hot water storage tank 1 through the path of the side circulation pump 7. After this, step S73 is reached.
ステップS73では、貯湯タンク1の下部から取り出された水が上述の熱回収回路で循環を継続し、タンク側循環温度センサ25により貯湯タンク1の下部から取り出された水の温度検出ができるまでの時間である30秒が経過したかどうかを制御装置30の判断部30aが判断し、30秒を経過したら「Y」方向に進みステップS74に至り、30秒経過未満であれば、「N」方向に進みステップS73でループ状態となる。なお、ここではタンク側循環温度センサ25による貯湯タンク1下部の水の循環による温度検出までの時間を30秒としたが、システムの構成や配管、循環手段の性能などにより適宜の時間を設定してもよい。   In step S73, the water taken out from the lower part of the hot water storage tank 1 continues to circulate in the heat recovery circuit until the temperature of the water taken out from the lower part of the hot water storage tank 1 can be detected by the tank side circulation temperature sensor 25. The determination unit 30a of the control device 30 determines whether or not 30 seconds, which is the time, has passed. When 30 seconds have elapsed, the process proceeds in the “Y” direction to reach step S74. Proceed to step S73 and enter a loop state. Here, the time until the temperature detection by the circulation of the water in the lower part of the hot water storage tank 1 by the tank-side circulation temperature sensor 25 is 30 seconds, but an appropriate time is set depending on the system configuration, piping, the performance of the circulation means, and the like. May be.
ステップS74では、タンク側循環温度センサ25による貯湯タンク1下部の水の循環による温度検出が可能な30秒が経過したので、制御装置30によりタンク側循環温度センサ25で貯湯タンク1下部の熱回収を行う部分の水温T2(ここでは10℃)を検出し、記憶部30bにT2の検出値を記憶(ここではT2=10℃と記憶)し、ステップS75に至る。   In step S74, since 30 seconds have passed since the tank-side circulation temperature sensor 25 can detect the temperature of the water in the lower part of the hot water storage tank 1, the controller 30 uses the tank side circulation temperature sensor 25 to recover the heat in the lower part of the hot water storage tank 1. The water temperature T2 (here, 10 ° C.) of the portion to be subjected to is detected, the detected value of T2 is stored in the storage unit 30b (here, T2 = 10 ° C.), and step S75 is reached.
ステップS75では、タンク側循環温度センサ25による貯湯タンク1下部の熱回収を行う部分の水温T2が検出できたので、一旦、タンク側循環ポンプ7を停止しステップS76に至る。   In step S75, since the water temperature T2 of the portion where heat recovery of the lower part of the hot water storage tank 1 is detected by the tank-side circulation temperature sensor 25 can be detected, the tank-side circulation pump 7 is temporarily stopped and the process proceeds to step S76.
ステップS76では、図5のように、ふろ側循環ポンプ23を動作させる。すると、図5の太線と矢印で示すように、浴槽21の約35℃の浴槽水22が、ふろ循環回路20により取り出され、ふろ側循環ポンプ23、熱交換器6の二次側を経由し再び浴槽21に戻る回路で循環を開始する。このあと、ステップS77に至る。   In step S76, the bath-side circulation pump 23 is operated as shown in FIG. Then, as shown by the thick line and the arrow in FIG. 5, the bath water 22 of about 35 ° C. in the bathtub 21 is taken out by the bath circulation circuit 20 and passes through the bath side circulation pump 23 and the secondary side of the heat exchanger 6. Circulation is started on the circuit returning to the bathtub 21 again. After this, step S77 is reached.
ステップS77では、浴槽21から取り出された浴槽水22が上述の回路で循環を継続し、ふろ循環温度センサ24により温度検出ができるまでの時間である30秒が経過したかどうかを制御装置30の判断部30aが判断し、30秒を経過したら「Y」方向に進みステップS78に至り、30秒経過未満であれば、「N」方向に進みステップS77でループ状態となる。なお、ここでは、ふろ循環温度センサ24による浴槽21から取り出された浴槽水22の循環による温度検出までの時間を30秒としたが、システムの構成や配管、循環手段の性能などにより適宜の時間を設定してもよい。   In step S77, the control device 30 determines whether or not 30 seconds, which is the time until the bathtub water 22 taken out from the bathtub 21 continues to circulate in the above-described circuit, and the bath circulation temperature sensor 24 can detect the temperature, has passed. If the determination unit 30a determines that 30 seconds have elapsed, the process proceeds in the “Y” direction to reach step S78. If less than 30 seconds have elapsed, the process proceeds in the “N” direction and a loop state is set in step S77. Here, the time until the temperature detection by the circulation of the bath water 22 taken out from the bathtub 21 by the bath circulation temperature sensor 24 is 30 seconds. However, an appropriate time depends on the system configuration, the piping, the performance of the circulation means, and the like. May be set.
ステップS78では、ふろ循環温度センサ24による浴槽水22の温度検出が可能な30秒が経過したので、制御装置30により、ふろ循環温度センサ24で浴槽21内の浴槽水22の水温T3(ここでは35℃)を検出し、記憶部30bにT3の検出値を記憶(ここではT3=35℃と記憶)し、ステップS79に至る。   In step S78, since 30 seconds have passed since the bath circulation temperature sensor 24 can detect the temperature of the bath water 22, the controller 30 causes the bath circulation temperature sensor 24 to detect the water temperature T3 of the bath water 22 in the bath 21 (here, the temperature T3). 35 ° C.) is detected, and the detected value of T3 is stored in the storage unit 30b (here, T3 = 35 ° C.), and the process proceeds to step S79.
ステップS79では、浴槽21の浴槽水22からの熱回収が可能であるかどうかを、制御装置30の判断部30aが記憶部30bに記憶されたT2、T3により判断する。すなわち、T3(浴槽水22の水温)>T2(貯湯タンク1下部の水温)の場合は熱回収が可能と判断し「Y」方向に進みステップS80に至り、それ以外の場合は熱回収困難と判断し「N」方向に進みステップS81に至る。   In step S79, the determination part 30a of the control apparatus 30 determines whether heat recovery from the bathtub water 22 of the bathtub 21 is possible by T2 and T3 memorize | stored in the memory | storage part 30b. That is, if T3 (water temperature of the bathtub water 22)> T2 (water temperature at the bottom of the hot water storage tank 1), it is determined that heat recovery is possible, the process proceeds in the “Y” direction to step S80, and otherwise heat recovery is difficult. The determination is made and the process proceeds in the “N” direction to reach step S81.
ステップS80では、タンク側循環ポンプ7を再び動作開始し、図6に示すように、ふろ側循環ポンプ23と同時に動作させる。これにより図6の太線と矢印で示した循環経路と方向で貯湯タンク1の下部から水温約10℃の水が熱交換器6の一次側に循環するとともに、浴槽21からは約35℃の浴槽水22が熱交換器6の二次側に循環することになる。この循環動作を継続すると、図6に示すように、熱交換器6により貯湯タンク1の下部の水と浴槽水22が熱交換を行い、貯湯タンク1下部の約10℃の水は温められて約30℃の中温水となってタンク循環戻り口1bから貯湯タンク1に戻り、浴槽水22は冷やされて約30℃の中温水となって浴槽21へ戻る。なお、浴槽水22は約240Lあり、貯湯タンク1下部の約10℃の水は約60Lあるので、式1のようにほぼ全体が約30℃となるまで熱交換が可能である。   In step S80, the tank-side circulation pump 7 starts to operate again and is operated simultaneously with the bath-side circulation pump 23 as shown in FIG. Accordingly, water having a water temperature of about 10 ° C. circulates from the lower part of the hot water storage tank 1 to the primary side of the heat exchanger 6 along the circulation path and direction indicated by the thick line and the arrow in FIG. Water 22 is circulated to the secondary side of the heat exchanger 6. If this circulation operation is continued, as shown in FIG. 6, the water at the lower part of the hot water tank 1 and the bath water 22 are heat-exchanged by the heat exchanger 6, and the water at about 10 ° C. at the lower part of the hot water tank 1 is warmed. It becomes medium temperature water of about 30 ° C. and returns from the tank circulation return port 1 b to the hot water storage tank 1, and the bathtub water 22 is cooled and returned to the bathtub 21 as medium temperature water of about 30 ° C. In addition, since there is about 240 L of bathtub water 22 and about 60 L of water at about 10 ° C. in the lower part of the hot water storage tank 1, heat exchange is possible until almost the whole becomes about 30 ° C. as shown in Equation 1.
10[℃]×60[L]+35[℃]×240[L]=30[℃]×(60+240)[L]…式1   10 [° C.] × 60 [L] +35 [° C.] × 240 [L] = 30 [° C.] × (60 + 240) [L] —Equation 1
ステップS81では、熱回収は困難と判断されたので、ふろ側循環ポンプ23を停止して、ステップS84に至り、熱回収動作を完了させる。   In step S81, since it is determined that heat recovery is difficult, the bath-side circulation pump 23 is stopped, and step S84 is reached to complete the heat recovery operation.
ステップS82では、熱回収動作が継続していき、貯湯タンク1下部の水温の状態が図6から図7で示すような状態となる。ここで、ステップS82にてタンク側循環温度センサ25で検出する貯湯タンク1の下部の水温をT4、ふろ循環温度センサ24で検出する浴槽水22の水温をT5とし、制御装置30の判断部30aで、水温T4とT5を比較判断する。すなわち、T4≒T5(例えばT4とT5の温度差の閾値を2℃として、その閾値以内かどうかなどの適宜の閾値を設定し判断)となり浴槽水22と貯湯タンク1の下部の水温がほぼ同じ水温となったら、熱回収はこれ以上できないので熱回収完了と判断し、「Y」方向に進みステップS83に至り、T4とT5に閾値を超える温度差があれば、「N」方向に進みステップS82でループ状態となり熱回収を継続する。   In step S82, the heat recovery operation continues, and the water temperature at the lower part of the hot water storage tank 1 becomes as shown in FIGS. Here, the water temperature in the lower part of the hot water storage tank 1 detected by the tank-side circulation temperature sensor 25 in step S82 is T4, the water temperature of the bathtub water 22 detected by the bath circulation temperature sensor 24 is T5, and the determination unit 30a of the control device 30. Thus, the water temperatures T4 and T5 are compared and judged. That is, T4≈T5 (for example, setting a threshold value of whether the temperature difference between T4 and T5 is 2 ° C. and setting an appropriate threshold value such as whether or not the threshold value is within the threshold value), and the water temperature at the bottom of the bathtub water 22 and the hot water storage tank 1 is substantially the same. When the water temperature is reached, heat recovery cannot be performed any more, so it is determined that the heat recovery is completed, and the process proceeds in the “Y” direction to step S83. If there is a temperature difference exceeding the threshold value in T4 and T5, the process proceeds in the “N” direction. In S82, a loop state is entered and heat recovery is continued.
ステップS83では、浴槽水22からの熱回収が終了したので、ふろ側循環ポンプ23とタンク側循環ポンプ7を停止し、ステップS84に至り、ステップS84にて熱回収動作を完了する。熱回収動作の完了は制御装置30の記憶部30bに記憶する。なお、熱回収動作の完了は図15のステップS91に示す熱回収沸上ステップの完了に相当する。   In step S83, since the heat recovery from the bath water 22 has been completed, the bath-side circulation pump 23 and the tank-side circulation pump 7 are stopped, the process reaches step S84, and the heat recovery operation is completed in step S84. The completion of the heat recovery operation is stored in the storage unit 30b of the control device 30. The completion of the heat recovery operation corresponds to the completion of the heat recovery boiling step shown in step S91 in FIG.
以上、図15のフローチャートで示すように、タンク沸上動作を行うタンク沸き上げステップの後に浴槽21の浴槽水22からの熱回収動作を行う熱回収沸上ステップを行うことで、ヒートポンプユニット50での沸き上げの効率を低下させることなく、また浴槽水22の熱エネルギーを十分有効に貯湯タンク1内に回収することができ、省エネ性に優れた貯湯運転が実施できる。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。なお制御装置30は、タンク沸上動作ステップと熱回収沸上動作ステップを、深夜電力時間帯(23時から翌朝7時)の間に完了するよう制御を行う。   As described above, as shown in the flowchart of FIG. 15, the heat pump unit 50 performs the heat recovery boiling step for performing the heat recovery operation from the bath water 22 of the bathtub 21 after the tank boiling step for performing the tank boiling operation. The heat energy of the bathtub water 22 can be recovered sufficiently effectively in the hot water storage tank 1 without lowering the boiling efficiency of the hot water, and a hot water storage operation excellent in energy saving can be performed. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed. Note that the control device 30 performs control so that the tank boiling operation step and the heat recovery boiling operation step are completed during the late-night power hours (from 23:00 to 7:00 the next morning).
次に、タンク沸上動作および熱回収動作により貯湯タンク1内に貯湯された約90℃の湯と、約30℃の中温水の利用方法を、蛇口12への給湯や浴槽21への湯張り、浴槽水22の追い焚き動作などを用いて、図8から図14により順次説明する。   Next, how to use hot water of about 90 ° C. and hot water of about 30 ° C. stored in the hot water storage tank 1 by the tank boiling operation and the heat recovery operation is used to supply hot water to the faucet 12 and hot water to the bathtub 21. Referring to FIG. 8 to FIG. 14, the operation of retreating the bathtub water 22 will be described sequentially.
なお、この熱回収沸上動作は、図15のフローチャートでは、ステップS91の熱回収沸上ステップとなる。続いて、図15のフローチャートで示すステップS92の一般給湯制御ステップの動作へと移るが、以下その詳細内容について説明する。   This heat recovery boiling operation is the heat recovery boiling step in step S91 in the flowchart of FIG. Subsequently, the operation moves to the operation of the general hot water supply control step of step S92 shown in the flowchart of FIG. 15, and the detailed contents thereof will be described below.
まず、蛇口12からの一般給湯を行う場合について、図8から図10を用いて説明する。図8から図10は、本発明の実施の形態に係わる貯湯式給湯システム100の一般給湯時の流路を太線で示し、各々の湯水の流れを矢印で示した図である。各図において図1と同一部分または相当部分は同一符号を付し説明を省略する。   First, the case of performing general hot water supply from the tap 12 will be described with reference to FIGS. 8 to 10. FIG. 8 to FIG. 10 are diagrams in which a flow path at the time of general hot water supply in the hot water storage hot water supply system 100 according to the embodiment of the present invention is indicated by a thick line, and each hot water flow is indicated by an arrow. In each figure, the same or corresponding parts as in FIG.
図8において、制御装置30はリモコン31で使用者があらかじめ設定した一般給湯温度(ここでは40℃)に対して給湯用中温水取出配管10から取り出すことのできる貯湯タンク1の湯温を給湯用中温水温度センサ1cにより検出(ここでは90℃を検出する)し比較する。ここで、制御装置30は、使用者が設定した一般給湯温度の40℃よりも給湯用中温水温度センサ1cによる検出温度の90℃のほうが高いので、給湯用中温水取出配管10からの湯と一般側給水分岐配管2aからの水を混合しても所望の一般給湯温度の40℃が得られると判断し、給湯用混合弁9による混合対象を給湯用中温水取出配管10からの湯と一般側給水分岐配管2aの水となるよう制御する。   In FIG. 8, the control device 30 uses the hot water temperature of the hot water storage tank 1 that can be taken out from the hot water supply intermediate hot water extraction pipe 10 for the general hot water temperature (40 ° C. in this case) preset by the user with the remote controller 31. The medium temperature water temperature sensor 1c detects (here, detects 90 ° C.) and compares. Here, since the control device 30 has a temperature detected by the hot water supply intermediate hot water temperature sensor 1c of 90 ° C. higher than the general hot water supply temperature of 40 ° C. set by the user, It is determined that the desired general hot water supply temperature of 40 ° C. can be obtained even if the water from the general water supply branch pipe 2a is mixed, and the mixing target by the hot water supply mixing valve 9 is the same as the hot water from the hot water supply intermediate temperature water extraction pipe 10 It controls so that it may become water of the side water supply branch piping 2a.
この状態で蛇口12を開くと給水源から供給される約10℃の水に押し出される形で給水配管2を経由して貯湯タンク1下部に水が供給され、給湯用中温水取出配管10から給湯用混合弁9に約90℃の湯が供給される。一方、給水配管2から分岐した一般側給水分岐配管2aから給湯用混合弁9に約10℃の水が供給される。制御装置30はリモコン31で使用者があらかじめ設定した一般給湯温度(ここでは40℃)を給湯温度センサ13が検出するように給湯用混合弁9の各流路の混合比率を調整する。混合されて設定温度の40℃となった温水は一般給湯配管11を経由し蛇口12から出湯される。   When the faucet 12 is opened in this state, water is supplied to the lower part of the hot water storage tank 1 through the water supply pipe 2 in such a manner that it is pushed out to about 10 ° C. water supplied from the water supply source, and hot water is supplied from the intermediate hot water outlet pipe 10 for hot water supply. About 90 ° C. hot water is supplied to the mixing valve 9. On the other hand, about 10 ° C. water is supplied to the hot water supply mixing valve 9 from the general-side water supply branch pipe 2 a branched from the water supply pipe 2. The control device 30 adjusts the mixing ratio of each flow path of the hot water mixing valve 9 so that the hot water temperature sensor 13 detects the general hot water temperature (40 ° C. in this case) preset by the user with the remote controller 31. Hot water that has been mixed to a preset temperature of 40 ° C. is discharged from the faucet 12 via the general hot water supply pipe 11.
このように、出湯が行われていくと、貯湯タンク1内の湯は徐々に消費されていき、図9のような状態になる。すなわち、図8のように給湯用中温水取出配管10からの出湯で90℃の湯を得られる状態から、貯湯タンク1の湯を消費していき、貯湯タンク1の下部に給水源からの水が入り込み、中温水の領域を押し上げる形で約90℃の湯の量が減少して、給湯用中温水取出配管10の位置に中温水(約30℃)の領域が到達するような状態となる。ここで、制御装置30は、使用者が設定した一般給湯温度の40℃よりも給湯用中温水温度センサ1cによる検出温度の約30℃のほうが低いので、給湯用中温水取出配管10からの湯と一般側給水分岐配管2aからの水を混合しても所望の一般給湯温度の40℃が得られないと判断し、給湯用混合弁9による混合対象を給湯配管8経由で一般側給湯配管8aから取り出される貯湯タンク1上部の約90℃の湯と、給湯用中温水取出配管10からの中温水となるよう制御する。すなわち、制御装置30は、図9のように給湯配管8を経由して一般側給湯配管8aから貯湯タンク1上部の約90℃の湯と、給湯用中温水取出配管10からの30℃の中温水を、リモコン31で使用者があらかじめ設定した一般給湯温度(ここでは40℃)を給湯温度センサ13が検出するように給湯用混合弁9の各流路の混合比率を調整する。混合されて設定温度の40℃となった温水は一般給湯配管11を経由し蛇口12から出湯される。   As described above, as hot water is discharged, the hot water in the hot water storage tank 1 is gradually consumed, resulting in a state as shown in FIG. That is, the hot water of the hot water storage tank 1 is consumed from the state in which hot water of 90 ° C. can be obtained by the hot water from the hot water extraction pipe 10 for hot water supply as shown in FIG. The amount of hot water at about 90 ° C. decreases by pushing up the region of the intermediate temperature water, and the region of the intermediate temperature water (about 30 ° C.) reaches the position of the intermediate temperature water extraction pipe 10 for hot water supply. . Here, since the control device 30 has a temperature detected by the hot water supply medium hot water temperature sensor 1c of about 30 ° C. lower than the general hot water supply temperature 40 ° C. set by the user, the hot water from the hot water supply intermediate hot water outlet pipe 10 is lower. It is determined that the desired general hot water supply temperature of 40 ° C. cannot be obtained even if the water from the general side water supply branch pipe 2 a is mixed, and the general hot water supply pipe 8 a is connected via the hot water supply pipe 8 as the mixing target by the hot water supply mixing valve 9. The hot water of about 90 ° C. at the upper part of the hot water storage tank 1 taken out from the hot water and the intermediate temperature water from the hot water supply hot water outlet pipe 10 are controlled. That is, as shown in FIG. 9, the control device 30 has a hot water of about 90 ° C. in the upper part of the hot water storage tank 1 from the general hot water supply pipe 8 a via the hot water supply pipe 8 and 30 ° C. The mixing ratio of each flow path of the hot water supply mixing valve 9 is adjusted so that the hot water temperature sensor 13 detects the hot water and the general hot water temperature (in this case, 40 ° C.) preset by the user with the remote controller 31. Hot water that has been mixed to a preset temperature of 40 ° C. is discharged from the faucet 12 via the general hot water supply pipe 11.
図9で示すように、熱回収動作により得られた中温水を給湯用中温水取出配管10から取出し、給湯用混合弁9で貯湯タンク1の上部の高温の湯と混合利用することにより、回収した熱エネルギーを給湯の熱源として有効に利用することが可能となるとともに、仮に一般側給水分岐配管2aからの約10℃の低温の水と約90℃の高温の湯を混合して設定温度の40℃の湯を得る場合と比較して、中温水と約90℃お湯を混合する場合のほうが約90℃の湯の消費量を少なく抑えることが可能であり、この側面からもヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。図9のように中温水を給湯に利用していくと、やがて図10のように中温水が積極的に利用されて中温水の量が減少していくことになる。   As shown in FIG. 9, the intermediate temperature water obtained by the heat recovery operation is taken out from the hot water supply intermediate temperature water extraction pipe 10 and mixed with the hot water at the top of the hot water storage tank 1 by the hot water supply mixing valve 9 to recover. It is possible to effectively use the heat energy as a heat source for hot water supply, and at the same time, the low temperature water of about 10 ° C. and the high temperature hot water of about 90 ° C. from the general side water supply branch pipe 2a are mixed. Compared to the case of obtaining 40 ° C hot water, it is possible to reduce the consumption of hot water of about 90 ° C when mixing warm water with about 90 ° C hot water. Since it suppresses the use of hot water, it has the effect of saving energy. When the intermediate temperature water is used for hot water supply as shown in FIG. 9, the intermediate temperature water is actively used as shown in FIG. 10, and the amount of the intermediate temperature water decreases.
なお、この制御装置30による給湯用混合弁9での中温水を利用した給湯動作は、図15のフローチャートでは、ステップS92の一般給湯制御ステップとなる。続いて、図15のフローチャートで示すステップS93のふろ給湯制御ステップの動作へと移るが、以下その詳細内容について説明する。   The hot water supply operation using medium temperature water by the hot water mixing valve 9 by the control device 30 is the general hot water supply control step of step S92 in the flowchart of FIG. Subsequently, the operation of the hot water supply control step of step S93 shown in the flowchart of FIG. 15 will be described. The detailed contents will be described below.
浴槽21への湯張りを行う場合について、図11から図13を用いて説明する。図11から図13は、本発明の実施の形態に係わる貯湯式給湯システム100の湯張り時の流路を太線で示し、各々の湯水の流れを矢印で示した図である。各図において図1と同一部分または相当部分は同一符号を付し説明を省略する。なお、湯張りは通常夕方から夜におこわなれるため、貯湯タンク1内の湯は現実的にも、先の一般給湯のときから若干放熱による温度低下を生じるため、ここでは約85℃まで低下した状態としている。   The case where the hot water filling to the bathtub 21 is performed is demonstrated using FIGS. 11-13. FIG. 11 to FIG. 13 are diagrams in which a flow path during hot water filling of the hot water storage hot water supply system 100 according to the embodiment of the present invention is indicated by a thick line, and each hot water flow is indicated by an arrow. In each figure, the same or corresponding parts as in FIG. In addition, since hot water filling usually takes place from evening to night, the hot water in the hot water storage tank 1 actually decreases slightly to about 85 ° C. due to a slight decrease in temperature due to heat dissipation from the previous general hot water supply. State.
図11において、制御装置30はリモコン31で使用者があらかじめ設定した湯張り温度(ここでは42℃)に対してふろ用中温水取出配管15から取り出すことのできる貯湯タンク1の湯温をふろ用中温水温度センサ1dにより検出(ここでは85℃を検出する)し比較する。ここで、制御装置30は、使用者が設定した湯張り温度の42℃よりもふろ用中温水温度センサ1dによる検出温度の85℃のほうが高いので、ふろ用中温水取出配管15からの湯とふろ側給水分岐配管2bからの水を混合しても所望の湯張り温度の42℃が得られると判断し、ふろ用混合弁14による混合対象をふろ用中温水取出配管15からの湯とふろ側給水分岐配管2bの水となるよう制御する。   In FIG. 11, the control device 30 uses the hot water temperature of the hot water storage tank 1 that can be taken out from the intermediate hot water outlet piping 15 for the hot water filling temperature (42 ° C. in this case) preset by the user with the remote controller 31. The medium temperature water temperature sensor 1d detects (here, detects 85 ° C.) and compares. Here, the control device 30 has a temperature detected by the intermediate hot water temperature sensor 1d of 85 ° C. higher than the hot water filling temperature 42 ° C. set by the user, so that the hot water from the intermediate hot water outlet piping 15 is It is determined that the desired hot water filling temperature of 42 ° C. can be obtained even if the water from the bath water supply branch pipe 2b is mixed, and the mixing target by the bath mixing valve 14 is the hot water and bath from the bath warm water outlet piping 15 It controls so that it may become the water of the side water supply branch piping 2b.
この状態で使用者がリモコン31で湯張り開始の指示を行うと、制御装置30は、ふろ電磁弁18を開放するとともに、流量センサ19で浴槽21への湯張り流量のカウントを開始する。また、制御装置30は、ふろ用混合弁14を、使用者がリモコン31であらかじめ設定した湯張り温度の42℃が出湯するように制御する。すなわち、ふろ電磁弁18を開くと給水源から供給される約10℃の水に押し出される形で給水配管2を経由して貯湯タンク1下部に水が供給され、ふろ用中温水取出配管15から、ふろ用混合弁14に約85℃の湯が供給される。一方、給水配管2から分岐した、ふろ側給水分岐配管2bから、ふろ用混合弁14に約10℃の水が供給される。制御装置30はリモコン31で使用者があらかじめ設定した湯張り温度の42℃を湯張り温度センサ17が検出するように、ふろ用混合弁14の各流路の混合比率を調整する。混合されて設定温度の42℃となった温水は、ふろ給湯配管16、ふろ循環回路20を経由し浴槽21へ供給される。   When the user gives an instruction to start filling with the remote controller 31 in this state, the control device 30 opens the bath solenoid valve 18 and starts counting the filling amount to the bathtub 21 with the flow sensor 19. The control device 30 also controls the bath mixing valve 14 so that the hot water filling temperature of 42 ° C. preset by the user with the remote control 31 is discharged. That is, when the bath solenoid valve 18 is opened, water is supplied to the lower part of the hot water storage tank 1 through the water supply pipe 2 in a form of being pushed out to about 10 ° C. water supplied from the water supply source, and from the bath intermediate hot water outlet pipe 15. Then, hot water of about 85 ° C. is supplied to the mixing valve 14 for bathing. On the other hand, water at about 10 ° C. is supplied to the basin mixing valve 14 from the basin side water supply divergence pipe 2 b branched from the water supply pipe 2. The control device 30 adjusts the mixing ratio of each flow path of the mixing valve 14 for the bath so that the hot water temperature sensor 17 detects the hot water temperature 42 ° C. preset by the user with the remote controller 31. The hot water that has been mixed and has reached the set temperature of 42 ° C. is supplied to the bathtub 21 via the bath hot water supply pipe 16 and the bath circulation circuit 20.
このように、湯張りが行われていくと、貯湯タンク1内の湯は徐々に消費されていき、図12のような状態になる。すなわち、図11のように、ふろ用中温水取出配管15からの出湯で85℃の湯を得られる状態から、貯湯タンク1の湯を消費していき、貯湯タンク1の下部に給水源からの水が入り込み、中温水の領域を押し上げる形で約85℃の湯の量が減少して、ふろ用中温水取出配管15の位置に中温水の領域が到達するような状態となる。ここで制御装置30は、使用者が設定した湯張り温度の42℃よりも、ふろ用中温水温度センサ1dによる検出温度の約30℃のほうが低いので、ふろ用中温水取出配管15からの湯とふろ側給水分岐配管2bからの水を混合しても所望の湯張り温度の42℃が得られないと判断し、ふろ用混合弁14による混合対象を、給湯配管8経由でふろ側給湯配管8bから貯湯タンク1上部の約85℃の湯と、ふろ用中温水取出配管15からの中温水となるよう制御する。すなわち、制御装置30は、図12のように給湯配管8を経由してふろ側給湯配管8bから貯湯タンク1上部の約85℃の湯と、ふろ用中温水取出配管15からの30℃の中温水を、リモコン31で使用者があらかじめ設定した湯張り温度の42℃を湯張り温度センサ17が検出するように、ふろ用混合弁14の各流路の混合比率を調整する。混合されて設定温度の42℃となった温水は、ふろ給湯配管16、ふろ循環回路20を経由し浴槽21へ供給される。   Thus, as hot water filling is performed, the hot water in the hot water storage tank 1 is gradually consumed, resulting in a state as shown in FIG. That is, as shown in FIG. 11, from the state in which 85 ° C. hot water can be obtained from the hot water extraction pipe 15 for bathing, the hot water in the hot water storage tank 1 is consumed, and the lower part of the hot water storage tank 1 is supplied with water from the water supply source. The amount of hot water at about 85 ° C. decreases as water enters and pushes up the area of the intermediate temperature water, and the area of the intermediate temperature water reaches the position of the intermediate temperature water extraction pipe 15 for the bath. Here, the control device 30 has a lower temperature of about 30 ° C. detected by the intermediate hot water temperature sensor 1d than the hot water filling temperature set by the user of 42 ° C. Therefore, the hot water from the intermediate hot water outlet piping 15 is lower. It is determined that the desired hot water filling temperature of 42 ° C. cannot be obtained even if the water from the bath side water supply branch pipe 2 b is mixed, and the target to be mixed by the bath mixing valve 14 is passed through the hot water supply pipe 8. Control is performed from 8b to hot water of about 85 ° C. at the upper part of the hot water storage tank 1 and medium temperature water from the hot water extraction pipe 15 for bathing. That is, as shown in FIG. 12, the control device 30 divides the hot water of about 85 ° C. at the upper part of the hot water storage tank 1 from the bath side hot water supply pipe 8 b via the hot water supply pipe 8 and 30 ° C. from the bath warm water extraction pipe 15. The mixing ratio of each flow path of the mixing valve 14 is adjusted so that the hot water temperature sensor 17 detects the hot water temperature of 42 ° C., which is preset by the user with the remote controller 31. The hot water that has been mixed and has reached the set temperature of 42 ° C. is supplied to the bathtub 21 via the bath hot water supply pipe 16 and the bath circulation circuit 20.
図12で示すように、熱回収動作により得られた中温水を、ふろ用中温水取出配管15から取出し、ふろ用混合弁14で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを湯張りの熱源として有効に利用することが可能となるとともに、ふろ側給水分岐配管2bからの約10℃の水と貯湯タンク1上部の約85℃の湯を混合して設定温度の42℃の湯を得る場合と比較して、中温水と約85℃の湯を混合する場合のほうが約85℃の湯の消費量を少なく抑えることが可能であり、この側面からもヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。図12のように中温水を湯張りに利用していくと、湯張りによる給湯利用量は一般的に240L程度と蛇口12などからの給湯に比べて大量であるため、やがて図13のように中温水が積極的に利用されて中温水をほとんど消費することが可能である。こうして中温水がほとんど利用されると、温度境界層と見分けがつかない状態となり温度境界層に集約される。   As shown in FIG. 12, the intermediate warm water obtained by the heat recovery operation is taken out from the intermediate hot water outlet piping 15 for the bath, and mixed with the hot water at the upper part of the hot water storage tank 1 by the bath mixing valve 14 to recover. It is possible to use the heat energy effectively as a heat source for hot water filling, and to mix the water of about 10 ° C from the bath water supply branch pipe 2b and the hot water of about 85 ° C in the upper part of the hot water storage tank 1 at a set temperature. Compared with the case of obtaining hot water of 42 ° C, it is possible to reduce the consumption of hot water of about 85 ° C by mixing medium-temperature water and hot water of about 85 ° C. Since the use of the heated water is suppressed, it has the effect of saving energy. When medium hot water is used for hot water filling as shown in FIG. 12, the amount of hot water supply by hot water filling is generally about 240 L, which is large compared to hot water supply from faucet 12 and so on. It is possible to consume most of the warm water by actively using the warm water. In this way, when most of the medium temperature water is used, it becomes indistinguishable from the temperature boundary layer and is concentrated in the temperature boundary layer.
浴槽21への湯張りは、流量センサ19により検出され制御装置30でカウントされた浴槽21への累積湯張り量が、使用者がリモコン31であらかじめ設定した湯張り量(ここでは240L)となるまで継続される。累積湯張り量が240Lとなったら、制御装置30は、ふろ電磁弁18を閉じて流路を遮断し、湯張りは完了する。   The amount of hot water filling in the bathtub 21 is detected by the flow sensor 19 and counted by the control device 30, and the amount of hot water filling in the bathtub 21 becomes the amount of hot water filling set in advance by the user using the remote controller 31 (240 L in this case). Will continue until. When the accumulated amount of hot water filling reaches 240L, the control device 30 closes the bath solenoid valve 18 to shut off the flow path, and the hot water filling is completed.
次に、浴槽21への湯張りした浴槽水22の追い焚きを行う場合について、図14を用いて説明する。図14は、本発明の実施の形態に係わる貯湯式給湯システム100の追い焚き時の流路を太線で示し、各々の湯水の流れを矢印で示した図である。図14において図1と同一部分または相当部分は同一符号を付し説明を省略する。なお、湯張りは通常夕方から夜におこわなれるため、夜遅くなると浴槽21の浴槽水22は徐々に冷めていくので夜遅く入浴したいときなどには、追い焚きにより浴槽水22を温めることになるが、その時間の貯湯タンク1内の湯は現実的にも、先の湯張りのときから若干放熱による温度低下を生じるため、ここでは約80℃まで低下した状態としている。   Next, the case where the bathtub water 22 filled in the bathtub 21 is replenished will be described with reference to FIG. FIG. 14 is a diagram in which the flow path at the time of reheating of the hot water storage hot water supply system 100 according to the embodiment of the present invention is indicated by a thick line, and the flow of each hot water is indicated by an arrow. In FIG. 14, the same or corresponding parts as in FIG. In addition, since hot water filling usually takes place from evening to night, the bath water 22 in the bathtub 21 gradually cools when it is late at night, so that when it is desired to take a bath late at night, the bath water 22 is heated by reheating. However, the hot water in the hot water storage tank 1 at that time actually has a temperature drop due to heat dissipation slightly from the previous hot water filling, and therefore it is lowered to about 80 ° C. here.
図14において、使用者がリモコン31で追い焚き開始の指示を行うと、制御装置30は、三方弁5を追焚循環回路4側に切り替えるとともにタンク側循環ポンプ7を動作させ、貯湯タンク1の上部から約80℃の湯を追焚循回路4に導きタンク循環戻り口1bに向けて循環を開始する。一方、制御装置30はふろ側循環ポンプ23を動作させ、ふろ循環回路20により浴槽21の浴槽水22を循環させる。熱交換器6により浴槽水22と貯湯タンク1上部の約85℃の湯は熱交換され、浴槽水22は加熱される。ふろ循環温度センサ24での検出温度が、湯張り時に使用者が設定した湯張り温度(ここでは42℃)になったら、浴槽水22が追い焚きにより湯張り湯温まで上昇して追い焚きが完了したと判断し、制御装置30は、ふろ側循環ポンプ23とタンク側循環ポンプ7を停止し追い焚き動作は完了となる。貯湯タンク1のタンク循環戻り口1bから戻された熱交換後の温水は、貯湯タンク1内の約10℃の水に対して微量なので、約10℃の温水はほとんど温度上昇をせず、図14のような状態となる。なお、図14の状態は、先に図2で示した23時直前の状態と同様で、一日の湯の使用をほぼ終了した状態となっている。   In FIG. 14, when the user gives an instruction to start chasing with the remote controller 31, the control device 30 switches the three-way valve 5 to the chasing circulation circuit 4 side and operates the tank-side circulation pump 7 to About 80 ° C. hot water is guided from the top to the recirculation circuit 4 and circulation is started toward the tank circulation return port 1b. On the other hand, the control device 30 operates the bath-side circulation pump 23 and causes the bath water 22 in the bath 21 to circulate through the bath circulation circuit 20. The heat exchanger 6 exchanges heat between the bath water 22 and hot water at about 85 ° C. above the hot water storage tank 1, and the bath water 22 is heated. When the temperature detected by the bath circulating temperature sensor 24 reaches the hot water temperature set by the user at the time of hot water filling (here, 42 ° C.), the bath water 22 rises to the hot water temperature due to the hot water, and the hot water is heated. The controller 30 determines that it has been completed, and stops the bath-side circulation pump 23 and the tank-side circulation pump 7 to complete the chasing operation. Since the hot water after the heat exchange returned from the tank circulation return port 1b of the hot water storage tank 1 is a minute amount with respect to the water of about 10 ° C. in the hot water storage tank 1, the hot water of about 10 ° C. hardly increases in temperature. 14 is obtained. Note that the state of FIG. 14 is similar to the state immediately before 23:00 shown in FIG.
このように、本実施の形態によれば、タンク沸上動作の後に浴槽21の浴槽水22からの熱回収動作を行うことで、熱回収動作で温度上昇した中温水をヒートポンプにより沸き上げるという動作を行わないので、ヒートポンプユニット50での沸き上げの効率を低下させることなく、また浴槽水22の熱エネルギーを十分有効に貯湯タンク1内に回収することができ、省エネ性に優れた貯湯運転が実施できる。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   As described above, according to the present embodiment, the heat recovery operation from the bathtub water 22 of the bathtub 21 is performed after the tank boiling operation, whereby the medium-temperature water whose temperature has been raised by the heat recovery operation is boiled by the heat pump. Therefore, the heat energy of the bath water 22 can be recovered in the hot water storage tank 1 sufficiently effectively without reducing the efficiency of boiling in the heat pump unit 50, and the hot water storage operation with excellent energy saving performance can be achieved. Can be implemented. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
また、熱回収動作により得られた中温水を給湯用中温水取出配管10から取出し、給湯用混合弁9で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを給湯の熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約90℃の高温の湯を混合して設定温度の40℃の湯を得る場合と比較して、中温水と約90℃の湯を混合する場合のほうが約90℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また、熱回収動作により得られた中温水をふろ用中温水取出配管15から取出し、ふろ用混合弁14で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを湯張りの熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約85℃の高温の湯を混合して設定温度の42℃の湯を得る場合と比較して、中温水と約85℃の湯を混合する場合のほうが約85℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。   Further, the intermediate temperature water obtained by the heat recovery operation is taken out from the hot water supply intermediate temperature water extraction pipe 10 and mixed with the hot water at the upper part of the hot water storage tank 1 by the hot water supply mixing valve 9 so that the recovered thermal energy is supplied to the hot water supply. Compared to the case where low temperature water of about 10 ° C. and high temperature hot water of about 90 ° C. are mixed to obtain 40 ° C. hot water of the set temperature, When hot water of about 90 ° C. is mixed, the consumption of hot water of about 90 ° C. can be reduced, and the use of hot water boiled by a heat pump is suppressed, so that the effect of energy saving is achieved. Further, the intermediate temperature water obtained by the heat recovery operation is taken out from the intermediate temperature hot water extraction pipe 15 for the bath and mixed with the hot water at the upper part of the hot water storage tank 1 by the bath mixing valve 14 so that the recovered thermal energy is filled with hot water. It is possible to effectively use the water as a heat source for the water, and in addition to the case where low temperature water of about 10 ° C. and high temperature hot water of about 85 ° C. are mixed to obtain 42 ° C. hot water, the medium temperature water When the hot water of about 85 ° C. is mixed, it is possible to reduce the consumption of the hot water of about 85 ° C., and the use of the hot water boiled by the heat pump is suppressed, so that the effect of energy saving is achieved.
また、上述の実施の形態1においては一例として、タンク循環戻り口1bの位置を貯湯タンク1の下部から容量で約60Lの位置としたが、熱回収を行う対象の熱容量などに応じて適宜の位置に設定してもよく、その場合も上述と同様の効果を奏する。   In the first embodiment described above, as an example, the position of the tank circulation return port 1b is set to a position of about 60 L from the lower part of the hot water storage tank 1, but depending on the heat capacity of the target for heat recovery, etc. The position may be set, and in this case, the same effect as described above is obtained.
また、タンク循環戻り口1bを貯湯タンク1の高さ方向に複数設け、貯湯温度センサ1aもそれに対応させて複数設け、貯湯温度センサ1aの温度に基づいて、複数設けたタンク循環戻り口1bの戻り位置を切替弁などを用いて変更してもよい。この場合、貯湯タンク1の湯水の分布状態に応じて、浴槽水22の熱回収を行う貯湯タンク1内の範囲を適切に選択することが可能となり、浴槽水22の熱回収をより効率的に行うことが可能となり貯湯式給湯システムの一層の省エネ化を図ることが可能となる。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   In addition, a plurality of tank circulation return ports 1b are provided in the height direction of the hot water storage tank 1, and a plurality of hot water storage temperature sensors 1a are provided correspondingly. Based on the temperature of the hot water storage temperature sensor 1a, a plurality of tank circulation return ports 1b are provided. The return position may be changed using a switching valve or the like. In this case, it is possible to appropriately select the range in the hot water storage tank 1 where the heat recovery of the bathtub water 22 is performed according to the distribution state of the hot water in the hot water storage tank 1, and the heat recovery of the bathtub water 22 can be performed more efficiently. It becomes possible to achieve further energy saving of the hot water storage type hot water supply system. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
また、給湯用中温水取出配管10を貯湯タンク1の高さ方向に複数設け、給湯用中温水温度センサ1cもそれに対応させて複数設け、給湯用中温水温度センサ1cの温度に基づいて、複数設けた給湯用中温水取出配管10の出湯位置を切替弁などを用いて変更してもよい。この場合、貯湯タンク1の中温水の分布状態に応じて、効率的に中温水を選択した給湯が可能となり、浴槽水22の熱回収により得られた熱エネルギーをより効率的に利用し、ヒートポンプユニット50で深夜電力を消費して貯湯した貴重な高温の湯の消費量を抑えることが可能となり貯湯式給湯システムの一層の省エネ化を図ることが可能となる。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   Also, a plurality of hot water supply hot water outlet pipes 10 are provided in the height direction of the hot water storage tank 1, and a plurality of hot water supply intermediate hot water temperature sensors 1 c are provided correspondingly, and a plurality of hot water supply hot water temperature sensors 1 c are provided based on the temperature of the hot water supply intermediate hot water temperature sensor 1 c. You may change the hot water position of the provided hot water extraction piping 10 for hot water supply using a switching valve. In this case, according to the distribution state of the intermediate temperature water in the hot water storage tank 1, it becomes possible to efficiently supply hot water by selecting the intermediate temperature water, more efficiently using the thermal energy obtained by the heat recovery of the bathtub water 22, and the heat pump It is possible to suppress the consumption of precious hot water that is stored by consuming electric power at midnight in the unit 50, and further energy saving of the hot water storage type hot water supply system can be achieved. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
また、ふろ用中温水取出配管15を貯湯タンク1の高さ方向に複数設け、ふろ用中温水温度センサ1dもそれに対応させて複数設け、ふろ用中温水温度センサ1dの温度に基づいて、複数設けたふろ用中温水取出配管15の出湯位置を切替弁などを用いて変更してもよい。この場合、貯湯タンク1の中温水の分布状態に応じて、効率的に中温水を選択した給湯が可能となり、浴槽水22の熱回収により得られた熱エネルギーをより効率的に利用し、ヒートポンプユニット50で深夜電力を消費して貯湯した貴重な高温の湯の消費量を抑えることが可能となり貯湯式給湯システムの一層の省エネ化を図ることが可能となる。
また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。
Also, a plurality of intermediate warm water outlet pipes 15 are provided in the height direction of the hot water storage tank 1, and a plurality of intermediate warm water temperature sensors 1d are provided correspondingly, and a plurality of intermediate warm water temperature sensors 1d are provided based on the temperature of the intermediate warm water temperature sensor 1d. You may change the tapping position of the provided warm hot water extraction pipe 15 for the bath using a switching valve or the like. In this case, according to the distribution state of the intermediate temperature water in the hot water storage tank 1, it becomes possible to efficiently supply hot water by selecting the intermediate temperature water, more efficiently using the thermal energy obtained by the heat recovery of the bathtub water 22, and the heat pump It is possible to suppress the consumption of precious hot water that is stored by consuming power at midnight in the unit 50, and further energy saving of the hot water storage hot water supply system can be achieved.
Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
以上のように、貯湯タンク1下部の水を取り出して加熱し貯湯タンク1上部へ戻す、貯湯タンクの外部に設けられた加熱手段であるヒートポンプユニット50と、貯湯タンク1下部と貯湯タンク1中間部に設けられた中間接続口であるタンク循環戻り口1bとを連通する熱回収回路である給水配管2、熱回収分岐配管4a、三方弁5、追焚循環回路4、を流れる湯水と浴槽21に湯張りされた浴槽水22とを熱交換する熱交換器6と、この熱回収回路内の温水を循環させる熱回収ポンプであるタンク側循環ポンプ7と、浴槽水22を浴槽水ポンプであるふろ側循環ポンプ23により循環して熱交換器6で熱交換を行う浴槽水循環回路であるふろ循環回路20と、加熱手段であるヒートポンプユニット50、熱回収ポンプであるタンク側循環ポンプ7および浴槽水ポンプであるふろ側循環ポンプ23を制御する制御手段である制御装置30と、を備え、制御手段である制御装置30は、加熱手段であるヒートポンプユニット50により貯湯タンク1内の水の加熱を行うタンク沸上動作、及び、熱交換器6、熱回収ポンプであるタンク側循環ポンプ7、浴槽水ポンプであるふろ側循環ポンプ23により貯湯タンク1内の水と浴槽水22とを熱交換し貯湯タンク1内の水の加熱を行う熱回収沸上動作、を順に行うように構成したので、熱回収動作で温度上昇した中温水をヒートポンプにより沸き上げるという動作を行わないのでヒートポンプユニット50での沸き上げの効率を低下させることなく、また浴槽水22の熱エネルギーを十分有効に貯湯タンク1内に回収することができ、省エネ性に優れた貯湯運転が実施できる。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   As described above, the heat pump unit 50 which is a heating means provided outside the hot water storage tank that takes out the water in the lower part of the hot water storage tank 1 and heats it back to the upper part of the hot water storage tank 1, and the lower part of the hot water storage tank 1 and the intermediate part of the hot water storage tank 1 The hot water flowing through the water supply pipe 2, the heat recovery branch pipe 4 a, the three-way valve 5, and the remedy circulation circuit 4, which are heat recovery circuits communicating with the tank circulation return port 1 b which is an intermediate connection port, are provided in the bathtub 21. A heat exchanger 6 that exchanges heat with the bath water 22 filled with hot water, a tank-side circulation pump 7 that is a heat recovery pump that circulates hot water in the heat recovery circuit, and a bath that is used as a bath water pump. A bath circulation circuit 20 that is a bathtub water circulation circuit that circulates by the side circulation pump 23 and performs heat exchange in the heat exchanger 6, a heat pump unit 50 that is a heating means, and a tank side circulation port that is a heat recovery pump. And a control device 30 which is a control means for controlling the bath-side circulation pump 23 which is a bathtub water pump. The control device 30 which is a control means is provided in the hot water storage tank 1 by a heat pump unit 50 which is a heating means. The water in the hot water storage tank 1 and the bath water 22 are heated by a tank boiling operation for heating water, a heat exchanger 6, a tank side circulation pump 7 as a heat recovery pump, and a bath side circulation pump 23 as a bath water pump. The heat recovery boiling operation that heats the water in the hot water storage tank 1 and heats the water in the hot water storage tank 1 is performed in order, so that the operation of boiling the medium-temperature water that has risen in the heat recovery operation by the heat pump is not performed. It is possible to recover the thermal energy of the bathtub water 22 in the hot water storage tank 1 sufficiently effectively without reducing the efficiency of boiling in the unit 50. Hot-water stocking operation with excellent sex can be performed. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
また、中間接続口であるタンク循環戻り口1b近傍に貯湯タンク1内の湯温を検出する温度検出手段である貯湯温度センサ1aを備え、制御手段である制御装置30は、温度検出手段である貯湯温度センサ1aで所定温度を検出するまではタンク沸上動作を行い、その後は熱回収沸上動作を行うように構成したので、熱回収動作で温度上昇した中温水をヒートポンプにより沸き上げるという動作を行わないので、ヒートポンプユニット50での沸き上げの効率を低下させることなく、また浴槽水22の熱エネルギーを十分有効に貯湯タンク1内に回収することができ、省エネ性に優れた貯湯運転が実施できる。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   Further, a hot water storage temperature sensor 1a that is a temperature detection means for detecting the hot water temperature in the hot water storage tank 1 is provided in the vicinity of the tank circulation return port 1b that is an intermediate connection port, and the control device 30 that is a control means is a temperature detection means. Since the tank boiling operation is performed until the predetermined temperature is detected by the hot water storage temperature sensor 1a, and then the heat recovery boiling operation is performed, the operation of boiling up the medium-temperature water whose temperature has been increased by the heat recovery operation by the heat pump. Therefore, the heat energy of the bath water 22 can be recovered in the hot water storage tank 1 sufficiently effectively without reducing the efficiency of boiling in the heat pump unit 50, and the hot water storage operation with excellent energy saving performance can be achieved. Can be implemented. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
また、貯湯タンク1下部に接続され給水源からの水を貯湯タンク1下部に供給する給水配管2と、貯湯タンク1下部の水を取り出して加熱し貯湯タンク1上部へ戻す、貯湯タンク1の外部に設けられた加熱手段であるヒートポンプユニット50と、貯湯タンク1上部の湯水を取り出す上部出湯口である給湯配管8と給水配管2の貯湯タンク1との接続位置との間に設けられた貯湯タンク1内の湯水を取り出す第1の出湯口である給湯用中温水取出配管10と、上部出湯口である給湯配管8と第1の出湯口である給湯用中温水取出配管10との間に設けられた貯湯タンク1内の湯水を取り出す第2の出湯口であるふろ用中温水取出配管15と、を備え、上部出湯口である給湯配管8を浴槽21への湯張りを行うふろ側給湯回路であるふろ給湯配管16、浴槽21以外へ給湯を行う一般給湯回路である一般給湯配管11の双方に接続し、第1の出湯口である給湯用中温水取出配管10を一般給湯回路である一般給湯配管11に接続し、第2の出湯口であるふろ用中温水取出配管15をふろ側給湯回路であるふろ給湯配管16に接続したので、貯湯タンク1内に給湯に直接利用するには低温である約30℃程度の中温水があった場合であっても給湯用中温水取出配管10から取出し、給湯用混合弁9で貯湯タンク1上部の高温の湯と混合利用することにより、中温水の熱エネルギーを給湯の熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約90℃の高温の湯を混合して設定温度の40℃の湯を得る場合と比較して、中温水と約90℃の湯を混合する場合のほうが約90℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。   In addition, a water supply pipe 2 connected to the lower part of the hot water storage tank 1 for supplying water from the water supply source to the lower part of the hot water storage tank 1 and the water in the lower part of the hot water storage tank 1 are taken out and heated and returned to the upper part of the hot water storage tank 1. The hot water storage tank provided between the heat pump unit 50 which is a heating means provided in the hot water storage tank 1 and the connection position of the hot water supply pipe 8 which is an upper outlet from which the hot water is taken out of the hot water storage tank 1 and the hot water storage tank 1 of the water supply pipe 2 1 is provided between a hot water supply hot water outlet pipe 10 which is a first hot water outlet for taking out hot water in 1, an intermediate hot water outlet pipe 10 which is an upper hot water outlet, and an intermediate hot water outlet pipe 10 for hot water supply which is a first hot water outlet. A hot water supply pipe 15 for taking out hot water from the hot water storage tank 1 that is a second hot water outlet, and a hot water supply circuit for filling the bathtub 21 with a hot water supply pipe 8 that is an upper hot water outlet. Is the bath water distribution 16. Connected to both of the general hot water supply pipes 11 which are general hot water supply circuits for supplying hot water to other than the bathtub 21, and connected to the general hot water supply pipe 11 which is a general hot water supply circuit for the hot and cold hot water extraction pipe 10 which is the first hot water outlet. The intermediate hot water outlet pipe 15 for the bath serving as the second outlet is connected to the bath hot water piping 16 serving as the bath-side hot water supply circuit. Even if there is a moderate amount of hot water, it is taken out from the hot water extraction pipe 10 for hot water supply and mixed with the hot water at the upper part of the hot water storage tank 1 by the hot water mixing valve 9 so that the heat energy of the hot water is supplied. It is possible to effectively use as a heat source for water, and it is possible to use medium-temperature water as compared with a case where low-temperature water of about 10 ° C. and high-temperature water of about 90 ° C. are mixed to obtain a set temperature of 40 ° C. And about 90 ℃ hot water There it is possible to suppress decrease the consumption of the hot water of approximately 90 ° C., an effect that will save energy since suppressing the use of hot water raised boiling by the heat pump.
また、中温水をふろ用中温水取出配管15から取出し、ふろ用混合弁14で貯湯タンク1上部の高温の湯と混合利用することにより、中温水の熱エネルギーを湯張りの熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約85℃の高温の湯を混合して設定温度の42℃の湯を得る場合と比較して、中温水と約85℃お湯を混合する場合のほうが約85℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。   Also, by taking out the intermediate temperature water from the intermediate temperature hot water extraction pipe 15 and mixing it with the hot water at the upper part of the hot water storage tank 1 by using the mixing valve 14 for the intermediate temperature, the thermal energy of the intermediate temperature water is effectively used as a heat source for filling the hot water. Compared to the case where low temperature water of about 10 ° C. and high temperature hot water of about 85 ° C. are mixed to obtain 42 ° C. hot water of the set temperature, medium hot water and about 85 ° C. hot water are used. In the case of mixing, consumption of hot water of about 85 ° C. can be reduced, and the use of hot water boiled up by a heat pump is suppressed, so that the effect of energy saving is achieved.
また、第1の出湯口である給湯用中温水取出配管10近傍に設けられ第1の出湯口である給湯用中温水取出配管10からの出湯温度を検出する第1出湯温度検出手段である給湯用中温水温度センサ1cと、第2の出湯口であるふろ用中温水取出配管15近傍に設けられ第2の出湯口であるふろ用中温水取出配管15からの出湯温度を検出する第2出湯温度検出手段であるふろ用中温水温度センサ1dと、上部出湯口である給湯配管8、第2の出湯口であるふろ用中温水取出配管15、給水配管2、からの湯水を混合するふろ用混合弁14と、上部出湯口である給湯配管8、第1の出湯口である給湯用中温水取出配管10、給水配管2、からの湯水を混合する給湯用混合弁9と、ふろ用混合弁14、給湯用混合弁9を制御する制御手段である制御装置30と、を備え、制御手段である制御装置30は、第1出湯温度検出手段である給湯用中温水温度センサ1c、第2出湯温度検出手段であるふろ用中温水温度センサ1dでの検出温度により、ふろ用混合弁14で混合する湯水を上部出湯口である給湯配管8、第2の出湯口であるふろ用中温水取出配管15、給水配管2、からの湯水のうち2つを選択して、給湯用混合弁9で混合する湯水を上部出湯口である給湯配管8、第1の出湯口である給湯用中温水取出配管10、給水配管2、からの湯水のうち2つを選択して、混合を制御するように構成したので、貯湯タンク1内に給湯に直接利用するには低温である約30℃程度の中温水があった場合であっても給湯用中温水取出配管10から取出し、給湯用混合弁9で貯湯タンク1上部の高温の湯と混合利用することにより、中温水の熱エネルギーを給湯の熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約90℃の高温の湯を混合して設定温度の40℃の湯を得る場合と比較して、中温水と約90℃の湯を混合する場合のほうが約90℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。   The hot water supply is a first hot water temperature detecting means provided in the vicinity of the hot water supply intermediate hot water outlet pipe 10 which is the first hot water outlet and detects the hot water temperature from the hot water intermediate hot water outlet pipe 10 which is the first hot water outlet. Middle hot water temperature sensor 1c and a second hot water temperature detector that is provided in the vicinity of the intermediate hot water outlet pipe 15 serving as a second hot water outlet and detects the temperature of the hot water from the intermediate hot water outlet pipe 15 serving as a second hot water outlet A bath for mixing hot water from a hot water supply temperature sensor 1d serving as a temperature detection means, a hot water supply pipe 8 serving as an upper hot water outlet, an intermediate hot water outlet pipe 15 serving as a second hot water outlet, and a feed water pipe 2. A mixing valve 14, a hot water supply pipe 8 that is an upper hot water outlet, an intermediate hot water outlet pipe 10 that is a first hot water outlet, a hot water mixing valve 9 that mixes hot water from the water supply pipe 2, and a bath mixing valve 14. A control means for controlling the hot water mixing valve 9 The control device 30 as a control means includes a hot water supply medium hot water temperature sensor 1c as a first hot water temperature detection means and a bath intermediate hot water temperature sensor 1d as a second hot water temperature detection means. Select hot water from the hot water supply pipe 8 as the upper hot water outlet, hot water from the hot water supply pipe 15 as the hot water outlet, and hot water from the hot water supply pipe 2 depending on the temperature. Then, hot water mixed in the hot water supply mixing valve 9 is selected from the hot water supply pipe 8 which is the upper hot water outlet, the hot water supply hot water supply pipe 10 which is the first hot water outlet, and the hot water from the water supply pipe 2. In addition, since the mixing is controlled, even in the case where there is medium temperature water of about 30 ° C., which is a low temperature to be directly used for hot water supply in the hot water storage tank 1, the intermediate temperature water extraction pipe 10 for hot water supply is provided. From the hot water tank 1 with the hot water mixing valve 9 By mixing and using warm hot water, it is possible to effectively use the thermal energy of medium-temperature water as a heat source for hot water supply, and by mixing low temperature water of about 10 ° C and high temperature hot water of about 90 ° C. Compared to the case where 40 ° C hot water is set, it is possible to reduce the consumption of hot water of about 90 ° C by mixing medium-temperature water and hot water of about 90 ° C. Since it suppresses the use of hot water, it has the effect of saving energy.
また、中温水をふろ用中温水取出配管15から取出し、ふろ用混合弁14で貯湯タンク1上部の高温の湯と混合利用することにより、中温水の熱エネルギーを湯張りの熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約85℃の高温の湯を混合して設定温度の42℃の湯を得る場合と比較して、中温水と約85℃お湯を混合する場合のほうが約85℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。   Also, by taking out the intermediate temperature water from the intermediate temperature hot water extraction pipe 15 and mixing it with the hot water at the upper part of the hot water storage tank 1 by using the mixing valve 14 for the intermediate temperature, the thermal energy of the intermediate temperature water is effectively used as a heat source for filling the hot water. Compared to the case where low temperature water of about 10 ° C. and high temperature hot water of about 85 ° C. are mixed to obtain 42 ° C. hot water of the set temperature, medium hot water and about 85 ° C. hot water are used. In the case of mixing, consumption of hot water of about 85 ° C. can be reduced, and the use of hot water boiled up by a heat pump is suppressed, so that the effect of energy saving is achieved.
また、貯湯タンク1下部と貯湯タンク1中間部に設けられた中間接続口であるタンク循環戻り口1bとを連通する熱回収回路である給水配管2、熱回収分岐配管4a、三方弁5、追焚循環回路4を備え、中間接続口であるタンク循環戻り口1bを第1の出湯口である給湯用中温水取出配管10と給水配管2の貯湯タンク1との接続位置との間に設けたので、熱回収動作により得られた中温水を給湯用中温水取出配管10から取出し、給湯用混合弁9で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを給湯の熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約90℃の高温の湯を混合して設定温度の40℃の湯を得る場合と比較して、中温水と約90℃の湯を混合する場合のほうが約90℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また、熱回収動作により得られた中温水をふろ用中温水取出配管15から取出し、ふろ用混合弁14で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを湯張りの熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約85℃の高温の湯を混合して設定温度の42℃の湯を得る場合と比較して、中温水と約85℃の湯を混合する場合のほうが約85℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   In addition, a water supply pipe 2, a heat recovery branch pipe 4a, a three-way valve 5, a heat recovery circuit that communicates with a tank circulation return port 1b that is an intermediate connection port provided at a lower part of the hot water storage tank 1 and an intermediate part of the hot water storage tank 1. A tank circulation circuit 4 is provided, and a tank circulation return port 1b that is an intermediate connection port is provided between a hot water supply intermediate hot water extraction pipe 10 that is a first hot water outlet and a connection position of the hot water storage tank 1 of the water supply pipe 2 Therefore, the intermediate temperature water obtained by the heat recovery operation is taken out from the intermediate temperature water extraction pipe 10 for hot water supply and mixed with the hot water at the upper part of the hot water storage tank 1 by the hot water supply mixing valve 9 to use the recovered thermal energy of the hot water supply. Compared to the case where low temperature water of about 10 ° C. and high temperature hot water of about 90 ° C. are mixed to obtain 40 ° C. hot water of the set temperature, When mixing hot water of about 90 ° C It is possible to suppress decrease the consumption of hot water 90 ° C., an effect that will save energy since suppressing the use of hot water raised boiling by the heat pump. Further, the intermediate temperature water obtained by the heat recovery operation is taken out from the intermediate temperature hot water extraction pipe 15 for the bath and mixed with the hot water at the upper part of the hot water storage tank 1 by the bath mixing valve 14 so that the recovered thermal energy is filled with hot water. It is possible to effectively use the water as a heat source for the water, and in addition to the case where low temperature water of about 10 ° C. and high temperature hot water of about 85 ° C. are mixed to obtain 42 ° C. hot water, the medium temperature water When the hot water of about 85 ° C. is mixed, it is possible to reduce the consumption of the hot water of about 85 ° C., and the use of the hot water boiled by the heat pump is suppressed, so that the effect of energy saving is achieved. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
また、加熱手段であるヒートポンプユニット50により貯湯タンク1内の水の加熱を行うタンク沸上ステップと、熱交換器6、熱回収ポンプであるタンク側循環ポンプ7および浴槽水ポンプであるふろ側循環ポンプ23により貯湯タンク1内の水と浴槽水22とを熱交換し、貯湯タンク1内の水の加熱を行う熱回収沸上ステップと、を備え、タンク沸上ステップの後に熱回収沸上ステップを行うように構成したので、タンク沸上動作の後に浴槽21の浴槽水22からの熱回収動作を行うことで、熱回収動作で温度上昇した中温水をヒートポンプにより沸き上げるという動作を行わないので、ヒートポンプユニット50での沸き上げの効率を低下させることなく、また浴槽水22の熱エネルギーを十分有効に貯湯タンク1内に回収することができ、省エネ性に優れた貯湯運転が実施できる。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   Also, a tank boiling step for heating the water in the hot water storage tank 1 by the heat pump unit 50 as a heating means, a heat exchanger 6, a tank side circulation pump 7 as a heat recovery pump, and a bath side circulation as a bathtub water pump. A heat recovery boiling step that heat-exchanges the water in the hot water storage tank 1 and the bathtub water 22 by the pump 23 and heats the water in the hot water storage tank 1, and a heat recovery boiling step after the tank boiling step. Since the heat recovery operation from the bathtub water 22 of the bathtub 21 is performed after the tank boiling operation, the operation of boiling the medium-temperature water whose temperature has been increased by the heat recovery operation by the heat pump is not performed. In addition, it is possible to recover the thermal energy of the bathtub water 22 in the hot water storage tank 1 sufficiently effectively without reducing the efficiency of boiling in the heat pump unit 50. It can be carried out excellent hot-water stocking operation to energy saving. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
また、熱回収動作により得られた中温水を給湯用中温水取出配管10から取出し、給湯用混合弁9で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを給湯の熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約90℃の高温の湯を混合して設定温度の40℃の湯を得る場合と比較して、中温水と約90℃の湯を混合する場合のほうが約90℃の湯の消費量を少なく抑えることが可能であり、この側面からもヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また、熱回収動作により得られた中温水をふろ用中温水取出配管15から取出し、ふろ用混合弁14で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを湯張りの熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約85℃の高温の湯を混合して設定温度の42℃の湯を得る場合と比較して、中温水と約85℃お湯を混合する場合のほうが約85℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   Further, the intermediate temperature water obtained by the heat recovery operation is taken out from the hot water supply intermediate temperature water extraction pipe 10 and mixed with the hot water at the upper part of the hot water storage tank 1 by the hot water supply mixing valve 9 so that the recovered thermal energy is supplied to the hot water supply. Compared to the case where low temperature water of about 10 ° C. and high temperature hot water of about 90 ° C. are mixed to obtain 40 ° C. hot water of the set temperature, When mixing hot water at about 90 ° C, it is possible to reduce the consumption of hot water at about 90 ° C, and also from this side, the use of hot water boiled up by a heat pump is suppressed, so that the effect of energy saving is achieved. Play. Further, the intermediate temperature water obtained by the heat recovery operation is taken out from the intermediate temperature hot water extraction pipe 15 for the bath and mixed with the hot water at the upper part of the hot water storage tank 1 by the bath mixing valve 14 so that the recovered thermal energy is filled with hot water. It is possible to effectively use the water as a heat source for the water, and in addition to the case where low temperature water of about 10 ° C. and high temperature hot water of about 85 ° C. are mixed to obtain 42 ° C. hot water, the medium temperature water In the case of mixing about 85 ° C. hot water, it is possible to reduce the consumption of hot water of about 85 ° C., and the use of hot water boiled by the heat pump is suppressed, so that the effect of energy saving is achieved. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
また、熱交換器6、熱回収ポンプであるタンク側循環ポンプ7および浴槽水ポンプであるふろ側循環ポンプ23により貯湯タンク1内の水と浴槽水22とを熱交換し、貯湯タンク1内の水の加熱を行う熱回収沸上ステップと、上部出湯口である給湯配管8、第1の出湯口である給湯用中温水取出配管10、給水配管2、からの湯水のうち2つを選択して、給湯用混合弁9で混合する一般給湯制御ステップと、上部出湯口である給湯配管8、第2の出湯口であるふろ用中温水取出配管15、給水配管2、からの湯水のうち2つを選択して、ふろ用混合弁14で混合するふろ給湯制御ステップと、を備え、熱回収沸上ステップの後に一般給湯制御ステップまたはふろ給湯ステップを行うように構成したので、熱回収動作で貯湯タンク1に貯湯した中温水を給湯用中温水取出配管10から取出し、給湯用混合弁9で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを給湯の熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約90℃の高温の湯を混合して設定温度の40℃の湯を得る場合と比較して、中温水と約90℃の湯を混合する場合のほうが約90℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また、熱回収動作により得られた中温水をふろ用中温水取出配管15から取出し、ふろ用混合弁14で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを湯張りの熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約85℃の高温の湯を混合して設定温度の42℃の湯を得る場合と比較して、中温水と約85℃お湯を混合する場合のほうが約85℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また、熱回収動作で温度上昇した中温水をヒートポンプにより沸き上げるという動作を行わないので、ヒートポンプユニット50での沸き上げの効率を低下させることなく、また浴槽水22の熱エネルギーを十分有効に貯湯タンク1内に回収することができ、省エネ性に優れた貯湯運転が実施できる。また熱回収動作により得られた熱エネルギーの分だけタンク沸上動作によるヒートポンプユニット50を動作させての沸き上げが不要となるので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の消費電力を抑制し省エネになるだけでなく経年劣化をも抑制することが可能となる。   Further, the heat in the hot water storage tank 1 and the bathtub water 22 are heat-exchanged by the heat exchanger 6, the tank-side circulation pump 7 that is a heat recovery pump, and the bath-side circulation pump 23 that is a bathtub water pump. Two types are selected from the heat recovery boiling step for heating the water, the hot water supply pipe 8 as the upper hot water outlet, the hot water supply hot water extraction pipe 10 as the first hot water outlet, and the hot water from the water supply pipe 2. 2 out of hot water from the general hot water supply control step of mixing by the hot water supply mixing valve 9, the hot water supply pipe 8 as the upper hot water outlet, the intermediate hot water outlet pipe 15 as the second hot water outlet, and the hot water supply pipe 2. And a hot water supply control step for mixing with the bath mixing valve 14, and the general hot water supply control step or the hot water supply step is performed after the heat recovery boiling step. Hot water was stored in hot water storage tank 1 By extracting hot water from the intermediate hot water extraction pipe 10 for hot water supply and mixing it with the hot water at the top of the hot water storage tank 1 with the hot water mixing valve 9, it is possible to effectively use the recovered thermal energy as a heat source for hot water supply. Compared to the case where low temperature water of about 10 ° C. and high temperature hot water of about 90 ° C. are mixed to obtain hot water of 40 ° C. of setting temperature, the case of mixing medium temperature water and hot water of about 90 ° C. However, it is possible to reduce the consumption of hot water of about 90 ° C., and the use of hot water boiled by a heat pump is suppressed, so that the effect of energy saving is achieved. Further, the intermediate temperature water obtained by the heat recovery operation is taken out from the intermediate temperature hot water extraction pipe 15 for the bath and mixed with the hot water at the upper part of the hot water storage tank 1 by the bath mixing valve 14 so that the recovered thermal energy is filled with hot water. It is possible to effectively use the water as a heat source for the water, and in addition to the case where low temperature water of about 10 ° C. and high temperature hot water of about 85 ° C. are mixed to obtain 42 ° C. hot water, the medium temperature water In the case of mixing about 85 ° C. hot water, it is possible to reduce the consumption of hot water of about 85 ° C., and the use of hot water boiled by the heat pump is suppressed, so that the effect of energy saving is achieved. In addition, since the operation of boiling up the medium-temperature water whose temperature has been raised by the heat recovery operation by the heat pump is not performed, the heat energy of the bath water 22 is sufficiently effectively stored without reducing the efficiency of the boiling in the heat pump unit 50. It can be recovered in the tank 1 and hot water storage operation excellent in energy saving can be performed. Further, since the heating by operating the heat pump unit 50 by the tank boiling operation by the amount of heat energy obtained by the heat recovery operation becomes unnecessary, the heating operation time by the heat pump unit 50 can be relatively suppressed. Therefore, not only can the power consumption of the heat pump unit 50 be suppressed to save energy, but also deterioration over time can be suppressed.
このように本発明によれば、タンク沸上動作の際に貯湯タンク1下部に浴槽水22の廃熱回収を行うための水の領域が残るように、制御装置30によりタンク循環戻り口1b近傍に設けた貯湯温度センサ1aの検出温度に基づいて沸上動作を制御する。これにより、ヒートポンプユニット50は常に低温の水を沸き上げ、廃熱回収の中温水を沸き上げることはないので、COPの低下を招かない。また、タンク沸上動作の際に形成した廃熱回収を行う低温の水の領域であるタンク循環戻り口1bの下部の貯湯タンク1内に、熱回収動作により浴槽水22の廃熱を回収して水を中温水として沸き上げて貯湯する。これにより、ヒートポンプユニット50のCOPを低下させることなく、浴槽水22の熱エネルギーを十分有効に貯湯タンク1内に回収することができる。また、熱回収動作により得られた中温水を給湯用中温水取出配管10から取出し、給湯用混合弁9で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを給湯の熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約90℃の高温の湯を混合して設定温度の40℃の湯を得る場合と比較して、中温水と約90℃の湯を混合する場合のほうが約90℃の湯の消費量を少なく抑えることが可能であり、ヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また、熱回収動作により得られた中温水をふろ用中温水取出配管15から取出し、ふろ用混合弁14で貯湯タンク1上部の高温の湯と混合利用することにより、回収した熱エネルギーを湯張りの熱源として有効に利用することが可能となるとともに、約10℃の低温の水と約85℃の高温の湯を混合して設定温度の42℃の湯を得る場合と比較して、中温水と約85℃お湯を混合する場合のほうが約85℃の湯の消費量を少なく抑えることが可能であり、この側面からもヒートポンプにより沸き上げた湯の利用を抑制するので省エネになるという効果を奏する。また、中温水を積極的に利用しヒートポンプユニット50で沸き上げた湯の利用量を抑制することにより必要な高温の湯の量が減少するので、ヒートポンプユニット50による沸き上げ運転時間を相対的に抑制することができるのでヒートポンプユニット50の経年劣化を抑制することが可能となる。以上のように本発明によれば、ヒートポンプのCOPを低下させることなく廃熱回収を行うとともに、廃熱回収で得られた熱エネルギーを有効利用し、ヒートポンプにより沸き上げた湯の効率的な利用を行うことのできる省エネ性に優れた貯湯式給湯システムを提供することが可能となる。   As described above, according to the present invention, the controller 30 closes the tank circulation return port 1b so that an area of water for recovering the waste heat of the bathtub water 22 remains in the lower part of the hot water tank 1 during the tank boiling operation. The boiling operation is controlled based on the temperature detected by the hot water storage temperature sensor 1a. As a result, the heat pump unit 50 always boiles low-temperature water and does not boil medium-temperature water for waste heat recovery, so that the COP is not lowered. In addition, the waste heat of the bathtub water 22 is recovered by the heat recovery operation in the hot water storage tank 1 below the tank circulation return port 1b, which is an area of low-temperature water that recovers the waste heat formed during the tank boiling operation. Boil water as medium temperature water and store hot water. Thereby, the thermal energy of the bathtub water 22 can be recovered sufficiently effectively in the hot water storage tank 1 without reducing the COP of the heat pump unit 50. Further, the intermediate temperature water obtained by the heat recovery operation is taken out from the hot water supply intermediate temperature water extraction pipe 10 and mixed with the hot water at the upper part of the hot water storage tank 1 by the hot water supply mixing valve 9 so that the recovered thermal energy is supplied to the hot water supply. Compared to the case where low temperature water of about 10 ° C. and high temperature hot water of about 90 ° C. are mixed to obtain 40 ° C. hot water of the set temperature, When hot water of about 90 ° C. is mixed, the consumption of hot water of about 90 ° C. can be reduced, and the use of hot water boiled by a heat pump is suppressed, so that the effect of energy saving is achieved. Further, the intermediate temperature water obtained by the heat recovery operation is taken out from the intermediate temperature hot water extraction pipe 15 for the bath and mixed with the hot water at the upper part of the hot water storage tank 1 by the bath mixing valve 14 so that the recovered thermal energy is filled with hot water. It is possible to effectively use the water as a heat source for the water, and in addition to the case where low temperature water of about 10 ° C. and high temperature hot water of about 85 ° C. are mixed to obtain 42 ° C. hot water, the medium temperature water It is possible to reduce the consumption of hot water of about 85 ° C when mixing hot water and about 85 ° C hot water, and also from this side, the use of hot water boiled up by the heat pump is suppressed, so the effect of saving energy is achieved. Play. Further, since the amount of hot water required is reduced by actively using medium temperature water and suppressing the amount of hot water boiled by the heat pump unit 50, the heating operation time by the heat pump unit 50 is relatively reduced. Since it can suppress, it becomes possible to suppress deterioration over time of the heat pump unit 50. As described above, according to the present invention, waste heat is recovered without lowering the COP of the heat pump, and the thermal energy obtained by the waste heat recovery is effectively used to efficiently use hot water boiled by the heat pump. Therefore, it is possible to provide a hot water storage type hot water supply system that is capable of carrying out the process and is excellent in energy saving.
本発明の実施の形態1による貯湯式給湯システムの構成図である。It is a block diagram of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの要部拡大図である。It is a principal part enlarged view of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの要部拡大図である。It is a principal part enlarged view of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの要部拡大図である。It is a principal part enlarged view of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムの動作説明図である。It is operation | movement explanatory drawing of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムのフローチャートである。It is a flowchart of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムのフローチャートである。It is a flowchart of the hot water storage type hot-water supply system by Embodiment 1 of this invention. 本発明の実施の形態1による貯湯式給湯システムのフローチャートである。It is a flowchart of the hot water storage type hot-water supply system by Embodiment 1 of this invention.
符号の説明Explanation of symbols
1 貯湯タンク
1a 貯湯温度センサ
1b タンク循環戻り口
1c 給湯用中温水温度センサ
1d ふろ用中温水温度センサ
2 給水配管
2a 一般側給水分岐配管
2b ふろ側給水分岐配管
3 加熱循環回路
4 追焚循環回路
4a 熱回収分岐配管
5 三方弁
6 熱交換器
7 タンク側循環ポンプ
8 給湯配管
8a 一般側給湯分岐配管
8b ふろ側給湯分岐配管
9 給湯用混合弁
10 給湯用中温水取出配管
11 一般給湯配管
12 蛇口
13 給湯温度センサ
14 ふろ用混合弁
15 ふろ用中温水取出配管
16 ふろ給湯配管
17 湯張り温度センサ
18 ふろ電磁弁
19 流量センサ
20 ふろ循環回路
21 浴槽
22 浴槽水
23 ふろ側循環ポンプ
24 ふろ循環温度センサ
25 タンク側循環温度センサ
30 制御装置
30a 判断部
30b 記憶部
31 リモコン
40 貯湯タンクユニット
50 ヒートポンプユニット
100 貯湯式給湯システム
DESCRIPTION OF SYMBOLS 1 Hot water storage tank 1a Hot water storage temperature sensor 1b Tank circulation return port 1c Medium temperature water temperature sensor for hot water supply 1d Medium temperature water temperature sensor for bath 2 Water supply piping 2a General side water supply branch piping 2b Bath side water supply branch piping 3 Heating circulation circuit 4 Remembrance circulation circuit 4a Heat recovery branch pipe 5 Three-way valve 6 Heat exchanger 7 Tank side circulation pump 8 Hot water supply pipe 8a General side hot water supply branch pipe 8b Bath side hot water supply branch pipe 9 Hot water supply mixing valve 10 Hot water medium temperature hot water extraction pipe 11 General hot water supply pipe 12 Faucet DESCRIPTION OF SYMBOLS 13 Hot water temperature sensor 14 Bath mixing valve 15 Bath medium hot water extraction piping 16 Bath hot water piping 17 Hot water temperature sensor 18 Bath solenoid valve 19 Flow sensor 20 Bath circulating circuit 21 Bath 22 Bath water 23 Bath side circulation pump 24 Bath circulating temperature Sensor 25 Tank-side circulation temperature sensor 30 Control device 30a Judgment unit 30b Storage unit 1 remote control 40 hot water storage tank unit 50 heat pump unit 100 storage type hot-water supply system

Claims (7)

  1. 貯湯タンク下部の水を取り出して加熱し該貯湯タンク上部へ戻す、該貯湯タンクの外部に設けられた加熱手段と、
    前記貯湯タンク下部と該貯湯タンク中間部に設けられた中間接続口とを連通する熱回収回路を流れる湯水と浴槽に湯張りされた浴槽水とを熱交換する熱交換器と、
    前記熱回収回路内の温水を循環させる熱回収ポンプと、
    前記浴槽水を浴槽水ポンプにより循環して前記熱交換器で熱交換を行う浴槽水循環回路と、
    前記加熱手段、前記熱回収ポンプおよび前記浴槽水ポンプを制御する制御手段と、
    を備え、
    前記制御手段は、
    前記加熱手段により前記貯湯タンク内の水の加熱を行うタンク沸上動作、及び
    前記熱交換器、前記熱回収ポンプおよび前記浴槽水ポンプにより前記貯湯タンク内の水と前記浴槽水とを熱交換し、前記貯湯タンク内の水の加熱を行う熱回収沸上動作、
    を順に行うことを特徴とする貯湯式給湯システム。
    Heating means provided outside the hot water storage tank that takes out water from the lower part of the hot water storage tank and heats it back to the upper part of the hot water storage tank;
    A heat exchanger for exchanging heat between hot water flowing through a heat recovery circuit that communicates between the lower part of the hot water storage tank and an intermediate connection port provided in the intermediate part of the hot water tank, and the hot water in the bathtub.
    A heat recovery pump for circulating hot water in the heat recovery circuit;
    A bathtub water circulation circuit that circulates the bathtub water with a bathtub water pump and performs heat exchange with the heat exchanger;
    Control means for controlling the heating means, the heat recovery pump and the bathtub water pump;
    With
    The control means includes
    A tank boiling operation for heating water in the hot water storage tank by the heating means, and heat exchange between the water in the hot water storage tank and the bathtub water by the heat exchanger, the heat recovery pump and the bathtub water pump. , A heat recovery boiling operation for heating the water in the hot water storage tank,
    A hot water storage hot water supply system characterized by performing in order.
  2. 前記中間接続口近傍に前記貯湯タンク内の湯温を検出する温度検出手段を備え、
    前記制御手段は、前記温度検出手段で所定温度を検出するまでは前記タンク沸上動作を行い、その後は前記熱回収沸上動作を行うことを特徴とする請求項1に記載の貯湯式給湯システム。
    A temperature detecting means for detecting a hot water temperature in the hot water storage tank in the vicinity of the intermediate connection port;
    The hot water storage hot water supply system according to claim 1, wherein the control means performs the tank boiling operation until the temperature detection means detects a predetermined temperature, and thereafter performs the heat recovery boiling operation. .
  3. 貯湯タンク下部に接続され給水源からの水を該貯湯タンク下部に供給する給水配管と、
    前記貯湯タンク下部の水を取り出して加熱し該貯湯タンク上部へ戻す、該貯湯タンクの外部に設けられた加熱手段と、
    前記貯湯タンク上部の湯水を取り出す上部出湯口と前記給水配管の前記貯湯タンクとの接続位置との間に設けられた前記貯湯タンク内の湯水を取り出す第1の出湯口と、
    前記上部出湯口と前記第1の出湯口との間に設けられた前記貯湯タンク内の湯水を取り出す第2の出湯口と、
    を備え、
    前記上部出湯口を浴槽への湯張りを行うふろ側給湯回路、前記浴槽以外へ給湯を行う一般給湯回路の双方に接続し、前記第1の出湯口を前記一般給湯回路に接続し、前記第2の出湯口を前記ふろ側給湯回路に接続したことを特徴とする貯湯式給湯システム。
    A water supply pipe connected to the lower part of the hot water storage tank and supplying water from the water supply source to the lower part of the hot water storage tank;
    Heating means provided outside the hot water storage tank that takes out the water in the lower part of the hot water storage tank and heats it back to the upper part of the hot water storage tank;
    A first hot water outlet for taking out hot water in the hot water storage tank provided between an upper hot water outlet for taking out hot water in the upper part of the hot water storage tank and a connection position of the hot water storage pipe with the hot water storage tank;
    A second hot water outlet for taking out hot water in the hot water storage tank provided between the upper hot water outlet and the first hot water outlet;
    With
    The upper hot water outlet is connected to both a bath-side hot water supply circuit that fills the bathtub and a general hot water supply circuit that supplies hot water to other than the bathtub, the first hot water outlet is connected to the general hot water supply circuit, and A hot water storage type hot water supply system, wherein two hot water outlets are connected to the bath side hot water supply circuit.
  4. 前記第1の出湯口からの出湯温度を検出する第1出湯温度検出手段と、
    前記第2の出湯口からの出湯温度を検出する第2出湯温度検出手段と、
    前記上部出湯口、前記第2の出湯口、前記給水配管、からの湯水を混合するふろ用混合弁と、
    前記上部出湯口、前記第1の出湯口、前記給水配管、からの湯水を混合する給湯用混合弁と、
    前記ふろ用混合弁、前記給湯用混合弁を制御する制御手段と、
    を備え、
    前記制御手段は、前記第1出湯温度検出手段、前記第2出湯温度検出手段での検出温度により、前記ふろ用混合弁で混合する湯水を前記上部出湯口、前記第2の出湯口、前記給水配管、からの湯水のうち2つを選択して、
    前記給湯用混合弁で混合する湯水を前記上部出湯口、前記第1の出湯口、前記給水配管、からの湯水のうち2つを選択して、
    混合するように制御することを特徴とする請求項3に記載の貯湯式給湯システム。
    First hot water temperature detecting means for detecting a hot water temperature from the first hot water outlet;
    Second hot water temperature detecting means for detecting the temperature of the hot water from the second hot water outlet;
    A bath mixing valve for mixing hot water from the upper hot water outlet, the second hot water outlet, and the water supply pipe;
    A hot water mixing valve for mixing hot water from the upper hot water outlet, the first hot water outlet, and the water supply pipe;
    Control means for controlling the mixing valve for bathing and the mixing valve for hot water supply;
    With
    The control means is configured to control hot water mixed in the mixing valve for the bath according to the temperature detected by the first hot water temperature detecting means and the second hot water temperature detecting means, the upper hot water outlet, the second hot water outlet, and the water supply. Select two of the hot water from the pipe,
    Select hot water from the upper hot water outlet, the first hot water outlet, the hot water supply pipe, hot water to be mixed by the hot water mixing valve,
    It controls so that it may mix, The hot water storage type hot-water supply system of Claim 3 characterized by the above-mentioned.
  5. 前記貯湯タンク下部と該貯湯タンク中間部に設けられた中間接続口とを連通する熱回収回路を備え、
    前記中間接続口を前記第1の出湯口と前記給水配管の前記貯湯タンクとの接続位置との間に設けたことを特徴とする請求項1乃至4のいずれかに記載の貯湯式給湯システム。
    A heat recovery circuit communicating the lower part of the hot water storage tank and an intermediate connection port provided in the intermediate part of the hot water tank;
    The hot water storage hot water supply system according to any one of claims 1 to 4, wherein the intermediate connection port is provided between the first hot water outlet and a connection position between the hot water storage tank of the water supply pipe.
  6. 請求項1または2または5のいずれかに記載の貯湯式給湯システムを制御する制御方法であって、
    前記加熱手段により前記貯湯タンク内の水の加熱を行うタンク沸上ステップと、
    前記熱交換器、前記熱回収ポンプおよび前記浴槽水ポンプにより前記貯湯タンク内の水と前記浴槽水とを熱交換し、前記貯湯タンク内の水の加熱を行う熱回収沸上ステップと、
    を備え、
    前記タンク沸上ステップの後に前記熱回収沸上ステップを行うことを特徴とする貯湯式給湯システムの制御方法。
    A control method for controlling the hot water storage hot water supply system according to claim 1, 2 or 5,
    A tank boiling step for heating water in the hot water storage tank by the heating means;
    A heat recovery boiling step for heat-exchanging the water in the hot water storage tank and the bath water with the heat exchanger, the heat recovery pump and the bathtub water pump, and heating the water in the hot water storage tank;
    With
    A control method for a hot water storage type hot water supply system, wherein the heat recovery boiling step is performed after the tank boiling step.
  7. 請求項5に記載の貯湯式給湯システムを制御する制御方法であって、
    前記熱交換器、前記熱回収ポンプおよび前記浴槽水ポンプにより前記貯湯タンク内の水と前記浴槽水とを熱交換し、前記貯湯タンク内の水の加熱を行う熱回収沸上ステップと、
    前記上部出湯口、前記第1の出湯口、前記給水配管、からの湯水のうち2つを選択して、前記給湯用混合弁で混合する一般給湯制御ステップと、
    前記上部出湯口、前記第2の出湯口、前記給水配管、からの湯水のうち2つを選択して、前記ふろ用混合弁で混合するふろ給湯制御ステップと、
    を備え、
    前記熱回収沸上ステップの後に前記一般給湯制御ステップまたは前記ふろ給湯ステップを行うことを特徴とする貯湯式給湯システムの制御方法。
    A control method for controlling the hot water storage hot water supply system according to claim 5,
    A heat recovery boiling step for heat-exchanging the water in the hot water storage tank and the bath water with the heat exchanger, the heat recovery pump and the bathtub water pump, and heating the water in the hot water storage tank;
    General hot water supply control step of selecting two hot water from the upper hot water outlet, the first hot water outlet, the water supply pipe, and mixing with the hot water mixing valve;
    A hot water supply control step of selecting two of hot water from the upper hot water outlet, the second hot water outlet, and the water supply pipe, and mixing with the mixing valve for the water,
    With
    A control method for a hot water storage type hot water supply system, wherein the general hot water supply control step or the bath hot water supply step is performed after the heat recovery boiling step.
JP2008041604A 2008-02-22 2008-02-22 Hot water storage hot water system, control method for hot water storage hot water system Active JP5141293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008041604A JP5141293B2 (en) 2008-02-22 2008-02-22 Hot water storage hot water system, control method for hot water storage hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008041604A JP5141293B2 (en) 2008-02-22 2008-02-22 Hot water storage hot water system, control method for hot water storage hot water system

Publications (2)

Publication Number Publication Date
JP2009198115A true JP2009198115A (en) 2009-09-03
JP5141293B2 JP5141293B2 (en) 2013-02-13

Family

ID=41141800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008041604A Active JP5141293B2 (en) 2008-02-22 2008-02-22 Hot water storage hot water system, control method for hot water storage hot water system

Country Status (1)

Country Link
JP (1) JP5141293B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185519A (en) * 2010-03-08 2011-09-22 Mitsubishi Electric Corp Hot water storage type water heater
JP2012117768A (en) * 2010-12-02 2012-06-21 Panasonic Corp Storage type water heater
JP5126433B1 (en) * 2012-02-10 2013-01-23 パナソニック株式会社 Water heater
JP2013032892A (en) * 2011-08-03 2013-02-14 Panasonic Corp Hot water supply apparatus
JP2013032900A (en) * 2011-07-06 2013-02-14 Panasonic Corp Water heater
JP2013032893A (en) * 2011-08-03 2013-02-14 Panasonic Corp Hot water supply apparatus
JP2013036708A (en) * 2011-08-10 2013-02-21 Panasonic Corp Water heater
JP2013053839A (en) * 2011-08-05 2013-03-21 Panasonic Corp Water heating device
JP2013076552A (en) * 2011-09-16 2013-04-25 Panasonic Corp Hot water supply apparatus
JP2013155998A (en) * 2012-02-01 2013-08-15 Panasonic Corp Hot water supply device
JP2013167373A (en) * 2012-02-14 2013-08-29 Mitsubishi Electric Corp Storage water heater
JP2013167391A (en) * 2012-02-15 2013-08-29 Panasonic Corp Water heater
JP2013167390A (en) * 2012-02-15 2013-08-29 Panasonic Corp Water heater
JP2013170782A (en) * 2012-02-22 2013-09-02 Panasonic Corp Water heater
JP2013174379A (en) * 2012-02-24 2013-09-05 Panasonic Corp Hot water supply device
JP2013221705A (en) * 2012-04-18 2013-10-28 Mitsubishi Electric Corp Storage type water heater
JP2013221632A (en) * 2012-04-13 2013-10-28 Panasonic Corp Water heater
JP2014129989A (en) * 2012-12-29 2014-07-10 Corona Corp Hot water storage type water heater
CN106320425A (en) * 2016-09-18 2017-01-11 上海展华电子有限公司 Water chiller unit heat energy recovery and utilization system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237245A (en) * 1986-04-04 1987-10-17 Matsushita Electric Ind Co Ltd Bath tub incorporated in heat exchanger
JPH02178576A (en) * 1988-12-28 1990-07-11 Matsushita Electric Ind Co Ltd Multi-heat pump hot water feeding system
JP2001108292A (en) * 1999-10-05 2001-04-20 Matsushita Electric Ind Co Ltd Hot water reservoir type water heater
JP2003269791A (en) * 2002-03-18 2003-09-25 Matsushita Electric Ind Co Ltd Bath heat recovery type hot water heater
JP2004257692A (en) * 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd Water heater
JP2006105529A (en) * 2004-10-07 2006-04-20 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2007040553A (en) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd Storage type hot water supply device
JP2007046879A (en) * 2005-08-12 2007-02-22 Daikin Ind Ltd Heat pump type water heater
JP2007315620A (en) * 2006-05-23 2007-12-06 Sanden Corp Water heater

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237245A (en) * 1986-04-04 1987-10-17 Matsushita Electric Ind Co Ltd Bath tub incorporated in heat exchanger
JPH02178576A (en) * 1988-12-28 1990-07-11 Matsushita Electric Ind Co Ltd Multi-heat pump hot water feeding system
JP2001108292A (en) * 1999-10-05 2001-04-20 Matsushita Electric Ind Co Ltd Hot water reservoir type water heater
JP2003269791A (en) * 2002-03-18 2003-09-25 Matsushita Electric Ind Co Ltd Bath heat recovery type hot water heater
JP2004257692A (en) * 2003-02-27 2004-09-16 Matsushita Electric Ind Co Ltd Water heater
JP2006105529A (en) * 2004-10-07 2006-04-20 Matsushita Electric Ind Co Ltd Hot water storage type water heater
JP2007040553A (en) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd Storage type hot water supply device
JP2007046879A (en) * 2005-08-12 2007-02-22 Daikin Ind Ltd Heat pump type water heater
JP2007315620A (en) * 2006-05-23 2007-12-06 Sanden Corp Water heater

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185519A (en) * 2010-03-08 2011-09-22 Mitsubishi Electric Corp Hot water storage type water heater
JP2012117768A (en) * 2010-12-02 2012-06-21 Panasonic Corp Storage type water heater
JP2013032900A (en) * 2011-07-06 2013-02-14 Panasonic Corp Water heater
JP2013032892A (en) * 2011-08-03 2013-02-14 Panasonic Corp Hot water supply apparatus
JP2013032893A (en) * 2011-08-03 2013-02-14 Panasonic Corp Hot water supply apparatus
JP2013053839A (en) * 2011-08-05 2013-03-21 Panasonic Corp Water heating device
JP2013036708A (en) * 2011-08-10 2013-02-21 Panasonic Corp Water heater
JP2013076552A (en) * 2011-09-16 2013-04-25 Panasonic Corp Hot water supply apparatus
JP2013155998A (en) * 2012-02-01 2013-08-15 Panasonic Corp Hot water supply device
JP5126433B1 (en) * 2012-02-10 2013-01-23 パナソニック株式会社 Water heater
JP2013167373A (en) * 2012-02-14 2013-08-29 Mitsubishi Electric Corp Storage water heater
JP2013167391A (en) * 2012-02-15 2013-08-29 Panasonic Corp Water heater
JP2013167390A (en) * 2012-02-15 2013-08-29 Panasonic Corp Water heater
JP2013170782A (en) * 2012-02-22 2013-09-02 Panasonic Corp Water heater
JP2013174379A (en) * 2012-02-24 2013-09-05 Panasonic Corp Hot water supply device
JP2013221632A (en) * 2012-04-13 2013-10-28 Panasonic Corp Water heater
JP2013221705A (en) * 2012-04-18 2013-10-28 Mitsubishi Electric Corp Storage type water heater
JP2014129989A (en) * 2012-12-29 2014-07-10 Corona Corp Hot water storage type water heater
CN106320425A (en) * 2016-09-18 2017-01-11 上海展华电子有限公司 Water chiller unit heat energy recovery and utilization system

Also Published As

Publication number Publication date
JP5141293B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP3888455B2 (en) Cogeneration system
JP4774909B2 (en) Heat pump water heater
JP4670491B2 (en) Water heater
JP3977241B2 (en) Hot water storage water heater
JP2006105434A (en) Heat pump hot water supply heating device
JP5215692B2 (en) Heat pump water heater
KR101386087B1 (en) Hot water supply system
JP4995032B2 (en) Hot water storage water heater
JP2004101134A (en) Hot water storage type hot-water feeder
JP5347654B2 (en) Hot water storage hot water supply system
JP5200842B2 (en) Water heater
JP4893070B2 (en) Return hot water recovery method and hot water supply system
JP2009068825A (en) Water heater
JP2009092323A (en) Heat pump water heater
JP5419504B2 (en) Hot water storage water heater
JP3857601B2 (en) Cogeneration system
JP2006003039A (en) Selector valve unit, draining method, and draining apparatus
JP2010196992A (en) Water heater
JP4158694B2 (en) Hot water storage type heat pump water heater
JP2007198708A (en) Hybrid hot water supply system
JP2009281658A (en) Water heater
JP2007032904A (en) Cogeneration system
JP2013113495A (en) Hot water storage type hot water supply system
JP2010266186A (en) Hot-water storage type hot-water supply device
TWI377325B (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5141293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250