JP2009198016A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2009198016A
JP2009198016A JP2008036932A JP2008036932A JP2009198016A JP 2009198016 A JP2009198016 A JP 2009198016A JP 2008036932 A JP2008036932 A JP 2008036932A JP 2008036932 A JP2008036932 A JP 2008036932A JP 2009198016 A JP2009198016 A JP 2009198016A
Authority
JP
Japan
Prior art keywords
header
refrigerant
heat exchanger
pipe
inlet pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008036932A
Other languages
Japanese (ja)
Other versions
JP4357571B2 (en
Inventor
Madoka Ueno
円 上野
Original Assignee
Sharp Corp
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp, シャープ株式会社 filed Critical Sharp Corp
Priority to JP2008036932A priority Critical patent/JP4357571B2/en
Publication of JP2009198016A publication Critical patent/JP2009198016A/en
Application granted granted Critical
Publication of JP4357571B2 publication Critical patent/JP4357571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/028Cores with empty spaces or with additional elements integrated into the cores

Abstract

<P>PROBLEM TO BE SOLVED: To equalize a flow rate of a refrigerant in each of flat tubes in a parallel flow type heat exchanger. <P>SOLUTION: This heat exchanger 1 comprises a lower header tube 2 at a refrigerant inflow side, an upper header tube 3 at a refrigerant outflow side, and the plurality of flat tubes 4 disposed at prescribed pitches between both header tubes in a state that vertical refrigerant passages 5 formed inside are communicated with the inside of both header tubes. An inlet pipe 7 for allowing the refrigerant R to flow into the lower header tube 2 is disposed between a certain pair of flat tubes 4 at a position separating from an outlet pipe 8 for allowing the refrigerant to flow out from the upper header tube 3, among the plurality of flat tubes 4, and connected with the lower header tube 2 from the direction upper than the horizontal. The outlet pipe 8 is disposed at both ends of the upper header tube 2, and the inlet pipe 7 is positioned between the pair of flat tubes 4 at a central portion of the lower header tube 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は空気調和機や冷凍機器に利用されるパラレルフロー型の熱交換器に関する。   The present invention relates to a parallel flow type heat exchanger used for an air conditioner or a refrigeration apparatus.
上下2本のヘッダー管の間に複数の垂直な偏平チューブを配置し、偏平チューブ内部の冷媒通路を両ヘッダー管の内部に連通させたパラレルフロー型の熱交換器はカーエアコンなどに広く利用されている。その例を特許文献1、2に見ることができる。   Parallel flow type heat exchangers in which a plurality of vertical flat tubes are arranged between two upper and lower header tubes and the refrigerant passages in the flat tubes communicate with both header tubes are widely used in car air conditioners and the like. ing. Examples thereof can be seen in Patent Documents 1 and 2.
パラレルフロー型熱交換器においては、各偏平チューブの冷媒流量を均等化することが熱交換性能向上の鍵を握る。特許文献1、2に記載されたパラレルフロー型熱交換器では、次のようにして各偏平チューブの冷媒流量の均等化を図っている。   In a parallel flow type heat exchanger, equalizing the refrigerant flow rate of each flat tube is the key to improving the heat exchange performance. In the parallel flow heat exchangers described in Patent Documents 1 and 2, the refrigerant flow rates of the flat tubes are equalized as follows.
特許文献1記載の熱交換器は、冷媒流入側容器(下部ヘッダー管)に挿入接続された伝熱管(偏平チューブ)の端部に、冷媒流通方向に対して斜めになるように傾斜部を形成し、伝熱管の挿入量の誤差による影響をなくして、液体冷媒が均等に伝熱管に分流するようにしている。あるいは、伝熱管の冷媒流入側容器側を水平方向に屈曲し、冷媒流入側容器に水平方向から挿入接続して、液体冷媒の液面に対する伝熱管の挿入量の誤差をなくし、
液体冷媒が均等に分流して伝熱管に流れるようにしている。
In the heat exchanger described in Patent Document 1, an inclined portion is formed at an end of a heat transfer tube (flat tube) inserted and connected to a refrigerant inflow side container (lower header tube) so as to be inclined with respect to the refrigerant flow direction. And the influence by the error of the insertion amount of a heat exchanger tube is eliminated, and a liquid refrigerant | coolant is divided into a heat exchanger tube equally. Alternatively, the refrigerant inflow side container side of the heat transfer tube is bent in the horizontal direction, and inserted and connected to the refrigerant inflow side container from the horizontal direction to eliminate an error in the amount of heat transfer tube insertion with respect to the liquid refrigerant level,
The liquid refrigerant is divided equally and flows to the heat transfer tubes.
特許文献2記載の熱交換器は、一方のヘッダー管の中央部に熱媒体一括流通口を形成し、他方のヘッダー管の両端部には熱媒体分割流通口を形成して、適切な分流条件を形成している。
特許第3133897号公報 実開平6−14782号公報
In the heat exchanger described in Patent Document 2, a heat medium collective flow port is formed at the center of one header pipe, and a heat medium divided flow port is formed at both ends of the other header pipe, so Is forming.
Japanese Patent No. 3133897 Japanese Utility Model Publication No. 6-14782
図14は従来のパラレルフロー型熱交換器の概略構造を示す模型的垂直断面図である。熱交換器1は、共に水平な下部ヘッダー管2と上部ヘッダー管3を上下に間隔を置いて平行に配置し、下部ヘッダー管2と上部ヘッダー管3の間に垂直な偏平チューブ4を所定ピッチで複数配置したものである。偏平チューブ4はアルミニウム等熱伝導の良い金属を押出成型した細長い成型品であり、内部には冷媒Rを流通させる冷媒通路5が垂直に形成されている。冷媒通路5は上部ヘッダー管2の内部と下部ヘッダー管3の内部を連通させる。   FIG. 14 is a schematic vertical sectional view showing a schematic structure of a conventional parallel flow heat exchanger. In the heat exchanger 1, a horizontal lower header pipe 2 and an upper header pipe 3 are arranged in parallel with a vertical interval, and a vertical flat tube 4 is arranged between the lower header pipe 2 and the upper header pipe 3 at a predetermined pitch. A plurality are arranged. The flat tube 4 is an elongated molded product obtained by extruding a metal having good heat conductivity such as aluminum, and a refrigerant passage 5 through which the refrigerant R is circulated is formed vertically. The refrigerant passage 5 communicates the inside of the upper header pipe 2 and the inside of the lower header pipe 3.
下部ヘッダー管2及び上部ヘッダー管3と偏平チューブ4とは溶着により固定される。偏平チューブ4同士の間にはコルゲートフィン6が配置され、偏平チューブ4とコルゲートフィン6も溶着により固定される。偏平チューブ4と同様、下部ヘッダー管2及び上部ヘッダー管3とコルゲートフィン6も熱伝導の良い金属(例えば、アルミニウム)からなる。   The lower header pipe 2, the upper header pipe 3, and the flat tube 4 are fixed by welding. Corrugated fins 6 are disposed between the flat tubes 4, and the flat tubes 4 and the corrugated fins 6 are also fixed by welding. Similar to the flat tube 4, the lower header tube 2, the upper header tube 3 and the corrugated fin 6 are also made of a metal having good heat conductivity (for example, aluminum).
下部ヘッダー管2は冷媒流入側であり、一端に入口パイプ7が接続される。上部ヘッダー管3は冷媒流出側であり、一端に出口パイプ8が接続される。入口パイプ7は下部ヘッダー管2と、出口パイプ8は上部ヘッダー管3と、それぞれ同心的に配置されており、冷媒は水平方向から下部ヘッダー管2に流入し、上部ヘッダー管3から水平方向に流出する。   The lower header pipe 2 is on the refrigerant inflow side, and an inlet pipe 7 is connected to one end. The upper header pipe 3 is on the refrigerant outflow side, and an outlet pipe 8 is connected to one end. The inlet pipe 7 is concentrically disposed with the lower header pipe 2 and the outlet pipe 8 is concentrically disposed with the upper header pipe 3. The refrigerant flows into the lower header pipe 2 from the horizontal direction, and from the upper header pipe 3 in the horizontal direction. leak.
特許文献1の例と同様、入口パイプ7と出口パイプ8は互いに対角線の位置に配置されている。入口パイプ7から液状の冷媒Rを流入させると、下部ヘッダー管2の内部では、右端の行き止まり部に近くなるほど液位が高まる傾向が生じ、それに比例して偏平チューブ4の冷媒流量が多くなる。この結果、各偏平チューブ4の冷媒流量は均等化しない。   Similar to the example of Patent Document 1, the inlet pipe 7 and the outlet pipe 8 are arranged diagonally to each other. When the liquid refrigerant R is introduced from the inlet pipe 7, the liquid level tends to increase in the lower header pipe 2 as it approaches the dead end at the right end, and the refrigerant flow rate in the flat tube 4 increases in proportion thereto. As a result, the refrigerant flow rates of the flat tubes 4 are not equalized.
冷媒流量を均等化するため、図15に示すように、下部ヘッダー管2の内部に水平な仕切り板9を挿入することも行われるが、根本的な解決策とはなっていない。   In order to equalize the refrigerant flow rate, as shown in FIG. 15, a horizontal partition plate 9 is also inserted into the lower header pipe 2, but this is not a fundamental solution.
特許文献2記載の熱交換器のように、下部ヘッダー管2の中央に下から入口パイプ7を接続し、上部ヘッダー管3の両端に水平な出口パイプ8を接続する構成とした場合、入口パイプ7に近い中央寄りの偏平チューブ4に対しては、冷媒Rが下部ヘッダー管2に流入するときの上向きの運動エネルギーを維持したまま流入するので流量が多くなる。しかしながら中央から離れた偏平チューブ4にはそのような上向きの運動エネルギーを持った冷媒Rが届かず、冷媒流量が少なくなってしまう。すなわち冷媒流量の均等化を実現するのは至難である。また、下部ヘッダー管2の下側から入口パイプ7が突き出すので、熱交換器1の下に来る部材(熱交換器1を収納するハウジングの底板など)に入口パイプ7が当たらない高さまで熱交換器1を持ち上げる必要があり、設置のために必要なスペースが大きくなる。   In the case where the inlet pipe 7 is connected from the bottom to the center of the lower header pipe 2 and the horizontal outlet pipes 8 are connected to both ends of the upper header pipe 3 as in the heat exchanger described in Patent Document 2, the inlet pipe Since the refrigerant R flows into the lower header pipe 2 while maintaining the upward kinetic energy when it flows to the flat tube 4 near the center close to 7, the flow rate increases. However, the refrigerant R having such upward kinetic energy does not reach the flat tube 4 away from the center, and the refrigerant flow rate decreases. That is, it is very difficult to achieve equalization of the refrigerant flow rate. Further, since the inlet pipe 7 protrudes from the lower side of the lower header pipe 2, heat exchange is performed up to a height at which the inlet pipe 7 does not hit a member (such as a bottom plate of the housing that houses the heat exchanger 1) that comes under the heat exchanger 1. The container 1 needs to be lifted, and the space required for installation increases.
本発明は上記の点に鑑みなされたものであり、パラレルフロー型熱交換器の各偏平チューブの冷媒流量均等化を、従来とは異なるアプローチで実現することを目的とする。   This invention is made | formed in view of said point, and it aims at implement | achieving the refrigerant | coolant flow volume equalization of each flat tube of a parallel flow type heat exchanger by the approach different from the past.
上記目的を達成するために本発明は、冷媒流入側となる下部ヘッダー管と、冷媒流出側となる上部ヘッダー管と、前記両ヘッダー管の間に複数配置され、内部に設けた冷媒通路を前記両ヘッダー管の内部に連通させた垂直な偏平チューブとを備えた熱交換器において、前記下部ヘッダー管に冷媒を流入させる入口パイプは、前記複数の偏平チューブの中で前記上部ヘッダー管から冷媒を流出させる出口パイプから離れた位置にある1対の偏平チューブの間に配置され、水平よりも上の方向から下部ヘッダー管に接続されていることを特徴としている。   In order to achieve the above object, the present invention provides a plurality of lower header pipes on the refrigerant inflow side, upper header pipes on the refrigerant outflow side, and a plurality of refrigerant passages disposed between the header pipes. In the heat exchanger having a vertical flat tube communicated with the inside of both header pipes, an inlet pipe for allowing the refrigerant to flow into the lower header pipe receives the refrigerant from the upper header pipe in the plurality of flat tubes. It is arranged between a pair of flat tubes located away from the outlet pipe to be discharged, and is connected to the lower header pipe from above the horizontal direction.
この構成によると、入口パイプを出口パイプから離れた位置に置くという伝統的な構成を採用した上で、入口パイプを下部ヘッダー管に対し、水平よりも上の方向から接続することとしたため、冷媒は下部ヘッダー管の内部で上向きに反射して運動エネルギーを圧力に変換することになり、その圧力が下部ヘッダー管の内部全体に及ぶ。これにより、流入方向の運動エネルギーを持った冷媒が特定の偏平チューブに集中することが避けられ、偏平チューブ間の冷媒流量の均等化を図ることができる。   According to this configuration, after adopting the traditional configuration of placing the inlet pipe away from the outlet pipe, the inlet pipe is connected to the lower header pipe from above the horizontal direction. Is reflected upward in the lower header tube to convert the kinetic energy into pressure, and the pressure reaches the entire interior of the lower header tube. Thereby, it is avoided that the refrigerant having the kinetic energy in the inflow direction concentrates on the specific flat tube, and the flow rate of the refrigerant between the flat tubes can be equalized.
上記構成の熱交換器において、前記入口パイプは、それを挟む前記1対の偏平チューブの間を前記上部ヘッダー管近傍まで延びることが好ましい。   In the heat exchanger configured as described above, it is preferable that the inlet pipe extends to the vicinity of the upper header pipe between the pair of flat tubes sandwiching the inlet pipe.
このような構成にすれば、入口パイプ自身を熱交換に役立て、熱交換効率を高めることができる。   With such a configuration, the inlet pipe itself can be used for heat exchange, and heat exchange efficiency can be increased.
上記構成の熱交換器において、前記入口パイプを挟む前記1対の偏平チューブの間に遮風板が設けられていることが好ましい。   In the heat exchanger configured as described above, it is preferable that a wind shielding plate is provided between the pair of flat tubes sandwiching the inlet pipe.
このような構成にすれば、入口パイプを配置するため間隔を広げた偏平チューブ間を空気が通らなくなり、偏平チューブと熱交換を行うことなく無為に熱交換器を吹き抜ける空気の量を減らして、熱交換効率を高めることができる。   With such a configuration, air can no longer pass between the flat tubes whose intervals are widened to arrange the inlet pipe, reducing the amount of air that blows through the heat exchanger without exchanging heat with the flat tubes, Heat exchange efficiency can be increased.
上記構成の熱交換器において、前記入口パイプを挟む前記1対の偏平チューブの間に、これら両偏平チューブと熱の授受を行う熱伝導板が設けられていることが好ましい。   In the heat exchanger configured as described above, it is preferable that a heat conduction plate for transferring heat to and from both the flat tubes is provided between the pair of flat tubes sandwiching the inlet pipe.
このような構成にすれば、入口パイプを配置するため間隔を広げた偏平チューブ間を通る空気との間で熱交換を行うことができ、熱交換効率を高めることができる。   With such a configuration, heat exchange can be performed with the air passing between the flat tubes whose intervals are increased in order to arrange the inlet pipe, and the heat exchange efficiency can be increased.
上記構成の熱交換器において、前記上部ヘッダー管の両端に前記出口パイプが設けられ、前記入口パイプは、前記下部ヘッダー管の中央部に位置する1対の偏平チューブの間に配置されることが好ましい。   In the heat exchanger configured as described above, the outlet pipes may be provided at both ends of the upper header pipe, and the inlet pipe may be disposed between a pair of flat tubes located at the center of the lower header pipe. preferable.
このような構成にすれば、入口パイプから流入した冷媒は下部ヘッダー管の中央部の内壁面に上方から衝突するので、左右に分かれやすく、入口パイプの左右に並ぶ偏平チューブに均等に分流することになる。   With such a configuration, the refrigerant flowing in from the inlet pipe collides with the inner wall surface of the central portion of the lower header pipe from above, so that it can be easily divided into left and right, and is equally distributed to the flat tubes arranged on the left and right sides of the inlet pipe. become.
本発明によると、出口パイプから離れた位置に置いた入口パイプを、下部ヘッダー管に水平よりも上の方向から接続することにより、流入方向の運動エネルギーを持った冷媒が特定の偏平チューブに集中することが避けられ、各偏平チューブの冷媒流量の均等化を図ることができる。   According to the present invention, the inlet pipe placed at a position away from the outlet pipe is connected to the lower header pipe from above in the horizontal direction, so that the refrigerant having the kinetic energy in the inflow direction concentrates on the specific flat tube. It is possible to avoid this, and to equalize the refrigerant flow rate of each flat tube.
以下本発明の第1実施形態を図1及び図2に基づき説明する。図1は熱交換器の概略構造を示す模型的垂直断面図、図2は図1のA−A線に沿って切断した断面図である。   A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic vertical sectional view showing a schematic structure of a heat exchanger, and FIG. 2 is a sectional view taken along line AA in FIG.
第1実施形態の熱交換器1は、図16に示した従来構造と多くの部分が共通しているので、共通部分には図16で用いたのと同じ符号を付し、重複説明は避けるものとする。第1実施形態が図16の従来構造と異なるのは、入口パイプ7の配置方法である。入口パイプ7は出口パイプ8から離れた位置に置く。出口パイプ8は上部ヘッダー管3の両端にあるので、下部ヘッダー管2の中央部が出口パイプ8から離れた位置ということになる。ここまでは図16の従来構造と同じであるが、本発明では、入口パイプ7を下部ヘッダー管2に下から接続するのでなく、上から接続した。そして入口パイプ7と偏平チューブ4との干渉を避けるため、下部ヘッダー管2の水平方向中央部に位置する1対の偏平チューブ4のみ間隔を広げ、その間に入口パイプ7を配置した。入口パイプ7の左右には同数ずつの偏平チューブ4が等間隔(所定ピッチ)で並ぶものとした。   Since the heat exchanger 1 of the first embodiment has many parts in common with the conventional structure shown in FIG. 16, the common parts are denoted by the same reference numerals as those used in FIG. Shall. The first embodiment is different from the conventional structure of FIG. 16 in the arrangement method of the inlet pipe 7. The inlet pipe 7 is placed away from the outlet pipe 8. Since the outlet pipes 8 are at both ends of the upper header pipe 3, the center portion of the lower header pipe 2 is located away from the outlet pipe 8. Up to this point, the structure is the same as that of the conventional structure shown in FIG. In order to avoid interference between the inlet pipe 7 and the flat tube 4, only a pair of flat tubes 4 positioned at the center in the horizontal direction of the lower header pipe 2 is widened, and the inlet pipe 7 is arranged therebetween. The same number of flat tubes 4 are arranged at equal intervals (predetermined pitch) on the left and right sides of the inlet pipe 7.
第1実施形態の熱交換器1においては、入口パイプ7から流入した液状の冷媒Rは下部ヘッダー管2の上向きの内壁面で反射して運動エネルギーを圧力に変換することになり、その圧力が下部ヘッダー管2の内部全体に及ぶ。このため、流入方向の運動エネルギーを持った冷媒が特定の偏平チューブ4に集中することが避けられ、各偏平チューブ4の冷媒流量の均等化を図ることができる。   In the heat exchanger 1 of the first embodiment, the liquid refrigerant R flowing from the inlet pipe 7 is reflected by the upward inner wall surface of the lower header pipe 2 to convert kinetic energy into pressure, and the pressure is The entire inside of the lower header pipe 2 is extended. For this reason, it is avoided that the refrigerant having the kinetic energy in the inflow direction concentrates on the specific flat tube 4, and the refrigerant flow rate of each flat tube 4 can be equalized.
また、下部ヘッダー管2の下部から入口パイプ7が突き出さないので、熱交換器1の下面に他の部材を接近させることができ、熱交換器1を収納する機器のコンパクト化を図ることができる。   In addition, since the inlet pipe 7 does not protrude from the lower part of the lower header pipe 2, other members can be brought close to the lower surface of the heat exchanger 1, and the equipment that houses the heat exchanger 1 can be made compact. it can.
また、上部ヘッダー管3の両端に出口パイプ8が設けられ、入口パイプ7は、下部ヘッダー管2の中央部に位置する1対の偏平チューブ4の間に配置されているので、入口パイプ7から流入した冷媒Rは下部ヘッダー管2の中央部の内壁面に上方から衝突し、それから左右に分流することになる。この構成は冷媒Rが左右に分かれやすく、入口パイプ7の左右に並ぶ偏平チューブ4に均等に流れやすい。   Further, outlet pipes 8 are provided at both ends of the upper header pipe 3, and the inlet pipe 7 is disposed between a pair of flat tubes 4 positioned at the center of the lower header pipe 2. The refrigerant R that has flowed in collides with the inner wall surface of the central portion of the lower header pipe 2 from above, and then flows to the left and right. In this configuration, the refrigerant R can be easily divided into left and right, and can easily flow evenly into the flat tubes 4 arranged on the left and right of the inlet pipe 7.
入口パイプ7は下部ヘッダー管2に真上から接続する必要はない。図2に仮想線で示すように、下部ヘッダー管2の軸線と直交する面内で斜めに接続してもよい。水平よりも上の方向から(図2では下部ヘッダー管2の軸心を通る水平線を線分H−Hで示したが、その水平線よりも上の方向から)下部ヘッダー管2に接続されていればよい。   The inlet pipe 7 does not need to be connected to the lower header pipe 2 from directly above. As shown in phantom lines in FIG. 2, the connection may be made obliquely in a plane orthogonal to the axis of the lower header pipe 2. Connected to the lower header tube 2 from above the horizontal (in FIG. 2, the horizontal line passing through the axis of the lower header tube 2 is indicated by the line HH, but from above the horizontal line) That's fine.
このように本発明によれば、パラレルフロー型熱交換器の設置に必要なスペースをコンパクトにまとめつつ、各偏平チューブの冷媒流量の均等化を実現することができる。   As described above, according to the present invention, it is possible to achieve equalization of the refrigerant flow rates of the respective flat tubes while compactly collecting the space necessary for installing the parallel flow heat exchanger.
第1実施形態の変形態様を図3及び図4に示す。図3は熱交換器の概略構造を示す模型的垂直断面図、図4は図3のB−B線に沿って切断した断面図である。   A modification of the first embodiment is shown in FIGS. FIG. 3 is a schematic vertical sectional view showing a schematic structure of the heat exchanger, and FIG. 4 is a sectional view taken along the line BB of FIG.
変形態様では、下部ヘッダー管2の内部の中ほどの高さのところに、端から端まで届く水平な仕切り板9を挿入した。このようにしておくと、下部ヘッダー管2の内部で冷媒Rが液相と気相の二相に分離したとしても、液相と気相の境界面の位置が高くなり、偏平チューブ4への液相冷媒Rの流入が滞らない。   In the modification, a horizontal partition plate 9 that reaches from end to end is inserted at a middle height inside the lower header pipe 2. By doing so, even if the refrigerant R is separated into two phases of the liquid phase and the gas phase inside the lower header pipe 2, the position of the boundary surface between the liquid phase and the gas phase becomes high, and the flow to the flat tube 4 is increased. The inflow of the liquid refrigerant R is not delayed.
また、次のような変形態様も考えられる。すなわち、入口パイプ7の左右に同数ずつの偏平チューブ4を等間隔で並べるのでなく、ピッチの広いところもあれば狭いところもあるように並べるのである。なおピッチの広狭は、入口パイプ7を挟んで左右対称の配置となっているのが好ましい。   Moreover, the following deformation | transformation aspects are also considered. That is, the same number of flat tubes 4 are not arranged on the left and right sides of the inlet pipe 7 at equal intervals, but are arranged so that there are some places where the pitch is wide and some places are narrow. The width of the pitch is preferably symmetrical with respect to the inlet pipe 7.
図5に示すのは、入口パイプの接続角度が各偏平チューブ内の平均流量にどのように影響するかのシミュレーション結果のグラフである。入口パイプの両側に14本ずつの偏平チューブが配置されるものとした。仕切り板の有無と接続角度によって(a)〜(e)の5パターンを想定し、それぞれについてシミュレーションを行った。図6に(a)〜(e)の各パターンにおける下部ヘッダー管の断面図を示す。なお接続角度は、入口パイプが偏平チューブと平行である状態(垂直な状態)を0°とし、入口パイプが偏平チューブと直角を成す角度(水平な状態)を90°としている。   FIG. 5 is a graph of simulation results showing how the connection angle of the inlet pipe affects the average flow rate in each flat tube. Fourteen flat tubes were arranged on both sides of the inlet pipe. A simulation was performed for each of the five patterns (a) to (e) depending on the presence or absence of the partition plate and the connection angle. FIG. 6 is a cross-sectional view of the lower header pipe in each of the patterns (a) to (e). The connection angle is 0 ° when the inlet pipe is parallel to the flat tube (vertical state), and 90 ° when the inlet pipe forms a right angle with the flat tube (horizontal state).
図5のグラフからは次のような傾向が見てとれる。すなわち、(c)(d)(e)の「仕切り無し」の場合、入口パイプ近傍の偏平チューブ(チューブ位置13〜16)では、入口パイプ角度が大きいほどチューブ内平均流量が増加している。入口パイプ7から離れた偏平チューブ(チューブ位置5〜10、19〜24)では、入口パイプ角度が大きいほどチューブ内平均流量が減少している。理想的なのは、全ての偏平チューブの平均流量が同一になることであるが、それに近いのが(d)の入口パイプ角度30°の場合、ということになる。   The following tendency can be seen from the graph of FIG. That is, in the case of “no partition” in (c), (d), and (e), in the flat tube (tube positions 13 to 16) near the inlet pipe, the average flow rate in the tube increases as the inlet pipe angle increases. In the flat tubes (tube positions 5 to 10 and 19 to 24) far from the inlet pipe 7, the average flow rate in the tube decreases as the inlet pipe angle increases. Ideally, the average flow rate of all the flat tubes is the same, but it is close to that when the inlet pipe angle is 30 ° in (d).
第2実施形態を図7及び図8に示す。図7は熱交換器の概略構造を示す模型的垂直断面図、図8は図7のC−C線に沿って切断した断面図である。   A second embodiment is shown in FIGS. FIG. 7 is a schematic vertical sectional view showing the schematic structure of the heat exchanger, and FIG. 8 is a sectional view taken along the line CC in FIG.
第2実施形態は、第1実施形態に次のような改変を加えたものである。すなわち第2実施形態では、入口パイプ7は、それを挟む1対の偏平チューブ4の間を上部ヘッダー管3の近傍まで延びている。このようにすることにより、入口パイプ7とその傍らを通り過ぎる空気との間で熱交換を行わせ、熱交換器1の熱交換効率を高めることができる。   The second embodiment is obtained by adding the following modifications to the first embodiment. That is, in the second embodiment, the inlet pipe 7 extends between the pair of flat tubes 4 sandwiching the inlet pipe 7 to the vicinity of the upper header pipe 3. By doing in this way, heat exchange can be performed between the inlet pipe 7 and the air passing therearound, and the heat exchange efficiency of the heat exchanger 1 can be increased.
第3実施形態を図9及び図10に示す。図9は熱交換器の概略構造を示す模型的垂直断面図、図10は図9のD−D線に沿って切断した断面図である。   A third embodiment is shown in FIGS. FIG. 9 is a schematic vertical sectional view showing the schematic structure of the heat exchanger, and FIG. 10 is a sectional view taken along the line DD in FIG.
第3実施形態は、第1実施形態に次のような改変を加えたものである。すなわち第3実施形態では、入口パイプ7を挟む1対の偏平チューブ4の間に遮風板10を設けた。図に示す遮風板10は矩形の平板であって、下部ヘッダー管2及び上部ヘッダー管3と偏平チューブ4との溶着部の肉盛りや、下部ヘッダー管2、上部ヘッダー管3、及び偏平チューブ4の形状不整により取り付けが阻害されないよう、四隅は角を落とし、四辺には肉盗みを施した形状である。遮風板10には偏平チューブ4等と同じ材質のものを使用し、溶着により固定することとするのがよい。   In the third embodiment, the following modification is added to the first embodiment. That is, in the third embodiment, the wind shielding plate 10 is provided between the pair of flat tubes 4 that sandwich the inlet pipe 7. The wind shielding plate 10 shown in the figure is a rectangular flat plate, and includes a build-up of a welded portion between the lower header pipe 2 and the upper header pipe 3 and the flat tube 4, and the lower header pipe 2, the upper header pipe 3, and the flat tube. The corners of the four corners are cut off and the sides are stealed so that the mounting is not hindered by the irregular shape of 4. The wind shield 10 is preferably made of the same material as the flat tube 4 and fixed by welding.
遮風板10があることにより、入口パイプ7を配置するため間隔を広げた偏平チューブ4間を空気が通りにくくなる。この場合、間隔を広げた偏平チューブ4間で空気の通り抜けが可能なのは偏平チューブ4に沿った遮風板10の肉盗み部分等のみであり、空気流量が大幅に絞られる。これにより、偏平チューブ4と熱交換を行うことなく無為に熱交換器1を吹き抜ける空気の量が減り、熱交換効率が向上する。なお、肉盗み部のような隙間は必要不可欠という訳ではなく、間隔を広げた偏平チューブ4間を隙間無く遮風板10で塞ぐ構成であってもよい。   The presence of the wind shielding plate 10 makes it difficult for air to pass between the flat tubes 4 whose intervals are increased in order to arrange the inlet pipe 7. In this case, only the meat stealing portion of the wind shield 10 along the flat tube 4 can pass air between the flat tubes 4 with wide intervals, and the air flow rate is greatly reduced. Thereby, the quantity of the air which blows through the heat exchanger 1 unnecessarily without performing heat exchange with the flat tube 4 is reduced, and the heat exchange efficiency is improved. Note that a gap such as a meat stealing portion is not indispensable, and a configuration in which the flat tube 4 with a wide interval is closed with a wind shielding plate 10 without a gap may be used.
遮蔽板10の水平断面を、風上側に凸となるアーチ形状としてもよい。このようにすれば、遮蔽板10の表面に沿って風がスムーズに流れ、通風抵抗が減少する。その結果、熱交換効率が向上する。   The horizontal cross section of the shielding plate 10 may have an arch shape that is convex toward the windward side. If it does in this way, a wind will flow smoothly along the surface of shielding board 10, and ventilation resistance will decrease. As a result, the heat exchange efficiency is improved.
第4実施形態を図11及び図12に示す。図11は熱交換器の概略構造を示す模型的垂直断面図、図12は図9のE−E線に沿って切断した断面図である。   A fourth embodiment is shown in FIGS. 11 is a schematic vertical sectional view showing a schematic structure of the heat exchanger, and FIG. 12 is a sectional view taken along the line EE of FIG.
第4実施形態は、第1実施形態に次のような改変を加えたものである。すなわち第4実施形態では、入口パイプ7を挟む1対の偏平チューブ4の間に、これら両偏平チューブと熱の授受を行う熱伝導板11を設けた。図に示す熱伝導板11は幅広のコルゲートフィンとなっている。   The fourth embodiment is obtained by adding the following modifications to the first embodiment. In other words, in the fourth embodiment, the heat conducting plate 11 is provided between the pair of flat tubes 4 sandwiching the inlet pipe 7 to exchange heat with these flat tubes. The heat conduction plate 11 shown in the figure is a wide corrugated fin.
熱伝導板11を設けることにより、入口パイプ7を配置するため間隔を広げた偏平チューブ4間を通る空気との間で熱交換を行うことができ、熱交換効率を高めることができる。   By providing the heat conductive plate 11, heat exchange can be performed with the air passing between the flat tubes 4 whose intervals are increased in order to arrange the inlet pipe 7, and the heat exchange efficiency can be improved.
第5実施形態を図13に示す。図13は熱交換器の概略構造を示す模型的垂直断面図である。   A fifth embodiment is shown in FIG. FIG. 13 is a schematic vertical sectional view showing a schematic structure of the heat exchanger.
第5実施形態では出口パイプ8が上部ヘッダー管3の右端にのみ設けられている。そして入口パイプ7は、出口パイプ8から離れた位置、すなわち下部ヘッダー管2の左端に近い位置にある1対の偏平チューブ4の間に配置されている。入口パイプ7は上部ヘッダー管3の近傍まで延びている。   In the fifth embodiment, the outlet pipe 8 is provided only at the right end of the upper header pipe 3. The inlet pipe 7 is disposed between the pair of flat tubes 4 at a position away from the outlet pipe 8, that is, a position near the left end of the lower header pipe 2. The inlet pipe 7 extends to the vicinity of the upper header pipe 3.
第5実施形態の熱交換器1においても、入口パイプ7から流入した液状の冷媒Rは下部ヘッダー管2の上向きの内壁面で反射して運動エネルギーを圧力に変換することになり、その圧力が下部ヘッダー管2の内部全体に及ぶ。このため、流入方向の運動エネルギーを持った冷媒が特定の偏平チューブ4に集中することが避けられ、各偏平チューブ4の冷媒流量の均等化を図ることができる。   Also in the heat exchanger 1 of the fifth embodiment, the liquid refrigerant R flowing from the inlet pipe 7 is reflected by the upward inner wall surface of the lower header pipe 2 to convert kinetic energy into pressure, and the pressure is The entire inside of the lower header pipe 2 is extended. For this reason, it is avoided that the refrigerant having the kinetic energy in the inflow direction concentrates on the specific flat tube 4, and the refrigerant flow rate of each flat tube 4 can be equalized.
また、下部ヘッダー管2の下部から入口パイプ7が突き出さないので、熱交換器1の下面に他の部材を接近させることができ、熱交換器1を収納する機器のコンパクト化を図ることができる。   In addition, since the inlet pipe 7 does not protrude from the lower part of the lower header pipe 2, other members can be brought close to the lower surface of the heat exchanger 1, and the equipment that houses the heat exchanger 1 can be made compact. it can.
以上、本発明の各実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。例えば、第2実施形態に第3実施形態を組み合わせることが考えられる。すなわち、入口パイプ7はそれを挟む1対の偏平チューブ4の間を上部ヘッダー管3の近傍まで延び、その1対の偏平チューブ4の間に遮風板10が設けられることとするのである。第2実施形態と第4実施形態(熱伝導板)の組み合わせも可能である。その他、構成に矛盾をきたさない限り、各実施形態の構成を種々組み合わせて実施することができる。   As mentioned above, although each embodiment of the present invention was described, the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention. For example, it is conceivable to combine the third embodiment with the second embodiment. That is, the inlet pipe 7 extends between the pair of flat tubes 4 sandwiching the inlet pipe 7 to the vicinity of the upper header tube 3, and the wind shielding plate 10 is provided between the pair of flat tubes 4. A combination of the second embodiment and the fourth embodiment (heat conducting plate) is also possible. In addition, the configuration of each embodiment can be implemented in various combinations as long as the configuration does not contradict.
本発明はパラレルフロー型熱交換器に広く利用可能である。     The present invention is widely applicable to parallel flow heat exchangers.
第1実施形態に係る熱交換器の概略構造を示す模型的垂直断面図Model vertical sectional view showing a schematic structure of the heat exchanger according to the first embodiment 図1のA−A線に沿って切断した断面図Sectional drawing cut | disconnected along the AA line of FIG. 第1実施形態の変形態様に係る熱交換器の概略構造を示す模型的垂直断面図Model vertical sectional view showing a schematic structure of a heat exchanger according to a modification of the first embodiment 図3のB−B線に沿って切断した断面図Sectional drawing cut | disconnected along the BB line of FIG. 入口パイプの接続角度が偏平チューブ内の平均流量に与える影響のシミュレーション結果のグラフGraph of simulation results of the effect of inlet pipe connection angle on the average flow rate in a flat tube 図5のシミュレーションにおける(a)〜(e)の各パターンの下部ヘッダー管の断面図Sectional drawing of the lower header pipe | tube of each pattern of (a)-(e) in the simulation of FIG. 第2実施形態に係る熱交換器の概略構造を示す模型的垂直断面図Model vertical sectional view showing the schematic structure of the heat exchanger according to the second embodiment 図7のC−C線に沿って切断した断面図Sectional drawing cut | disconnected along CC line of FIG. 第3実施形態に係る熱交換器の概略構造を示す模型的垂直断面図Model vertical sectional view showing the schematic structure of the heat exchanger according to the third embodiment 図9のD−D線に沿って切断した断面図Sectional drawing cut | disconnected along the DD line | wire of FIG. 第4実施形態に係る熱交換器の概略構造を示す模型的垂直断面図Model vertical sectional view showing the schematic structure of the heat exchanger according to the fourth embodiment 図11のE−E線に沿って切断した断面図Sectional drawing cut | disconnected along the EE line of FIG. 第5実施形態に係る熱交換器の概略構造を示す模型的垂直断面図Model vertical sectional view showing the schematic structure of the heat exchanger according to the fifth embodiment 従来の熱交換器の概略構造を示す模型的垂直断面図Model vertical section showing the schematic structure of a conventional heat exchanger 従来の他の熱交換器の概略構造を示す模型的垂直断面図Model vertical sectional view showing the schematic structure of another conventional heat exchanger 従来のさらに他の熱交換器の概略構造を示す模型的垂直断面図Model vertical sectional view showing the schematic structure of still another conventional heat exchanger
符号の説明Explanation of symbols
1 熱交換器
2 下部ヘッダー管
3 上部ヘッダー管
4 偏平チューブ
5 冷媒通路
6 コルゲートフィン
7 入口パイプ
8 出口パイプ
9 仕切り板
10 遮風板
11 熱伝導板
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Lower header pipe 3 Upper header pipe 4 Flat tube 5 Refrigerant passage 6 Corrugated fin 7 Inlet pipe 8 Outlet pipe 9 Partition plate 10 Windshield 11 Heat conduction plate

Claims (5)

  1. 冷媒流入側となる下部ヘッダー管と、冷媒流出側となる上部ヘッダー管と、前記両ヘッダー管の間に複数配置され、内部に設けた冷媒通路を前記両ヘッダー管の内部に連通させた垂直な偏平チューブとを備えた熱交換器において、
    前記下部ヘッダー管に冷媒を流入させる入口パイプは、前記複数の偏平チューブの中で前記上部ヘッダー管から冷媒を流出させる出口パイプから離れた位置にある1対の偏平チューブの間に配置され、水平よりも上の方向から下部ヘッダー管に接続されていることを特徴とする熱交換器。
    A plurality of lower header pipes on the refrigerant inflow side, upper header pipes on the refrigerant outflow side, and a plurality of the header pipes arranged between the two header pipes, and a vertical refrigerant passage communicating with the inside of the header pipes. In a heat exchanger with a flat tube,
    An inlet pipe that allows the refrigerant to flow into the lower header pipe is disposed between a pair of flat tubes that are separated from an outlet pipe that allows the refrigerant to flow out of the upper header pipe among the plurality of flat tubes. The heat exchanger is connected to the lower header pipe from above.
  2. 前記入口パイプは、それを挟む前記1対の偏平チューブの間を前記上部ヘッダー管近傍まで延びることを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein the inlet pipe extends between the pair of flat tubes sandwiching the inlet pipe to the vicinity of the upper header pipe.
  3. 前記入口パイプを挟む前記1対の偏平チューブの間に遮風板が設けられていることを特徴とする請求項1に記載の熱交換器。   The heat exchanger according to claim 1, wherein a wind shielding plate is provided between the pair of flat tubes sandwiching the inlet pipe.
  4. 前記入口パイプを挟む前記1対の偏平チューブの間に、これら両偏平チューブと熱の授受を行う熱伝導板が設けられていることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein a heat conduction plate is provided between the pair of flat tubes sandwiching the inlet pipe to exchange heat with both the flat tubes.
  5. 前記上部ヘッダー管の両端に前記出口パイプが設けられ、前記入口パイプは、前記下部ヘッダー管の中央部に位置する1対の偏平チューブの間に配置されることを特徴とする請求項1から4のいずれか1項に記載の熱交換器。   5. The outlet pipes are provided at both ends of the upper header pipe, and the inlet pipe is disposed between a pair of flat tubes located at the center of the lower header pipe. The heat exchanger according to any one of the above.
JP2008036932A 2008-02-19 2008-02-19 Heat exchanger Active JP4357571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008036932A JP4357571B2 (en) 2008-02-19 2008-02-19 Heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008036932A JP4357571B2 (en) 2008-02-19 2008-02-19 Heat exchanger
EP08872595.7A EP2246655A4 (en) 2008-02-19 2008-09-08 Heat exchanger
CN 200880125963 CN101932900B (en) 2008-02-19 2008-09-08 Heat exchanger
PCT/JP2008/066165 WO2009104295A1 (en) 2008-02-19 2008-09-08 Heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009126186A Division JP2009198172A (en) 2009-05-26 2009-05-26 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2009198016A true JP2009198016A (en) 2009-09-03
JP4357571B2 JP4357571B2 (en) 2009-11-04

Family

ID=40985190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008036932A Active JP4357571B2 (en) 2008-02-19 2008-02-19 Heat exchanger

Country Status (4)

Country Link
EP (1) EP2246655A4 (en)
JP (1) JP4357571B2 (en)
CN (1) CN101932900B (en)
WO (1) WO2009104295A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519961A (en) * 2014-05-28 2017-07-20 ダンフォス・マイクロ・チャンネル・ヒート・エクスチェンジャー・(ジャシン)・カンパニー・リミテッド Heat exchanger
WO2018051611A1 (en) * 2016-09-16 2018-03-22 株式会社日立製作所 Heat exchanger and heat pump system using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102202418B1 (en) * 2015-03-19 2021-01-13 한온시스템 주식회사 Evaporator of air conditioner for vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484622A (en) * 1982-04-27 1984-11-27 The Garrett Corporation Integral header heat exchanger
JPH0721367B2 (en) * 1986-06-28 1995-03-08 日本電装株式会社 Stacked heat exchanger
JPH0616310Y2 (en) * 1989-04-27 1994-04-27 サンデン株式会社 Heat exchanger
JPH0379994A (en) * 1989-08-19 1991-04-04 Nippondenso Co Ltd Heat exchanger
JPH0614782U (en) 1991-12-16 1994-02-25 日本軽金属株式会社 Heat exchanger
JPH06273088A (en) * 1993-03-24 1994-09-30 Zexel Corp Parallel flow heat exchanger
JP3133897B2 (en) 1994-06-23 2001-02-13 シャープ株式会社 Heat exchanger
US5826649A (en) * 1997-01-24 1998-10-27 Modine Manufacturing Co. Evaporator, condenser for a heat pump
JP2004077032A (en) * 2002-08-20 2004-03-11 Zexel Valeo Climate Control Corp Both tank type heat exchanger
JP2004251556A (en) * 2003-02-20 2004-09-09 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006138559A (en) * 2004-11-12 2006-06-01 Calsonic Kansei Corp Heat exchanger for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519961A (en) * 2014-05-28 2017-07-20 ダンフォス・マイクロ・チャンネル・ヒート・エクスチェンジャー・(ジャシン)・カンパニー・リミテッド Heat exchanger
US10591227B2 (en) 2014-05-28 2020-03-17 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger including a mixing and redistribution header
WO2018051611A1 (en) * 2016-09-16 2018-03-22 株式会社日立製作所 Heat exchanger and heat pump system using same

Also Published As

Publication number Publication date
CN101932900B (en) 2012-09-19
EP2246655A1 (en) 2010-11-03
JP4357571B2 (en) 2009-11-04
WO2009104295A1 (en) 2009-08-27
EP2246655A4 (en) 2017-07-05
CN101932900A (en) 2010-12-29

Similar Documents

Publication Publication Date Title
WO2014091536A1 (en) Flat tube heat exchange apparatus
JP2013002758A (en) Cooling device for vehicle
EP3243036A1 (en) Heat exchanger, in particular a condenser or a gas cooler
JP2007192474A (en) Heat exchanger
JP5385588B2 (en) Air conditioner outdoor unit
JP4357571B2 (en) Heat exchanger
JP5643264B2 (en) Heat exchanger
CN101435668A (en) Internal and external fin flat tube heat exchanger
KR20110072005A (en) The heat exchanger
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
CN205014688U (en) Heat exchanger and indirect heating equipment
JP2009198172A (en) Heat exchanger
CN102062502B (en) Flat-pipe heat exchanger structure and assembling table thereof
CN105352345A (en) Microchannel heat exchanger and air conditioner thereof
CN101187513A (en) Heat-exchanger device
CN104602469A (en) Cabinet
CN203010809U (en) Efficient equipment cabinet air conditioner
JP2015158302A (en) Combined heat exchanger
CN202209821U (en) Parallel-flow heat exchanger structure
JP2014029221A (en) Air conditioner
CN202521958U (en) Double-row parallel flow heat exchanger and air conditioner using same
CN101738103A (en) Heat exchanging device and heat exchanging system
JP6111024B2 (en) Heat exchanger
CN101435641A (en) Heat exchanger
CN201488602U (en) Double-wing nest plate heat exchanger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4357571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03