JP2009191348A - Method for manufacturing pre-coated steel sheet - Google Patents

Method for manufacturing pre-coated steel sheet Download PDF

Info

Publication number
JP2009191348A
JP2009191348A JP2008036528A JP2008036528A JP2009191348A JP 2009191348 A JP2009191348 A JP 2009191348A JP 2008036528 A JP2008036528 A JP 2008036528A JP 2008036528 A JP2008036528 A JP 2008036528A JP 2009191348 A JP2009191348 A JP 2009191348A
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
rolling
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008036528A
Other languages
Japanese (ja)
Other versions
JP4938701B2 (en
Inventor
Shinichi Kodama
真一 児玉
Susumu Fujiwara
進 藤原
Toshihiro Kondo
敏洋 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008036528A priority Critical patent/JP4938701B2/en
Publication of JP2009191348A publication Critical patent/JP2009191348A/en
Application granted granted Critical
Publication of JP4938701B2 publication Critical patent/JP4938701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a pre-coated steel sheet, which inhibits the steel sheet from lowering its gloss after having been worked. <P>SOLUTION: This manufacturing method includes the steps of: preparing a slab which has a composition including, by wt%, 0.007% or less C, 0.5% or less Si, 1.0% or less Mn, 0.02% or less S, 0.007% or less N, 0.05 to 0.2% Ti and/or 0.05 to 0.2% Nb and the balance Fe with unavoidable impurities; rolling the slab at a finishing temperature between (Ar<SB>3</SB>point-20) and 940°C to obtain a hot-rolled steel plate; winding the plate at 600 to 730°C (a1 to a4); pickling the hot-rolled steel plate; rolling it at a rolling rate of 60 to 90% to obtain a cold-rolled steel sheet (a5 and a6); and annealing the cold-rolled steel sheet at 700 to 950°C (a7). The steel sheet obtained after annealing has crystal grains with sizes of 20 μm or smaller, an r-value of 1.5 or more, and is plated and painted to produce the pre-coated steel sheet (a8 and a9). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、種々の製品の外装部材に用いられ、鋼板の片面または両面に塗膜層を有する状態で加工に供されるプレコート鋼板の製造方法に関する。   The present invention relates to a method for producing a pre-coated steel sheet that is used for exterior members of various products and is subjected to processing in a state having a coating layer on one or both surfaces of the steel sheet.

種々の製品の外装部材として用いられる鋼板は、耐食寿命および美観の観点から塗装を施されることが多い。外装部材に用いられる鋼板の塗装は、所定の形状に加工した後で行われる場合ポストコートと呼ばれる。ポストコートは、加工された部材の形状なりに塗装しなければならないので、複雑な形状に加工される場合、塗装することが難しく、生産性を阻害する原因となっている。鋼板には、工場出荷の段階でその表面に塗膜層が予め形成されている塗装鋼板があるけれども、特に複雑な加工や厳しい加工が施される電気製品や暖房機器などの外装部材の用途では、予め塗装が施され、塗膜層を有する状態で加工に耐え得る材料が望まれている。これに応えて塗料の特性および塗装技術の向上により、塗膜層を有する状態で加工可能な鋼板が提供されるに至っている。この塗膜層を有する状態で加工可能な鋼板は、プレコート鋼板と呼ばれる。   Steel plates used as exterior members of various products are often coated from the viewpoint of corrosion resistance life and aesthetics. When the steel sheet used for the exterior member is coated after being processed into a predetermined shape, it is called post-coating. Since post-coating must be applied in the shape of the processed member, it is difficult to apply the post-coating when it is processed into a complicated shape, which is a cause of hindering productivity. Steel sheets include painted steel sheets with a coating layer pre-formed on the surface at the time of shipment from the factory, but they are especially used for exterior members such as electrical appliances and heating equipment that are subjected to complicated processing and severe processing. A material that can be applied in advance and can withstand processing in a state having a coating layer is desired. In response to this, a steel sheet that can be processed in a state having a coating film layer has been provided by improving the characteristics of the paint and the coating technique. A steel plate that can be processed with this coating layer is called a pre-coated steel plate.

プレコート鋼板は、塗装原板として冷間圧延鋼板やめっき鋼板が用いられ、塗膜層に熱硬化性樹脂などが用いられる。予め塗装されているプレコート鋼板は、加工後に塗装する必要がないので、部材を所定形状に加工後塗装するポストコートに比べて、生産性が向上する。生産性に優れるプレコート鋼板は、種々の用途の材料として使用されている。用途が拡大するのに伴い、複雑な形状の部材に対してもプレコート鋼板が加工素材として使用されるようになり、たとえば深絞り成形のような厳しい加工がプレコート鋼板に施されることがある。厳しい加工を受けた場合、プレコート鋼板の光沢が部分的に低下し、光沢低下を生じていない部分または他の部材との間で光沢むらになり外観調和しないという問題がある。   A pre-coated steel plate is a cold-rolled steel plate or a plated steel plate as a coating original plate, and a thermosetting resin or the like is used for a coating layer. The pre-coated steel sheet that has been pre-coated does not need to be coated after processing, so that productivity is improved compared to post-coating in which a member is processed into a predetermined shape and then coated. Precoated steel sheets with excellent productivity are used as materials for various applications. As the application expands, precoated steel sheets are used as processing materials even for members having complicated shapes, and severe processing such as deep drawing may be performed on the precoated steel sheets. When subjected to severe processing, there is a problem in that the gloss of the pre-coated steel sheet is partially reduced, and gloss is uneven between parts where gloss reduction does not occur or with other members and the appearance is not harmonized.

加工を受けたプレコート鋼板に生じる光沢低下の原因が、塗膜の局部伸びにあるとし、塗膜の物性を規定することによって光沢低下を改善することが提案されている(特許文献1参照)。特許文献1では、塗膜のガラス転移点を特定範囲に限定して塗膜の局部伸びを抑制することで光沢低下を防止するとともに、塗膜のユニバーサル硬度および破断伸びを特定範囲に限定して、深絞り成形加工時のカジリ発生も防止できるとしている。
特開2007−44922号公報
Assuming that the cause of the gloss reduction generated in the precoated steel sheet subjected to processing is local elongation of the coating film, it has been proposed to improve the gloss reduction by defining the physical properties of the coating film (see Patent Document 1). In patent document 1, while limiting the glass transition point of a coating film to a specific range and suppressing the local elongation of a coating film, a gloss fall is prevented, and the universal hardness and breaking elongation of a coating film are limited to a specific range. In addition, it is possible to prevent galling during deep drawing.
JP 2007-44922 A

特許文献1のようなプレコート鋼板の塗膜の物性改善は、加工後の光沢低下の抑制に効果的と思われる。しかし、光沢低下は、塗膜のみを原因として発生するのではなく、プレコート鋼板の塗装原板である鋼板を原因として発生することもある。したがって、塗膜の改善だけでは加工後のプレコート鋼板の光沢低下を十分に抑制することができない。   It seems that the improvement of the physical properties of the precoated steel sheet as in Patent Document 1 is effective in suppressing the reduction in gloss after processing. However, the gloss reduction is not caused only by the coating film, but may be caused by the steel plate which is the coating raw plate of the precoated steel plate. Therefore, the gloss reduction of the precoated steel sheet after processing cannot be sufficiently suppressed only by improving the coating film.

プレコート鋼板は、加工を受けると塗装原板である鋼板が塑性変形する。このとき鋼板の表面が粗面化すると、この鋼板の粗面化に塗膜が追従して塗膜の表面に凹凸が形成され、光沢低下が生じる。したがって、加工後のプレコート鋼板の光沢低下を抑制するには、加工に伴う鋼板の粗面化を防止することが必要である。   When the precoated steel sheet is subjected to processing, the steel sheet as the coating original sheet is plastically deformed. At this time, when the surface of the steel sheet is roughened, the coating film follows the roughening of the steel sheet, and irregularities are formed on the surface of the coating film, resulting in a decrease in gloss. Therefore, in order to suppress the reduction in gloss of the precoated steel sheet after processing, it is necessary to prevent the steel sheet from being roughened due to processing.

本発明の目的は、たとえば深絞り成形加工などを受けた場合でも塗装原板である鋼板が粗面化することを防止し、光沢低下を抑制することができるプレコート鋼板の製造方法を提供することである。   An object of the present invention is to provide a method for producing a pre-coated steel sheet that prevents a steel sheet as a coating original sheet from roughening even when subjected to, for example, deep drawing, and suppresses a decrease in gloss. is there.

本発明の課題を解決するために、鋼板の片面または両面に塗膜層を有するプレコート鋼板の製造方法において、
鋼板の結晶粒径を20μm以下にし、かつランクフォード値を1.5以上にするために、
重量%で、
C:0.007%以下、
Si:0.5%以下、
Mn:1.0%以下、
S:0.02%以下、
N:0.007%以下、
Ti:0.05〜0.2%および/またはNb:0.05〜0.2%を含有し、残部がFeおよび不可避的不純物の組成を有する鋼塊または鋳片を、仕上温度が(Ar点−20)〜940℃、巻取温度が600〜730℃で熱間圧延して熱間圧延鋼板とし、
該熱間圧延鋼板を圧延率60〜90%で冷間圧延して冷間圧延鋼板とし、
該冷間圧延鋼板を700〜950℃で焼鈍することを特徴とする。
In order to solve the problems of the present invention, in the method for producing a precoated steel sheet having a coating layer on one side or both sides of the steel sheet,
In order to set the crystal grain size of the steel sheet to 20 μm or less and the Rankford value to 1.5 or more,
% By weight
C: 0.007% or less,
Si: 0.5% or less,
Mn: 1.0% or less,
S: 0.02% or less,
N: 0.007% or less,
A steel ingot or slab containing Ti: 0.05 to 0.2% and / or Nb: 0.05 to 0.2%, the balance having a composition of Fe and inevitable impurities, the finishing temperature is (Ar 3 points-20) to 940 ° C., and hot rolling at a coiling temperature of 600 to 730 ° C. to form a hot rolled steel sheet,
Cold rolling the hot rolled steel sheet at a rolling rate of 60 to 90% to obtain a cold rolled steel sheet,
The cold-rolled steel sheet is annealed at 700 to 950 ° C.

また本発明は、鋼塊または鋳片に、さらに重量%でB:0.00002〜0.001%を含ませてもよい。   In the present invention, the steel ingot or cast slab may further contain B: 0.00002 to 0.001% by weight.

本発明によれば、塗装原板となる鋼板の含有元素とその含有量を適正に設定し、熱間圧延の仕上温度および巻取温度を規制して熱間圧延鋼板の結晶粒の粗大化を抑制し、さらに適度な圧延率で冷間圧延した後、適正範囲の温度で焼鈍することによって、鋼板の結晶粒の微細化と優れた加工性とを実現することができる。このような微細な結晶粒および優れた加工性を有する鋼板から製造されるプレコート鋼板を加工するとき、鋼板には粗面化が生じないので、粗面化に起因する塗膜の凹凸発生も防止され、光沢低下を抑制することが可能になる。   According to the present invention, the elements contained in the steel sheet used as the coating original sheet and the content thereof are appropriately set, and the finishing temperature and the coiling temperature of the hot rolling are regulated to suppress the crystal grain coarsening of the hot rolled steel sheet. Further, after cold rolling at an appropriate rolling rate and annealing at a temperature within an appropriate range, it is possible to achieve refinement of crystal grains of the steel sheet and excellent workability. When processing pre-coated steel sheets manufactured from such fine crystal grains and steel sheets with excellent workability, the steel sheets are not roughened, preventing the occurrence of coating irregularities due to roughening. Therefore, it is possible to suppress a decrease in gloss.

また、鋼板に適量のBを含有させることによって、粒界強度が向上するので、加工時の粗面化が一層確実に防止され、プレコート鋼板加工後の光沢低下を抑制することができる。   Further, by containing an appropriate amount of B in the steel sheet, the grain boundary strength is improved, so that the roughening at the time of processing can be more reliably prevented, and the reduction in gloss after processing the precoated steel sheet can be suppressed.

図1は、本発明のプレコート鋼板の製造方法を実施するための概略的な製造工程を示す。以下、図1を参照して、本発明のプレコート鋼板の製造方法について説明する。ここで、鋼板は、単板および鋼帯の両方を含めた意味に用いられる。   FIG. 1 shows a schematic manufacturing process for carrying out the method for manufacturing a precoated steel sheet according to the present invention. Hereinafter, with reference to FIG. 1, the manufacturing method of the precoat steel plate of this invention is demonstrated. Here, a steel plate is used in the meaning including both a single plate and a steel strip.

まず、工程a1では、製鋼にて予め定める組成の鋼を溶製する。溶製条件に制約はない。たとえば、高炉や電気炉から供される溶銑を転炉などで精錬および成分調整し、必要に応じて真空精錬して溶製することができる。組成は、重量%で、C:0.007%以下、Si:0.5%以下、Mn:1.0%以下、S:0.02%以下、N:0.007%以下、Ti:0.05〜0.2%および/またはNb:0.05〜0.2%を含有し、残部がFeおよび不可避的不純物とする。なお、溶鋼には、さらにB:0.00002〜0.001%を含有させてもよい。   First, in step a1, steel having a predetermined composition is made by steelmaking. There are no restrictions on the melting conditions. For example, the hot metal provided from a blast furnace or an electric furnace can be refined and adjusted in a converter or the like, and vacuum refined as necessary to be smelted. Composition: wt%, C: 0.007% or less, Si: 0.5% or less, Mn: 1.0% or less, S: 0.02% or less, N: 0.007% or less, Ti: 0 0.05 to 0.2% and / or Nb: 0.05 to 0.2%, with the balance being Fe and inevitable impurities. The molten steel may further contain B: 0.00002 to 0.001%.

以下、組成の範囲限定理由について説明する。
C:0.007%以下
C含有量の低減に伴って加工性は向上する。しかし、極低Cとするには脱炭に長時間を要し、生産性低下の原因となる。そこで、粗面化を防止し得る加工性向上効果を発現できる程度にまで低減すればよいものとし、0.007%以下とした。
Hereinafter, the reasons for limiting the composition range will be described.
C: 0.007% or less Workability improves as the C content decreases. However, to achieve extremely low C, it takes a long time for decarburization, which causes a decrease in productivity. Therefore, it should be reduced to such an extent that a workability improving effect capable of preventing roughening can be exhibited, and is set to 0.007% or less.

Si:0.5%以下
Siは、強度向上に有効である。しかし、0.5%を超えて添加すると、強度が高くなるけれども、加工性およびめっき性が低下するので、0.5%以下とした。
Si: 0.5% or less Si is effective in improving the strength. However, if added over 0.5%, the strength is increased, but the workability and plating properties are lowered, so the content was made 0.5% or less.

Mn:1.0%以下
Mnは、Sとの親和力が高くMnSを形成し易いので、Sによる熱間および冷間の脆化を抑制するのに有効である。しかし、1.0%を超えて添加してもSとの結合による脆化抑制の効果が飽和するので、1.0%以下とした。
Mn: 1.0% or less Since Mn has a high affinity with S and easily forms MnS, it is effective in suppressing hot and cold embrittlement due to S. However, even if added over 1.0%, the effect of suppressing embrittlement due to bonding with S is saturated, so the content was made 1.0% or less.

S:0.02%以下
Sは、熱間および冷間の脆化を起こすので、低減することが望ましい。しかし、Mnの添加によりSの悪影響を緩和することができるので、0.02%以下であれば含まれてもよい。
S: 0.02% or less Since S causes hot and cold embrittlement, it is desirable to reduce S. However, since the adverse effect of S can be mitigated by the addition of Mn, it may be contained if it is 0.02% or less.

N:0.007%以下
Nは、加工性を悪くするので、極力少ない方が望ましい。したがって、0.007%以下とした。
N: 0.007% or less Since N deteriorates workability, it is desirable that N be as small as possible. Therefore, it was made 0.007% or less.

Ti:0.05〜0.2%
Tiは、鋼中の固溶C、S、Nを析出物として固定することにより加工性を向上する。この効果を発現させるには、0.05%以上の添加が必要である。しかし、0.2%を超えて添加しても加工性向上効果は飽和する。したがって、0.05〜0.2%とした。
Ti: 0.05 to 0.2%
Ti improves workability by fixing solute C, S, and N in steel as precipitates. In order to exhibit this effect, addition of 0.05% or more is necessary. However, the effect of improving workability is saturated even if added over 0.2%. Therefore, it was made 0.05 to 0.2%.

Nb:0.05〜0.2%
Nbは、鋼中の固溶C、Nを析出物として固定することにより加工性を向上する。この効果を発現させるには、0.05%以上の添加が必要である。しかし、0.2%を超えて添加しても加工性向上効果は飽和する。したがって、0.05〜0.2%とした。
Nb: 0.05 to 0.2%
Nb improves workability by fixing solute C and N in steel as precipitates. In order to exhibit this effect, addition of 0.05% or more is necessary. However, the effect of improving workability is saturated even if added over 0.2%. Therefore, it was made 0.05 to 0.2%.

B:0.00002〜0.001%
Bは、粒界に偏析して粒界強度を向上する。粒界強度向上効果を発現させるには0.00002%以上の添加が必要である。しかし、0.001%を超えて添加しても効果が飽和するとともに、延性が低下する。したがって、0.00002〜0.001%とした。
B: 0.00002-0.001%
B segregates at the grain boundary and improves the grain boundary strength. Addition of 0.00002% or more is necessary to exhibit the effect of improving the grain boundary strength. However, even if added over 0.001%, the effect is saturated and ductility is lowered. Therefore, it was made 0.00002-0.001%.

工程a2では、溶鋼を鋳造し、上記の組成を有する鋼塊または鋳片とする。鋳造条件について特別な制約はない。工程a3では、鋼塊または鋳片を(Ar点−20)〜940℃の仕上温度で熱間圧延して熱間圧延鋼板とする。Ar点とは、Fe−C系合金である鋼の組織が、冷却過程でオーステナイト相からフェライト相に変態する温度をいう。相変態温度であるAr点は、たとえば熱分析装置で測定することができる。熱間圧延の仕上温度は、最後の圧延パスを終了した時の温度であり、鋼板のフェライト組織を決定する重要な因子である。熱間圧延の仕上温度を(Ar点−20)℃未満にすると、熱間圧延鋼板の組織が混粒となり、冷間圧延・焼鈍後の組織に影響を及ぼしてr値が低くなる。仕上温度を940℃超えにすると、結晶粒が粗大化してr値の低下を招く。したがって、熱間圧延仕上温度は、(Ar点−20)〜940℃とした。 In step a2, molten steel is cast into a steel ingot or slab having the above composition. There are no special restrictions on casting conditions. In step a3, the steel ingot or slab is hot-rolled at a finishing temperature of (Ar 3 point−20) to 940 ° C. to obtain a hot-rolled steel plate. Ar 3 point refers to the temperature at which the structure of steel, which is an Fe—C alloy, transforms from an austenite phase to a ferrite phase during the cooling process. The Ar 3 point that is the phase transformation temperature can be measured by, for example, a thermal analyzer. The finishing temperature of hot rolling is the temperature at the end of the final rolling pass, and is an important factor that determines the ferrite structure of the steel sheet. When the finishing temperature of hot rolling is less than (Ar 3 points−20) ° C., the structure of the hot rolled steel sheet becomes mixed, affecting the structure after cold rolling / annealing and the r value is lowered. If the finishing temperature exceeds 940 ° C., the crystal grains become coarse and the r value decreases. Therefore, the hot rolling finishing temperature was set to (Ar 3 points−20) to 940 ° C.

工程a4では、熱間圧延の最終パスを行う圧延スタンドの出側で熱間圧延鋼板を温度600〜730℃で巻取る。巻取温度が600℃未満では、フェライト中の炭化物が微細になり、冷間圧延・焼鈍後の集合組織が良好な状態に形成されないのでr値が低くなる。巻取温度が730℃を超えると、巻取コイルが復熱により昇温し、熱間圧延鋼板の結晶粒が粗大化する。したがって、巻取温度は、600〜730℃とした。   In step a4, the hot-rolled steel sheet is wound at a temperature of 600 to 730 ° C. on the exit side of the rolling stand that performs the final pass of hot rolling. If the coiling temperature is less than 600 ° C., the carbide in the ferrite becomes fine and the texture after cold rolling / annealing is not formed in a good state, so the r value is low. When the winding temperature exceeds 730 ° C., the winding coil is heated by recuperation, and the crystal grains of the hot rolled steel sheet become coarse. Therefore, the coiling temperature was 600 to 730 ° C.

工程a5では、熱間圧延鋼板を酸洗し、その表面に生成した酸化スケールを除去する。工程a6では、熱間圧延鋼板を圧延率60〜90%で冷間圧延して冷間圧延鋼板とする。圧延率が60%未満では、加工性向上にとって好ましい集合組織を発達させることができず、高いr値を得ることができない。圧延率が90%を超えると、冷間圧延機に対する負荷が過大になり、圧延が困難になる。したがって、冷間圧延率を60〜90%とした。工程a7では、700〜950℃で冷間圧延鋼板を焼鈍する。700℃以下では、未再結晶となり延性等に劣る。950℃以上では、結晶粒が20μmを超えて粗大化する。したがって、焼鈍温度を700〜950℃とした。   In step a5, the hot-rolled steel sheet is pickled and the oxide scale generated on the surface is removed. In step a6, the hot-rolled steel sheet is cold-rolled at a rolling rate of 60 to 90% to obtain a cold-rolled steel sheet. When the rolling rate is less than 60%, a texture preferable for improving workability cannot be developed, and a high r value cannot be obtained. If the rolling rate exceeds 90%, the load on the cold rolling mill becomes excessive and rolling becomes difficult. Therefore, the cold rolling rate is set to 60 to 90%. In step a7, the cold-rolled steel sheet is annealed at 700 to 950 ° C. Below 700 ° C., it becomes non-recrystallized and has poor ductility. Above 950 ° C., the crystal grains become coarser than 20 μm. Therefore, the annealing temperature was set to 700 to 950 ° C.

このように組成を調整し、仕上温度および巻取温度を規制して熱間圧延し、圧延率を適正にして冷間圧延した後、適正な温度で焼鈍することによって、塗装原板となる鋼板の結晶粒径を20μm以下、かつランクフォード値を1.5以上にすることができる。以後、ランクフォード値をr値と表記する。   In this way, the composition is adjusted, the rolling temperature and the coiling temperature are regulated and hot rolling is performed. The crystal grain size can be 20 μm or less, and the Rankford value can be 1.5 or more. Hereinafter, the Rankford value is expressed as r value.

以下、鋼板の結晶粒径およびr値の範囲限定理由について説明する。
結晶粒径:20μm以下
結晶粒径を20μm以下とすることによって、たとえば深絞り成形加工を受けた場合でも、鋼板の表面が粗面化することを防止できる。鋼板の表面が粗面化しないとき、塗膜にも凹凸が発生しないので、プレコート鋼板の光沢低下発生を防止することができる。しかし、結晶粒径が20μmを超えると、たとえば深絞り成形加工を受けた場合、鋼板の表面に粗面化が生じる。この粗面化に塗膜が追従して塗膜の表面に凹凸を生じ、プレコート鋼板に光沢低下が発生する。なお、結晶粒径の測定は、たとえば日本工業規格(JIS)G0552に規定される切断法に準じて行うことができる。
Hereinafter, the reasons for limiting the range of the crystal grain size and r value of the steel sheet will be described.
Crystal grain size: 20 μm or less By making the crystal grain size 20 μm or less, it is possible to prevent the surface of the steel sheet from becoming rough even when subjected to, for example, deep drawing. When the surface of the steel sheet is not roughened, the coating film is not uneven, so that it is possible to prevent the precoated steel sheet from being deteriorated in gloss. However, when the crystal grain size exceeds 20 μm, for example, when subjected to deep drawing, roughening occurs on the surface of the steel sheet. The coating film follows this roughening to produce irregularities on the surface of the coating film, resulting in a decrease in gloss in the precoated steel sheet. The crystal grain size can be measured, for example, according to the cutting method defined in Japanese Industrial Standard (JIS) G0552.

r値:1.5以上
r値を1.5以上にすることによって、良好な深絞り性を確保することができる。r値は、焼鈍後の冷間圧延鋼板からJIS Z2201に規定される5号引張試験片を採取し、引張試験機で15%の伸びを与えた状態で測定した値である。なお、r値は方向性を有するので、下記式(1)で与えられる各方向から採取した試験片による値の平均値として求める。
r=(r+2r45+r90)/4 ・・・(1)
ここで、r:圧延方向に対して平行方向に採取した試験片から求めたr値
45:圧延方向に対して45度方向に採取した試験片から求めたr値
90:圧延方向に対して直角方向に採取した試験片から求めたr値
r value: 1.5 or more By setting the r value to 1.5 or more, good deep drawability can be secured. The r value is a value measured in a state in which a No. 5 tensile test piece defined in JIS Z2201 is taken from the cold-rolled steel sheet after annealing and 15% elongation is given by a tensile tester. In addition, since r value has directionality, it calculates | requires as an average value of the value by the test piece extract | collected from each direction given by following formula (1).
r = (r 0 + 2r 45 + r 90 ) / 4 (1)
Here, r 0 : r value obtained from a test piece taken in a direction parallel to the rolling direction r 45 : r value obtained from a test piece taken in a 45 degree direction with respect to the rolling direction r 90 : in the rolling direction R value obtained from a specimen taken in a direction perpendicular to the surface

工程a8では、鋼板にめっき処理を行なう。このめっき処理工程は、プレコート鋼板の製造において必須ではない。しかし、プレコート鋼板としての耐食寿命向上、また塗膜の密着性向上の観点からは、めっき処理をすることが望ましい。めっき種については特に限定しない。亜鉛系、亜鉛合金系、アルミニウム系、アルミニウム合金系などのめっき種を用いることができる。めっき処理方法についても特に制約はない。溶融めっき、電気めっき、化学めっきのいずれであってもよい。生産性の観点からは溶融めっきが好ましい。特に、プレコート鋼板に用いるめっきとしては、溶融亜鉛めっき、溶融亜鉛−55%アルミニウムめっきが好適である。   In step a8, the steel sheet is plated. This plating process is not essential in the production of the precoated steel sheet. However, from the viewpoint of improving the corrosion resistance life of the precoated steel sheet and improving the adhesion of the coating film, it is desirable to carry out a plating treatment. The plating type is not particularly limited. Zinc-based, zinc alloy-based, aluminum-based, and aluminum alloy-based plating types can be used. There are no particular restrictions on the plating method. Any of hot dipping, electroplating, and chemical plating may be used. From the viewpoint of productivity, hot dipping is preferable. In particular, as the plating used for the pre-coated steel sheet, hot dip galvanizing and hot dip zinc-55% aluminum plating are suitable.

工程a9では、鋼板の片面または両面に塗装を施す。塗膜層は、1層であってもよく、2層以上の多層であってもよい。好ましくは、鋼板との密着性に優れるプライマー層と呼ばれる下塗り層と、上塗り層とを含む多層の構成である。下塗り層の塗料には、たとえばポリエステル系樹脂やエポキシ系樹脂などを用い、上塗り層の塗料には、たとえば高分子ポリエステル系樹脂などを用いることができる。塗装方法も特に制約がない。ロールコーター塗装、吹付け塗装、浸漬塗装のいずれであってもよい。塗膜の乾燥または焼付の条件にも制約がなく、形成する塗膜に応じた条件を用いることができる。   In step a9, coating is performed on one side or both sides of the steel plate. The coating layer may be a single layer or a multilayer of two or more layers. Preferably, it is a multilayer structure including an undercoat layer called a primer layer excellent in adhesion to a steel plate and an overcoat layer. For example, a polyester-based resin or an epoxy-based resin can be used for the paint for the undercoat layer, and a high-molecular polyester-based resin can be used for the paint for the topcoat layer. There are no particular restrictions on the painting method. Any of roll coater coating, spray coating, and immersion coating may be used. There is no restriction | limiting also in the conditions of drying or baking of a coating film, The conditions according to the coating film to form can be used.

この製造方法により製造されるプレコート鋼板は、塗装原板である鋼板の結晶粒が微細で加工性に優れる。したがって、たとえば深絞り成形加工を受けた場合でも鋼板が粗面化せず、塗膜に凹凸が生じないので、光沢低下を発生することがない。加工後のプレコート鋼板が光沢低下を生じているか否かについては、下記式(2)で与えられる光沢保持率で評価する。
光沢保持率=引張試験後の光沢度/引張試験前の光沢度×100・・・(2)
The precoated steel sheet produced by this production method has fine crystal grains of the steel sheet that is the coating original sheet and is excellent in workability. Therefore, for example, even when subjected to deep drawing, the steel sheet is not roughened, and the coating film is not uneven, so that the gloss is not lowered. Whether or not the pre-coated steel sheet after processing has deteriorated in gloss is evaluated by the gloss retention given by the following formula (2).
Gloss retention rate = Glossiness after tensile test / Glossiness before tensile test × 100 (2)

光沢度は、次のようにして測定する。プレコート鋼板から圧延方向に対して平行方向に、JIS Z2201に規定される5号引張試験片を採取する。該試験片の引張試験前の光沢度をJIS Z8741に基づいて測定する。次いで、15%の伸びを与えた引張試験後の光沢度を同様に測定する。引張試験前後の光沢度を式(2)に代入して光沢保持率を求める。光沢保持率は、加工前の光沢度が加工後にどれだけ保持されているかを百分率で表す指標である。光沢低下が抑制されていると認められる光沢保持率は、プレコート鋼板の用途に応じて望ましい値が定められるが、たとえば家電製品の外装部材であれば、おおよそ70%以上である。工程a1〜工程a9に示す方法で製造されるプレコート鋼板によれば、70%以上の光沢保持率を達成し、加工後の光沢低下を抑制することができる。   The glossiness is measured as follows. A No. 5 tensile test piece defined in JIS Z2201 is taken from the precoated steel plate in a direction parallel to the rolling direction. The glossiness of the test piece before the tensile test is measured based on JIS Z8741. Next, the glossiness after the tensile test giving 15% elongation is measured in the same manner. The gloss retention is obtained by substituting the glossiness before and after the tensile test into Equation (2). The gloss retention rate is an index that expresses in percentage how much the glossiness before processing is retained after processing. The gloss retention rate at which gloss reduction is recognized to be suppressed is determined to be a desirable value depending on the application of the pre-coated steel sheet. For example, in the case of an exterior member for home appliances, it is approximately 70% or more. According to the precoated steel sheet manufactured by the method shown in steps a1 to a9, a gloss retention of 70% or more can be achieved, and a reduction in gloss after processing can be suppressed.

(実施例)
以下、本発明の実施例について説明する。
(実施例1)
表1に重量%で示す組成を有する供試材No.1〜21をそれぞれ溶製し、鋳型に鋳造して30kg鋼塊を製造した。なお、表1に示す組成以外の残部は、Feおよび不可避的不純物である。鋼塊を熱間鍛造して厚さ30mmのスラブとした。スラブを1050〜1180℃に加熱し、その加熱したスラブを厚さ4.0mmまで熱間圧延して熱間圧延鋼板とした。供試材No.1〜21は、そのAr点がいずれも890℃未満であることから、熱間圧延仕上温度を(Ar点−20)℃以上の920℃とした。
(Example)
Examples of the present invention will be described below.
Example 1
Table 1 shows the test materials No. Each of 1 to 21 was melted and cast into a mold to produce a 30 kg steel ingot. The balance other than the composition shown in Table 1 is Fe and inevitable impurities. The steel ingot was hot forged into a slab with a thickness of 30 mm. The slab was heated to 1050 to 1180 ° C., and the heated slab was hot-rolled to a thickness of 4.0 mm to obtain a hot-rolled steel sheet. Specimen No. In Nos. 1 to 21, since the Ar 3 points were all less than 890 ° C., the hot rolling finishing temperature was set to 920 ° C. of (Ar 3 points−20) ° C. or higher.

熱間圧延後に巻取った鋼板を680℃のソルトバス炉に2時間浸漬するコイル巻取り相当の処理を行なった。供試材の熱間圧延鋼板のコイルは、その重量が大規模生産設備で製造する場合の熱間圧延鋼板のコイル重量に比べて少ないので、大規模生産設備で製造する場合よりも冷却速度が速くなる。大規模生産設備で熱間圧延後に巻取った場合と同等の条件になるように、コイル巻取り相当の処理を行い、冷却速度の補正をした。コイル巻取り相当の処理後、熱間圧延鋼板を室温まで冷却した。   A treatment equivalent to coil winding was performed in which the steel sheet wound after hot rolling was immersed in a salt bath furnace at 680 ° C. for 2 hours. The coil of the hot-rolled steel sheet as the test material has a lower cooling rate than that of the large-scale production facility because the weight of the coil is smaller than the coil weight of the hot-rolled steel plate when the large-scale production facility is used. Get faster. A process equivalent to coil winding was performed and the cooling rate was corrected so that the conditions were the same as when winding after hot rolling in a large-scale production facility. After the treatment corresponding to coil winding, the hot rolled steel sheet was cooled to room temperature.

熱間圧延鋼板を酸洗してスケール除去した。酸洗後、圧延率80%で冷間圧延し、厚さ0.8mmの冷間圧延鋼板とした。冷間圧延鋼板を850℃で3分間焼鈍した。冷間圧延率が60%の場合、供試材No.1〜21は、再結晶温度が700℃未満であることから、焼鈍温度を再結晶温度以上であり、かつ700℃超えの850℃とした。   The hot rolled steel sheet was pickled and scaled off. After pickling, it was cold-rolled at a rolling rate of 80% to obtain a cold-rolled steel sheet having a thickness of 0.8 mm. The cold rolled steel sheet was annealed at 850 ° C. for 3 minutes. When the cold rolling rate is 60%, the test material No. In Nos. 1 to 21, since the recrystallization temperature was less than 700 ° C., the annealing temperature was set to 850 ° C. that is equal to or higher than the recrystallization temperature and exceeded 700 ° C.

焼鈍後の各冷間圧延鋼板から、JIS Z2201に規定される5号引張試験片と、組織観察試験片とを採取した。引張試験片を用いてr値および降伏応力、引張強さ、伸びを測定した。r値は、上記の式(1)に基づいて求めた。降伏応力、引張強さおよび伸びは、圧延方向に対して平行方向に採取した引張試験片についてのみ測定した。以後、降伏応力、引張強さ、伸びについては、YS、TS、Elと表記する。また、組織観察試験片を用いて、JIS G0552に規定される切断法に準じて結晶粒径を測定した。   From each cold-rolled steel sheet after annealing, a No. 5 tensile test piece defined in JIS Z2201 and a structure observation test piece were collected. The r value, yield stress, tensile strength, and elongation were measured using a tensile specimen. The r value was determined based on the above formula (1). Yield stress, tensile strength and elongation were measured only for tensile specimens taken in a direction parallel to the rolling direction. Hereinafter, the yield stress, tensile strength, and elongation are expressed as YS, TS, and El. Moreover, the crystal grain size was measured according to the cutting method prescribed | regulated to JISG0552 using the structure | tissue observation test piece.

焼鈍後の冷間圧延鋼板をZn−0.18%Alのめっき浴に浸漬して溶融亜鉛めっきを行った。めっき浴の浴温およびインレット温度は、いずれも430℃とした。めっき付着量は、片面あたり90g/mであり、厚さ約13μmであった。めっき処理後の鋼板に対して両面塗装を行った。塗装条件を表2に示す。塗装処理後の鋼板から、圧延方向に平行にJIS Z2201に規定される5号引張試験片を採取し、引張試験前および15%伸びを与えた引張試験後の光沢度をJIS Z8741に基づき測定した。光沢度の測定に使用した装置は、日本電色工業株式会社製のハンディー光沢計PG−1Mである。引張試験前後の光沢度から上記式(2)に基づいて光沢保持率を求めた。加工後の光沢低下発生の有無を光沢保持率で評価した。光沢保持率が70%以上の場合、光沢低下なしとして評価を良好○とし、光沢保持率が70%未満の場合、光沢低下ありとして評価を不良×とした。 The cold-rolled steel sheet after annealing was immersed in a Zn-0.18% Al plating bath for hot dip galvanization. The bath temperature and inlet temperature of the plating bath were both 430 ° C. The plating adhesion amount was 90 g / m 2 per side and the thickness was about 13 μm. Double-sided coating was performed on the steel sheet after the plating treatment. The coating conditions are shown in Table 2. A No. 5 tensile test piece defined in JIS Z2201 was taken from the coated steel plate in parallel with the rolling direction, and the glossiness before the tensile test and after the tensile test giving 15% elongation was measured based on JIS Z8741. . The apparatus used for the measurement of glossiness is a handy gloss meter PG-1M manufactured by Nippon Denshoku Industries Co., Ltd. Based on the above formula (2), the gloss retention was obtained from the gloss before and after the tensile test. The presence or absence of gloss reduction after processing was evaluated by gloss retention. When the gloss retention was 70% or more, the evaluation was good as no gloss reduction, and when the gloss retention was less than 70%, the evaluation was poor because there was a gloss reduction.

試験結果を表3に示す。供試材No.1乃至13では、結晶粒径が20μm以下、かつr値が1.5以上を満足した。これらの供試材では、光沢保持率が70%以上であり、加工後の光沢低下を抑制することができた。それに対して、供試材No.14乃至21では、結晶粒径が20μmを超えて粗大化し、また供試材No.14乃至16、18および21ではr値も1.5未満であった。これらの供試材では、光沢保持率が70%未満であり、加工後の光沢低下を抑制することができなかった。   The test results are shown in Table 3. Specimen No. In Nos. 1 to 13, the crystal grain size was 20 μm or less and the r value was 1.5 or more. In these test materials, the gloss retention was 70% or more, and a reduction in gloss after processing could be suppressed. On the other hand, specimen No. Nos. 14 to 21 were coarsened with a crystal grain size exceeding 20 μm. In 14 to 16, 18 and 21, the r value was also less than 1.5. In these test materials, the gloss retention was less than 70%, and the gloss reduction after processing could not be suppressed.

Figure 2009191348
Figure 2009191348

Figure 2009191348
Figure 2009191348

Figure 2009191348
Figure 2009191348

(実施例2)
実施例2では、大規模生産設備により製造した供試材による試験結果を説明する。表4に重量%で示す組成を有する供試材No.22乃至24をそれぞれ溶製した。なお、表4に示す組成以外の残部は、Feおよび不可避的不純物である。溶製は、高炉溶銑を使用し、概略転炉および脱ガス炉により成分調整して行った。得られた溶鋼を連続鋳造して厚さ200mmの鋳片を製造した。各供試材についてAr点および再結晶温度を表5に示す。
(Example 2)
In Example 2, a test result using a test material manufactured by a large-scale production facility will be described. In Table 4, the test material No. having the composition shown by weight%. 22 to 24 were melted. The balance other than the composition shown in Table 4 is Fe and inevitable impurities. The smelting was performed by using a blast furnace hot metal and adjusting the components with an approximate converter and degassing furnace. The obtained molten steel was continuously cast to produce a slab having a thickness of 200 mm. Table 5 shows the Ar 3 points and the recrystallization temperature for each test material.

Figure 2009191348
Figure 2009191348

Figure 2009191348
Figure 2009191348

鋳片を1150℃に加熱し、熱間圧延して熱間圧延鋼板とした。熱間圧延の仕上温度を、(Ar点−20)℃未満の850℃と、(Ar点−20)〜940℃の範囲内の900℃、910℃および930℃との4水準に変化させた。また、熱間圧延鋼板の巻取温度を、500℃、660℃および750℃の3水準に変化させた。 The slab was heated to 1150 ° C. and hot-rolled to obtain a hot-rolled steel sheet. Change the finishing temperature of hot rolling, (3 points -20 Ar) and 850 ° C. of less than ° C., the four levels of 900 ° C., 910 ° C. and 930 ° C. in the range of (Ar 3 point -20) to 940 ° C. I let you. Moreover, the winding temperature of the hot-rolled steel sheet was changed to three levels of 500 ° C., 660 ° C. and 750 ° C.

熱間圧延鋼板を酸洗してスケール除去した。その後、圧延率を45%、76%および86%の3水準に変化させて、厚さ0.8mmに冷間圧延して冷間圧延鋼板とした。熱間圧延鋼板の仕上厚さを調整することにより、厚さ0.8mmまで冷間圧延した時の圧延率が、上記の3水準となるようにした。   The hot rolled steel sheet was pickled and scaled off. Thereafter, the rolling rate was changed to three levels of 45%, 76% and 86%, and cold rolled to a thickness of 0.8 mm to obtain a cold rolled steel sheet. By adjusting the finishing thickness of the hot-rolled steel sheet, the rolling rate when cold-rolling to a thickness of 0.8 mm was set to the above three levels.

冷間圧延後、700℃以下であり、かつ各供試材の再結晶温度未満である650℃と、700〜950℃の範囲内であり、かつ再結晶温度以上である850℃との2水準にて焼鈍を行った。焼鈍後の各供試材から、実施例1の場合と同様にして、r値、YS、TS、Elおよび結晶粒径を測定した。   Two levels of 650 ° C. that are 700 ° C. or lower and lower than the recrystallization temperature of each specimen, and 850 ° C. that is within the range of 700 to 950 ° C. and higher than the recrystallization temperature after cold rolling. Annealed. From each specimen after annealing, the r value, YS, TS, El, and crystal grain size were measured in the same manner as in Example 1.

焼鈍後の冷間圧延鋼板にめっき処理を行った。めっき種は、溶融亜鉛と溶融亜鉛−55%アルミニウムとの2種類である。以後、溶融亜鉛めっきを溶融Znめっきと表記し、溶融亜鉛−55%アルミニウムめっきを溶融Zn−Alめっきと表記する。溶融Znめっきは、めっき浴の浴温を470℃とし、インレット温度を460℃とした。溶融Zn−Alめっきは、めっき浴の浴温を600℃とし、インレット温度を600℃とした。片面あたりのめっき付着量は、溶融Znめっきが45g/mおよび90g/mの2水準、溶融Zn−Alめっきが45g/mの1水準である。各供試材No.22,23,24について、熱間圧延からめっき処理までの製造条件を、表6〜表8に示す。1つの供試材、たとえば供試材No.22の中で製造条件が異なるものは、No.22の末尾にサブ番号を付して区別した。 The cold-rolled steel sheet after annealing was plated. There are two types of plating: molten zinc and molten zinc-55% aluminum. Hereinafter, the hot dip galvanizing is referred to as hot dip Zn plating, and the hot dip zinc-55% aluminum plating is referred to as hot dip Zn—Al plating. In the hot dip Zn plating, the bath temperature of the plating bath was 470 ° C., and the inlet temperature was 460 ° C. In the molten Zn—Al plating, the bath temperature of the plating bath was 600 ° C., and the inlet temperature was 600 ° C. The plating adhesion amount per one side is two levels of 45 g / m 2 and 90 g / m 2 for molten Zn plating and one level of 45 g / m 2 for molten Zn-Al plating. Each test material No. Tables 6 to 8 show manufacturing conditions from hot rolling to plating treatment for 22, 23, and 24. One specimen, for example specimen no. No. 22 with different production conditions is No. 22 A subnumber was added to the end of 22 to distinguish them.

Figure 2009191348
Figure 2009191348

Figure 2009191348
Figure 2009191348

Figure 2009191348
Figure 2009191348

めっき処理後の鋼板に対して両面塗装を行った。塗装条件を表9に示す。塗装処理後の鋼板から、実施例1と同様にして光沢保持率を求め、光沢低下抑制の有無を評価した。   Double-sided coating was performed on the steel sheet after the plating treatment. The coating conditions are shown in Table 9. From the steel sheet after the coating treatment, the gloss retention was obtained in the same manner as in Example 1, and the presence or absence of gloss reduction suppression was evaluated.

Figure 2009191348
Figure 2009191348

各供試材No.22,23,24についての試験結果を、表10、表11、表12にそれぞれ示す。熱間圧延の仕上温度が900℃、910℃、930℃のいずれかであり、熱間圧延鋼板の巻取温度が660℃であり、冷間圧延の圧延率が76%、86%のいずれかであり、焼鈍温度が850℃である供試材では、結晶粒径が20μm以下、かつr値が1.5以上を満足した。このような供試材は、光沢保持率が70%以上であり、加工後の光沢低下を抑制することができた。   Each test material No. The test results for 22, 23, and 24 are shown in Table 10, Table 11, and Table 12, respectively. The hot rolling finishing temperature is either 900 ° C., 910 ° C., or 930 ° C., the coiling temperature of the hot rolled steel sheet is 660 ° C., and the rolling rate of cold rolling is either 76% or 86%. In the test material having an annealing temperature of 850 ° C., the crystal grain size was 20 μm or less and the r value was 1.5 or more. Such a test material had a gloss retention of 70% or more, and could suppress a reduction in gloss after processing.

熱間圧延の仕上温度が(Ar点−20)℃未満の供試材では、r値が1.5未満であり、結晶粒径も20μmを超えた。熱間圧延の仕上温度が(Ar点−20)℃未満の場合、熱間圧延鋼板が混粒組織となり、この混粒組織が冷間圧延して焼鈍した後の加工性に影響を及ぼすので、r値が低下した。 In the test material having a finishing temperature of hot rolling of less than (Ar 3 points−20) ° C., the r value was less than 1.5, and the crystal grain size also exceeded 20 μm. When the finishing temperature of hot rolling is less than (Ar 3 point−20) ° C., the hot rolled steel sheet has a mixed grain structure, and this mixed grain structure affects the workability after cold rolling and annealing. The r value decreased.

熱間圧延鋼板の巻取温度が高い750℃の供試材では、熱間圧延鋼板の結晶粒が粗大化し、その影響が冷間圧延鋼板の焼鈍後にまで及ぶので、結晶粒径が30μm以上に粗大化した。熱間圧延鋼板の巻取温度が低い500℃の供試材では、熱間圧延鋼板のフェライト中の炭化物が微細になり、冷間圧延鋼板の焼鈍後にr値向上にとって好ましい集合組織が形成されないので、r値が低下した。   In the test material at 750 ° C where the coiling temperature of the hot-rolled steel sheet is high, the crystal grains of the hot-rolled steel sheet are coarsened, and the influence extends after the annealing of the cold-rolled steel sheet. It became coarse. In the specimen at 500 ° C. where the coiling temperature of the hot-rolled steel sheet is low, carbides in the ferrite of the hot-rolled steel sheet become fine, and a favorable texture is not formed for improving the r value after annealing of the cold-rolled steel sheet. The r value decreased.

冷間圧延率が低い45%の供試材では、加工性向上にとって好ましい集合組織を発達させることができないので、1.5以上のr値を得ることができなかった。焼鈍温度が650℃の供試材では、冷間圧延鋼板の組織が再結晶せず、r値が著しく低下した。   With the 45% test material having a low cold rolling rate, it was not possible to develop a texture preferable for improving workability, so an r value of 1.5 or more could not be obtained. In the test material having an annealing temperature of 650 ° C., the structure of the cold-rolled steel sheet was not recrystallized, and the r value was significantly reduced.

熱間圧延の仕上温度が(Ar点−20)℃未満、熱間圧延鋼板の巻取温度が500℃または750℃、冷間圧延率が45%のいずれかに該当する供試材では、結晶粒径20μm以下、r値1.5以上の一方または両方を満足しなかった。このような供試材は、光沢保持率が70%未満であり、加工後の光沢低下を抑制することができなかった。 In the test material in which the finishing temperature of hot rolling is less than (Ar 3 point-20) ° C., the winding temperature of the hot rolled steel sheet is 500 ° C. or 750 ° C., and the cold rolling rate is 45%, One or both of the crystal grain size of 20 μm or less and the r value of 1.5 or more were not satisfied. Such a test material had a gloss retention of less than 70%, and could not suppress a reduction in gloss after processing.

Figure 2009191348
Figure 2009191348

Figure 2009191348
Figure 2009191348

Figure 2009191348
Figure 2009191348

本発明のプレコート鋼板の製造方法を実施するための概略的な製造工程を示すフローチャートである。It is a flowchart which shows the schematic manufacturing process for enforcing the manufacturing method of the precoat steel plate of this invention.

Claims (2)

鋼板の片面または両面に塗膜層を有するプレコート鋼板の製造方法において、
鋼板の結晶粒径を20μm以下にし、かつランクフォード値を1.5以上にするために、
重量%で、
C:0.007%以下、
Si:0.5%以下、
Mn:1.0%以下、
S:0.02%以下、
N:0.007%以下、
Ti:0.05〜0.2%および/またはNb:0.05〜0.2%を含有し、残部がFeおよび不可避的不純物の組成を有する鋼塊または鋳片を、仕上温度が(Ar点−20)〜940℃、巻取温度が600〜730℃で熱間圧延して熱間圧延鋼板とし、
該熱間圧延鋼板を圧延率60〜90%で冷間圧延して冷間圧延鋼板とし、
該冷間圧延鋼板を700〜950℃で焼鈍することを特徴とするプレコート鋼板の製造方法。
In the method for producing a precoated steel sheet having a coating layer on one side or both sides of the steel sheet,
In order to set the crystal grain size of the steel sheet to 20 μm or less and the Rankford value to 1.5 or more,
% By weight
C: 0.007% or less,
Si: 0.5% or less,
Mn: 1.0% or less,
S: 0.02% or less,
N: 0.007% or less,
A steel ingot or slab containing Ti: 0.05 to 0.2% and / or Nb: 0.05 to 0.2%, the balance having a composition of Fe and inevitable impurities, the finishing temperature is (Ar 3 points-20) to 940 ° C., and hot rolling at a coiling temperature of 600 to 730 ° C. to form a hot rolled steel sheet,
Cold rolling the hot rolled steel sheet at a rolling rate of 60 to 90% to obtain a cold rolled steel sheet,
A method for producing a pre-coated steel sheet, comprising annealing the cold-rolled steel sheet at 700 to 950 ° C.
鋼塊または鋳片に、さらに重量%でB:0.00002〜0.001%を含有させることを特徴とする請求項1記載のプレコート鋼板の製造方法。   The method for producing a precoated steel sheet according to claim 1, wherein the steel ingot or slab further contains B: 0.00002 to 0.001% by weight.
JP2008036528A 2008-02-18 2008-02-18 Manufacturing method of pre-coated steel sheet Active JP4938701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008036528A JP4938701B2 (en) 2008-02-18 2008-02-18 Manufacturing method of pre-coated steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008036528A JP4938701B2 (en) 2008-02-18 2008-02-18 Manufacturing method of pre-coated steel sheet

Publications (2)

Publication Number Publication Date
JP2009191348A true JP2009191348A (en) 2009-08-27
JP4938701B2 JP4938701B2 (en) 2012-05-23

Family

ID=41073631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008036528A Active JP4938701B2 (en) 2008-02-18 2008-02-18 Manufacturing method of pre-coated steel sheet

Country Status (1)

Country Link
JP (1) JP4938701B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248626A (en) * 2009-03-27 2010-11-04 Kobe Steel Ltd High thermal conductivity heat radiation steel sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082617A (en) * 1983-10-13 1985-05-10 Kawasaki Steel Corp Production of high tensile cold rolled steel plate for deep drawing
JP2000001745A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and corrosion resistance, and its manufacture
JP2006291272A (en) * 2005-04-08 2006-10-26 Sumitomo Metal Ind Ltd High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet, and method for manufacturing them
JP2007231371A (en) * 2006-03-01 2007-09-13 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, galvanized steel sheet, and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082617A (en) * 1983-10-13 1985-05-10 Kawasaki Steel Corp Production of high tensile cold rolled steel plate for deep drawing
JP2000001745A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and corrosion resistance, and its manufacture
JP2006291272A (en) * 2005-04-08 2006-10-26 Sumitomo Metal Ind Ltd High-strength cold-rolled steel sheet, hot-dip galvanized steel sheet, and method for manufacturing them
JP2007231371A (en) * 2006-03-01 2007-09-13 Sumitomo Metal Ind Ltd Cold-rolled steel sheet, galvanized steel sheet, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248626A (en) * 2009-03-27 2010-11-04 Kobe Steel Ltd High thermal conductivity heat radiation steel sheet

Also Published As

Publication number Publication date
JP4938701B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4804996B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good workability, powdering property and slidability
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP7244722B2 (en) Zinc alloy plated steel material with excellent corrosion resistance after working and method for producing the same
CN108603263B (en) High yield ratio type high strength galvanized steel sheet and method for producing same
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JP6398967B2 (en) High-strength hot-dip hot-rolled steel sheet excellent in surface appearance and plating adhesion and method for producing the same
JP6359518B2 (en) Low Si content steel strip
JP6311843B2 (en) Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
JP6402830B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP6376310B1 (en) High-strength hot-dip galvanized hot-rolled steel sheet and manufacturing method thereof
JP6225604B2 (en) 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability and method for producing the same
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP4422645B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good workability
JP4938701B2 (en) Manufacturing method of pre-coated steel sheet
JP6436268B1 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent plating adhesion
JP4890492B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate
JPH0232326B2 (en) TOSOYAKITSUKEKOKASEIOJUSURUTOSOKOHANNOSEIZOHOHO
JP3946338B2 (en) Manufacturing method of steel strip for coating with excellent bending workability
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JP2022128727A (en) Hot press member, steel plate for hot press, and production method of hot press member
CN112639153A (en) Hot-dip plated steel sheet having excellent corrosion resistance and workability, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4938701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350