JP2009189170A - エネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法 - Google Patents

エネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法 Download PDF

Info

Publication number
JP2009189170A
JP2009189170A JP2008027105A JP2008027105A JP2009189170A JP 2009189170 A JP2009189170 A JP 2009189170A JP 2008027105 A JP2008027105 A JP 2008027105A JP 2008027105 A JP2008027105 A JP 2008027105A JP 2009189170 A JP2009189170 A JP 2009189170A
Authority
JP
Japan
Prior art keywords
switch
value
energy conversion
circuit
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008027105A
Other languages
English (en)
Inventor
Ichihiro Murata
一大 村田
Naohiko Morota
尚彦 諸田
Yoshihiro Mori
吉弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008027105A priority Critical patent/JP2009189170A/ja
Priority to US12/365,436 priority patent/US20090201705A1/en
Publication of JP2009189170A publication Critical patent/JP2009189170A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Abstract

【課題】過負荷状態ではない通常動作時には安定動作を実現することができるとともに、過負荷状態では十分に出力電力を低くすることが可能であり、理想的な過負荷保護特性を実現することができるエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を提供する。
【解決手段】過負荷時には、スイッチング素子1のオン期間の最小値を小さくすることにより、スイッチング素子1のオン時間を短縮、あるいはスイッチング電流のピーク値を低下させる過負荷保護により、確実に出力電力を絞る。
【選択図】図1

Description

本発明は、過負荷保護機能を有するスイッチング電源装置等において電力を変換するエネルギ変換技術に関するものである。
従来から、例えばスイッチング素子のスイッチング動作により、ある入力電圧を変換して安定した出力電圧を出力するエネルギ変換装置、いわゆるスイッチング電源装置においては、出力に接続される負荷の異常時や短絡時などの過負荷時にも、出力に過電流が供給されることを抑制する、いわゆる過負荷保護機能が備えられることが一般的である。
上記のような過負荷時には、一般的に出力電圧が低下するため出力部に供給するエネルギが一定であっても出力電流が過大となってしまい、これがしばしば問題となる。これを防ぐためには、過負荷時には出力に供給するエネルギを小さくする必要がある。
以上のような過負荷保護機能を実現する従来技術として、以下にいくつか例を挙げて説明する。
まず、従来例1(例えば、特許文献1を参照)のスイッチング電源装置は、過負荷保護機能を備えたチョッパ型のスイッチング電源装置であり、過負荷状態を出力電圧の低下で検出し、スイッチング素子の発振周波数、およびスイッチング素子に流れる電流(以下、スイッチング電流)パルスのピーク値を低下させることにより、出力へ供給されるエネルギを小さくし、過負荷保護を実現している。
図23に示したのは、この従来例1を簡単に説明する構成例である。この電源装置では、出力電圧検出抵抗1014、1015で出力電圧VOを検出し、出力電圧VOに比例した電圧VODETを比較器1010にて基準電圧(VREF11)1017と比較し、その出力VERRを比較器1009で発振器1008の出力VOSCと比較している。そして、この比較器1009の出力VPWMが、NAND回路1006、PNPトランジスタ1005を介して、スイッチング素子1001のオン、オフをコントロールする。このような動作により、過負荷状態ではない通常動作時には、一定の発振周波数でスイッチング素子のオン時間を変化させ、出力電圧VOを一定に制御するPWM制御を行う。
ここで、過電流検出回路1012はスイッチング電流検出抵抗1004でスイッチング電流値を検出し、この電流値が一定値を超えたときには、フリップフロップ回路1007に信号を出力して、スイッチング素子1001をオフさせる。つまり、この電源装置はスイッチング素子1001に流れる電流パルスのピーク値を一定値以下に制限するスイッチング素子1001の過電流保護機能が備えられている。
次に、過負荷時の動作の説明を行う。このスイッチング電源装置では、出力電流IOが増加するとスイッチング電流パルスのピーク値が上昇するが、上記したスイッチング電流の過電流保護機能により、このピーク値が一定値以上になることができないので、出力電流IOがある値以上になると出力電圧が低下する。
このように、過負荷時には出力電圧VOが低下するので、この出力電圧VOの検出値であるVODETも低下する。比較器1011はこのVODETと基準電圧(VREF12)1018を比較し、その出力信号を発振器1008、過電流検出回路1012に供給しており、これにより、過負荷時に出力電圧VOがある値まで低下すると発振器の発振周波数、およびスイッチング素子1001の過電流保護値を低下させる。つまり、過負荷時には、スイッチング素子1001の発振周波数と電流パルスのピーク値を低下させ、出力電流IOが過剰に増加することを防いでいる。
また、従来例2(例えば、特許文献2を参照)のスイッチング電源装置は、過負荷保護機能を備えたフライバック型電源装置であり、過負荷状態における出力電圧の低下を、出力電圧に比例した補助巻線電源部で検出し、スイッチング電流パルスのピーク値を低下させることにより、出力へ供給されるエネルギを小さくし、過負荷保護機能を実現している。
図24に示したのは、この従来例2を簡単に説明する構成例である。この電源装置では、定電圧制御回路2024、誤差増幅器2015により、出力電圧VOに関係した信号がOR回路2014に出力され、スイッチング素子2001をPWM制御によりオン、オフをコントロールしている。このような動作により、通常動作時にはPWM制御により出力電圧VOを一定に保つ。
1次巻線2031、2次巻線2032、補助巻線2033は1つのトランスを構成し、2次巻線2032は出力電圧VOを出力し、それと同じ極性である補助巻線2033は、出力電圧VOに比例した補助巻線電圧VBを出力する。この補助巻線電圧VBは抵抗2006、2007によりVBに比例した値VOREFとして比較器2013に出力される。また、抵抗2002はスイッチング電流値を検出する役割を持ち、スイッチング電流に比例した電圧値IOREFを比較器2013に出力する。比較器2013はIOREFがVOREFよりも大きくなるとスイッチング素子2001をオフさせるように動作する。
通常動作時には出力電圧VOは一定であるため、VOREFも一定である。このためスイッチング電流が一定値以下に制限される。このため、過負荷時に出力電流IOがある値よりも大きくなると出力電圧VOが低下する。この時には、結果的にVOREFも低下するので、スイッチング電流の制限値も低下する。つまり、過負荷時には、スイッチング電流パルスのピーク電流値を低下させることで出力部へエネルギ供給を少なくして、出力電流IOが過剰に増加することを防いでいる。
その他、ごく一般的な方法として、スイッチング電流パルスのピーク値や発振周波数は変化をさせないものの、過負荷時にはスイッチング素子の発振期間と停止期間を設け、発振期間の割合を小さくすることで出力電力を絞り、出力電流IOが過剰に増加するのを防ぐ間欠発振型の過負荷保護機能も存在する。
図26には、間欠発振型の過負荷保護機能を備えた電源装置において、過負荷時の動作のタイミングチャートを示している。このように、過負荷になった後、何らかの検出手段で過負荷保護が作動すると、発振を停止させ、一定時間ごとに発振を再開し、再度発振を停止するという間欠動作を行っている。
この間欠動作により、過負荷時の出力電力の供給を制限できるとともに、負荷の状態が正常に戻った時には、電源装置の動作が正常に戻ることができるようにしている。
特許第3229825号公報 特開平5−130773号公報
しかしながら、スイッチング素子の過電流保護動作には、制御回路で生じる要素として、過電流を検出してから実際にスイッチング素子をターンオフさせるまでの遅れ時間tdや、ターンオン直後に過電流保護が誤動作することを防ぐために設けられた過電流検出の不感時間(以下、ブランキング時間とする)tBLKなどから構成されるスイッチング素子の最小オン時間Tonminが存在することが一般的である。
この最小オン時間Tonminは、過電流保護が作動できない時間であり、スイッチング電流の大きさに関係なく、スイッチング素子がターンオフしない時間であるため、スイッチング電流のパルスは、そのオン時間が最小オン時間Tonminより短くならない。
上記に挙げた過負荷保護では、過負荷時にスイッチング電流の過負荷保護機能によりスイッチング電流パルスのピーク値を低下させ、出力電流が増加することを防いでいるが、発振周波数が高い場合や最小オン時間が長い場合には、この最小オン時間のためにスイッチング電流パルスのピーク値を十分に低下させることができず、出力電流を絞ることができない。
ここで、発振周波数が高い場合の説明を以下に行う。
図25は、それぞれ発振周波数100kHzと200kHzで、スイッチング電流のピーク値が過電流保護検出レベルまで高くなっている場合(出力電力が最大となっている状態)の電流波形図である。スイッチング電源装置では、周波数が異なる場合でも、似たようなオンデューティ範囲になるように使用される場合が多いので、図25ではオンデューティを統一して20%としており、それぞれスイッチング素子のオン時間Tonは、2.0μs(100kHzの場合)、1.0μs(200kHzの場合)となっている。
今、図25に示されているように最小オン時間Tonminが500nsとなっているとすると、発振周波数が100kHzの場合には、過負荷時に過電流保護検出レベルを低下させたときに、スイッチング電流パルスのピーク値を1/4まで低下させることができるが、発振周波数が200kHzの場合には、1/2までしか低下させることができない。このように、発振周波数が高くとなると、発振周期が短くなるために出力電力が大きい時のオン時間が短くなって最小オン時間Tonminとの差が小さくなる。このために、過電流保護検出レベルを低下させても、スイッチング電流ピーク、および出力電力を小さくすることができず、結果的に出力電流IOの増大を防ぐことができない。
さらに、特許文献2に示すような補助巻線を設け、この補助巻線電圧を利用して出力電圧の検出を行っている場合、この補助巻線電圧は理想的には出力電圧の定数倍の電圧となるが、実際にはこの補助巻線電圧は、補助巻線のスイッチング電圧に発生するスパイク電圧の影響を受けて、この理想的な電圧値から値が外れることがある。つまり、このスパイク電圧はスイッチング電流パルスのピーク値などに依存して変化するため、具体的には出力電圧が一定であってもスイッチング電流パルスのピーク値や出力電流の変化により、補助巻線電圧が変化する。
ここで前記したように、最小オン時間Tonminにより過負荷時にスイッチング電流パルスのピーク値を十分に低下させることができない場合には、この電流ピーク値が低下しないことにより、出力電圧が低下しても補助巻線電圧が低下しなくなることがある。
これに対し特許文献2に示す電源装置では、補助巻線電圧の低下でスイッチング電流パルスのピーク値を低下させて出力電力を絞る過負荷保護を行うので、前述のように補助巻線電圧が低下しなくなると出力電力を絞ることができなくなり、過負荷保護機能を実現することができないという問題がある。
また、このように補助巻線電圧の低下により出力電圧の検出を行う電源装置であって、特許文献1のようにさらに出力電圧が低下したところで発振周波数を低下させるといった、2段階の過負荷保護を備えている電源装置においては、補助巻線電圧が低下しないことにより2段階目の過負荷保護が作動しなくなり、出力電力を十分に絞ることができなくなるので、この点はさらに大きな問題である。
また、特許文献1に示すように、過負荷時には発振周波数を低下させることにより出力電力を絞ることも可能であるが、発振周波数が低下して可聴域である20kHz以下となる場合には、このスイッチング周波数によりトランスやコイルという磁性部品の騒音が問題となる。
この際、スイッチング電流パルスのピーク値を低くすることでこの騒音を小さくすることが可能であることを利用して、スイッチング電流パルスのピーク値を低くする機能が必要となることが一般的であるが、この機能がある場合であっても、前述した最小オン時間の影響でスイッチング電流パルスのピーク値を低下できない場合には、磁性部品の騒音を解決することが困難であった。
このように従来の技術では、特に高い発振周波数では過負荷保護を適正に実施することができず、これがスイッチング電源装置の高周波化や、それに伴うトランスやコイルなどの磁性部品の小型化に妨げとなっていた。
また、スイッチング電源装置では、出力電圧が低くなると、一般的に連続モード動作時のオンデューティが低くなる傾向がある。例えば、降圧型チョッパ電源装置では、連続モード動作時のオンデューティが『VO/VIN』と表され、理想的なフライバック型電源装置では、『VO×n/(VIN+VO×n)』(n:トランス巻線比、スイッチング素子のオン電圧や出力整流ダイオードの順方向電圧を無視した場合)と表されて、やはり、出力電圧VOが低下すると連続モード動作時のオンデューティが小さくなる。
3つ目に紹介した間欠発振型の過負荷保護では、発振期間の割合を小さくすることにより平均の出力電力を絞って保護を実現しているが、発振が停止していること、過負荷状態であることから、発振が再開する時には出力電圧VOが低くなっていると考えられる。
このように、出力電圧VOが低いときには、このスイッチング電源装置は最大限出力に電力を供給しようとするため、低いオンデューティで、最大のスイッチング電流でスイッチング素子は発振するものと考えられる。この最大のスイッチング電流を決定するのは、スイッチング素子を制御する回路の過電流保護機能であるが、ここで問題にしている最小オン時間Tonminが問題となる。
この最小オン時間は過電流保護が作動しない時間であり、この間スイッチング素子をターンオフすることができない。この最小オン時間Tonminが上記に説明された連続モード時のオンデューティよりも長くなると、スイッチング電流は周期性のある定常動作を行うことができない。図27には、この発振再開時のスイッチング電流の変化を示している。このように、スイッチング電流は、過電流保護機能によって、設定された検出レベル以下に抑えることができなくなり、スイッチング電流が過大となってしまう。これによりスイッチング素子が破壊してしまうことがあり、これが大きな問題となることがあった。
本発明は、上記従来の問題点を解決するもので、スイッチング素子の過電流保護機能における最小オン時間に関係なく、スイッチング電流パルスのピーク値を十分に低下させて出力電流を十分に絞ることができ、負荷に対する出力電流の増大を確実に防ぐことができるとともに、スイッチング電流が過大となることを防いでスイッチング素子の破壊をなくすことができ、さらに装置を低騒音化しかつ容易に小型化および軽量化しつつコスト低減化することができるエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を提供する。
上記の課題を解決するために、本発明の請求項1に記載のエネルギ変換装置は、入力されるある形態のエネルギを特定の形態のエネルギに変換して出力するエネルギ変換装置であって、外部より入力エネルギが入力される入力部と、外部へ出力エネルギが出力される出力部と、入力端子と出力端子と制御端子を有するスイッチと、前記スイッチの制御端子に接続され前記スイッチのオン、オフを制御する制御回路と、前記スイッチの入力端子あるいは出力端子のいずれかが接続されるエネルギ伝達エレメントと、前記エネルギ伝達エレメントに接続され前記出力部へエネルギを伝達する整流平滑部とを備え、前記制御回路は、前記スイッチのオン期間の最小値を決定する回路と、前記スイッチのオン期間の最小値を変化させる回路と、前記出力部に接続される負荷の状態を検出する回路とを有し、前記負荷の状態が異常であることを検出した場合には、前記負荷の状態が正常である場合に比べて前記スイッチのオン期間の最小値を短縮するよう構成したことを特徴とする。
また、本発明の請求項2に記載のエネルギ変換装置は、請求項1に記載のエネルギ変換装置であって、前記制御回路は、前記スイッチに流れる電流値を検出する回路と、前記スイッチに流れる電流の最大値を決定する回路と、前記出力部の電圧値を検出する回路と、前記出力部の電圧値により前記負荷の状態を判断する回路とを有し前記出力部の電圧値が第一の閾値まで低下することで前記負荷の状態が異常であることを検出した場合には、前記負荷の状態が正常である場合に比べて前記スイッチのオン期間の最小値を短縮するよう構成したことを特徴とする。
また、本発明の請求項3に記載のエネルギ変換装置は、請求項2に記載のエネルギ変換装置であって、前記制御回路は、前記出力部の電圧値が第二の閾値まで低下すると前記出力部へ供給するエネルギを小さくする第一の過負荷保護機能を実現する回路を有することを特徴とする。
また、本発明の請求項4に記載のエネルギ変換装置は、請求項3に記載のエネルギ変換装置であって、前記第一の過負荷保護機能として、前記スイッチに流れる電流の最大値を低くすることで前記出力部へ供給するエネルギを小さくすることを特徴とする。
また、本発明の請求項5に記載のエネルギ変換装置は、請求項4に記載のエネルギ変換装置であって、前記第一の過負荷保護機能として、前記出力部の電圧値が前記第二の閾値よりも低くなっているとき、前記出力部の電圧値が低下するほど前記スイッチに流れる電流の最大値を低くする特性を有することを特徴とする。
また、本発明の請求項6に記載のエネルギ変換装置は、請求項3に記載のエネルギ変換装置であって、前記第一の過負荷保護機能として、単位時間あたりの前記スイッチのスイッチング回数を少なくすることを特徴とする。
また、本発明の請求項7に記載のエネルギ変換装置は、請求項6に記載のエネルギ変換装置であって、前記第一の過負荷保護機能として、前記出力部の電圧値が前記第二の閾値よりも低くなっているとき、前記出力部の電圧値が低下するほど単位時間あたりの前記スイッチのスイッチング回数を少なくする特性を有することを特徴とする。
また、本発明の請求項8に記載のエネルギ変換装置は、請求項7に記載のエネルギ変換装置であって、前記第一の過負荷保護機能として、前記スイッチの発振周波数を低下させることで前記スイッチのスイッチング回数を少なくすることを特徴とする。
また、本発明の請求項9に記載のエネルギ変換装置は、請求項7に記載のエネルギ変換装置であって、前記第一の過負荷保護機能として、前記スイッチがスイッチング不可能な期間を設けることで前記スイッチのスイッチング回数を少なくすることを特徴とする。
また、本発明の請求項10に記載のエネルギ変換装置は、請求項3に記載のエネルギ変換装置であって、前記制御回路は、前記第一の過負荷保護機能とは別の機能であり、前記出力部の電圧値が前記第二の閾値よりも低い第三の閾値まで低下すると、前記出力部へ供給するエネルギを小さくする第二の過負荷保護機能を実現する回路を有することを特徴とする。
また、本発明の請求項11に記載のエネルギ変換装置は、請求項10に記載のエネルギ変換装置であって、前記制御回路は、前記第一の閾値を、前記第三の閾値よりも高く設定するよう構成したことを特徴とする。
また、本発明の請求項12に記載のエネルギ変換装置は、請求項10に記載のエネルギ変換装置であって、前記制御回路は、前記スイッチを流れる電流の最大値を低くすることを前記第一の過負荷保護機能と設定し、前記スイッチの発振周波数を低くすることを前記第二の過負荷保護機能と設定するよう構成したことを特徴とする。
また、本発明の請求項13に記載のエネルギ変換装置は、請求項10に記載のエネルギ変換装置であって、前記制御回路は、前記スイッチを流れる電流の最大値を低くすることを前記第一の過負荷保護機能と設定し、前記スイッチがスイッチング不可能な期間を設けることを前記第二の過負荷保護機能と設定するよう構成したことを特徴とする。
また、本発明の請求項14に記載のエネルギ変換装置は、請求項10に記載のエネルギ変換装置であって、前記制御回路は、前記スイッチの発振周波数を低くすることを前記第一の過負荷保護機能と設定し、前記スイッチを流れる電流の最大値を低くすることを前記第二の過負荷保護機能と設定するよう構成したことを特徴とする。
また、本発明の請求項15に記載のエネルギ変換装置は、請求項2に記載のエネルギ変換装置であって、前記制御回路は、前記出力部の電圧値が低下するほど前記スイッチのオン期間の最小値を短くする回路を有することを特徴とする。
また、本発明の請求項16に記載のエネルギ変換装置は、請求項2に記載のエネルギ変換装置であって、前記エネルギ伝達エレメントは、前記入力部および前記スイッチに接続される第一の巻線と、前記整流平滑部に接続される第二の巻線と、前記制御回路に接続される第三の巻線とを有するトランスであり、前記制御回路は、前記第三の巻線の電圧値を検出する回路を有し、前記検出による前記第三の巻線の電圧値により前記出力部の電圧値を検出するよう構成したことを特徴とする。
また、本発明の請求項17に記載のエネルギ変換装置は、請求項1に記載のエネルギ変換装置であって、前記制御回路は、前記スイッチに流れる電流値を検出する回路を有し、前記スイッチに流れる電流値が閾値以上となったことで前記負荷の状態が異常であることを検出して、前記スイッチのオン期間の最小値を短縮するよう構成したことを特徴とする。
また、本発明の請求項18に記載のエネルギ変換装置は、請求項1に記載のエネルギ変換装置であって、前記制御回路は、前記スイッチの発振周波数が閾値以上となったことで前記負荷の状態が異常であることを検出して、前記スイッチのオン期間の最小値を短縮するよう構成したことを特徴とする。
また、本発明の請求項19に記載のエネルギ変換装置は、請求項1から請求項18のいずれかに記載のエネルギ変換装置であって、前記制御回路は、前記スイッチに流れる電流値を検出する回路と、前記スイッチに流れる電流の最大値を決定する回路と、前記スイッチがターンオンした後に、前記スイッチに流れる電流値を検出する回路、あるいは前記スイッチに流れる電流の最大値を決定する回路が作動しないブランキング時間を設ける回路と、前記ブランキング時間を変化させる回路とを有し、前記スイッチのオン期間の最小値の一部あるいは全てを前記ブランキング時間とするよう構成したことを特徴とする。
また、本発明の請求項20に記載の半導体装置は、請求項1から請求項19のいずれかに記載のエネルギ変換装置に用いる半導体装置であって、前記制御回路の一部あるいは全てを単一の半導体基板上に形成したことを特徴とする。
また、本発明の請求項21に記載の半導体装置は、請求項1から請求項19のいずれかに記載のエネルギ変換装置に用いる半導体装置であって、前記制御回路の一部あるいは全てと前記スイッチを同一の半導体基板上に形成したことを特徴とする。
また、本発明の請求項22に記載のスイッチ制御方法は、請求項1から請求項21のいずれかに記載のエネルギ変換装置において、前記スイッチのオン、オフを制御する際に、前記スイッチのオン期間の最小値を決定する処理と、前記スイッチのオン期間の最小値を変化させる処理と、前記負荷の状態を検出する処理とを実行するスイッチ制御方法であって、前記負荷の状態が異常であることを検出した場合には、前記負荷の状態が正常である場合に比べて前記スイッチのオン期間の最小値を短縮することを特徴とする。
以上のように本発明によれば、過負荷時にスイッチに流れる電流波形の最大値を抑える過負荷保護機能を備えたエネルギ変換装置において、過負荷状態においては過負荷状態ではない通常動作状態に比べて最小のオン期間を短くすることにより、負荷の通常状態では誤動作なく動作できると同時に、過負荷状態においては最小オン期間に制限されることなくスイッチング電流の最大値を低くすることができ、負荷の状態に応じて出力電流を適切に調整することができる。
また、過負荷時に発振周波数を低下させるエネルギ変換装置においても、スイッチを流れる電流およびトランスなどの磁性部品を流れる電流の電流値を、スイッチの最小のオン期間に制限されることなく小さくすることができるので、その磁性部品の騒音を低下させることができる。
また、過負荷時に出力電圧が第一の閾値よりも低下したことを検出して、スイッチング電流の最大値を低下させて出力電圧を小さくする第一の過負荷保護機能を作動させ、さらに第一の閾値よりも低い第二の閾値よりも出力電圧が低下したことを検出して、例えば単位時間当たりのスイッチのスイッチング回数を少なくするなどの第二の過負荷保護機能によって、さらに出力電力を低下させて出力電流が過大となることを防ぐエネルギ変換装置において、出力電圧が第二の閾値よりも高い状態で最小オン期間を短縮させることにより、スイッチング電流の最大値が低下しないことで出力電圧が第二の閾値まで低下せず、第二の過負荷保護が作動することができなくなってしまうことを防ぐことができる。
また、過負荷時に出力電圧が低い状態で発振しなければならない時に、最小オン期間を短縮する機能を備えることで、最小オン期間内にスイッチング電流が過大となり、スイッチが破壊してしまうことを防ぐことも可能である。
また、スイッチと制御回路については同一半導体内に設けて容易に単一化することにより、主要な回路部品を単一半導体内に設けることで、回路を構成するための部品点数を削減することができ、エネルギ変換装置としてスイッチング電源装置を構成した場合、容易に小型化および軽量化さらにコスト低減化を実現することができる。
以上により、過負荷状態ではない通常動作時には安定動作を実現することができるとともに、過負荷状態では十分に出力電力を低くすることが可能であり、理想的な過負荷保護特性を実現することができる。
以下、本発明の実施の形態を示すエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法について、図面を参照しながら具体的に説明する。
(実施の形態1)
本発明の実施の形態1のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を説明する。
図1は本実施の形態1のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図である。
図1において、スイッチング電源装置制御用の半導体装置30は、スイッチとしてのスイッチング素子1とスイッチング素子1のスイッチング動作を制御する制御回路から構成されている。半導体装置30は、外部入力端子として、スイッチング素子1の入力端子(DRAIN)、補助電源電圧入力端子(VCC)、内部回路電源端子(VDD)、フィードバック信号入力端子(FB)、電流リミット可変端子(CL)、スイッチング素子1の出力端子および制御回路のGND端子(GND)の6端子を備えている。
2は、半導体装置30の内部回路電源を供給するためのレギュレータで、起動電流をVCCへ流すためのスイッチ2Aと、起動電流をVDDへ流すためのスイッチ2Bと、VCCからVDDへ電流を供給するためのスイッチ2Cを備えている。
3は、起動用の回路電流を供給するための起動用定電流源であり、起動時にスイッチ2Aを介してVCCへ起動電流を供給する。また、起動後にVCCが一定電圧以下のときは、スイッチ2Bを介してVDDへ回路電流を供給する。
7は、半導体装置30の起動/停止を制御するための起動/停止回路であり、VDDの電圧を検出し、VDDが一定電圧以下のときは、スイッチング素子1のスイッチング動作を停止させる信号を、NAND回路5へ出力する。
6は、スイッチング素子1に流れる電流(以下、ドレイン電流とする)を検出するためのドレイン電流検出回路であり、検出した電流を電圧信号VIDに変換して、比較器8へその電圧信号VIDを出力する。また、このドレイン電流検出回路6は、スイッチング素子1がターンオンした直後にドレイン電流検出回路6が誤作動してターンオフすることを防ぐため、ドレイン電流検出の不感時間(以下、ブランキング時間とする)tBLKを生成する機能を有する。
11は、フィードバック信号制御回路であり、FB端子に入力される電流信号IFBを電圧信号EAOに変換し、比較器8へその電圧信号EAOを出力する。VLIMIT可変回路12は、ドレイン電流の過電流保護レベルILIMITを決定する信号VLIMITを生成する回路であり、CL端子から印加される電流値ICLによって、VLIMITの高さを変化させ、最終的にILIMITを変化させることができる。また、この回路は発振周波数低下信号fosc_Lowを発振回路9に出力し、ブランキング時間短縮信号IBLKをドレイン電流検出回路6へ出力する。この機能により、ICLが低下すると発振周波数fosc、ブランキング時間tBLKが低下する。
比較器8は、フィードバック信号制御回路11からの出力信号EAOとVLIMIT可変回路12からの出力VLIMITの低い方の値と、ドレイン電流検出回路6からの出力信号VIDが等しくなった時に、RSフリップフロップ回路10のリセット端子(R)へ信号を出力する。
9は発振回路であり、スイッチング素子1の最大デューティサイクルを決める最大デューティサイクル信号9Aと、スイッチング素子1の発振周波数を決めるクロック信号9Bを出力する。また、VLIMIT可変回路12から発振周波数低下信号fosc_Lowが入力されると、発振周波数が低くなる機能を有する。最大デューティサイクル信号9AはNAND回路5へ入力され、クロック信号9Bは、RSフリップフロップ回路10のセット端子(S)へ入力される。
RSフリップフロップ10は、発振回路9の出力信号であるCLOCKがハイレベルになるタイミングでNAND回路5にハイレベル信号を出力してターンオンのタイミングを決定し、比較器8の出力信号がローレベルになるタイミングでNAND回路5にローレベル信号してターンオフのタイミングを決定する。
NAND回路5へは、起動/停止回路7の出力信号と、最大デューティサイクル信号9Aと、RSフリップフロップ回路10の出力信号(Q)が入力される。NAND回路5の出力信号は、ゲートドライバー4へ入力され、スイッチング素子1のスイッチング動作を制御する。
このような構成により、半導体装置30はFB端子電流IFBが増加するとドレイン電流パルスの最大(ピーク)値IDpを低くし、IFBが減少するとIDpを高くする制御を行い、CL端子電流ICLが大きい時にはそのIDpの最大値ILIMITが高くなり、ICLが小さい時にはILMITが低くなる制御を実施する。また、この半導体装置30は、ICLに応じて、発振周波数fosc、ブランキング時間tBLKを変化させる制御も実施し、この回路が持つ特性は図2に示されている。
また、40はトランスであり、1次巻線40Aと、2次巻線40Bと、1次側補助巻線40Cを有している。
1次側補助巻線40Cには、ダイオード31とコンデンサ32とで構成される整流平滑回路が接続され、半導体装置30の補助電源部としてVCCへ入力される。また、出力電圧を発生する40Bと極性を同じくする40Cは、40Bの定数倍となる電圧波形を発生するため、平滑コンデンサ32の両端には出力電圧の定数倍の電圧VBが発生する。制御回路30のCL端子は定電圧となるように構成されており、VCCとCLの間に接続された抵抗34によって補助巻線電圧値VBがCL端子電流ICLとして検出される。
33はVDDの安定化用コンデンサである。61は、制御信号を2次側から1次側へ伝達するための制御信号伝達回路であり、フォトトランジスタ61Aとフォトダイオード61Bから構成される。フォトトランジスタ61AのコレクタはVDDと接続され、フォトトランジスタ61AのエミッタはFBと接続される。
2次側巻線40Bには、ダイオード51とコンデンサ52とで構成される整流平滑回路が接続され、負荷58へ接続される。シャントレギュレータ57は、抵抗55と抵抗56により2次側出力電圧VOを検出し、出力電圧VOが一定になるようにフォトダイオード61Bに流れる電流を制御する。
以上のように構成されたスイッチング電源装置の動作を、図1〜図4を用いて以下に説明する。
図2は、図1中の半導体装置30の端子へ入力される信号とスイッチング素子1の動作パラメータの関係を表した図であり、図3はこの構成により得られる出力電圧−電流特性図であり、図4は、このスイッチング電源装置における過負荷時のスイッチング電流の変化について説明した図である。
図1において、入力端子には、たとえば商用の交流電源が整流平滑されて形成される直流電圧VINが入力される。このスイッチング電源装置の動作中には、半導体装置30は1次側補助巻線40Cのダイオード31とコンデンサ32によって構成される電圧VCCを電源とし、VCC端子から電力を得ている。半導体装置30の制御回路の電源電圧はVDDであり、レギュレータ2内のスイッチ2Cにより、VDDが一定電圧になるようにVCCから電力が供給されている。
レギュレータ2内のスイッチ2Bは、起動直後や過負荷時などVCC電圧が一定値VCC(ON)以下のときに、スイッチング動作のオフ期間中に導通が可能となり、VCC電圧が不足しても、必要に応じてドレイン端子からVDDに電力が供給されることによって、VDD電圧が低下しないようにしている。また、VCC電圧が一定値VCC(ON)以上のときには、このスイッチ2Bは導通しない。
また、レギュレータ2内のスイッチ2Aは、起動時においてドレインからVCCに電力を供給する役割を果たしている。この動作により、VCCが起動電圧VCC_startまで上昇したとき、スイッチング素子1はスイッチング動作を開始する。
2次側巻線40Bに流れる電流は、ダイオード51とコンデンサ52により整流平滑されて直流電流となり、負荷58に電力を供給する。出力電圧VOは抵抗55、抵抗56と、シャントレギュレータ57で設定されているが、負荷が軽くなり設定された電圧よりもVOが高くなると、シャントレギュレータ57によってフォトダイオード61Bに流れる電流が増加し、FB端子へ流れ込む電流IFBも増加する。
半導体装置30は、上述したように図2に示したような特性を持ち、FB端子へ流れ込む電流が増加すると、ドレイン電流のピーク値IDpを低くするため出力電力も小さくなる。逆に、負荷が重くなりVOが低くなるときには、FB端子へ流れ込む電流IFBが減少し、ドレイン電流のピーク値IDpが高くなるために出力電力が大きくなる。このような制御により、負荷に応じた出力電力が供給されて出力電圧VOが安定し、定電圧特性が実現される。
このように出力電圧VOが安定化された状態で、負荷58に流れる出力電流IOを増加させていくと、IFBが減少とともにフィードバック信号制御回路11の出力信号EAOが上昇してIDpが高くなるが、このEAOがVLIMITよりも高くなると、IDpが過電流検出レベルILIMITと等しくなり、それ以上IDpを高くすることができない。この状態でさらに出力電流IOを増加させると、IDpが高くなることができず出力電力を増やすことができないために、出力電圧VOが低下を開始する。
さて、上述したように、この過電流検出レベルILIMITを決定しているVLIMITはCL端子に流れ込む電流ICLにより変化し、その変化は図2に示す通りである。通常動作時、出力電圧VOが低下していない時には、ILIMITが低下せず最大値ILMITmaxとなるように、抵抗34の値は設定されている。
図3には、本実施の形態のスイッチング電源装置における出力電圧−出力電流特性(以下、VO−IO特性)を示している。図3に(1)で示された通常動作領域から出力電流IOが増えてIDpがILIMITmaxまで高くなり、出力電圧VOが低下して補助巻線電圧VB(=VCC)が低下するとICLが小さくなり、やがてILIMITが低下を開始する。ここまでが図3の領域(2)の特性となる。
さて、上記したように、半導体装置30は、ICLの低下とともにILIMIT、fosc、tBLKおよび最小オン時間Tonminは、図2に示したような変化をする。図3の(3)に示した状態は、(2)の状態から負荷がさらに重くなって出力電圧VO、VB、ICLが低下し、ILIMITが低下している状態である。
図4には、このときのドレイン電流ID波形の変化を示している。負荷が重くなりILIMITが低下し始めた後、ICLがICLt0まで低下するとブランキング時間tBLKが短縮を始める。図4に示すように、tBLKが短縮することでtd+tBLKが短くなり、Tonminによる制限を受けることなく、ILIMITの低下によるIDpの低下を行うことができる。
図4にて、点線(1)、(2)で示されたドレイン電流波形は、仮にtBLKが短縮する機能を有しない場合のドレイン電流波形である。このようにILIMITが低下したときにも、ドレイン電流のピーク値IDpがTonminで決定されてしまうため、過負荷時にもIDpを十分に低下させることができない。
図3における点線(5)の特性は、tBLKの短縮機能を有せずIDpを十分に低下させることができない時のVO−IO特性であるが、このように出力電流IOを絞ることができない。図3中の(6)の特性は、(5)の特性から、VCCの低下とともにICLがICLf0まで低下し、発振周波数foscが低下することにより、出力電流IOが絞られた場合の特性である。このような特性では、出力電流IOの制限が少なく、過負荷保護の特性が良好とは言えない。
次に、さらに過負荷保護の特性が悪化する図3中(7)のケースについて説明する。
補助巻線電圧VB(=VCC)は、理想的には出力電圧VOの定数倍の電圧となるが、この電圧は補助巻線40Cのスイッチング電圧に発生するスパイク電圧の影響を受けて、この理想的な電圧値から値が外れることがある。つまり、このスパイク電圧は、スイッチング電流パルスのピーク値IDpなどに依存して変化するため、具体的には出力電圧VOが一定であっても、スイッチング電流パルスのピーク値IDpや出力電流IOの変化により、VBが変化する。
上記したような、tBLKが短縮する機能を有しないために、過負荷時にスイッチング電流パルスのピーク値を十分に低下させることができない場合には、この電流ピーク値が低下しないことにより、上記スパイク電圧の影響が小さくならず、出力電圧が低下しても補助巻線電圧VBが低下しなくなることがある。図3中の(7)は、このようにVBが低下しなくなってしまった場合の特性であり、この時にはICLがICLf0まで低下することができないために、発振周波数foscが低下せず、出力電流IOの制限を全く行うことができない。
これに対して、(4)の動作領域は、ICLがICLf0以下となり発振周波数foscが低下して出力電力、および出力電流IOが絞られている領域である。上記したように、tBLKの短縮機能によりIDpを問題なく低下させることができ、またVB、ICLの低下を妨げることもなく、確実に発振周波数foscを低下させることができるため、点線で示された、tBLKの短縮機能を有しない場合のVO−IO特性(5)、(6)、(7)に比べても、確実に出力電流IOを絞ることが可能である。
ここで、ICLt0をICLf0よりも高く設定しているのは、発振周波数が低下する前にブランキング時間を短縮することで、IDpとVBの低下が問題なく実施され、発振周波数が低下する領域までVBが低下するようにするためである。
また、この実施の形態において、領域(1)の通常動作時にtBLKを変化させないのは、ブランキング時間tBLKがスイッチング素子の発振の誤動作を防ぐ役割を持っており、この動作領域では良好な特性を実現するために誤動作することが許容できないためである。一方、領域(2)、(3)、(4)、(5)の過負荷動作領域では過負荷状態自体が異常状態であるために、安定したスイッチング動作が必要ではなく、保護のために出力電力、出力電流IOを抑制することができれば良い。このため、仮にブランキング時間tBLKを短くすることにより誤動作が起きた場合でも、これは出力電力が絞られる方向であり、この状態では安定した制御が必要とされないために問題が発生しない。
なお、本実施の形態において、発振周波数foscや最小オン時間Tonminを、CL端子電流ICLに応じて連続的に変化させているのは、過負荷状態が解決された時に通常動作に復帰しやすくするためである。
このような理由で、過負荷時にのみブランキング時間tBLK、最小オン時間Tonminを短くする本発明は有効である。
図5に示された回路は、ブランキング時間tBLKを変化させる機能を有するドレイン電流検出回路6の構成の一例である。この回路では、スイッチング素子1のRONを利用してドレイン電流IDを検出しており、IDに比例した値であるVDを抵抗601、602によって検出し、その検出値VIDを比較器8に出力している。
さて、ゲートドライバー4の出力がハイレベル(以下、H)となりスイッチング素子1がターンオンしてから反転器603の出力がHとなるまでの間は、NchMOSFET610がオフしているために上記のドレイン電流検出ができない。このため、ブランキング時間は、このゲートドライバー4の出力がHになってからNchMOSFET610がオンするまでの時間で構成される。
スイッチング素子1がオフしている時にはゲートドライバー4の出力がローレベル(以下、L)であり、PchMOSFET605がオン、NchMOSFET606がオフしているため、反転器603の入力はHとなっている。その状態からスイッチング素子1がターンオンしてゲートドライバー4の出力がHとなると、PchMOSFET605がターンオフ、NchMOSFET606がターンオンして、容量604が放電を開始し、反転器603の入力電圧が低下し始める。
最終的に、この反転器603の入力が閾値以下まで低下した時に、NchMOSFET610がターンオンしてドレイン電流の検出が可能となり、このNchMOSFET610がターンオンするまでの期間であるブランキング時間は、容量604とNchMOSFET606、607を流れる電流値で決定される。ここで、NchMOSFET606の電流能力はNchMOSFET607に比べて大きく設定されているため、NchMOSFET606に流れる電流は、NchMOSFET607により決定される。
そして、このNchMOSFET607の電流値はNchMOSFET608の電流値で決定され、この電流値は定電流源609の電流ICONとVLIMIT可変回路12から供給される電流IBLKを足し合わせた値であるので、ブランキング時間tBLKは『ICON+IBLK』の値により値が変化する。
図6に示された回路は、VILIMIT可変回路12の構成の一例である。この回路では、NchMOSFET701、702とPchMOSFET703、704からなるカレントミラー回路により、CL端子電流ICLに比例した電流が抵抗705に流れる。これにより、PchMOSFET704のコレクタ電圧VLはICLに比例して変化する。クランプ回路706は、このVLの上限と下限をクランプする機能を有し、過電流検出レベルILIMITを決定するVLIMITを出力する。このVLIMITの変化により、ILIMITはICLの変化により図2に示したような変化を行う。
このクランプ回路706の出力は負荷短絡検出回路707に接続されており、この負荷短絡検出回路707は、発振周波数低下信号fosc_Lowを発振回路9に出力し、VLに応じて発振周波数foscを変化させる図2に示すような特性を実現することができる。
この負荷短絡検出回路707は、VLに応じてブランキング時間を変化させる電流信号IBLKをドレイン電流検出回路6に出力し、ICLが小さくなるほどこのIBLKが増えるように構成されている。このIBLKは図5に示されたドレイン電流検出回路6に印加される。
上述したように、ブランキング時間tBLKはIBLKとICONで決定されるので、IBLKの変化によりtBLKが変化する。つまり、VLIMIT可変回路12とドレイン電流検出回路6の働きにより、ICLが減少した時にtBLKが短縮される図2に示したような特性を、半導体装置30は実現することができる。
(実施の形態2)
本発明の実施の形態2のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を説明する。
図7は本実施の形態2のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図である。
このスイッチング電源装置は、実施の形態1におけるシャントレギュレータ57を定電圧、定電流制御を可能にする2次側制御回路59に置き換え、出力電流が流れる部分に出力電流検出抵抗60を追加したものである。以下には、実施の形態1と同様の構成、動作については説明を省略し、異なる部分のみを説明する。
図8に示したのは、本実施の形態2の電源装置におけるVO−IO特性である。(1)の領域では、2次側制御回路59は、抵抗55、56により出力電圧VOを検出し、この検出値をほぼ一定にするようにフォトダイオード61Bに流れる電流とFB端子に流れる電流IFB、ドレイン電流ピーク値IDpを変化させ、出力電圧VOが一定になるようにスイッチング素子1のスイッチングを制御する。なお、この定電圧制御を行う条件は、出力電流検出抵抗60の両端の電位差が一定値未満である、つまり、出力電流IOが一定値未満であることである。
次に、出力電流IOが所定値まで大きくなった場合には、図8における領域(2)のように定電流制御を行う。具体的には、検出抵抗60の両端の電位差がほぼ一定となるように、フォトダイオード61Bに流れる電流を制御して、定電流制御を実施する。
さて、この定電流制御を実施している際には、負荷が重くなると出力電圧VOが低下するため、補助巻線電圧VB(=VCC)も同様に低下する。ここで、半導体装置30は実施の形態1と同様の機能を有するので、VBおよびICLが低下するとILIMITの低下が開始し、やがて発振周波数foscが低下する。動作点(3)は、ICL=ICLf0となり、発振周波数foscが低下を開始するポイントである。そして、さらに負荷が重くなると発振周波数foscが低下し、さらに、ILIMITの低下によりIDpも低くなり、図8の領域(4)のように出力電流IOが絞られ、短絡保護がされる。
ここで、出力電圧VOが低くなると2次側制御回路59は電源電圧が足りなくなり、制御不能となることが一般的であり、これが課題となることがある。このため、1次側の制御にて出力電流IOを小さくする特性を実現することが求められる。また、負荷短絡時の保護として、出力電流IOが定電流制御時のIOよりも小さな値(例えば、30%以下など)に抑制されることが、一般的に求められることが多い。
これに対し、半導体装置30が、ICLに応じてtBLKを短縮させる機能を有していない場合には、負荷短絡時にIDpを十分に低くすることができないので、IOを十分に絞ることができない。図8中に点線で示されたVO−IO特性は、tBLKを短縮させる機能を有していない場合の特性を示しており、このように負荷短絡時にIOを低下させることができず、所定の保護特性を求めることができない。
このように、ICLに応じてtBLKを短縮させる機能は、2次側に定電圧、定電流の制御を行う制御回路を有する電源装置においても、良好な短絡保護特性を実現するために有用である。
(実施の形態3)
本発明の実施の形態3のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を説明する。
図9は本実施の形態3のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図である。
ここまでは、絶縁型の電源装置として、出力電圧VOの低下を、トランス40の1次側補助巻線40Cにおけるバイアス巻線電圧VBの低下で検出し、過負荷を検出する方法を前提に説明を行っていたが、例えば、出力電圧VOを直接検出し、この低下で過負荷を検出する非絶縁型の電源装置でも、本発明が適用できる。
図9に示すスイッチング電源装置では、1次−2次間に絶縁がなく、CL端子に接続される抵抗34を直接出力電圧VOに接続している。これにより、実施の形態1では、補助巻線電圧VBで行っていた出力電圧VOの検出を、直接行うことができ、過負荷時には実施の形態1と同様の動作を行うことができる。その他の構成については、実施の形態1と同様なため、説明を省略する。
このような構成であっても、過負荷時に最小オン時間を短縮する効果は、実施の形態1と同様である。
(実施の形態4)
本発明の実施の形態4のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を説明する。
図10は本実施の形態4のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図である。
本実施の形態4のスイッチング電源装置では、VLIMIT可変回路12に間欠発振制御回路13が接続されており、この間欠発振制御回路13がレギュレータ23に接続されている。そして、カウンター14が備えられ、これがレギュレータ23と起動停止回路7に接続されている点で、実施の形態1と異なる。
また、レギュレータ23の動作も前述したレギュレータ2の動作とは異なり、レギュレータ23が間欠発振制御回路13からの信号を受けると、スイッチ23B、23Cをオンさせない機能や、カウンター14からの信号に応じて、スイッチ23B、23Cを制御する機能を有する。さらに、VLIMIT可変回路12は発振回路9に周波数低下信号fosc_Lowを出力せず、過負荷時に発振周波数を低下させない点も異なるが、その他の点では同様な動作を行う。
この半導体装置30の特性としては、ICL−ILIMIT、ICL−tBLKの関係は図2に示した実施の形態1の特性と変わりなく、ICL−foscの特性のみが変更されている。
VLIMIT可変回路12は、ICLが図2中のICLf0まで低下した時に、間欠発振制御回路13に間欠発振作動信号を出力する。この間欠発振作動信号が入力された間欠発振制御回路13は、レギュレータ23に信号を送り、スイッチ23B、23Cをオフさせて、ドレイン、VCCからの電流供給を停止させる。カウンター14は0〜3までをカウントすることが可能で、VDDがVDD(OFF)まで低下する回数をカウントしている。また、この電源装置の動作前にはこのカウンターは0であり、0であればenable信号を、1〜3であればdisable信号を起動停止回路7に出力する。
起動停止回路7は、VDDがVDD(OFF)まで低下すると、スイッチング素子1の発振を停止させ、カウンター14の出力がenableの場合のみ、VDDがVDD(ON)まで上昇すると、スイッチング素子1の発振を開始させる。レギュレータ23は、VDDがVDD(OFF)まで低下すると、VCC<VCC(ON)の場合はスイッチ23Bをオンさせ、VCC>VCC(ON)の場合はスイッチ23Cをオンさせて、ドレイン、あるいはVCCからVDDへチャージを行う。
その後、レギュレータ23は、カウンター14の出力がdisableの時には、VDDがVDD(ON)まで上昇した時に、ドレインあるいはVCCからのチャージをカットし、カウンター14の出力がenableの時には、VDDが一定値になるように、ドレインあるいはVCCからチャージを行う。
図11には、この電源装置における過負荷時の動作のタイミングチャートを示す。図11中(1)に示された過負荷状態の開始とともに、VO、VB、ICLが低下を始め、ICLの低下とともにILIMITが低下してIDpが低下する。やがてICLがICLf1まで低下するとドレイン端子からVDDへの電流供給がなくなり、VDDが低下を始める(図11中(2)のポイント)。さらに、(3)のポイントにてVDDがVDD(OFF)まで低下すると、上記の機能によりスイッチング素子1の発振が停止し、ドレインからVDDへの電流供給が開始する。この時カウンター14のカウントは1になっているため、その後VDDがVDD(ON)まで上昇した時、スイッチング素子1の発振は再開せず、VDDへのチャージが停止するためにVDDは再び降下する。
このような動作を繰り返し、カウンター14のカウントが再度0になった時にスイッチング素子の発振は再開される(図11中(4)のポイント)。しかし、過負荷状態が解決されない場合は、ICLが小さいためにVDDのチャージは再開されず、再びVDDが降下して発振が停止する。
つまり、この電源装置では過負荷時に発振期間を短くすることにより、出力への電力供給を減らし、過負荷保護を実現している。また、過負荷状態が解決されれば、発振期間内にVCCが上昇することによりICLが大きくなり、VDDへのチャージが再開されて再び正常動作することを可能にする。
この回路のVO−IO特性を図12に示す。このように動作領域(1)、(2)、(3)では、実施の形態1と同様の動作を行うため同様の特性となる。過負荷時、出力電圧VOとVCC、ICLが低下すると、間欠発振が作動し、動作領域(4)のように出力電流IOを絞ることができる。
これに対し、ブランキング時間tBLKを短縮させる機能を持たない場合には、IDpを低くすることができないことにより、図12の点線で示したように、間欠発振時も出力電流IOを十分に絞ることができないか(特性(6))、VBを低下させることができないために、ICLがICLf1まで低下せず間欠発振を行うことができず、出力電流IOが増大してしまう(特性(7))過負荷保護特性となる。
そこで、ブランキング時間tBLKを短縮させる機能を持っている場合には、最小オン時間に制限されることなく、IDpを低くすることが可能であるため、前述の図12中の(6)や(7)の特性となってしまうことを防ぐことが可能であり、この実施の形態でも、実施の形態1と同様の効果を得ることが可能である。
(実施の形態5)
本発明の実施の形態5のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を説明する。
図13は本実施の形態5のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図である。
図13に示したスイッチング電源装置のブロック図は、過負荷時に、IDpや発振周波数foscを変化させることなく間欠発振を行うことにより、過負荷保護を実現させる実施の形態5の一構成例である。この電源装置では、VLIMITとILIMITを変化させるVLIMIT可変回路を持たず、VLIMITは一定値となっている。また、フィードバック信号制御回路11の出力EAOとVLIMITを比較する比較器16を備えており、この比較器16は、EAO>VLIMITとなるとハイレベル信号(以下、H信号)を遅延時間生成回路17に出力する。
遅延時間生成回路17は、H信号を受けると所定の遅延時間後にブランキング時間短縮回路15、間欠発振制御回路13にH信号を出力する。なお、この遅延時間生成回路17は、所定の遅延時間以内に入力信号がハイレベル信号からローレベル信号(以下、L信号)に戻った場合には、H信号の出力は行わない。
ブランキング時間短縮回路15は、H信号を受けるとドレイン電流検出回路6へブランキング時間短縮信号IBLKを出力し、結果としてブランキング時間tBLKが短縮される。一方、間欠発振制御回路13は、このH信号を受けると、レギュレータ23に信号を出力し、ドレイン、VCCからVDDへの電流供給を停止させ、実施の形態4と同様に間欠発振動作を開始させる。その他の部分に関しては、実施の形態4と同様であるので説明を省略する。
さて、この電源装置が過負荷状態になると、出力電圧VOが低下してFB端子電流IFBが増加し、EAOが上昇してEAO>VLIMITとなる。この時、遅延時間生成回路17により決定される所定の遅延時間を経た後に、ブランキング時間短縮回路15、間欠発振制御回路13にH信号が入力され、ブランキング時間tBLKの短縮と間欠発振の過負荷保護の作動が開始される。
このスイッチング電流ピークを降下させない形の間欠発振による過負荷保護では、前述したように、最小オン時間内にスイッチング電流が過大となってしまい、スイッチング素子が破壊してしまうことが課題であったが、本実施の形態では、過負荷時にこの最小オン時間Tonminを短縮させることにより、この電流が過大となってしまうことを防ぐか、抑えることが可能となる。
(実施の形態6)
本発明の実施の形態6のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を説明する。
図14は本実施の形態6のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図である。
図14に示すスイッチング電源装置は、過負荷状態ではない通常動作時にスイッチング素子1のオンデューティをコントロールする電源回路であり、過負荷時にはこのデューティの最大値であるMAXDUTYと発振周波数foscを低下することにより、過負荷保護を実現する。
ONDUTY制御回路19は、FB端子電流を電圧信号に変換した値であるフィードバック信号制御回路11の出力EAOと発振回路9の出力CLOCK信号を受け取り、EAOに応じてオンデューティを変化させる機能を有し、具体的にはOR回路123に出力する信号をL信号からH信号に変えることでターンオフのタイミングを決定する。このONDUTY制御回路19は、またONDUTYを最小デューティMINDUTYまでしか小さくしない機能も有している。
比較器8はスイッチング素子1を流れる電流の検出値であるVIDとVLIMITを比較し、VIDがVLIMITよりも大きくなるとOR回路123にH信号を出力してスイッチング素子1をターンオフさせる。OR回路123は、比較器8あるいはONDUTY制御回路19の出力のいずれかがH信号になると、フリップフロップ回路10にリセット信号を出力して、スイッチング素子1をターンオフさせる。
つまり、このVLIMITによりスイッチング電流の最大値ILIMITが設定され、IDpがILIMIT以下の時にはONDUTY制御回路19によりスイッチング素子1のオンデューティが制御される。MAXDUTY可変回路18はCL端子電流ICLが入力され、このICLに応じて、発振周波数低下信号fosc_Low、MAXDUTY低下信号DC_Lowを発振回路9に出力する。このICLとMAXDUTY、foscの関係は図15に示すとおりである。その他の部分に関しては、実施の形態1と同様であるので説明を省略する。
次に、このスイッチング電源装置の動作について説明する。
過負荷状態ではない通常動作時には、IFBに応じてスイッチング素子1のオンデューティが変化することにより、負荷の状態に関わらず出力電圧が一定に制御される。過負荷時には、ドレイン電流ピーク値IDpがILIMITまで大きくなることにより、出力への電力の供給が制限されることになり、出力電圧が低下し始める。
これに対応して、補助巻線電圧VB(=VCC)が低下することでCL端子電流ICLが低下して、図15に示すICL−MAXDUTYの特性によりMAXDUTYが低下を始め、やがてスイッチング素子1のオンデューティが小さくなり始める。これにより出力電力が低下を始めるため、出力電圧VOの低下が加速するとともに、出力電流IOの増加が抑えられる。
そして、さらに出力電圧VOとVBが低下してICLがICLf0まで低下すると発振周波数foscが低下して、さらに出力電力、および出力電流IOが抑えられる。これからさらにICLの低下により、MAXDUTYがMINDUTY以下に低下し、MINDUTY以下のオンデューティでスイッチング素子1が発振する。
このようにオンデューティを制御する電圧モードのPWM制御において、このような最小値(ここでは、MINDUTY)が設定されるのは、通常動作時における不確定な動作、誤動作などを避けるために一般的であるが、本実施の形態では、通常動作では最小のオンデューティを、誤動作を避けられるレベル(ここでは、MINDUTY)に設定しながらも、過負荷状態においてはオンデューティをこの値(MINDUTY)以下にまでできるようにすることで、過負荷状態において、MINDUTYの制限を受けることなく出力電力を絞ることが可能となる。また、過負荷時は異常状態であり、出力電流の過大などが防がれるのであれば、ある程度不確定な動作や誤動作が起きても問題とはならないので、オンデューティをMINDUTY以下としても全く問題がない。
そして、このように過負荷時のオンデューティをMINDUTY以下とできることで、出力に供給されるエネルギを十分に低下させることが可能であり、過負荷時における出力電流の増大を防ぐことができる。
(実施の形態7)
本発明の実施の形態7のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を説明する。
図16は本実施の形態7のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図である。
図16に示すスイッチング電源装置では、CL端子には発振周波数可変回路20が接続されている。この発振周波数可変回路20は、発振回路9に接続され、発振回路9に対してCL端子電流ICLが低下するにつれて発振周波数を低下させる発振周波数低下信号fosc_Lowを出力する。また、発振周波数可変回路20は、VILIMIT低下回路21、ドレイン電流検出回路6に接続され、ICLが低下すると、VILIMIT低下回路21に対してVLIMIT低下信号VLIMIT_Lowを出力し、ドレイン電流検出回路6に対してブランキング時間短縮信号IBLKを出力する。
VLIMIT可変回路21は、VLIMIT_LOWが入力されるとVILIMITを低下させ、このVLIMITを比較器8に出力する。その他の構成については、実施の形態1と同様であるので、説明を省略する。
図17に示したのは、本実施の形態7における半導体装置30の端子へ入力される信号とスイッチング素子1の動作パラメータの関係を表した図である。この図より分かるように、本実施の形態における半導体装置30は、ICLが低下すると発振周波数foscが低下を開始し、さらにICLが低下して、ICL=ICL0まで低下するとILIMITおよび最小オン時間Tonminを低下する特性を持っている。
図18に示したのは、このスイッチング電源装置におけるVO−IO特性図である。さて、過負荷時、IDpがILIMIT_Hまで高くなって出力電圧VOが低下すると(特性(2))、補助巻線電圧VB、ICLが低下を始めて、やがて発振周波数foscが低下を始める。これにより出力電力が絞られて、出力電力が増大することを防ぐ(特性(3))。さらにVO、VB、ICLが低下して、ICL=ICL0となると、ILIMITが低下して出力電力が大きく絞られるため、出力電流IOが絞られる(特性(4))。
図18中に点線で示される特性(5)は、半導体装置30が、例えばブランキング時間tBLKを短縮させる機能を持たない場合のVO−IO特性であるが、VLIMIT可変回路によりILIMITが低下しても、最小オン時間が長いためにIDpは低くならないので、出力電流の増大を防ぐことができない。
これに対して、本実施の形態7のスイッチング電源装置のように、ブランキング時間tBLKを短縮させる機能を有する場合は、最小オン時間に関係なくIDpを低下させることができるので、特性(4)に示すように出力電流の増大を十分に防ぐことができる。
(実施の形態8)
本発明の実施の形態8のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法を説明する。
図19は本実施の形態8のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図である。
図19に示すスイッチング電源装置では、負荷の状態に応じて発振周波数を変化させる周波数制御で定電圧特性を実現し、2次側の整流ダイオード51に電流が流れる時間の発振周期に対する割合である2次側オンデューティを一定に制御することで定電流特性を実現しており、図21に示すような、定電圧および定電流特性を実現することができる。
この電源装置では、フィードバック信号制御回路11が発振回路9に接続され、このフィードバック端子電流IFBに応じて、発振回路9における発振周波数を変化させる。また、半導体装置30にはTR端子が設けられ、補助巻線40Cに接続された抵抗35、36により、補助巻線電圧を定数倍した電圧波形がTR端子を通じて検出される。TR端子には2次DUTY制御回路22が接続され、この2次DUTY制御回路22は、スイッチング素子1がオフしている状態でTR端子電圧が正から負になるタイミングを検出し、発振回路9に当該制御信号を出力している。
発振回路9は、フィードバック信号制御回路11の出力信号EAOによりCLOCK信号の立ち上がりのタイミングを変化させる機能と、2次DUTY制御回路22の出力信号により2次側オンデューティを一定にするようにCLOCK信号の立ち上がりのタイミングを変化させる機能とを有し、この2つのCLOCK信号の立ち上がりのタイミングのうち、遅い方を選択する機能を有する。
また、CL端子に接続されたVLIMIT低下回路21は、比較器8とドレイン電流検出回路6に接続され、CL端子電流ICLが所定値以下になるとVLIMITを低下させて結果的にILIMITを低下させ、ブランキング時間短縮信号IBLKをドレイン電流検出回路6に出力して、ブランキング時間tBLKを短縮させる。なお、この回路では、スイッチング素子1のターンオフのタイミングは、ドレイン電流検出回路6の出力VIDがVLIMIT以上になり、比較器8からフリップフロップ10にリセット信号が出力されることで決定される。このように構成された半導体装置30の端子に入力される信号と動作パラメータの関係を図20に示す。
発振回路9においては、CLOCK信号の立ち上がりはスイッチング素子1のターンオンのタイミングを決定するので、前述の機能により、フィードバック信号制御回路11により決定されるスイッチング素子1の発振周波数と、2次DUTY制御回路22により決定される発振周波数の低い方を選択して制御を行う。これは、定電圧動作時において発振周波数が、2次オンデューティ一定制御により定められた値まで高くなると定電流動作が開始するとも言うことができる。
以上の動作により、この電源装置は、定電圧特性を示す図21中の(1)の領域ではIFBの変化による発振周波数制御を実現し、定電流特性を示す(3)の領域では2次側オンデューティを一定にする動作を実現することができ、その切り変わり点(2)はそれぞれの制御で決定される発振周波数が等しくなる点である。なお、図20に示されるようにICLがICL0以上の時にはVLIMITは一定であり、このため図21中の(1)、(2)、(3)の領域では、スイッチング電流パルスのピーク値IDpは変化していない。
さて、図21中の(3)に示す定電流制御により出力電圧VOが低下し、ICLがICL0まで低下すると、ILIMITと最小オン時間Tonminが低下し、(4)に示されるように出力電流IOが小さくなる過負荷保護が実現される。
図21中に点線で示したのは、例えば最小オン時間を短縮する機能を有しない場合のVO−IO特性の例であるが、前述したように最小オン時間が長いことがIDpの低下を妨げることになるため、出力電流IOを十分に低下させることができない。
このような定電流特性が求められる電源装置では、この過負荷保護時の出力電流IOを十分に小さくすることが求められることが多いので、問題となることがしばしばあるが、本実施の形態のように、最小オン時間を短縮する機能を有する場合には、この問題を解決することが可能である。
以上のように、実施の形態1〜4、6〜8によれば、過負荷時にスイッチング素子1に流れる電流波形のピーク値を抑える過負荷保護機能を備えた電源装置において、過負荷状態においては過負荷状態ではない通常動作状態に比べて最小のオン時間を短くすることにより、通常状態では誤動作なく動作できると同時に、過負荷状態においては最小オン時間に制限されることなくスイッチング電流パルスのピーク値を低くすることができ、出力電流の増加が課題となることを防ぐことができる。
また、過負荷時に発振周波数を低下させる形の電源装置において、発振周波数が可聴域まで低下した場合においても、スイッチング素子1を流れる電流、およびトランスなどの磁性部品を流れる電流値を小さくすることができるので、その磁性部品の騒音を低下させることができる。
また、上記実施の形態1、2、4によれば、過負荷時に出力電圧が第一の閾値よりも低下したことを検出して、スイッチング電流パルスのピーク値を低下させて出力電圧を小さくする第一の過負荷保護機能を作動させ、さらに第一の閾値よりも低い第二の閾値よりも出力電圧が低下したことを検出して、例えば単位時間当たりのスイッチング素子1のスイッチング回数を少なくするなどの第二の過負荷保護機能によって、さらに出力電力を低下させて出力電流が過大となることを防ぐ電源装置において、出力電圧が第二の閾値よりも高い状態で最小オン時間を短縮することにより、スイッチング電流ピークが低下しないことで出力電圧が第二の閾値まで低下せず、第二の過負荷保護が作動することができなくなってしまうことを防ぐことができる。
また、上記実施の形態5によれば、過負荷時に出力電圧が低い状態で発振しなければならない時に最小オン時間を短縮する機能を備えることで、最小オン時間内にスイッチング電流が過大となりスイッチング素子1が破壊してしまうことを防ぐことができる。
また、スイッチング素子1と制御回路については同一半導体内に設けて容易に単一化することができる。従って、主要な回路部品を単一半導体内に設けることで、回路を構成するための部品点数を削減することができ、電源装置として、容易に小型化および軽量化さらにコスト低減化を実現することができる。
なお、前述の各実施の形態では、過負荷状態の検出を、出力電圧VOの低下や、スイッチング電流パルスのピーク値が所定値まで大きくなることや、発振周波数が所定値まで高くなることを検出することで実行していたが、過負荷状態であることを検出することさえできれば、その方法は何であっても構わない。
また、前述の実施の形態1、2、4では、出力電圧VOの低下の検出を、出力電圧VOと比例する電圧を出力する補助巻線電圧VBの変化を検出することで実行していたが、出力電圧VOの低下を検出することさえできれば、どのような方法であっても構わない。
さらに、前述の各実施の形態に示しているとおり、本発明は、過負荷ではない通常動作時には最小のオン時間設定により動作の安定を保ちつつ、過負荷状態においてはこの最小オン時間以下のオン時間でスイッチング素子1をスイッチング動作させることを可能として、出力電力を低く抑えることが重要であり、この最小のオン時間は、過電流保護の遅れ時間やブランキング時間により設定されるものでも、オンデューティ制御における最小オンデューティでも、また他のものでも、通常動作時に設けられた最小のオン時間であれば、その技術を含む。
また、前述の実施の形態1〜5、7、8では、最小のオン時間の制御を、スイッチング電流検出の不感時間であるブランキング時間をコントロールすることにより実行していたが、最小のオン時間を制御することさえできれば、他のどのような方法であっても構わない。
なお、前述の各実施の形態では、一次二次絶縁型あるいは非絶縁型のフライバック型スイッチング電源装置にて説明を行っているが、この技術は、この電源装置の構成に影響を受けるものではなく、例えば、チョークコイルを使用したチョッパ型電源装置などの構成でも構わない。
また、前述の各実施の形態では、スイッチング素子1の制御方法を主にPWM制御として説明を行っているが、本発明はこのような制御方法に影響を受けるものではなく、周波数を変調するPFMや、発振数をコントロールするバースト制御や、リンギングチョークコンバータによる制御や、それらの複合制御など、どのような制御方法でも構わない。
さらに、前述の各実施の形態では、過負荷保護機能を、スイッチング電流パルスのピーク値を低下させる方法や、発振周波数を低下させる方法や、間欠発振によりスイッチング素子1の発振回数を少なくする方法で出力電力を制限することにより、実現しているが、この方法についても、どのような方法でも構わない。
なお、前述の各実施の形態では、スイッチング素子1の制御回路部分を半導体装置30としているが、この部分を半導体基板上に形成せず、ディスクリート部品を使用した構成としても、この発明の効果に影響がないことは明らかである。
また、前述の各実施の形態では、入力側から出力側にエネルギを変換して伝達するエネルギ伝達エレメントとして、トランスを使用している例を挙げて説明しているが、同様の役割を果たすことができるエネルギ伝達エレメントであれば、他のものであっても構わないことは自明である。
例えば図22に示すチョッパ方式の電源装置においては、エネルギ伝達エレメントとしてコイル902を使用した場合の構成例を示している。このようなチョッパ方式のスイッチング電源装置においても、スイッチング素子901を制御するスイッチング素子制御回路904が、前述の各実施の形態で説明したような機能を持つことにより、同様の効果を実現することが可能である。
なお、前述の各実施の形態のエネルギ変換装置では、本発明がスイッチング電源装置に使用される場合を中心に説明してきたが、ある形態の電力を負荷が必要とする特定の形態の電力に変換するエネルギ変換装置であれば、スイッチング電源装置以外の他の装置に使用することも可能である。
本発明のエネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法は、過負荷状態ではない通常動作時には安定動作を実現することができるとともに、過負荷状態では十分に出力電力を低くすることが可能であり、理想的な過負荷保護特性を実現することができるもので、電子機器のアダプターや、電池の充電器、また、民生機器の組み込み電源装置、変圧回路などに有用である。
本発明の実施の形態1のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図 同実施の形態1のエネルギ変換装置であるスイッチング電源装置における半導体装置への入力信号と動作パラメータの関係図 同実施の形態1のエネルギ変換装置であるスイッチング電源装置における出力電圧−出力電流特性の一例を示す特性図 同実施の形態1のエネルギ変換装置であるスイッチング電源装置における過負荷時のスイッチング電流の変化を表す波形図 同実施の形態1のエネルギ変換装置であるスイッチング電源装置におけるドレイン電流検出回路の一構成例を示すブロック図 同実施の形態1のエネルギ変換装置であるスイッチング電源装置におけるVLIMIT可変回路の一構成例を示すブロック図 本発明の実施の形態2のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図 同実施の形態2のエネルギ変換装置であるスイッチング電源装置における出力電圧−出力電流特性の一例を示す特性図 本発明の実施の形態3のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図 本発明の実施の形態4のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図 同実施の形態4のエネルギ変換装置であるスイッチング電源装置における過負荷時の動作を示すタイミングチャート 同実施の形態4のエネルギ変換装置であるスイッチング電源装置における出力電圧−出力電流特性の一例を示す特性図 本発明の実施の形態5のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図 本発明の実施の形態6のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図 同実施の形態6のエネルギ変換装置であるスイッチング電源装置における半導体装置への入力信号と動作パラメータの関係図 本発明の実施の形態7のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図 同実施の形態7のエネルギ変換装置であるスイッチング電源装置における半導体装置への入力信号と動作パラメータの関係図 同実施の形態7のエネルギ変換装置であるスイッチング電源装置における出力電圧−出力電流特性の一例を示す特性図 本発明の実施の形態8のエネルギ変換装置であるスイッチング電源装置の一構成例を示すブロック図 同実施の形態8のエネルギ変換装置であるスイッチング電源装置における半導体装置への入力信号と動作パラメータの関係図 同実施の形態8のエネルギ変換装置であるスイッチング電源装置における出力電圧−出力電流特性の一例を示す特性図 本発明の他の実施の形態のエネルギ変換装置であるスイッチング電源装置においてコイルを使用した場合の一構成例を示すブロック図 従来例1である特許文献1のスイッチング電源装置の一構成例を示すブロック図 従来例2である特許文献2のスイッチング電源装置の一構成例を示すブロック図 従来例1、2のスイッチング電源装置における過負荷時のスイッチング電流の変化を示す波形図 従来例1、2のスイッチング電源装置における過負荷時の動作を示すタイミングチャート 従来例1、2のスイッチング電源装置における過負荷時のスイッチング電流の変化を示す波形図
符号の説明
1 スイッチング素子
2 レギュレータ
2A、2B、2C スイッチ
3 定電流源
4 ゲートドライバー
5 NAND回路
6 ドレイン電流検出回路
7 起動停止回路
8 比較器
9 発振回路
10 フリップフロップ回路
11 フィードバック信号制御回路
12 VLIMIT可変回路
13 間欠発振制御回路
14 カウンター
15 ブランキング時間短縮回路
16 比較器
17 遅延時間生成回路
18 MAXDUTY可変回路
19 ONDUTY制御回路
20 発振周波数可変回路
21 VLIMIT低下回路
22 2次DUTY制御回路
23 レギュレータ
23A、23B、23C スイッチ
30 半導体装置
31 ダイオード
32、33 コンデンサ
34 抵抗
40 トランス
40A 1次巻線
40B 2次巻線
40C 補助巻線
51 ダイオード
52 コンデンサ
53、54、55、56 抵抗
57 シャントレギュレータ
58 負荷
59 2次側制御回路
60 抵抗
61 フォトカプラ
61A フォトトランジスタ
601、602 抵抗
603 反転器
604 コンデンサ
605 PchMOSFET
606、607、608 NchMOSFET
609 定電流源
610 NchMOSFET
701、702 NchMOSFET
703、704 PchMOSFET
705 抵抗
706 クランプ回路
707 負荷短絡検出回路
901 スイッチング素子
902 コイル
903 ダイオード
904 スイッチング素子制御回路
905 コンデンサ
906 負荷
907、908 抵抗
1001 NPNトランジスタ
1002 コイル
1003 ダイオード
1004 抵抗
1005 PNPトランジスタ
1006 NAND回路
1007 フリップフロップ回路
1008 発振器
1009、1010、1011 比較器
1012 過電流検出回路
1013 コンデンサ
1014、1015 抵抗
1016 負荷
1017、1018 定電圧源
2001 スイッチング素子
2002、2003 抵抗
2004 ダイオード
2005 コンデンサ
2006、2007 抵抗
2013 比較器
2014 OR回路
2015 誤差増幅器
2021 ダイオード
2022 コンデンサ
2023 負荷
2024 定電圧制御回路
2031 1次巻線
2032 2次巻線
2033 補助巻線

Claims (22)

  1. 入力されるある形態のエネルギを特定の形態のエネルギに変換して出力するエネルギ変換装置であって、
    外部より入力エネルギが入力される入力部と、
    外部へ出力エネルギが出力される出力部と、
    入力端子と出力端子と制御端子を有するスイッチと、
    前記スイッチの制御端子に接続され前記スイッチのオン、オフを制御する制御回路と、
    前記スイッチの入力端子あるいは出力端子のいずれかが接続されるエネルギ伝達エレメントと、
    前記エネルギ伝達エレメントに接続され前記出力部へエネルギを伝達する整流平滑部とを備え、
    前記制御回路は、
    前記スイッチのオン期間の最小値を決定する回路と、
    前記スイッチのオン期間の最小値を変化させる回路と、
    前記出力部に接続される負荷の状態を検出する回路とを有し、
    前記負荷の状態が異常であることを検出した場合には、前記負荷の状態が正常である場合に比べて前記スイッチのオン期間の最小値を短縮するよう構成した
    ことを特徴とするエネルギ変換装置。
  2. 前記制御回路は、
    前記スイッチに流れる電流値を検出する回路と、
    前記スイッチに流れる電流の最大値を決定する回路と、
    前記出力部の電圧値を検出する回路と、
    前記出力部の電圧値により前記負荷の状態を判断する回路とを有し
    前記出力部の電圧値が第一の閾値まで低下することで前記負荷の状態が異常であることを検出した場合には、前記負荷の状態が正常である場合に比べて前記スイッチのオン期間の最小値を短縮するよう構成した
    ことを特徴とする請求項1に記載のエネルギ変換装置。
  3. 前記制御回路は、
    前記出力部の電圧値が第二の閾値まで低下すると前記出力部へ供給するエネルギを小さくする第一の過負荷保護機能を実現する回路を有する
    ことを特徴とする請求項2に記載のエネルギ変換装置。
  4. 前記第一の過負荷保護機能として、
    前記スイッチに流れる電流の最大値を低くすることで前記出力部へ供給するエネルギを小さくする
    ことを特徴とする請求項3に記載のエネルギ変換装置。
  5. 前記第一の過負荷保護機能として、
    前記出力部の電圧値が前記第二の閾値よりも低くなっているとき、前記出力部の電圧値が低下するほど前記スイッチに流れる電流の最大値を低くする特性を有する
    ことを特徴とする請求項4に記載のエネルギ変換装置。
  6. 前記第一の過負荷保護機能として、
    単位時間あたりの前記スイッチのスイッチング回数を少なくする
    ことを特徴とする請求項3に記載のエネルギ変換装置。
  7. 前記第一の過負荷保護機能として、
    前記出力部の電圧値が前記第二の閾値よりも低くなっているとき、前記出力部の電圧値が低下するほど単位時間あたりの前記スイッチのスイッチング回数を少なくする特性を有する
    ことを特徴とする請求項6に記載のエネルギ変換装置。
  8. 前記第一の過負荷保護機能として、
    前記スイッチの発振周波数を低下させることで前記スイッチのスイッチング回数を少なくする
    ことを特徴とする請求項7に記載のエネルギ変換装置。
  9. 前記第一の過負荷保護機能として、
    前記スイッチがスイッチング不可能な期間を設けることで前記スイッチのスイッチング回数を少なくする
    ことを特徴とする請求項7に記載のエネルギ変換装置。
  10. 前記制御回路は、
    前記第一の過負荷保護機能とは別の機能であり、
    前記出力部の電圧値が前記第二の閾値よりも低い第三の閾値まで低下すると、前記出力部へ供給するエネルギを小さくする第二の過負荷保護機能を実現する回路を有する
    ことを特徴とする請求項3に記載のエネルギ変換装置。
  11. 前記制御回路は、
    前記第一の閾値を、前記第三の閾値よりも高く設定するよう構成した
    ことを特徴とする請求項10に記載のエネルギ変換装置。
  12. 前記制御回路は、
    前記スイッチを流れる電流の最大値を低くすることを前記第一の過負荷保護機能と設定し、前記スイッチの発振周波数を低くすることを前記第二の過負荷保護機能と設定するよう構成した
    ことを特徴とする請求項10に記載のエネルギ変換装置。
  13. 前記制御回路は、
    前記スイッチを流れる電流の最大値を低くすることを前記第一の過負荷保護機能と設定し、前記スイッチがスイッチング不可能な期間を設けることを前記第二の過負荷保護機能と設定するよう構成した
    ことを特徴とする請求項10に記載のエネルギ変換装置。
  14. 前記制御回路は、
    前記スイッチの発振周波数を低くすることを前記第一の過負荷保護機能と設定し、前記スイッチを流れる電流の最大値を低くすることを前記第二の過負荷保護機能と設定するよう構成した
    ことを特徴とする請求項10に記載のエネルギ変換装置。
  15. 前記制御回路は、
    前記出力部の電圧値が低下するほど前記スイッチのオン期間の最小値を短くする回路を有する
    ことを特徴とする請求項2に記載のエネルギ変換装置。
  16. 前記エネルギ伝達エレメントは、
    前記入力部および前記スイッチに接続される第一の巻線と、
    前記整流平滑部に接続される第二の巻線と、
    前記制御回路に接続される第三の巻線とを有するトランスであり、
    前記制御回路は、
    前記第三の巻線の電圧値を検出する回路を有し、
    前記検出による前記第三の巻線の電圧値により前記出力部の電圧値を検出するよう構成した
    ことを特徴とする請求項2に記載のエネルギ変換装置。
  17. 前記制御回路は、
    前記スイッチに流れる電流値を検出する回路を有し、
    前記スイッチに流れる電流値が閾値以上となったことで前記負荷の状態が異常であることを検出して、前記スイッチのオン期間の最小値を短縮するよう構成した
    ことを特徴とする請求項1に記載のエネルギ変換装置。
  18. 前記制御回路は、
    前記スイッチの発振周波数が閾値以上となったことで前記負荷の状態が異常であることを検出して、前記スイッチのオン期間の最小値を短縮するよう構成した
    ことを特徴とする請求項1に記載のエネルギ変換装置。
  19. 前記制御回路は、
    前記スイッチに流れる電流値を検出する回路と、
    前記スイッチに流れる電流の最大値を決定する回路と、
    前記スイッチがターンオンした後に、前記スイッチに流れる電流値を検出する回路、あるいは前記スイッチに流れる電流の最大値を決定する回路が作動しないブランキング時間を設ける回路と、
    前記ブランキング時間を変化させる回路とを有し、
    前記スイッチのオン期間の最小値の一部あるいは全てを前記ブランキング時間とするよう構成した
    ことを特徴とする請求項1から請求項18のいずれかに記載のエネルギ変換装置。
  20. 請求項1から請求項19のいずれかに記載のエネルギ変換装置に用いる半導体装置であって、
    前記制御回路の一部あるいは全てを単一の半導体基板上に形成した
    ことを特徴とする半導体装置。
  21. 請求項1から請求項19のいずれかに記載のエネルギ変換装置に用いる半導体装置であって、
    前記制御回路の一部あるいは全てと前記スイッチを同一の半導体基板上に形成した
    ことを特徴とする半導体装置。
  22. 請求項1から請求項21のいずれかに記載のエネルギ変換装置において、
    前記スイッチのオン、オフを制御する際に、
    前記スイッチのオン期間の最小値を決定する処理と、
    前記スイッチのオン期間の最小値を変化させる処理と、
    前記負荷の状態を検出する処理とを実行するスイッチ制御方法であって、
    前記負荷の状態が異常であることを検出した場合には、前記負荷の状態が正常である場合に比べて前記スイッチのオン期間の最小値を短縮する
    ことを特徴とするスイッチ制御方法。
JP2008027105A 2008-02-07 2008-02-07 エネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法 Ceased JP2009189170A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008027105A JP2009189170A (ja) 2008-02-07 2008-02-07 エネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法
US12/365,436 US20090201705A1 (en) 2008-02-07 2009-02-04 Energy converting apparatus, and semiconductor device and switching control method used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027105A JP2009189170A (ja) 2008-02-07 2008-02-07 エネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法

Publications (1)

Publication Number Publication Date
JP2009189170A true JP2009189170A (ja) 2009-08-20

Family

ID=40938725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027105A Ceased JP2009189170A (ja) 2008-02-07 2008-02-07 エネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法

Country Status (2)

Country Link
US (1) US20090201705A1 (ja)
JP (1) JP2009189170A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155101A (ja) * 2010-01-27 2011-08-11 Toshiba Lighting & Technology Corp Led点灯装置
US8593067B2 (en) 2010-01-27 2013-11-26 Toshiba Lighting & Technology Corporation Led lighting device and illumination apparatus
US8638050B2 (en) 2010-05-14 2014-01-28 Toshiba Lighting And Technology Corporation DC power supply unit and LED lighting apparatus
US8742681B2 (en) 2009-11-09 2014-06-03 Toshiba Lighting & Technology Corporation LED lighting device, illuminating device and power supply therefore having a normally-on type switching element
US9124254B2 (en) 2011-04-25 2015-09-01 Fuji Electric Co., Ltd. DC-DC converter control method and DC-DC converter control circuit
JP2016505236A (ja) * 2013-02-05 2016-02-18 深▲セン▼市華星光電技術有限公司 電源システム及びその制御方法
CN107359785A (zh) * 2017-07-26 2017-11-17 阳光电源股份有限公司 一种开关电源及其启动电路

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2678125C (en) * 2003-11-17 2014-10-14 Merck Eprova Ag Crystalline forms of (6r)-l-erythro-tetrahydrobiopterin dihydrochloride
JP2010124572A (ja) * 2008-11-19 2010-06-03 Panasonic Corp スイッチング電源装置
US7983062B2 (en) * 2009-03-18 2011-07-19 Grenergy Opto., Inc. Minimum on-time reduction method, apparatus, and system using same
WO2010125751A1 (ja) * 2009-04-27 2010-11-04 パナソニック株式会社 スイッチング電源装置
EP2512021B1 (en) 2011-04-14 2017-07-19 Nxp B.V. A controller for a switched mode power converter
DE102011104441A1 (de) * 2011-06-16 2012-12-20 Fujitsu Technology Solutions Intellectual Property Gmbh Schaltnetzteil, Betriebsverfahren und Verwendung eines Schaltnetzteils in einem Computer
US20130070483A1 (en) 2011-09-20 2013-03-21 Yu-Yun Huang Controlling Method, Power Supply, Power Controller, and Power Controlling Method
ITMI20121231A1 (it) * 2012-07-16 2014-01-17 St Microelectronics Srl Metodo di controllo burst-mode per basso consumo in ingresso in convertitori risonanti e relativo dispositivo di controllo
JP6075008B2 (ja) * 2012-10-31 2017-02-08 サンケン電気株式会社 スイッチング電源装置
CN103023330B (zh) * 2012-12-18 2015-08-05 深圳市明微电子股份有限公司 一种开关电源及其自适应多模式控制电路
US9491819B2 (en) * 2014-07-15 2016-11-08 Dialog Semiconductor Inc. Hysteretic power factor control method for single stage power converters
CN104578826B (zh) * 2014-12-31 2018-10-19 上海新进半导体制造有限公司 开关电源及在开关电源中提供恒压和恒流控制的方法
TWI555315B (zh) * 2015-04-28 2016-10-21 力林科技股份有限公司 電源供應裝置及電源處理方法
US9742265B2 (en) * 2015-06-17 2017-08-22 Chicony Power Technology Co., Ltd. Power supply method for avoiding audio noise and power supply apparatus for avoiding audio noise
JP6904478B2 (ja) * 2018-03-13 2021-07-14 富士電機株式会社 電源装置、電源制御装置、および電源制御方法
JP7066538B2 (ja) * 2018-06-07 2022-05-13 キヤノン株式会社 電源装置及び画像形成装置
CN115912936B (zh) * 2023-01-03 2023-06-06 成都智融微电子有限公司 反激开关电源电路、反激开关电源控制方法及电源设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117814A (ja) * 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP2005176587A (ja) * 2003-11-21 2005-06-30 Matsushita Electric Ind Co Ltd 過電流保護装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693940B2 (ja) * 2001-07-26 2005-09-14 シャープ株式会社 スイッチング電源装置
JP3610964B2 (ja) * 2002-05-13 2005-01-19 松下電器産業株式会社 スイッチング電源装置
JP3748262B2 (ja) * 2003-06-24 2006-02-22 ローム株式会社 スイッチング型直流−直流コンバータ
US7355830B2 (en) * 2003-11-21 2008-04-08 Matsushita Electric Industrial Co., Ltd. Overcurrent protection device
US7482793B2 (en) * 2006-09-11 2009-01-27 Micrel, Inc. Ripple generation in buck regulator using fixed on-time control to enable the use of output capacitor having any ESR

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005117814A (ja) * 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd スイッチング電源装置
JP2005176587A (ja) * 2003-11-21 2005-06-30 Matsushita Electric Ind Co Ltd 過電流保護装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742681B2 (en) 2009-11-09 2014-06-03 Toshiba Lighting & Technology Corporation LED lighting device, illuminating device and power supply therefore having a normally-on type switching element
US9155143B2 (en) 2009-11-09 2015-10-06 Toshiba Lighting & Technology Corporation LED lighting device and illuminating device
US9392655B2 (en) 2009-11-09 2016-07-12 Toshiba Lighting & Technology Corporation LED lighting device and illuminating device
JP2011155101A (ja) * 2010-01-27 2011-08-11 Toshiba Lighting & Technology Corp Led点灯装置
US8593067B2 (en) 2010-01-27 2013-11-26 Toshiba Lighting & Technology Corporation Led lighting device and illumination apparatus
US8638050B2 (en) 2010-05-14 2014-01-28 Toshiba Lighting And Technology Corporation DC power supply unit and LED lighting apparatus
US9124254B2 (en) 2011-04-25 2015-09-01 Fuji Electric Co., Ltd. DC-DC converter control method and DC-DC converter control circuit
JP2016505236A (ja) * 2013-02-05 2016-02-18 深▲セン▼市華星光電技術有限公司 電源システム及びその制御方法
CN107359785A (zh) * 2017-07-26 2017-11-17 阳光电源股份有限公司 一种开关电源及其启动电路

Also Published As

Publication number Publication date
US20090201705A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
JP2009189170A (ja) エネルギ変換装置およびそれに用いる半導体装置とスイッチ制御方法
US9048742B2 (en) Systems and methods for adjusting current consumption of control chips to reduce standby power consumption of power converters
US7492615B2 (en) Switching power supply
US7773392B2 (en) Isolated switching power supply apparatus
JP4481879B2 (ja) スイッチング電源装置
US9231483B2 (en) DC/DC converter
US20080291700A1 (en) Power converter having pwm controller for maximum output power compensation
JP2011166917A (ja) スイッチング電源装置
JP2017103889A (ja) スイッチング電源装置
US9318961B2 (en) Switching power-supply device
JP5117980B2 (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
US8503195B1 (en) System and method for zero volt switching of half bridge converters during startup and short circuit conditions
JP5971074B2 (ja) スイッチング電源装置
JP2011087394A (ja) スイッチング素子駆動用制御回路およびスイッチング電源装置
JP2010041832A (ja) スイッチング電源制御装置及びそれに用いる半導体装置
JP2007174890A (ja) スイッチング電源装置とそれに使用される半導体装置
US20090153116A1 (en) Switching controller and semiconductor device used in the same
JP2013123322A (ja) スイッチング電源装置
JP2004153948A (ja) スイッチング電力電送装置
JP2018007515A (ja) 絶縁型のdc/dcコンバータならびにその一次側コントローラ、制御方法、それを用いた電源アダプタおよび電子機器
WO2011155246A1 (ja) スイッチング制御回路及びスイッチング電源装置
JP6810150B2 (ja) スイッチング電源装置および半導体装置
JP2006157988A (ja) スイッチング電源装置
JP5288491B2 (ja) スイッチング電源装置
JP4415052B2 (ja) スイッチング電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20121030