JP2009184987A - New pyrimidine-based or triazine-based derivative, electron transport material comprising the same and organic electroluminescent element including the same - Google Patents

New pyrimidine-based or triazine-based derivative, electron transport material comprising the same and organic electroluminescent element including the same Download PDF

Info

Publication number
JP2009184987A
JP2009184987A JP2008028099A JP2008028099A JP2009184987A JP 2009184987 A JP2009184987 A JP 2009184987A JP 2008028099 A JP2008028099 A JP 2008028099A JP 2008028099 A JP2008028099 A JP 2008028099A JP 2009184987 A JP2009184987 A JP 2009184987A
Authority
JP
Japan
Prior art keywords
electron transport
organic
examples
organic electroluminescent
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008028099A
Other languages
Japanese (ja)
Other versions
JP5207760B2 (en
Inventor
Junji Kido
淳二 城戸
Shi-Jian Su
仕健 蘇
Takashi Takeda
孝 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemipro Kasei Kaisha Ltd
Original Assignee
Chemipro Kasei Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemipro Kasei Kaisha Ltd filed Critical Chemipro Kasei Kaisha Ltd
Priority to JP2008028099A priority Critical patent/JP5207760B2/en
Publication of JP2009184987A publication Critical patent/JP2009184987A/en
Application granted granted Critical
Publication of JP5207760B2 publication Critical patent/JP5207760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new pyrimidine-based or triazine-based derivative, an electron transport material comprising the derivative and an organic electroluminescent element including the derivative. <P>SOLUTION: The pyrimidine-based or triazine-based derivative is represented by general formula (1). The electron transport material comprises the derivative. The organic electroluminescent element includes the derivative. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規なリン光材料、とくに青色リン光材料に適したワイドギャップな電子輸送層を形成するのに有用な新規なピリミジン系またはトリアジン系誘導体、それよりなる電子輸送材料およびそれを含む有機エレクトロルミネッセンス素子に関する。   The present invention relates to a novel phosphorescent material, particularly a novel pyrimidine-based or triazine-based derivative useful for forming a wide gap electron transport layer suitable for a blue phosphorescent material, an electron transport material comprising the same, and the like The present invention relates to an organic electroluminescence element.

有機エレクトロルミネッセンス素子は、電極から注入されたホールと電子の再結合によって生成した励起エネルギーが、発光過程を経て基底状態に緩和されることにより自発光する。しかしながら、ホールと電子の再結合によって生成する励起状態には、一重項励起状態と三重項励起状態の2種類がそれぞれ1対3の割合で存在する。これまでの多くは、一重項励起状態からの発光を利用した蛍光材料が発光材料に利用されていたため、内部量子効率が最大で25%であり、この時の取り出し効率を20%とすると、最大外部量子効率は5%が理論限界であった。   An organic electroluminescence element emits light by itself, when excitation energy generated by recombination of holes and electrons injected from an electrode is relaxed to a ground state through a light emission process. However, there are two types of excited states generated by recombination of holes and electrons, a singlet excited state and a triplet excited state in a ratio of 1: 3. In many cases, a fluorescent material that utilizes light emission from a singlet excited state has been used as a light emitting material. Therefore, the internal quantum efficiency is 25% at the maximum. If the extraction efficiency at this time is 20%, the maximum is The external quantum efficiency was 5%, which was the theoretical limit.

近年、イリジウムやプラチナなどの重原子効果を利用した錯体化合物を用い、三重項励起状態からの発光、例えばリン光発光を用いる事により発光効率の向上が報告されるようになった(例えば非特許文献1)。一重項励起状態に加え、三重項励起状態からの発光を利用する事で最大量子効率は理論上100%に到達する事が可能で、リン光材料は発光材料として注目を浴びている(非特許文献3)。   In recent years, it has been reported that the emission efficiency is improved by using light emission from a triplet excited state, for example, phosphorescence emission, using a complex compound utilizing a heavy atom effect such as iridium or platinum (for example, non-patented). Reference 1). In addition to the singlet excited state, the maximum quantum efficiency can theoretically reach 100% by utilizing the light emission from the triplet excited state, and phosphorescent materials are attracting attention as light emitting materials (non-patented). Reference 3).

例えば緑色材料として、下記式

Figure 2009184987
に示すトリス(2−フェニルピリジナト)イリジウム(III)[Ir(ppy)]が広く利用されている。 For example, as a green material, the following formula
Figure 2009184987
Tris (2-phenylpyridinato) iridium (III) [Ir (ppy) 3 ] shown in FIG.

また安達らの発表にかかる非特許文献2などにより青色リン光材料である下記式

Figure 2009184987
で示すビス[2−(4,6−ジフルオロフェニル)ピリジネート−N,C2′]イリジウム(III)ピコリネート(FIrPic)が注目を浴びるようになり、それ以降FIrpicを用いた有機EL素子の高効率化検討および新規な青色リン光錯体探索研究が盛んに行われるようになった。 In addition, the following formula, which is a blue phosphorescent material, is disclosed by Non-Patent Document 2 concerning the announcement by Adachi et al.
Figure 2009184987
Bis [2- (4,6-difluorophenyl) pyridinate-N, C2 ′] iridium (III) picolinate (FIrPic) shown in FIG. 1 has attracted attention, and since then, higher efficiency of organic EL devices using FIrpic Studies and new blue phosphorescent complex exploration studies have been actively conducted.

その結果、最近ではS.R.Forrestらによる非特許文献1では下記式

Figure 2009184987
で示すトリス{1−[4−(トリフルオロメチル)フェニル]−1H−ピラゾラート−N,C2′}イリジウム(III)(Irtfmppz3)やM.E.Thompsonらによる非特許文献4の下記式
Figure 2009184987
で示すビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]イリジウム(III)テトラキス(1−ピラゾリル)ボレート(FIr6)が開発された。 As a result, recently S.I. R. Non-patent document 1 by Forrest et al.
Figure 2009184987
Tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate-N, C2 ′} iridium (III) (Irtfmpppz3) and M. E. The following formula of Non-Patent Document 4 by Thompson et al.
Figure 2009184987
Bis [2- (4 ′, 6′-difluorophenyl) pyridinato-N, C2 ′] iridium (III) tetrakis (1-pyrazolyl) borate (FIr6) has been developed.

これら発光材料を効率よく発光させるには、ホールと電子の注入バランスを整えて、発光層の中で十分にキャリアーの結合が行えるように、ホール輸送剤や電子輸送剤などの選択を行わなければならない。
特に青色リン材料については、エネルギーギャップが大きいために、ワイドギャップ化されたホール輸送材料や電子輸送剤が必要になってくる。現在これらリン光材料としては、従来から電子輸送材料に使用されているAlq[トリス(8−ヒドロキシキノリノラト)アルミニウム]やBAlq[ビス(2−メチル−8−ヒドロキシキノリノラト)(4−フェニルフェノキシ)アルミニウム]等が使用されているが、リン光材料に使用するには十分なエネルギーギャップを持ち合わせていないため新規なワイドギャップな電子輸送材料の開発が必要である。
In order for these luminescent materials to emit light efficiently, it is necessary to select a hole transport agent or an electron transport agent so that the injection balance of holes and electrons is adjusted and carriers can be sufficiently combined in the light emitting layer. Don't be.
In particular, for blue phosphorous materials, since the energy gap is large, hole transport materials and electron transport agents having a wide gap are required. Currently, these phosphorescent materials include Alq 3 [tris (8-hydroxyquinolinolato) aluminum] and BAlq 2 [bis (2-methyl-8-hydroxyquinolinolato) ( 4-phenylphenoxy) aluminum] and the like are used, but since it does not have a sufficient energy gap for use in phosphorescent materials, it is necessary to develop a new wide gap electron transport material.

M.A.Baldo,S.Lamansky,P.E.Burrows,M.E.Thompson,S.R.Forrest Appl.Phys.Lett 1999 75(1)4−7M.M. A. Baldo, S .; Lamansky, P.M. E. Burrows, M .; E. Thompson, S.M. R. Forrest Appl. Phys. Lett 1999 75 (1) 4-7 Appl.Phys.Lett.,79,2082(2001)Appl. Phys. Lett. 79, 2082 (2001) J.Appl.Phys.,90 5048(2001)J. et al. Appl. Phys. , 90 5048 (2001) Polyhedron,23 419(2004)Polyhedron, 23 419 (2004)

本発明の目的は、新規なピリミジン系またはトリアジン系誘導体、それよりなる電子輸送材料およびそれを含む有機エレクトロルミネッセンス素子を提供する点にある。   An object of the present invention is to provide a novel pyrimidine-based or triazine-based derivative, an electron transport material comprising the same, and an organic electroluminescence device including the same.

本発明の第1は、下記一般式(1)

Figure 2009184987
(式中、Qは
Figure 2009184987
よりなる群から選ばれた基であり、
〜R、R10〜R22は、水素、炭素数1〜6の直鎖または分枝のアルキル基、炭素数1〜6の直鎖または分枝のアルコキシ基、炭素数1〜6の直鎖または分枝のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基であり、
6〜は、水素、炭素数1〜6の直鎖または分枝のアルキル基、炭素数1〜6の直鎖または分枝のアルコキシ基、炭素数1〜6の直鎖または分枝のアルキルアミノ基およびピリジル基よりなる群からそれぞれ独立して選ばれた基であり、
23、R24は、水素、炭素数1〜6の直鎖又は分岐のアルキル基からなる群からそれぞれ独立して選ばれた基であり、
Xは炭素又は窒素である)
で示されるピリミジン系またはトリアジン系誘導体に関する。
本発明の第2は、請求項1のピリミジン系またはトリアジン系誘導体よりなる電子輸送材料に関する。
本発明の第3は、請求項1のピリミジン系またはトリアジン系誘導体を用いた有機エレクトロルミネッセンス素子に関する。
本発明の第4は、請求項1のピリミジン系またはトリアジン系誘導体を電子輸送層に用いた有機エレクトロルミネッセンス素子に関する。 The first of the present invention is the following general formula (1)
Figure 2009184987
(Where Q is
Figure 2009184987
A group selected from the group consisting of:
R 1 to R 5 and R 10 to R 22 are hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. Each independently selected from the group consisting of linear or branched alkylamino groups,
R 6 to R 9 are hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, a linear or branched group having 1 to 6 carbon atoms. Each independently selected from the group consisting of an alkylamino group and a pyridyl group,
R 23 and R 24 are groups independently selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 6 carbon atoms,
X is carbon or nitrogen)
The pyrimidine type or triazine type derivative represented by
The second aspect of the present invention relates to an electron transport material comprising the pyrimidine-based or triazine-based derivative of claim 1.
A third aspect of the present invention relates to an organic electroluminescence device using the pyrimidine-based or triazine-based derivative of claim 1.
A fourth aspect of the present invention relates to an organic electroluminescence device using the pyrimidine-based or triazine-based derivative of claim 1 as an electron transporting layer.

本発明におけるR1〜22およびR23、R24における炭素数1〜6の直鎖あるいは分枝のアルキル基としては、メチル、エチル、プロピル、イソプロピル、n−ブチル、イソブチル、t−ブチル、ヘプチル、イソヘプチル、n−ヘキシル等を挙げることができる。 Examples of the linear or branched alkyl group having 1 to 6 carbon atoms in R 1 to R 22 and R 23 and R 24 in the present invention include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, t-butyl, Examples include heptyl, isoheptyl, n-hexyl and the like.

本発明におけるR1〜22における炭素数1〜6の直鎖あるいは分枝のアルコキシ基としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、n−ブトキシ、t−ブトキシ、n−へプトキシ、イソへプトキシ、n−ヘキシロキシ等を挙げることができる。 Examples of the linear or branched alkoxy group having 1 to 6 carbon atoms in R 1 to R 22 in the present invention include methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, t-butoxy, n-heptoxy, isohetero Examples thereof include putoxy and n-hexyloxy.

本発明におけるR1〜22における炭素数1〜6の直鎖あるいは分枝のアルキルアミノ基としては、−NHの水素の一個もしくは全部が前記アルキル基で置換されたタイプのものである。 The linear or branched alkylamino group having 1 to 6 carbon atoms in R 1 to R 22 in the present invention is a type in which one or all of —NH 2 hydrogens are substituted with the alkyl group.

本発明におけるR6〜におけるピリジル基としては、2−ピリジル基、3−ピリジル基および4−ピリジル基を挙げることができる。 Examples of the pyridyl group in R 6 to R 9 in the present invention include a 2-pyridyl group, a 3-pyridyl group and a 4-pyridyl group.

本発明の化合物は、下記の反応により製造することができる。

Figure 2009184987
なお、前記式中、Qは

Figure 2009184987
よりなる群からなる選ばれた基であり、R1〜、R10〜R22は、水素、炭素数1〜6の直鎖または分枝のアルキル基、炭素数1〜6の直鎖または分枝のアルコキシ基、炭素数1〜6の直鎖または分枝のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基であり、R6〜は、水素、炭素数1〜6の直鎖または分枝のアルキル基、炭素数1〜6の直鎖または分枝のアルコキシ基、炭素数1〜6の直鎖または分枝のアルキルアミノ基およびピリジル基よりなる群からそれぞれ独立して選ばれた基であり、R23、R24は、水素、炭素数1〜6の直鎖又は分岐のアルキル基からなる群からそれぞれ独立して選ばれた基であり、Xは炭素又は窒素であり、Yはハロゲンである。 The compound of the present invention can be produced by the following reaction.
Figure 2009184987
In the above formula, Q is

Figure 2009184987
R 1 to R 5 and R 10 to R 22 are selected from the group consisting of hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, and a linear chain having 1 to 6 carbon atoms. Or a group independently selected from the group consisting of a branched alkoxy group and a linear or branched alkylamino group having 1 to 6 carbon atoms, wherein R 6 to R 9 are hydrogen, Independently from the group consisting of 6 straight-chain or branched alkyl groups, straight-chain or branched alkoxy groups having 1 to 6 carbon atoms, straight-chain or branched alkylamino groups having 1 to 6 carbon atoms and pyridyl groups R 23 and R 24 are groups independently selected from the group consisting of hydrogen and linear or branched alkyl groups having 1 to 6 carbon atoms, and X is carbon or Nitrogen and Y is halogen.

A法で用いる溶媒としては、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、ジメトキシエタンのようなエーテル系の溶媒を単独もしくはこれらの混合した形で使用できる。またトルエン、キシレン、メシチレンのような芳香族炭化水素とメタノール、エタノール、イソプロパノール、n−ブタノールなどのアルコール系溶媒との混合溶媒を用いる事もできる。   As the solvent used in Method A, ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, and dimethoxyethane can be used alone or in the form of a mixture thereof. A mixed solvent of an aromatic hydrocarbon such as toluene, xylene, or mesitylene and an alcohol solvent such as methanol, ethanol, isopropanol, or n-butanol can also be used.

カップリングのところで用いられる溶媒に関してもA法で用いる溶媒に準ずる事ができる。   The solvent used in the coupling can be the same as the solvent used in Method A.

B法で用いる溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、ジメトキシエタンのようなエーテル系の溶媒を単独もしくはこれらの混合した形で使用できる。   As the solvent used in Method B, ether solvents such as diethyl ether, tetrahydrofuran, 1,4-dioxane and dimethoxyethane can be used singly or as a mixture thereof.

本発明化合物の具体例を以下に例示する。
Specific examples of the compound of the present invention are illustrated below.

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

Figure 2009184987
Figure 2009184987

本発明の新規なピリミジン系またはトリアジン系誘導体は高い電子輸送性能を有する。従って電子輸送材料として使用することができる。   The novel pyrimidine-based or triazine-based derivative of the present invention has high electron transport performance. Therefore, it can be used as an electron transport material.

本発明の新規なピリミジン系またはトリアジン系誘導体を電子輸送層に用いる場合、本発明の化合物は電子輸送材料として使用できる。また他の電子輸送材料と組み合わせて使用することもできる。   When the novel pyrimidine-based or triazine-based derivative of the present invention is used for an electron transport layer, the compound of the present invention can be used as an electron transport material. It can also be used in combination with other electron transport materials.

次に本発明の有機エレクトロルミネッセンス素子(有機EL素子)について説明する。本発明の有機EL素子は、陽極と陰極間にそれぞれの機能を有した多層の有機化合物を積層した素子であり、該有機化合物層の電子輸送層に本発明のピリミジン系またはトリアジン系誘導体を含有する。
多層型の有機EL素子の構成例としては、例えば陽極(例えばITO)/ホール輸送層(正孔輸送層)/発光層/電子輸送層/陰極、陽極(例えばITO)/ホール輸送層/発光層/電子輸送層/電子注入層/陰極、陽極(例えばITO)/ホール輸送層/発光層/ホールブロック層(正孔ブロック層)/電子輸送層/陰極、陽極(例えばITO)/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極、陽極(例えばITO)/ホール注入層(正孔注入層)/ホール輸送層/発光層/ホールブロック層/電子輸送層/電子注入層/陰極等の多層構成で積層したものが挙げられる。また、必要に応じて陰極上に封止層を有していても良い。
Next, the organic electroluminescence element (organic EL element) of the present invention will be described. The organic EL device of the present invention is a device in which multiple organic compounds having respective functions are laminated between an anode and a cathode, and the electron transport layer of the organic compound layer contains the pyrimidine-based or triazine-based derivative of the present invention. To do.
Examples of the configuration of the multilayer organic EL element include, for example, an anode (for example, ITO) / a hole transport layer (a hole transport layer) / a light emitting layer / an electron transport layer / a cathode, an anode (for example, ITO) / a hole transport layer / a light emitting layer. / Electron transport layer / electron injection layer / cathode, anode (for example ITO) / hole transport layer / light emitting layer / hole block layer (hole block layer) / electron transport layer / cathode, anode (for example ITO) / hole transport layer / Light emitting layer / hole block layer / electron transport layer / electron injection layer / cathode, anode (for example, ITO) / hole injection layer (hole injection layer) / hole transport layer / light emitting layer / hole block layer / electron transport layer / electron injection A layered structure having a multilayer structure such as a layer / cathode may be used. Moreover, you may have a sealing layer on a cathode as needed.

正孔輸送層、電子輸送層、および発光層のそれぞれの層は一層構造であっても、多層構造であっても良い。また正孔輸送層、電子輸送層はそれぞれの層で注入機能を受け持つ層(正孔注入層および電子注入層)と輸送機能を受け持つ層(正孔輸送層および電子輸送層)を別々に設けることもできる。   Each of the hole transport layer, the electron transport layer, and the light emitting layer may have a single layer structure or a multilayer structure. In addition, the hole transport layer and the electron transport layer should be provided separately with a layer responsible for the injection function (hole injection layer and electron injection layer) and a layer responsible for the transport function (hole transport layer and electron transport layer). You can also.

本発明の有機エレクトロルミネッセンス素子は、上記構成例に限らず、種々の構成とすることができる。必要に応じて、正孔輸送成分と発光層成分、あるいは電子輸送層成分と発光層成分を混合した層を設けても良い。   The organic electroluminescence element of the present invention is not limited to the above configuration example, and can have various configurations. If necessary, a layer in which a hole transport component and a light emitting layer component or an electron transport layer component and a light emitting layer component are mixed may be provided.

以下本発明の有機エレクトロルミネッセンス素子の構成要素に関して、陽極/正孔輸送層/発光層/電子輸送層/陰極からなる素子構成を例として取り上げて説明する。本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。   Hereinafter, the constituent elements of the organic electroluminescence element of the present invention will be described by taking, as an example, an element configuration comprising an anode / hole transport layer / light emitting layer / electron transport layer / cathode. The organic electroluminescence device of the present invention is preferably supported on a substrate.

基板の素材については特に制限はなく、従来の有機エレクトロルミネッセンス素子に慣用されているものであれば良く、例えば、ガラス、石英ガラス、透明プラスチックなどからなるものを用いることができる。   There is no restriction | limiting in particular about the raw material of a board | substrate, What is necessary is just used conventionally for the conventional organic electroluminescent element, For example, what consists of glass, quartz glass, a transparent plastic etc. can be used.

本発明の有機エレクトロルミネッセンス素子の陽極としては、仕事関数の大きな金属単体(4eV以上)、仕事関数の大きな金属同士の合金(4eV以上)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、金、銀、銅等の金属、ITO(インジウム−スズオキサイド)、酸化スズ(SnO)、酸化亜鉛(ZnO)などの導電性透明材料、ポリピロール、ポリチオフェン等の導電性高分子材料が挙げられる。陽極はこれらの電極材料を、例えば蒸着、スパッタリング、塗布などの方法により形成することができる。陽極のシート電気抵抗は数百Ω/cm以下が好ましい。陽極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。 As an anode of the organic electroluminescence device of the present invention, an electrode material may be a single metal having a high work function (4 eV or more), an alloy of metals having a high work function (4 eV or more), a conductive substance, or a mixture thereof. preferable. Specific examples of such electrode materials include metals such as gold, silver, and copper, conductive transparent materials such as ITO (indium-tin oxide), tin oxide (SnO 2 ), and zinc oxide (ZnO), polypyrrole, and polythiophene. Examples thereof include conductive polymer materials such as For the anode, these electrode materials can be formed by a method such as vapor deposition, sputtering, or coating. The sheet electrical resistance of the anode is preferably several hundred Ω / cm 2 or less. The thickness of the anode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm.

陰極としては、仕事関数の小さな金属単体(4eV以下)、仕事関数の小さな金属同士の合金(4eV以下)または導電性物質およびこれらの混合物を電極材料とすることが好ましい。このような電極材料の具体例としては、リチウム、リチウム−インジウム合金、ナトリウム、ナトリウム−カリウム合金、マグネシウム、マグネシウム−銀合金、マグネシウム−インジウム合金、アルミニウム、アルミニウム−リチウム合金、アルミニウム−マグネシウム合金などが挙げられる。陰極はこれらの電極材料を、例えば蒸着、スパッタリングなどの方法により、薄膜を形成させることにより作成することができる。陰極のシート電気抵抗は数百Ω/cm以下が好ましい。陰極の膜厚は材料にもよるが、一般に5〜1,000nm程度、好ましくは10〜500nmである。本発明の有機EL素子の発光を効率よく取り出すために、陽極または陰極の少なくとも一方の電極は透明もしくは半透明であることが好ましい。 As the cathode, an electrode material is preferably a single metal having a small work function (4 eV or less), an alloy of metals having a small work function (4 eV or less), a conductive substance, or a mixture thereof. Specific examples of such electrode materials include lithium, lithium-indium alloy, sodium, sodium-potassium alloy, magnesium, magnesium-silver alloy, magnesium-indium alloy, aluminum, aluminum-lithium alloy, and aluminum-magnesium alloy. Can be mentioned. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet electrical resistance of the cathode is preferably several hundred Ω / cm 2 or less. The thickness of the cathode depends on the material, but is generally about 5 to 1,000 nm, preferably 10 to 500 nm. In order to efficiently extract light emitted from the organic EL device of the present invention, at least one of the anode and the cathode is preferably transparent or translucent.

本発明の有機エレクトロルミネッセンス素子の正孔輸送層は、正孔伝達化合物からなるもので、陽極より注入された正孔を発光層に伝達する機能を有している。電界が与えた2つの電極の間に正孔伝達化合物が配置されて陽極から正孔が注入された場合、少なくとも10−6cm/V・秒以上の正孔移動度を有する正孔伝達物質が好ましい。本発明の有機エレクトロルミネッセンス素子の正孔輸送層に使用する正孔伝達物質は、前記の好ましい性能を有するものであれば特に制限はない。従来から光導電材料において正孔の電荷注入材料として慣用されているものや有機エレクトロルミネッセンス素子の正孔輸送層に使用されている公知の材料の中から任意のものを選択して用いることができる。 The hole transport layer of the organic electroluminescence device of the present invention is made of a hole transfer compound and has a function of transferring holes injected from the anode to the light emitting layer. A hole transport material having a hole mobility of at least 10 −6 cm 2 / V · sec when a hole transport compound is disposed between two electrodes to which an electric field is applied and holes are injected from an anode Is preferred. The hole transport material used for the hole transport layer of the organic electroluminescence device of the present invention is not particularly limited as long as it has the above-mentioned preferable performance. Any one of materials conventionally used as hole charge injection materials in photoconductive materials and known materials used in hole transport layers of organic electroluminescent elements can be selected and used. .

前記の正孔伝達物質としては、例えば銅フタロシアニンなどのフタロシアニン誘導体、N,N,N′,N′−テトラフェニル−1,4−フェニレンジアミン、N,N′−ジ(m−トリル)−N,N′−ジフェニル−4,4−ジアミノフェニル(TPD)、N,N′−
ジ(1−ナフチル)−N,N′−ジフェニル−4,4−ジアミノフェニル(α−NPD)等のトリアリールアミン誘導体、ポリフェニレンジアミン誘導体、ポリチオフェン誘導体、および水溶性のPEDOT−PSS(ポリエチレンジオキサチオフェン−ポリスチレンスルホン酸)などが挙げられる。正孔輸送層は、これらの他の正孔伝達化合物一種または二種以上からなる一層で構成されたものでよく、前記の正孔伝達物質とは別の化合物からなる正孔輸送層を積層したものでも良い。
正孔注入材料としては、下記化学式に示されるPEDOT−PSS(ポリマー混合物)やDNTPDを挙げることができる。

Figure 2009184987
正孔輸送材料としては、下記化学式に示すTPD、DTASi、α−NPDなどを挙げることができる。

Figure 2009184987
Examples of the hole transfer material include phthalocyanine derivatives such as copper phthalocyanine, N, N, N ′, N′-tetraphenyl-1,4-phenylenediamine, and N, N′-di (m-tolyl) -N. , N'-diphenyl-4,4-diaminophenyl (TPD), N, N'-
Triarylamine derivatives such as di (1-naphthyl) -N, N′-diphenyl-4,4-diaminophenyl (α-NPD), polyphenylenediamine derivatives, polythiophene derivatives, and water-soluble PEDOT-PSS (polyethylenedioxa Thiophene-polystyrene sulfonic acid). The hole transport layer may be composed of one or more of these other hole transport compounds, and a hole transport layer composed of a compound different from the hole transport material is laminated. Things can be used.
Examples of the hole injection material include PEDOT-PSS (polymer mixture) and DNTPD represented by the following chemical formula.

Figure 2009184987
Examples of the hole transport material include TPD, DTASi, α-NPD, and the like represented by the following chemical formula.

Figure 2009184987

発光材料としては、ペリレン誘導体、ナフタセン誘導体、キナクリドン誘導体、クマリン誘導体(例えばクマリン1、クマリン540、クマリン545など)ピラン誘導体(例えばDCM−1、DCM−2、DCJTBなど)、有機金属錯体、例えばトリス(8−ヒドロキシキノリノラト)アルミニウム錯体(Alq)、トリス(4−メチル−8−ヒドロキシキノリノラト)アルミニウム錯体(Almq)等の蛍光材料や[2−(4,6−ジフルオロフェニル)ピリジネート−N,C2′]イリジウム(III)ピコリネート(FIrpic)、トリス{1−[4−(トリフルオロメチル)フェニル]−1H−ピラゾラート−N,C2′}イリジウム(III)(Irtfmppz)、ビス[2−(4′,6′−ジフルオロフェニル)ピリジナト−N,C2′]イリジウム(III)テトラキス(1−ピラゾリル)ボレート(FIr6)、トリス(2−フェニルピリジナト)イリジウム(III)〔Ir(ppy)〕などのリン光材料などを挙げることができる。 Examples of the light-emitting material include perylene derivatives, naphthacene derivatives, quinacridone derivatives, coumarin derivatives (eg, coumarin 1, coumarin 540, coumarin 545), pyran derivatives (eg, DCM-1, DCM-2, DCJTB, etc.), organometallic complexes, eg, tris. Fluorescent materials such as (8-hydroxyquinolinolato) aluminum complex (Alq 3 ) and tris (4-methyl-8-hydroxyquinolinolato) aluminum complex (Almq 3 ) and [2- (4,6-difluorophenyl) Pyridinate-N, C2 ′] iridium (III) picolinate (FIrpic), tris {1- [4- (trifluoromethyl) phenyl] -1H-pyrazolate-N, C2 ′} iridium (III) (Irtfmpppz 3 ), bis [2- (4 ′, 6′-difluorophenyl) pyri Isocyanato -N, C2 '] iridium (III) tetrakis (1-pyrazolyl) borate (FIr6), tris (2-phenylpyridinato-) and the like phosphorescent materials such as iridium (III) [Ir (ppy) 3] be able to.

発光層は、ホスト材料とゲスト材料(ドーパント)から形成することもできる[Appl.Phys.Lett.,65 3610 (1989)]。特にリン光材料を発光層に使用する場合、ホスト材料の使用が必要であり、この時使用されるホスト材料としては4,4′−ジ(N−カルバゾリル)−1,1′−ビフェニル(CBP)、1,4−ジ(N−カルバゾリル)ベンゼン−2,2′−ジ[4″−(N−カルバゾリル)フェニル]−1,1′−ビフェニル(4CzPBP)等が挙げられる。   The light-emitting layer can also be formed of a host material and a guest material (dopant) [Appl. Phys. Lett. , 65 3610 (1989)]. In particular, when a phosphorescent material is used for the light emitting layer, it is necessary to use a host material. As the host material used at this time, 4,4′-di (N-carbazolyl) -1,1′-biphenyl (CBP) ), 1,4-di (N-carbazolyl) benzene-2,2′-di [4 ″-(N-carbazolyl) phenyl] -1,1′-biphenyl (4CzPBP) and the like.

ゲスト材料は、ホスト材料に対して好ましくは0.01〜40重量%であり、より好ましくは0.1〜20重量%である。ゲスト材料としては、下記に示す従来公知のFIrpic、〔Ir(ppy)〕、FIr6等を挙げることができる。

Figure 2009184987
The guest material is preferably 0.01 to 40% by weight, more preferably 0.1 to 20% by weight with respect to the host material. Examples of guest materials include conventionally known FIrpic, [Ir (ppy) 3 ], FIr6 and the like shown below.

Figure 2009184987

本発明の有機エレクトロルミネッセンス素子の電子輸送層の材料としては、本発明の新規なピリミジン系またはトリアジン系誘導体が好ましい。このものは単独で使用できるが他の電子輸送材料と併用しても構わない。   As the material for the electron transport layer of the organic electroluminescence device of the present invention, the novel pyrimidine-based or triazine-based derivative of the present invention is preferable. Although this thing can be used independently, you may use together with another electron transport material.

本発明の有機エレクトロルミネッセンス素子は、電子注入性をさらに向上させる目的で陰極と有機層(電子輸送層)の間に導電体から構成される電子注入層をさらに設けても良い。ここで使用される導電体としては、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、アルカリ金属有機錯体から選択される少なくとも一つの金属化合物を使用することが好ましい。アルカリ金属ハロゲン化物としては、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、塩化リチウムなどが挙げられる。アルカリ土類金属ハロゲン化物としては、フッ化マグネシウム、フッ化カルシウム、フッ化バリウム、フッ化ストロンチウムなどが挙げられる。アルカリ金属有機錯体としては、8−ヒドロキシキノリノラトリチウム、8−ヒドロキシキノリノラトセシウムなどが挙げられる。   In the organic electroluminescence device of the present invention, an electron injection layer composed of a conductor may be further provided between the cathode and the organic layer (electron transport layer) for the purpose of further improving the electron injection property. As the conductor used here, it is preferable to use at least one metal compound selected from alkali metal halides, alkaline earth metal halides, and alkali metal organic complexes. Examples of the alkali metal halide include lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, and lithium chloride. Examples of the alkaline earth metal halide include magnesium fluoride, calcium fluoride, barium fluoride, and strontium fluoride. Examples of the alkali metal organic complex include 8-hydroxyquinolinolatolithium and 8-hydroxyquinolinolatocesium.

正孔輸送層、発光層の形成方法については特に限定されるものではない。例えば乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)、湿式製膜法[溶媒塗布法(例えばスピンコート法、キャスト法、インクジェット法など)]を使用することができる。本発明の新規なピリミジン系またはトリアジン系誘導体は、乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)が好ましい。電子輸送層の製膜については、湿式製膜法で行うと下層が溶出する恐れがあるため乾式製膜法(例えば真空蒸着法、イオン化蒸着法など)に限定される。素子の作成については上記の製膜法を併用しても構わない。   The method for forming the hole transport layer and the light emitting layer is not particularly limited. For example, a dry film forming method (for example, a vacuum vapor deposition method, an ionization vapor deposition method) or a wet film forming method [a solvent coating method (for example, a spin coating method, a casting method, an ink jet method, etc.)] can be used. The novel pyrimidine-based or triazine-based derivative of the present invention is preferably a dry film forming method (for example, a vacuum deposition method, an ionization deposition method, etc.). The film formation of the electron transport layer is limited to a dry film formation method (for example, a vacuum vapor deposition method, an ionization vapor deposition method, etc.) because the lower layer may be eluted when the wet film formation method is used. For the production of the element, the above film forming method may be used in combination.

真空蒸着法により正孔輸送層、発光層、電子輸送層などの各層を形成する場合、真空蒸着条件は特に限定されるものではない。通常10−5Torr程度以下の真空下で50〜500℃程度のボート温度(蒸着原温度)、−50〜300℃程度の基板温度で、0.01〜50nm/sec.程度蒸着することが好ましい。正孔輸送層、発光層、電子輸送層の各層を複数の化合物を使用して形成する場合、化合物を入れたボートをそれぞれ温度制御しながら共蒸着することが好ましい。 When forming each layer such as a hole transport layer, a light emitting layer, and an electron transport layer by a vacuum deposition method, the vacuum deposition conditions are not particularly limited. Usually, under a vacuum of about 10 −5 Torr or less, a boat temperature (deposition source temperature) of about 50 to 500 ° C., a substrate temperature of about −50 to 300 ° C., and 0.01 to 50 nm / sec. Vapor deposition is preferred. When each of the hole transport layer, the light emitting layer, and the electron transport layer is formed using a plurality of compounds, it is preferable to co-evaporate the boats containing the compounds while controlling the temperatures of the boats.

正孔輸送層、発光層を溶媒塗布法で形成する場合、各層を構成する成分を溶媒に溶解または分散させて塗布液とする。溶媒としては、炭化水素系溶媒(例えばヘプタン、トルエン、キシレン、シクロヘキサン等)、ケトン系溶媒(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等)、ハロゲン系溶媒(例えばジクロロメタン、クロロホルム、クロロベンゼン、ジクロロベンゼン等)、エステル系溶媒(例えば酢酸エチル、酢酸ブチル等)、アルコール系溶媒(例えばメタノール、エタノール、ブタノール、メチルセロソルブ、エチルセロソルブ等)、エーテル系溶媒(例えばジブチルエーテル、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン等)、非プロトン性溶媒(例えばN,N′−ジメチルアセトアミド、ジメチルスルホキシド等)、水等が挙げられる。溶媒は単独で使用しても良く、複数の溶媒を併用しても良い。   When forming the hole transport layer and the light emitting layer by a solvent coating method, the components constituting each layer are dissolved or dispersed in a solvent to obtain a coating solution. Solvents include hydrocarbon solvents (eg, heptane, toluene, xylene, cyclohexane, etc.), ketone solvents (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.), halogen solvents (eg, dichloromethane, chloroform, chlorobenzene, dichlorobenzene, etc.) Ester solvents (eg, ethyl acetate, butyl acetate, etc.), alcohol solvents (eg, methanol, ethanol, butanol, methyl cellosolve, ethyl cellosolve, etc.), ether solvents (eg, dibutyl ether, tetrahydrofuran, 1,4-dioxane, 1 , 2-dimethoxyethane, etc.), aprotic solvents (eg, N, N′-dimethylacetamide, dimethyl sulfoxide, etc.), water and the like. The solvent may be used alone, or a plurality of solvents may be used in combination.

正孔輸送層、発光層、電子輸送層等の各層の膜厚は、特に限定されるものではないが、通常5〜5,000nmになるようにする。   The thickness of each layer such as the hole transport layer, the light emitting layer, and the electron transport layer is not particularly limited, but is usually 5 to 5,000 nm.

本発明の有機エレクトロルミネッセンス素子は、酸素や水分等の接触を遮断する目的で保護層(封止層)を設けたり、不活性物質中に素子を封入して保護することができる。不活性物質としては、パラフィン、シリコンオイル、フルオロカーボン等が挙げられる。保護層に使用する材料としては、フッ素樹脂、エポキシ樹脂、シリコーン樹脂、ポリエステル、ポリカーボネート、光硬化性樹脂等がある。   The organic electroluminescence device of the present invention can be protected by providing a protective layer (sealing layer) for the purpose of blocking contact with oxygen, moisture, etc., or by enclosing the device in an inert material. Examples of the inert substance include paraffin, silicon oil, and fluorocarbon. Examples of the material used for the protective layer include fluororesin, epoxy resin, silicone resin, polyester, polycarbonate, and photocurable resin.

本発明の有機エレクトロルミネッセンス素子は、通常直流駆動の素子として使用できる。直流電圧を印加する場合、陽極をプラス、陰極をマイナスの極性として通常1.5〜20V程度印加すると発光が観察される。また本発明の有機エレクトロルミネッセンス素子は交流駆動の素子としても使用できる。交流電圧を印加する場合には、陽極がプラス、陰極がマイナスの状態になった時に発光する。本発明の有機エレクトロルミネッセンス素子は、例えば電子写真感光体、フラットパネルディスプレイなどの平面発光体、複写機、プリンター、液晶ディスプレイのバックライト、計器等の光源、各種発光素子、各種表示装置、各種標識、各種センサー、各種アクセサリーなどに使用することができる。   The organic electroluminescence device of the present invention can be used as a normal DC drive device. When a DC voltage is applied, light emission is usually observed when about 1.5 to 20 V is applied with the positive polarity of the anode and the negative polarity of the cathode. The organic electroluminescence device of the present invention can also be used as an AC drive device. When an AC voltage is applied, light is emitted when the anode is in a positive state and the cathode is in a negative state. The organic electroluminescence element of the present invention is, for example, a flat light emitter such as an electrophotographic photosensitive member or a flat panel display, a copying machine, a printer, a backlight of a liquid crystal display, a light source such as an instrument, various light emitting elements, various display devices, and various signs. It can be used for various sensors and various accessories.

図41〜50に、本発明の有機エレクトロルミネッセンス素子の好ましい例を示す。   The preferable example of the organic electroluminescent element of this invention is shown in FIGS.

図41は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図41は、基板1上に陽極2、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。この場合、発光層は正孔輸送性の機能を有している場合に有用である。   FIG. 41 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 41 shows a configuration in which an anode 2, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the light emitting layer is useful when it has a hole transporting function.

図42は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図42は、基板1上に陽極2、正孔輸送層5、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。これはキャリア輸送と発光の機能を分離したものであり、材料選択の自由度が増すために、発光の高効率化や発光色の自由度が増すことになる。   FIG. 42 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 42 shows a structure in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. This is a separation of the functions of carrier transport and light emission, and the degree of freedom in material selection increases, so that the efficiency of light emission and the degree of freedom in light emission color increase.

図43は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図43は、基板1上に陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6および陰極4を順次設けた構成のものである。この場合、正孔注入層7を設けることにより、陽極2と正孔輸送層5の密着性を高めたり、陽極からの正孔の注入を良くし、発光素子の低電圧化に効果がある。   FIG. 43 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 43 shows a configuration in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6 and a cathode 4 are sequentially provided on a substrate 1. In this case, the provision of the hole injection layer 7 improves the adhesion between the anode 2 and the hole transport layer 5, improves the injection of holes from the anode, and is effective in lowering the voltage of the light emitting element.

図44は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図44は、基板1上に陽極2、正孔輸送層5、発光層3、電子輸送層6、電子注入層8および陰極4を順次設けた構成のものである。この場合、陰極4から電子の注入を良くし、発光素子の低電圧化に効果がある。   FIG. 44 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 44 shows a configuration in which an anode 2, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, injection of electrons from the cathode 4 is improved, which is effective for lowering the voltage of the light emitting element.

図45は、本発明の有機エレクトロルミネッセンス素子における他の例を示す断面図である。図45は、基板1上に陽極2、正孔注入層7、正孔輸送層5、発光層3、電子輸送層6、電子注入層8および陰極4を順次設けた構成のものである。この場合、陽極2から正孔の注入を良くし、陰極4から電子注入を良くし、最も低電圧駆動に効果がある構成である。   FIG. 45 is a cross-sectional view showing another example of the organic electroluminescence element of the present invention. FIG. 45 shows a configuration in which an anode 2, a hole injection layer 7, a hole transport layer 5, a light emitting layer 3, an electron transport layer 6, an electron injection layer 8 and a cathode 4 are sequentially provided on a substrate 1. In this case, the injection of holes from the anode 2 is improved and the injection of electrons from the cathode 4 is improved, which is the most effective for driving at a low voltage.

図46〜50は素子の中に正孔ブロック層を挿入したものの断面図である。正孔ブロック層は、陽極から注入された正孔、あるいは発光層3で再結合により生成した励起子が、陰極4に抜けることを防止する効果があり、有機エレクトロルミネッセンス素子の発光効率の向上に効果がある。正孔ブロック層9については、発光層3と陰極4の間もしくは発光層3と電子輸送層6の間あるいは発光層3と電子注入層8の間に挿入することができる。より好ましいものは発光層3と電子輸送層6の間である。   46 to 50 are sectional views of a device in which a hole blocking layer is inserted. The hole blocking layer has an effect of preventing holes injected from the anode or excitons generated by recombination in the light emitting layer 3 from escaping to the cathode 4, thereby improving the light emission efficiency of the organic electroluminescence device. effective. The hole blocking layer 9 can be inserted between the light emitting layer 3 and the cathode 4, between the light emitting layer 3 and the electron transport layer 6, or between the light emitting layer 3 and the electron injection layer 8. More preferred is between the light emitting layer 3 and the electron transport layer 6.

図41〜50で、正孔輸送層5、正孔注入層7、電子輸送層6、電子注入層8、発光層3、正孔ブロック層9のそれぞれの層は、一層構造であっても多層構造であっても良い。   41 to 50, each of the hole transport layer 5, the hole injection layer 7, the electron transport layer 6, the electron injection layer 8, the light emitting layer 3, and the hole blocking layer 9 has a single layer structure or a multilayer structure. It may be a structure.

図41〜50は、あくまでも基本的な素子構成であり、本発明の化合物を用いた有機エレクトロルミネッセンス素子の構成はこれに限定されるものではない。   41 to 50 are basic device configurations to the last, and the configuration of the organic electroluminescence device using the compound of the present invention is not limited to this.

前記電子注入層に用いる電子注入材料としては、本出願の特願2006−292032号にかかる化合物、例えば下記化合物群を例示することができる。

Figure 2009184987
Examples of the electron injection material used for the electron injection layer include the compounds according to Japanese Patent Application No. 2006-292032 of the present application, for example, the following compound group.
Figure 2009184987

本発明の新規なピリミジン系またはトリアジン系誘導体は、例えば実施例14、15と比較例3、4を対比すると明らかなように、Alq等の従来の電子輸送層に比べ電子輸送能が非常に大きい。また移動度も大きく素子中でのホールとのキャリアバランスにも優れている。また発光材料として使用した場合、青色から緑色にかけての発光を示し素子のフルカラー用あるいは白色用材料として適しているので、本発明の新規なピリミジン系またはトリアジン系誘導体は工業的に極めて重要なものである。 The novel pyrimidine-based or triazine-based derivative of the present invention has a very high electron transporting ability as compared with conventional electron transporting layers such as Alq 3 as is apparent from the comparison between Examples 14 and 15 and Comparative Examples 3 and 4, for example. large. Also, the mobility is high and the carrier balance with holes in the element is excellent. In addition, when used as a luminescent material, it emits light from blue to green and is suitable as a full-color or white material for the device. Therefore, the novel pyrimidine or triazine derivative of the present invention is extremely important industrially. is there.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

実施例1
1,3−ビス〔3,5−ジ(4−トリル)ピリミジル〕ベンゼン(略称BDTPmB)の合成
1)2−クロロ−4,6−(4−トリル)ピリミジンの(略称CDTPm)合成

Figure 2009184987
四つ口フラスコに2,4,6−トリクロロピリミジン(3.67g、20mmol)、p−トリルホウ酸(5.71g、42mmol)、ビストリフェニルホスフィンパラジウムジクロライド〔PdCl(PPh〕(562mg、0.80mmol)、アセトニトリル(200ml)と2モル/リットル濃度のKCO水溶液(120ml)を入れて、窒素気流下50℃で24時間反応させた。反応終了後、反応溶液を水に注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム/n−ヘキサン=2/1)を行い、メタノールによる再結晶を行い白色の粉末を得た。収率:80.2%

2)1,3−フェニレンジ(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)(略称mBDOBB)の合成
Figure 2009184987
四つ口フラスコに1,3−ジブロモベンゼン(4.22g、17.9mmol)、ビス(ピナコラト)ジボロン(10g、39.4mmol)、酢酸カリウム(10.5g、0.107mol)、下記式に示す〔1,1′−ビス(ジフェニルホスフィノ)フェロセン〕ジクロロパラジウム〔PdCl(dppf)〕(731mg、0.895mmol)と無水DMF(130ml)を入れて、窒素気流下105℃で24時間反応させた。その後、反応溶液に水を注ぎ、酢酸エチルで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム)を行い、薄い緑色の固体を得た。収率:56.9%
Figure 2009184987
3)1,3−ビス〔3,5−ジ(4−トリル)ピリミジル〕ベンゼン(略称BDTPmB)の合成
Figure 2009184987
四つ口フラスコにCDTPm(1.95g、6.6mmol)、mBDOBB(0.99g、3.0mmol)、ビストリフェニルホスフィンパラジウムジクロライド〔PdCl(PPh〕(84.2mg、0.12mmol)、1,4−ジオキサン(100ml)と2モル/リットル濃度のNaCO水溶液(60ml)を入れて、窒素気流下90℃で48時間反応させた。反応終了後、反応溶液を水に注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム/n−ヘキサン=2/1)を行い、アセトンによる再結晶を行い白色の粉末を得た。収率:31.4%
図1にBDTPmBの蒸着膜の吸収スペクトルおよび図2に蛍光スペクトルを示す。また紫外−可視吸収スペクトルおよびイオン化ポテンシャル(例えば理研計器AC−3)を測定し電気化学特性を評価した。その結果を表1に示す。
Figure 2009184987
Ip:イオン化ポテンシャル
Eg:エネルギーギャップ
Ea:エネルギーアフィニティ(電子親和力)
エネルギーギャップ(Eg)については、蒸着機で作成した薄膜を紫外−可視吸光度計で薄膜の吸収曲線を測定する。その薄膜の短波長側の立ち上がりのところに接線を引き、求まった交点の波長W(nm)を次の式に代入し目的の値を求める。それによって得た値がEgになる。
Eg=1240÷W
例えば接線を引いて求めた値W(nm)が470nmだったとしたらこの時のEgの値は
Eg=1240÷470=2.63(eV)
と言うことになる。
IP(イオン化ポテンシャル)はイオン化ポテンシャル測定装置(例えば理研計器AC−3)を使用して測定し、測定するサンプルがイオン化を開始したところの電圧(eV)の値を読む。
Ea(電子親和力)は、IpからEgを引いた値である。
実施例1の化合物の融点(Tm)、ガラス転移温度(Tg)および分解温度(Td)を表2に示す。

Figure 2009184987
n.d.は測定できないことを示す。
Tm(融点)は、DSC(Differential Scanning Calorimeter 示差熱量計)にサンプルを加え、昇温してゆくと吸熱カーブが現れるので、その極大のところの温度を読んでその温度をTmとする。
Tg(ガラス転移温度)については、同じくDSCの中にサンプルを加え、溶融させたものを急冷し、2〜3回繰り返すとガラス転移を表すカーブがチャート上に現れるので、そのカーブを接線で結び、その交点をTgとして採用する。
Td(分解温度)はDTA(Differential Thermal Analyzer 示差熱分析装置)にサンプルを加え加熱してゆくと、サンプルの熱によって分解し重量が減少しだす。その現象が開始しだしたところの温度を読んで、その温度をTdとする。 Example 1
Synthesis of 1,3-bis [3,5-di (4-tolyl) pyrimidyl] benzene (abbreviation BDTPmB) 1) Synthesis (abbreviation CDTPm) of 2-chloro-4,6- (4-tolyl) pyrimidine

Figure 2009184987
In a four-necked flask, 2,4,6-trichloropyrimidine (3.67 g, 20 mmol), p-tolylboric acid (5.71 g, 42 mmol), bistriphenylphosphine palladium dichloride [PdCl 2 (PPh 3 ) 2 ] (562 mg, 0.80 mmol), acetonitrile (200 ml) and a 2 mol / liter aqueous K 2 CO 3 solution (120 ml) were added and reacted at 50 ° C. for 24 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into water, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography (developing solvent: chloroform / n-hexane = 2/1), and recrystallization from methanol was performed to obtain a white powder. Yield: 80.2%

2) Synthesis of 1,3-phenylenedi (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) (abbreviation mBDOBB)
Figure 2009184987
In a four-necked flask, 1,3-dibromobenzene (4.22 g, 17.9 mmol), bis (pinacolato) diboron (10 g, 39.4 mmol), potassium acetate (10.5 g, 0.107 mol), shown in the following formula [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium [PdCl 2 (dppf) 2 ] (731 mg, 0.895 mmol) and anhydrous DMF (130 ml) were added and reacted at 105 ° C. for 24 hours under a nitrogen stream. I let you. Then, water was poured into the reaction solution, extracted with ethyl acetate, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography (developing solvent: chloroform) to obtain a pale green solid. Yield: 56.9%
Figure 2009184987
3) Synthesis of 1,3-bis [3,5-di (4-tolyl) pyrimidyl] benzene (abbreviation BDTPmB)
Figure 2009184987
In a four-neck flask, CDTPm (1.95 g, 6.6 mmol), mBDOBB (0.99 g, 3.0 mmol), bistriphenylphosphine palladium dichloride [PdCl 2 (PPh 3 ) 2 ] (84.2 mg, 0.12 mmol) 1,4-dioxane (100 ml) and 2 mol / liter Na 2 CO 3 aqueous solution (60 ml) were added and reacted at 90 ° C. for 48 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into water, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography (developing solvent: chloroform / n-hexane = 2/1) and recrystallized with acetone to obtain a white powder. Yield: 31.4%
FIG. 1 shows an absorption spectrum of a deposited film of BDTPmB, and FIG. 2 shows a fluorescence spectrum. In addition, an ultraviolet-visible absorption spectrum and an ionization potential (for example, Riken Keiki AC-3) were measured to evaluate electrochemical characteristics. The results are shown in Table 1.
Figure 2009184987
Ip: Ionization potential
Eg: Energy gap
Ea: Energy affinity (electron affinity)
Regarding the energy gap (Eg), an absorption curve of the thin film prepared with a vapor deposition machine is measured with an ultraviolet-visible absorptiometer. A tangent line is drawn at the short-wavelength rising edge of the thin film, and the target wavelength is obtained by substituting the obtained wavelength W (nm) of the intersection into the following equation. The value obtained thereby becomes Eg.
Eg = 1240 ÷ W
For example, if the value W (nm) obtained by drawing the tangent is 470 nm, the value of Eg at this time is
Eg = 1240 ÷ 470 = 2.63 (eV)
It will be said.
IP (ionization potential) is measured using an ionization potential measuring device (for example, Riken Keiki AC-3), and the value of the voltage (eV) at which the sample to be measured starts ionization is read.
Ea (electron affinity) is a value obtained by subtracting Eg from Ip.
Table 2 shows the melting point (Tm), glass transition temperature (Tg), and decomposition temperature (Td) of the compound of Example 1.

Figure 2009184987
n. d. Indicates that measurement is not possible.
As Tm (melting point), an endothermic curve appears when a sample is added to DSC (Differential Scanning Calorimeter) and the temperature is raised, and the temperature at the maximum is read and Tm is taken as Tm.
As for Tg (glass transition temperature), a sample is added to DSC, the melted material is rapidly cooled, and if it is repeated 2 to 3 times, a curve representing the glass transition appears on the chart. The intersection is adopted as Tg.
When Td (decomposition temperature) is heated by adding a sample to DTA (Differential Thermal Analyzer differential thermal analyzer), it decomposes by the heat of the sample and begins to decrease in weight. Read the temperature at which the phenomenon started, and let that temperature be Td.

実施例2
5−(ピリジン−3−イル)−1,3−ビス〔3,5−ジ(4−トリル)ピリミジル〕ベンゼン(略称BDTPmPyB)の合成
1)3−(3,5−ジブロモフェニル)ピリジン(略称DBrPyB)の合成

Figure 2009184987
四つ口フラスコに1,3,5−トリブロモベンゼン(18.9g、60mmol)、3−〔4,4,5,5−テトラメチル−(1,3,2)ジオキサボロラニル〕−ピリジン(12.3g、60mmol)、テトラキストリフェニルホスフィンパラジウム〔Pd(PPh〕(693mg、0.67mmol)、トルエン/エタノ−ル(3/1、270ml)と2モル/リットル濃度の炭酸ナトリウム水溶液(70ml)を入れて、窒素気流下90℃で24時間反応させた。反応終了後、反応溶液を水に注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法〔展開溶媒:(1回目)クロロホルム/酢酸エチル=1/2、(2回目)クロロホルム/酢酸エチル/メタノール=10/20/1〕を行った。3−(3,5−ジブロモフェニル)ピリジン(DBrPyB)、収量:9.33g、収率:49.7%

2)1−(ピリジン−3−イル)−3,5−ジ〔4,4,5,5−テトラメチル−(1,3,2)−ボロラン−2−イル〕ベンゼン(略称BDOBPyB)の合成

Figure 2009184987
四つ口フラスコにDBrPyB(7.11g、22.7mmol)、ビス(ピナコラート)ジボロン(12.7g、49.9mmol)、酢酸カリウム(13.4g、136mmol)、〔1,1′−ビス(ジフェニルホスフィノ)フェロセン〕ジクロロパラジウム〔(PdCl(dppf)〕(927mg、1.14mmol)と無水ジメチルフォルムアミド(DMF)(200ml)を入れて、窒素気流下85℃で24時間反応させた。その後、反応溶液に水を注ぎ、酢酸エチルで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム/酢酸エチル=4/1)で行い、白色の粉末を得た。収率:52.5%

3)5−(ピリジン−3−イル)−1,3−ビス〔3,5−ジ(4−トリル)ピリミジル〕ベンゼン(略称BDTPmPyB)の合成
Figure 2009184987
四つ口フラスコにCDTPm(2.03g、6.9mmol)、BDOBPyB(1.22g、3.0mmol)、2モル/リットル濃度のKCO(50ml)、ビストリフェニルホスフィンパラジウムジクロライド〔PdCl(PPh〕(84.2mg、0.12mmol)とジオキサン(150ml)を入れて、窒素気流下100℃で24時間反応させた。その後、反応溶液に水を注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法〔展開溶媒:(1回目)クロロホルム/酢酸エチル/メタノール=20/10/1、(2回目)クロロホルム/メタノール=100/3〕を行い、白色の粉末を得た。収率:83.9%
図3にBDTPmPyBの蒸着膜の吸収スペクトル(Abs)と蛍光スペクトル(PL)を示す。また紫外−可視吸収スペクトルおよびイオン化ポテンシャル(例えば理研計器AC−3)を測定し、電気化学特性を評価した。その結果を表3に示す。

Figure 2009184987
実施例2の化合物の融点(Tm)、ガラス転移温度(Tg)および分解温度(Td)を表4に示す。
Figure 2009184987
Example 2
Synthesis of 5- (pyridin-3-yl) -1,3-bis [3,5-di (4-tolyl) pyrimidyl] benzene (abbreviation BDTPmPyB) 1) 3- (3,5-dibromophenyl) pyridine (abbreviation) Synthesis of DBrPyB)
Figure 2009184987
In a four-necked flask, 1,3,5-tribromobenzene (18.9 g, 60 mmol), 3- [4,4,5,5-tetramethyl- (1,3,2) dioxaborolanyl]- Pyridine (12.3 g, 60 mmol), tetrakistriphenylphosphine palladium [Pd (PPh 3 ) 4 ] (693 mg, 0.67 mmol), toluene / ethanol (3/1, 270 ml) and 2 mol / liter carbonic acid An aqueous sodium solution (70 ml) was added and reacted at 90 ° C. for 24 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into water, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography [developing solvent: (first time) chloroform / ethyl acetate = 1/2, (second time) chloroform / ethyl acetate / methanol = 10/20/1]. 3- (3,5-dibromophenyl) pyridine (DBrPyB), yield: 9.33 g, yield: 49.7%

2) Synthesis of 1- (pyridin-3-yl) -3,5-di [4,4,5,5-tetramethyl- (1,3,2) -borolan-2-yl] benzene (abbreviation BDOBPyB)

Figure 2009184987
In a four-necked flask, DBrPyB (7.11 g, 22.7 mmol), bis (pinacolato) diboron (12.7 g, 49.9 mmol), potassium acetate (13.4 g, 136 mmol), [1,1′-bis (diphenyl) Phosphino) ferrocene] dichloropalladium [(PdCl 2 (dppf) 2 ] (927 mg, 1.14 mmol) and anhydrous dimethylformamide (DMF) (200 ml) were added and reacted at 85 ° C. for 24 hours under a nitrogen stream. Then, water was poured into the reaction solution, extracted with ethyl acetate, washed with saturated brine, dehydrated with anhydrous magnesium sulfate, and the solvent was removed with an evaporator.
Purification was performed by a column chromatography method (developing solvent: chloroform / ethyl acetate = 4/1) to obtain a white powder. Yield: 52.5%

3) Synthesis of 5- (pyridin-3-yl) -1,3-bis [3,5-di (4-tolyl) pyrimidyl] benzene (abbreviation BDTPmPyB)
Figure 2009184987
In a four-necked flask, CDTPm (2.03 g, 6.9 mmol), BDOBPyB (1.22 g, 3.0 mmol), 2 mol / liter concentration K 2 CO 3 (50 ml), bistriphenylphosphine palladium dichloride [PdCl 2 ( PPh 3 ) 2 ] (84.2 mg, 0.12 mmol) and dioxane (150 ml) were added and reacted at 100 ° C. for 24 hours under a nitrogen stream. Then, water was poured into the reaction solution, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography [developing solvent: (first time) chloroform / ethyl acetate / methanol = 20/10/1, (second time) chloroform / methanol = 100/3] to obtain a white powder. Yield: 83.9%
FIG. 3 shows an absorption spectrum (Abs) and a fluorescence spectrum (PL) of the deposited film of BDTPmPyB. In addition, an ultraviolet-visible absorption spectrum and an ionization potential (for example, Riken Keiki AC-3) were measured to evaluate electrochemical characteristics. The results are shown in Table 3.

Figure 2009184987
Table 4 shows the melting point (Tm), glass transition temperature (Tg) and decomposition temperature (Td) of the compound of Example 2.
Figure 2009184987

実施例3
3,5−ビス〔3,5−ビス(p−トリル)ピリミジン−1−イル〕ピリジン(略称BDTPmPy)の合成
1)3,5−ビス〔4,4,5,5−テトラメチル−(1,3,2)−ジオキサボロラン−2−イル〕ピリジン(略称BDOBPy)の合成

Figure 2009184987
四つ口フラスコに3,5−ジブロモピリジン(10.66g、45mmol)、ビス(ピナコラート)ジボロン(25.14g、99mmol)、酢酸カリウム(26.5g、270mmol)、〔1,1′−ビス(ジフェニルホスフィノ)フェロセン〕ジクロロパラジウム〔PdCl(dppf)〕(1.84g、2.25mmol)と無水メチルフォルムアミド(DMF)(200ml)を入れ、窒素気流下85℃で24時間反応させた。その後、反応溶液に水を注ぎ、酢酸エチルで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム)を行い、白色の粉末を得た。収率:27.8%

2)3,5−ビス〔3,5−ビス(p−トリル)ピリミジン−1−イル〕ピリジン(略称BDTPmPy)の合成

Figure 2009184987
四つ口フラスコにCDTPm(2.95g、10.0mmol)、BDOBPy(1.65g、5.0mmol)、2モル/リットル濃度のKCO(50ml)、ビストリフェニルホスフィンパラジウムジクロライド〔PdCl(PPh〕(140mg、0.20mmol)とジオキサン(150ml)を入れ、窒素気流下100℃で24時間反応させた。その後、反応溶液に水を注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム)を行い、白色の粉末を得た。収率:20.5%
図4にBDTPmPy蒸着膜の吸収スペクトル(Abs)と蛍光スペクトル(PL)を示す。また紫外−可視吸収スペクトルおよびイオン化ポテンシャル(例えば理研計器AC−3)を測定し、電気化学特性を評価した。その結果を表5に示す。
Figure 2009184987
実施例3の化合物の融点(Tm)、ガラス転移温度(Tg)および分解温度(Td)を表6に示す。
Figure 2009184987
Example 3
Synthesis of 3,5-bis [3,5-bis (p-tolyl) pyrimidin-1-yl] pyridine (abbreviation BDTPmPy) 1) 3,5-bis [4,4,5,5-tetramethyl- (1 , 3,2) -Dioxaborolan-2-yl] pyridine (abbreviation BDOBPy)
Figure 2009184987
In a four-necked flask, 3,5-dibromopyridine (10.66 g, 45 mmol), bis (pinacolato) diboron (25.14 g, 99 mmol), potassium acetate (26.5 g, 270 mmol), [1,1′-bis ( Diphenylphosphino) ferrocene] dichloropalladium [PdCl 2 (dppf) 2 ] (1.84 g, 2.25 mmol) and anhydrous methylformamide (DMF) (200 ml) were added and reacted at 85 ° C. for 24 hours under a nitrogen stream. . Then, water was poured into the reaction solution, extracted with ethyl acetate, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography (developing solvent: chloroform) to obtain a white powder. Yield: 27.8%

2) Synthesis of 3,5-bis [3,5-bis (p-tolyl) pyrimidin-1-yl] pyridine (abbreviation BDTPmPy)

Figure 2009184987
In a four-necked flask, CDTPm (2.95 g, 10.0 mmol), BDOBPy (1.65 g, 5.0 mmol), 2 mol / liter K 2 CO 3 (50 ml), bistriphenylphosphine palladium dichloride [PdCl 2 ( PPh 3 ) 2 ] (140 mg, 0.20 mmol) and dioxane (150 ml) were added and reacted at 100 ° C. for 24 hours under a nitrogen stream. Then, water was poured into the reaction solution, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by column chromatography (developing solvent: chloroform) to obtain a white powder. Yield: 20.5%
FIG. 4 shows an absorption spectrum (Abs) and a fluorescence spectrum (PL) of the BDTPmPy deposited film. In addition, an ultraviolet-visible absorption spectrum and an ionization potential (for example, Riken Keiki AC-3) were measured to evaluate electrochemical characteristics. The results are shown in Table 5.
Figure 2009184987
Table 6 shows the melting point (Tm), glass transition temperature (Tg), and decomposition temperature (Td) of the compound of Example 3.
Figure 2009184987

実施例4
1,3−ビス〔3,5−ビス(p−トリル)トリアジン−1−イル〕ベンゼン(略称BDTTzB)の合成
1)1−クロロ−3,5−ジ(p−トリル)トリアジン(略称CDTTz)の合成

Figure 2009184987
四つ口フラスコに1,3,5−トリアジン(7.68g、41.7mmol)と無水テトラヒドロフラン(50ml)を入れて、窒素気流下−5℃まで冷やした。激しく撹拌しながら、ゆっくりp−トリルマグネシウムブロマイド テトラヒドロフラン溶液(1M、1100ml)を滴下し、さらに1時間同温で反応させ、ゆっくり室温に戻した。その後、50℃まで加熱し、さらに24時間反応させた。反応終了後、反応溶液に塩化アンモニウム水溶液を注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
クロロホルム/メタノール=5/1による再結晶を行い、薄い黄色固体を得た。収率:66.4%

2)1,3−ビス〔3,5−ビス(p−トリル)トリアジン−1−イル〕ベンゼン(略称BDTTzB)の合成
Figure 2009184987
四つ口フラスコにCDTTz(2.03g、6.86mmol)、mBDOBB(1.03g、3.12mmol)、テトラキストリフェニルホスフィンパラジウム〔Pd(PPh〕(360mg、0.31mmol)、トルエン(150ml)と2モル/リットル濃度のKCO(50ml)を入れて、窒素気流下90℃で48時間反応させた。反応終了後、反応溶液を水に注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム)で行い、クロロホルムによる再結晶を行い白色の粉末を得た。収率:85.9%
図1にBDTTzBの蒸着膜の吸収スペクトルおよび図2に蛍光スペクトルを示す。また紫外−可視吸収スペクトルおよびイオン化ポテンシャル(例えば理研計器AC−3)を測定し、電気化学特性を評価した。その結果を表7に示す。
Figure 2009184987
実施例4の化合物の融点(Tm)、ガラス転移温度(Tg)および分解温度(Td)を表8に示す。
Figure 2009184987
Example 4
Synthesis of 1,3-bis [3,5-bis (p-tolyl) triazin-1-yl] benzene (abbreviation BDTTzB) 1) 1-chloro-3,5-di (p-tolyl) triazine (abbreviation CDTTz) Synthesis of
Figure 2009184987
1,3,5-triazine (7.68 g, 41.7 mmol) and anhydrous tetrahydrofuran (50 ml) were placed in a four-necked flask and cooled to −5 ° C. under a nitrogen stream. While vigorously stirring, p-tolylmagnesium bromide tetrahydrofuran solution (1M, 1100 ml) was slowly added dropwise, reacted at the same temperature for 1 hour, and slowly returned to room temperature. Then, it heated to 50 degreeC and made it react for 24 hours. After completion of the reaction, an aqueous ammonium chloride solution was poured into the reaction solution, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Recrystallization with chloroform / methanol = 5/1 gave a pale yellow solid. Yield: 66.4%

2) Synthesis of 1,3-bis [3,5-bis (p-tolyl) triazin-1-yl] benzene (abbreviation BDTTzB)
Figure 2009184987
In a four-necked flask, CDTTz (2.03 g, 6.86 mmol), mBDOBB (1.03 g, 3.12 mmol), tetrakistriphenylphosphine palladium [Pd (PPh 3 ) 4 ] (360 mg, 0.31 mmol), toluene ( 150 ml) and 2 mol / liter K 2 CO 3 (50 ml) were added and reacted at 90 ° C. for 48 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into water, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by a column chromatography method (developing solvent: chloroform), and recrystallization with chloroform gave a white powder. Yield: 85.9%
FIG. 1 shows an absorption spectrum of a deposited film of BDTTzB, and FIG. 2 shows a fluorescence spectrum. In addition, an ultraviolet-visible absorption spectrum and an ionization potential (for example, Riken Keiki AC-3) were measured to evaluate electrochemical characteristics. The results are shown in Table 7.
Figure 2009184987
Table 8 shows the melting point (Tm), glass transition temperature (Tg) and decomposition temperature (Td) of the compound of Example 4.
Figure 2009184987

実施例5
1−(ピリジン−3−イル)−3,5−ビス(3,5−ジフェニルトリアジン−1−イル)ベンゼン(略称BDPTzPyB)の合成

Figure 2009184987
四つ口フラスコに1−クロロ−3,5−ジフェニル−トリアジン(CDPTz)(1.85g、6.9mmol)、BDOBPyB(1.22g、3.0mmol)、2モル/リットル濃度のKCO水溶液(50ml)、テトラキストリフェニルホスフィンパラジウム〔Pd(PPh〕(347mg、0.30mmol)とトルエン(150ml)を入れて、窒素気流下100℃で24時間反応させた。その後、反応溶液に水を注ぎ、クロロホルムで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム/メタノール=30/1)で行い、白色の粉末を得た。収率:48.6%
図5にBDPTzPyB蒸着膜の吸収スペクトル(Abs)と蛍光スペクトル(PL)を示す。図6にBDPTzPyBの低温リン光スペクトルを示す。また紫外−可視吸収スペクトルおよびイオン化ポテンシャル(例えば理研計器AC−3)を測定し、電気化学特性を評価した。その結果を表9に示す。
Figure 2009184987
実施例5の化合物の融点(Tm)、ガラス転移温度(Tg)および分解温度(Td)を表10に示す。
Figure 2009184987
Example 5
Synthesis of 1- (pyridin-3-yl) -3,5-bis (3,5-diphenyltriazin-1-yl) benzene (abbreviation BDPTzPyB)
Figure 2009184987
In a four-necked flask, 1-chloro-3,5-diphenyl-triazine (CDPTz) (1.85 g, 6.9 mmol), BDOBPyB (1.22 g, 3.0 mmol), 2 mol / liter K 2 CO 3 An aqueous solution (50 ml), tetrakistriphenylphosphine palladium [Pd (PPh 3 ) 4 ] (347 mg, 0.30 mmol) and toluene (150 ml) were added and reacted at 100 ° C. for 24 hours under a nitrogen stream. Then, water was poured into the reaction solution, extracted with chloroform, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by a column chromatography method (developing solvent: chloroform / methanol = 30/1) to obtain a white powder. Yield: 48.6%
FIG. 5 shows an absorption spectrum (Abs) and a fluorescence spectrum (PL) of the BDPTzPyB deposited film. FIG. 6 shows a low-temperature phosphorescence spectrum of BDPTzPyB. In addition, an ultraviolet-visible absorption spectrum and an ionization potential (for example, Riken Keiki AC-3) were measured to evaluate electrochemical characteristics. The results are shown in Table 9.
Figure 2009184987
Table 10 shows the melting point (Tm), glass transition temperature (Tg), and decomposition temperature (Td) of the compound of Example 5.
Figure 2009184987

実施例6
9,9−ジメチル−2,7−ビス〔3,5−ビス(p−トリル)トリアジン−1−イル〕フルオレン(略称DTTzF)の合成

Figure 2009184987
四つ口フラスコにCDTTz(1.70g、5.75mmol)、9,9−ジメチル−2,7−ビス〔4,4,5,5−テトラメチル−(1,3,2)−ジオキサボロラン−2−イル〕フルオレン(DOBFI)(1.12g、2.5mmol)、テトラキストリフェニルホスフィンパラジウム〔Pd(PPh〕(290mg、0.25mmol)、トルエン(100ml)と2モル/リットル濃度のKCO水溶液(30ml)を入れ、窒素気流下、100℃で50時間反応させた。反応終了後、反応溶液を水に注ぎ、トルエンで抽出し、飽和食塩水で洗浄した。無水硫酸マグネシウムで脱水し、溶媒をエバポレーターで除去した。
精製はカラムクロマトグラフィー法(展開溶媒:クロロホルム)で行った。クロロホルムにより再結晶を行い、薄い黄色の固体を得た。収率:83.6%
さらに、昇華精製を行い、薄い黄色の結晶を得た。
図7にDTTzF蒸着膜の吸収スペクトル(Abs)と蛍光スペクトル(PL)を示す。また紫外−可視吸収スペクトルおよびイオン化ポテンシャル(例えば理研計器AC−3)を測定し、電気化学特性を評価した。その結果を表11に示す。
Figure 2009184987
実施例6の化合物の融点(Tm)、ガラス転移温度(Tg)および分解温度(Td)を表12に示す。
Figure 2009184987
Example 6
Synthesis of 9,9-dimethyl-2,7-bis [3,5-bis (p-tolyl) triazin-1-yl] fluorene (abbreviation DTTzF)

Figure 2009184987
In a four-necked flask, CDTTz (1.70 g, 5.75 mmol), 9,9-dimethyl-2,7-bis [4,4,5,5-tetramethyl- (1,3,2) -dioxaborolane-2 -Yl] fluorene (DOBFI) (1.12 g, 2.5 mmol), tetrakistriphenylphosphine palladium [Pd (PPh 3 ) 4 ] (290 mg, 0.25 mmol), toluene (100 ml) and K at a concentration of 2 mol / liter. 2 CO 3 aqueous solution (30 ml) was added and reacted at 100 ° C. for 50 hours under a nitrogen stream. After completion of the reaction, the reaction solution was poured into water, extracted with toluene, and washed with saturated brine. It dehydrated with anhydrous magnesium sulfate and the solvent was removed by an evaporator.
Purification was performed by a column chromatography method (developing solvent: chloroform). Recrystallization from chloroform gave a pale yellow solid. Yield: 83.6%
Furthermore, sublimation purification was performed to obtain pale yellow crystals.
FIG. 7 shows an absorption spectrum (Abs) and a fluorescence spectrum (PL) of the DTTzF deposited film. In addition, an ultraviolet-visible absorption spectrum and an ionization potential (for example, Riken Keiki AC-3) were measured to evaluate electrochemical characteristics. The results are shown in Table 11.
Figure 2009184987
Table 12 shows the melting point (Tm), glass transition temperature (Tg) and decomposition temperature (Td) of the compound of Example 6.
Figure 2009184987

実施例7、8および9
実施例1で合成したBDTPmB、実施例2で合成したBDTPmPyBおよび実施例3で合成したBDTPmPyを電子輸送層に用いた素子を作成し、電子輸送性の評価を行った。
作成した素子構成は以下の通りである。
<素子構造>
実施例7
○:ITO/NPD(50nm)/Alq(40nm)/BDTPmPyB(実施例2の化合物)(30nm)/LiF(0.5nm)/Al(100nm);
実施例8
□:ITO/NPD(50nm)/Alq(40nm)/BDTPmPy(実施例3の化合物)(30nm)/LiF(0.5nm)/Al(100nm);
実施例9
△:ITO/NPD(50nm)/Alq(40nm)/BDTPmB(実施例1の化合物)(30nm)/LiF(0.5nm)/Al(100nm).

Figure 2009184987
Figure 2009184987
これらの素子の
電流密度−電圧特性は図8に、
輝 度−電圧特性は図9に、
視感効率−電圧特性は図10に、
電流効率−電圧特性は図11に、
視感効率−輝度特性は図12に、
ELスペクトルは 図13に、
それぞれ示す。
これら素子の100cd/mにおける電圧(Voltage)、電流密度(Current density)、電力効率(P.E.)、量子効率(Q.E.)を表13に示す。
Figure 2009184987
これらの素子の1000cd/mにおける電圧、電流密度、電力効率、量子効率を表14に示す。

Figure 2009184987
Examples 7, 8 and 9
Devices using BDTPmB synthesized in Example 1, BDTPmPyB synthesized in Example 2, and BDTPmPy synthesized in Example 3 for the electron transport layer were prepared, and the electron transport property was evaluated.
The created device configuration is as follows.
<Element structure>
Example 7
○: ITO / NPD (50 nm) / Alq 3 (40 nm) / BDTPmPyB (compound of Example 2) (30 nm) / LiF (0.5 nm) / Al (100 nm);
Example 8
□: ITO / NPD (50 nm) / Alq 3 (40 nm) / BDTPmPy (compound of Example 3) (30 nm) / LiF (0.5 nm) / Al (100 nm);
Example 9
Δ: ITO / NPD (50 nm) / Alq 3 (40 nm) / BDTPmB (compound of Example 1) (30 nm) / LiF (0.5 nm) / Al (100 nm).
Figure 2009184987
Figure 2009184987
The current density-voltage characteristics of these elements are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The luminous efficiency-luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
Table 13 shows the voltage (Voltage), current density (Current density), power efficiency (PE), and quantum efficiency (QE) of these elements at 100 cd / m 2 .
Figure 2009184987
Table 14 shows the voltage, current density, power efficiency, and quantum efficiency at 1000 cd / m 2 of these elements.

Figure 2009184987

実施例10、11
実施例3で合成したBDTPmPyおよび実施例2で合成したBDTPmPyBを電子輸送層に用いた緑色リン光素子を作成し、特性を評価した。
作成した素子構成は以下の通りである。
<素子構造>
実施例10
○:ITO/TPDPES(20nm)/TAPC(30nm)/CBP:〔Ir(ppy)〕(8wt%)(30nm)/BDTPmPy(実施例3の化合物)(40nm)/LiF(0.5nm)/Al(100nm);
実施例11
●:ITO/TPDPES(20nm)/TAPC(30nm)/CBP:〔Ir(ppy)〕(8wt%)(30nm)/BDTPmPyB(実施例2の化合物)(40nm)/LiF(0.5nm)/Al(100nm).

Figure 2009184987

Figure 2009184987
Figure 2009184987
Figure 2009184987
これらの素子の
電流密度 −電圧特性は 図14に、
輝 度 −電圧特性は 図15に、
視感効率 −電圧特性は 図16に、
電流効率 −電圧特性は 図17に、
視感効率 −輝度特性は 図18に、
外部量子効率−輝度特性は 図19に、
ELスペクトルは 図20に、
ELスペクトル(拡大図)は図21に、
それぞれ示す。
これらの素子の100cd/mにおける電圧、電流密度、電力効率、量子効率を表15に示す。

Figure 2009184987
これらの素子の1000cd/mにおける電圧、電流密度、電力効率、量子効率を表16に示す。
Figure 2009184987
Examples 10 and 11
A green phosphor element using BDTPmPy synthesized in Example 3 and BDTPmPyB synthesized in Example 2 for the electron transport layer was prepared, and the characteristics were evaluated.
The created device configuration is as follows.
<Element structure>
Example 10
○: ITO / TPDPES (20 nm) / TAPC (30 nm) / CBP: [Ir (ppy) 3 ] (8 wt%) (30 nm) / BDTPmPy (compound of Example 3) (40 nm) / LiF (0.5 nm) / Al (100 nm);
Example 11
●: ITO / TPDPES (20 nm) / TAPC (30 nm) / CBP: [Ir (ppy) 3 ] (8 wt%) (30 nm) / BDTPmPyB (compound of Example 2) (40 nm) / LiF (0.5 nm) / Al (100 nm).
Figure 2009184987

Figure 2009184987
Figure 2009184987
Figure 2009184987
The current density vs. voltage characteristics of these elements are shown in FIG.
The luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The luminous efficiency vs. luminance characteristics are shown in FIG.
The external quantum efficiency vs. luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
The EL spectrum (enlarged view) is shown in FIG.
Each is shown.
Table 15 shows the voltage, current density, power efficiency, and quantum efficiency at 100 cd / m 2 of these elements.

Figure 2009184987
Table 16 shows the voltage, current density, power efficiency, and quantum efficiency at 1000 cd / m 2 of these elements.
Figure 2009184987

実施例12、13および比較例1、2
実施例1で合成したBDTPmBと実施例4で合成したBDTTzBとの電子輸送性を既知の電子輸送材料TmPyPhTAZとTm5PmPhBの間で比較検討を行った。
作成した素子構成は以下の通りである。
<素子構造>
実施例12
○:ITO/α−NPD(50nm)/Alq(40nm)/BDTTzB(30nm)/LiF(0.5nm)/Al(100nm);
比較例1
□:ITO/α−NPD(50nm)/Alq(40nm)/TmPyPhTAZ(30nm)/LiF(0.5nm)/Al(100nm);
実施例13
△:ITO/α−NPD(50nm)/Alq(40nm)/BDTPmB(30nm)/LiF(0.5nm)/Al(100nm);
比較例2
◇:ITO/α−NPD(50nm)/Alq(40nm)/Tm5PmPhB(30nm)/LiF(0.5nm)/Al(100nm).

Figure 2009184987
Figure 2009184987
これらの素子の
電流密度−電圧特性は図22に、
輝 度−電圧特性は図23に、
電流効率−電圧特性は図24に、
視感効率−電圧特性は図25に、
ELスペクトルは 図26に、
それぞれ示す。
これら素子の100cd/mにおける電圧、電流密度、電力効率、量子効率を表17に示す。

Figure 2009184987
これらの素子の1000cd/mにおける電圧、電流密度、電力効率、量子効率を表18に示す。
Figure 2009184987
Examples 12 and 13 and Comparative Examples 1 and 2
The electron transport properties of BDTPmB synthesized in Example 1 and BDTTzB synthesized in Example 4 were compared between known electron transport materials TmPyPhTAZ and Tm5PmPhB.
The created device configuration is as follows.
<Element structure>
Example 12
O: ITO / α-NPD (50 nm) / Alq 3 (40 nm) / BDTTzB (30 nm) / LiF (0.5 nm) / Al (100 nm);
Comparative Example 1
□: ITO / α-NPD (50 nm) / Alq 3 (40 nm) / TmPyPhTAZ (30 nm) / LiF (0.5 nm) / Al (100 nm);
Example 13
Δ: ITO / α-NPD (50 nm) / Alq 3 (40 nm) / BDTPmB (30 nm) / LiF (0.5 nm) / Al (100 nm);
Comparative Example 2
◇: ITO / α-NPD (50 nm) / Alq 3 (40 nm) / Tm5PmPhB (30 nm) / LiF (0.5 nm) / Al (100 nm).

Figure 2009184987
Figure 2009184987
The current density-voltage characteristics of these elements are shown in FIG.
Luminance-voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
Table 17 shows the voltage, current density, power efficiency, and quantum efficiency at 100 cd / m 2 of these elements.

Figure 2009184987
Table 18 shows the voltage, current density, power efficiency, and quantum efficiency at 1000 cd / m 2 of these elements.
Figure 2009184987

実施例14、15および比較例3、4
実施例2で合成したBDTPmPyBと実施例5で合成したBDPTzPyBの電子輸送性の評価を行うため、公知の材料AlqとmBPyPPyBを電子輸送層に使用した素子をそれぞれ作成し、これらの比較を行った。
作成した素子構成は以下の通りである。
<素子構造>
実施例14
▽:ITO/NPD(50nm)/Alq(40nm)/BDTPmPyB(30nm)/LiF(0.5nm)/Al(100nm).
実施例15
◇:ITO/NPD(50nm)/Alq(40nm)/BDPTzPyB(30nm)/LiF(0.5nm)/Al(100nm);
比較例3
△:ITO/NPD(50nm)/Alq(70nm)/LiF(0.5nm)/Al(100nm);
比較例4
○:ITO/NPD(50nm)/Alq(40nm)/mBPyPPyB(30nm)/LiF(0.5nm)/Al(100nm);

Figure 2009184987
これらの素子の、
電流密度−電圧特性は図27に、
輝 度−電圧特性は図28に、
視感効率−電圧特性は図29に、
電流効率−電圧特性は図30に、
視感効率−輝度特性は図31に、
ELスペクトルは 図32に、
それぞれ示す。
これら素子の100cd/mにおける電圧、電流密度、電力効率、量子効率を表19に示す。
Figure 2009184987
これらの素子の1000cd/mにおける電圧、電流密度、電力効率、量子効率を表20に示す。

Figure 2009184987
Examples 14 and 15 and Comparative Examples 3 and 4
Order to evaluate the electron transporting BDPTzPyB synthesized in BDTPmPyB Example 5 synthesized in Example 2, to create each element using a known material Alq 3 and mBPyPPyB the electron transport layer, performing these comparisons It was.
The created device configuration is as follows.
<Element structure>
Example 14
ITO: ITO / NPD (50 nm) / Alq 3 (40 nm) / BDTPmPyB (30 nm) / LiF (0.5 nm) / Al (100 nm).
Example 15
◇: ITO / NPD (50 nm) / Alq 3 (40 nm) / BDPTzPyB (30 nm) / LiF (0.5 nm) / Al (100 nm);
Comparative Example 3
Δ: ITO / NPD (50 nm) / Alq 3 (70 nm) / LiF (0.5 nm) / Al (100 nm);
Comparative Example 4
○: ITO / NPD (50 nm) / Alq 3 (40 nm) / mBPyPPyB (30 nm) / LiF (0.5 nm) / Al (100 nm);
Figure 2009184987
Of these elements,
The current density-voltage characteristics are shown in FIG.
Luminance-voltage characteristics are shown in FIG.
The luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The luminous efficiency-luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
Each is shown.
Table 19 shows the voltage, current density, power efficiency, and quantum efficiency of these elements at 100 cd / m 2 .
Figure 2009184987
Table 20 shows the voltage, current density, power efficiency, and quantum efficiency at 1000 cd / m 2 of these elements.

Figure 2009184987

実施例16、17および比較例5
実施例2で合成したBDTPmPyBおよび実施例5で合成したBDPTzPyBを電子輸送層に用いた緑色リン光素子を作成し特性を評価した。また比較のため従来から用いている電子輸送材料mBPyPPyBを用いた素子も作成した。
作成した素子構成は以下の通りである。
<素子構造>
実施例16
◇:ITO/TPDPES(20nm)/TAPC(30nm)/CBP:〔Ir(ppy)〕(8wt%)(30nm)/BDTPmPyB(30nm)/LiF(0.5nm)/Al(100nm).
実施例17
○:ITO/TPDPES(20nm)/TAPC(30nm)/CBP:〔Ir(ppy)〕(8wt%)(30nm)/BDPTzPyB(30nm)/LiF(0.5nm)/Al(100nm);
比較例5
△:ITO/TPDPES(20nm)/TAPC(30nm)/CBP:〔Ir(ppy)〕(8wt%)(30nm)/mBPyPPyB(30nm)/LiF(0.5nm)/Al(100nm);
これらの素子の
電流密度 −電圧特性は 図33に、
輝 度 −電圧特性は 図34に、
視感効率 −電圧特性は 図35に、
電流効率 −電圧特性は 図36に、
視感効率 −輝度特性は 図37に、
外部量子効率−輝度特性は 図38に、
ELスペクトルは 図39に、
ELスペクトル(拡大図)は図40に、
それぞれ示す。
これら素子の100cd/mにおける電圧、電流密度、電力効率、量子効率を表21に示す。

Figure 2009184987
これらの素子の1000cd/mにおける電圧、電流密度、電力効率、量子効率を表22に示す。
Figure 2009184987
Examples 16, 17 and Comparative Example 5
A green phosphor element using BDTPmPyB synthesized in Example 2 and BDPTzPyB synthesized in Example 5 as the electron transport layer was prepared and the characteristics were evaluated. For comparison, an element using an electron transport material mBPyPPyB which has been conventionally used was also prepared.
The created device configuration is as follows.
<Element structure>
Example 16
◇: ITO / TPDPES (20 nm) / TAPC (30 nm) / CBP: [Ir (ppy) 3 ] (8 wt%) (30 nm) / BDTPmPyB (30 nm) / LiF (0.5 nm) / Al (100 nm).
Example 17
○: ITO / TPDPES (20 nm) / TAPC (30 nm) / CBP: [Ir (ppy) 3 ] (8 wt%) (30 nm) / BDPTzPyB (30 nm) / LiF (0.5 nm) / Al (100 nm);
Comparative Example 5
Δ: ITO / TPDPES (20 nm) / TAPC (30 nm) / CBP: [Ir (ppy) 3 ] (8 wt%) (30 nm) / mBPyPPyB (30 nm) / LiF (0.5 nm) / Al (100 nm);
The current density vs. voltage characteristics of these elements are shown in FIG.
Luminance-voltage characteristics are shown in FIG.
Luminous efficiency vs. voltage characteristics are shown in FIG.
The current efficiency vs. voltage characteristics are shown in FIG.
The luminous efficiency vs. luminance characteristics are shown in FIG.
The external quantum efficiency vs. luminance characteristics are shown in FIG.
The EL spectrum is shown in FIG.
The EL spectrum (enlarged view) is shown in FIG.
Each is shown.
Table 21 shows voltage, current density, power efficiency, and quantum efficiency at 100 cd / m 2 of these elements.

Figure 2009184987
Table 22 shows the voltage, current density, power efficiency, and quantum efficiency at 1000 cd / m 2 of these elements.
Figure 2009184987

実施例1の1,3−ビス〔3,5−ジ(4−トリル)ピリミジル〕ベンゼン(BDTPmB)および実施例4の1,3−ビス〔3,5−ビス(p−トリル)トリアジン−1−イル〕ベンゼン(BDTTzB)の蒸着膜の吸収スペクトルを示す。1,3-bis [3,5-di (4-tolyl) pyrimidyl] benzene (BDTPmB) of Example 1 and 1,3-bis [3,5-bis (p-tolyl) triazine-1 of Example 4 -Ill] shows an absorption spectrum of a deposited film of benzene (BDTTzB). 実施例1の1,3−ビス〔3,5−ジ(4−トリル)ピリミジル〕ベンゼン(BDTPmB)および実施例4の1,3−ビス〔3,5−ビス(p−トリル)トリアジン−1−イル〕ベンゼン(BDTTzB)の蒸着膜の蛍光スペクトルを示す。1,3-bis [3,5-di (4-tolyl) pyrimidyl] benzene (BDTPmB) of Example 1 and 1,3-bis [3,5-bis (p-tolyl) triazine-1 of Example 4 -Ill] shows a fluorescence spectrum of a deposited film of benzene (BDTTzB). 実施例2の5−(ピリジン−3−イル)−1,3−ビス〔3,5−ジ(4−トリル)ピリミジル〕ベンゼン(BDTPmPyB)の蒸着膜の吸収スペクトルと蛍光スペクトルを示す。The absorption spectrum and fluorescence spectrum of the vapor deposition film of 5- (pyridin-3-yl) -1,3-bis [3,5-di (4-tolyl) pyrimidyl] benzene (BDTPmPyB) in Example 2 are shown. 実施例3の3,5−ビス〔3,5−ビス(p−トリル)ピリミジン−1−イル〕ピリジン(BDTPmPy)の蒸着膜の吸収スペクトルと蛍光スペクトルを示す。The absorption spectrum and fluorescence spectrum of the vapor deposition film of 3,5-bis [3,5-bis (p-tolyl) pyrimidin-1-yl] pyridine (BDTPmPy) of Example 3 are shown. 実施例5の1−(ピリジン−3−イル)−3,5−ビス(3,5−ジフェニルトリアジン−1−イル)ベンゼン(BDPTzPyB)の蒸着膜の吸収スペクトルと蛍光スペクトルを示す。The absorption spectrum and fluorescence spectrum of the deposited film of 1- (pyridin-3-yl) -3,5-bis (3,5-diphenyltriazin-1-yl) benzene (BDPTzPyB) in Example 5 are shown. 実施例5の1−(ピリジン−3−イル)−3,5−ビス(3,5−ジフェニルトリアジン−1−イル)ベンゼン(BDPTzPyB)の低温リン光スペクトルを示す。The low-temperature phosphorescence spectrum of 1- (pyridin-3-yl) -3,5-bis (3,5-diphenyltriazin-1-yl) benzene (BDPTzPyB) in Example 5 is shown. 実施例6の9,9−ジメチル−2,7−ビス〔3,5−ビス(p−トリル)トリアジン−1−イル〕フルオレン(DTTzF)の蒸着膜の吸収スペクトルと蛍光スペクトルを示す。The absorption spectrum and fluorescence spectrum of the vapor-deposited film of 9,9-dimethyl-2,7-bis [3,5-bis (p-tolyl) triazin-1-yl] fluorene (DTTzF) in Example 6 are shown. 実施例7〜9の有機エレクトロルミネセンス素子(有機EL素子)の電流密度−電圧特性を示す。The current density-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 7-9 is shown. 実施例7〜9の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電圧特性を示す。The luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 7-9 is shown. 実施例7〜9の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 7-9 is shown. 実施例7〜9の有機エレクトロルミネセンス素子(有機EL素子)の電流効率−電圧特性を示す。The current efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 7-9 is shown. 実施例7〜9の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−輝度特性を示す。The luminous efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Examples 7-9 is shown. 実施例7〜9の有機エレクトロルミネセンス素子(有機EL素子)のELスペクトルを示す。The EL spectrum of the organic electroluminescent element (organic EL element) of Examples 7-9 is shown. 実施例10、11の有機エレクトロルミネセンス素子(有機EL素子)の電流密度−電圧特性を示す。The current density-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 10 and 11 is shown. 実施例10、11の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電圧特性を示す。The luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 10 and 11 is shown. 実施例10、11の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 10 and 11 is shown. 実施例10、11の有機エレクトロルミネセンス素子(有機EL素子)の電流効率−電圧特性示す。The current efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 10 and 11 is shown. 実施例10、11の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−輝度特性を示す。The luminous efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Examples 10 and 11 is shown. 実施例10、11の有機エレクトロルミネセンス素子(有機EL素子)の外部量子効率−輝度特性はを示す。The external quantum efficiency-luminance characteristics of the organic electroluminescent elements (organic EL elements) of Examples 10 and 11 are shown. 実施例10、11の有機エレクトロルミネセンス素子(有機EL素子)のELスペクトルを示す。The EL spectrum of the organic electroluminescent element (organic EL element) of Examples 10 and 11 is shown. 実施例10、11の有機エレクトロルミネセンス素子(有機EL素子)のELスペクトル(拡大図)を示す。The EL spectrum (enlarged view) of the organic electroluminescent elements (organic EL elements) of Examples 10 and 11 is shown. 実施例12、13および比較例1、2の有機エレクトロルミネセンス素子(有機EL素子)の電流−電圧特性を示す。The current-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 12 and 13 and Comparative Examples 1 and 2 is shown. 実施例12、13および比較例1、2の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電圧特性を示す。The luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 12 and 13 and Comparative Examples 1 and 2 is shown. 実施例12、13および比較例1、2の有機エレクトロルミネセンス素子(有機EL素子)の電流効率−電圧特性を示す。The current efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 12 and 13 and Comparative Examples 1 and 2 is shown. 実施例12、13および比較例1、2の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 12 and 13 and Comparative Examples 1 and 2 is shown. 実施例12、13および比較例1、2の有機エレクトロルミネセンス素子(有機EL素子)のELスペクトルを示す。The EL spectrum of the organic electroluminescent element (organic EL element) of Examples 12 and 13 and Comparative Examples 1 and 2 is shown. 実施例14、15および比較例3、4の有機エレクトロルミネセンス素子(有機EL素子)の電流密度−電圧特性を示す。The current density-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 14 and 15 and Comparative Examples 3 and 4 is shown. 実施例14、15および比較例3、4の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電圧特性を示す。The luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 14 and 15 and Comparative Examples 3 and 4 is shown. 実施例14、15および比較例3、4の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 14 and 15 and Comparative Examples 3 and 4 is shown. 実施例14、15および比較例3、4の有機エレクトロルミネセンス素子(有機EL素子)の電流効率−電圧特性を示す。The current efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 14 and 15 and Comparative Examples 3 and 4 is shown. 実施例14、15および比較例3、4の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−輝度特性を示す。The luminous efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Examples 14 and 15 and Comparative Examples 3 and 4 is shown. 実施例14、15および比較例3、4の有機エレクトロルミネセンス素子(有機EL素子)のELスペクトルを示す。The EL spectrum of the organic electroluminescent element (organic EL element) of Examples 14 and 15 and Comparative Examples 3 and 4 is shown. 実施例16、17および比較例5の有機エレクトロルミネセンス素子(有機EL素子)の電流密度−電圧特性を示す。The current density-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 16 and 17 and Comparative Example 5 is shown. 実施例16、17および比較例5の有機エレクトロルミネセンス素子(有機EL素子)の輝度−電圧特性を示す。The luminance-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 16 and 17 and Comparative Example 5 is shown. 実施例16、17および比較例5の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−電圧特性を示す。The luminous efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 16, 17 and Comparative Example 5 is shown. 実施例16、17および比較例5の有機エレクトロルミネセンス素子(有機EL素子)の電流効率−電圧特性を示す。The current efficiency-voltage characteristic of the organic electroluminescent element (organic EL element) of Examples 16 and 17 and Comparative Example 5 is shown. 実施例16、17および比較例5の有機エレクトロルミネセンス素子(有機EL素子)の視感効率−輝度特性を示す。The luminous efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Examples 16, 17 and Comparative Example 5 is shown. 実施例16、17および比較例5の有機エレクトロルミネセンス素子(有機EL素子)の外部量子効率−輝度特性を示す。The external quantum efficiency-luminance characteristic of the organic electroluminescent element (organic EL element) of Examples 16 and 17 and Comparative Example 5 is shown. 実施例16、17および比較例5の有機エレクトロルミネセンス素子(有機EL素子)のELスペクトルを示す。The EL spectrum of the organic electroluminescent element (organic EL element) of Examples 16, 17 and Comparative Example 5 is shown. 実施例16、17および比較例5の有機エレクトロルミネセンス素子(有機EL素子)のELスペクトル(拡大図)を示す。The EL spectrum (enlarged view) of the organic electroluminescent elements (organic EL elements) of Examples 16 and 17 and Comparative Example 5 is shown. 本発明における有機エレクトロルミネッセンス素子の一例を示す断面図である。It is sectional drawing which shows an example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention. 本発明における有機エレクトロルミネッセンス素子の他の一例を示す断面図である。It is sectional drawing which shows another example of the organic electroluminescent element in this invention.

符号の説明Explanation of symbols

1 基板
2 陽極(ITO)
3 発光層
4 陰極
5 正孔輸送層(ホール輸送層)
6 電子輸送層
7 正孔注入層(ホール注入層)
8 電子注入層
9 正孔ブロック層(ホールブロック層)
1 Substrate 2 Anode (ITO)
3 Light emitting layer 4 Cathode 5 Hole transport layer (hole transport layer)
6 Electron transport layer 7 Hole injection layer (hole injection layer)
8 Electron injection layer 9 Hole blocking layer (hole blocking layer)

Claims (4)

下記一般式(1)
Figure 2009184987
(式中、Qは
Figure 2009184987
よりなる群から選ばれた基であり、
〜R、R10〜R22は、水素、炭素数1〜6の直鎖または分枝のアルキル基、炭素数1〜6の直鎖または分枝のアルコキシ基、炭素数1〜6の直鎖または分枝のアルキルアミノ基よりなる群からそれぞれ独立して選ばれた基であり、
6〜は、水素、炭素数1〜6の直鎖または分枝のアルキル基、炭素数1〜6の直鎖または分枝のアルコキシ基、炭素数1〜6の直鎖または分枝のアルキルアミノ基およびピリジル基よりなる群からそれぞれ独立して選ばれた基であり、
23、R24は、水素、炭素数1〜6の直鎖又は分岐のアルキル基からなる群からそれぞれ独立して選ばれた基であり、
Xは炭素又は窒素である)
で示されるピリミジン系またはトリアジン系誘導体。
The following general formula (1)
Figure 2009184987
(Where Q is
Figure 2009184987
A group selected from the group consisting of:
R 1 to R 5 and R 10 to R 22 are hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms. Each independently selected from the group consisting of linear or branched alkylamino groups,
R 6 to R 9 are hydrogen, a linear or branched alkyl group having 1 to 6 carbon atoms, a linear or branched alkoxy group having 1 to 6 carbon atoms, a linear or branched group having 1 to 6 carbon atoms. Each independently selected from the group consisting of an alkylamino group and a pyridyl group,
R 23 and R 24 are groups independently selected from the group consisting of hydrogen and a linear or branched alkyl group having 1 to 6 carbon atoms,
X is carbon or nitrogen)
A pyrimidine-based or triazine-based derivative represented by:
請求項1のピリミジン系またはトリアジン系誘導体よりなる電子輸送材料。   An electron transport material comprising the pyrimidine-based or triazine-based derivative according to claim 1. 請求項1のピリミジン系またはトリアジン系誘導体を用いた有機エレクトロルミネッセンス素子。   An organic electroluminescence device using the pyrimidine-based or triazine-based derivative according to claim 1. 請求項1のピリミジン系またはトリアジン系誘導体を電子輸送層に用いた有機エレクトロルミネッセンス素子。   An organic electroluminescence device using the pyrimidine-based or triazine-based derivative according to claim 1 for an electron transport layer.
JP2008028099A 2008-02-07 2008-02-07 Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same Active JP5207760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008028099A JP5207760B2 (en) 2008-02-07 2008-02-07 Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008028099A JP5207760B2 (en) 2008-02-07 2008-02-07 Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same

Publications (2)

Publication Number Publication Date
JP2009184987A true JP2009184987A (en) 2009-08-20
JP5207760B2 JP5207760B2 (en) 2013-06-12

Family

ID=41068605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008028099A Active JP5207760B2 (en) 2008-02-07 2008-02-07 Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same

Country Status (1)

Country Link
JP (1) JP5207760B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084553A (en) * 2009-09-15 2011-04-28 Tosoh Corp Pyrimidine derivative, production method therefor, and organic electroluminescent element including the same as constituent
JP2011126851A (en) * 2009-12-21 2011-06-30 Tosoh Corp Cyclic azine derivative and method for producing the same, and organic electroluminescent element containing the same as constituent
JP2011530802A (en) * 2008-08-08 2011-12-22 メルク パテント ゲーエムベーハー Organic electroluminescent device
WO2012081541A1 (en) * 2010-12-17 2012-06-21 東ソー株式会社 1, 2, 4, 5-substituted phenyl derivative, production method for same, and organic electroluminescent element
WO2012080052A1 (en) 2010-12-13 2012-06-21 Basf Se Bispyrimidines for electronic applications
JP2012140414A (en) * 2010-12-16 2012-07-26 Tosoh Corp 1,2,4,5-substituted phenyl derivative, method for producing the same, and organic electroluminescent element including the same as constituent
JP2012149059A (en) * 2010-12-27 2012-08-09 Tosoh Corp 1,3,5-triazine compound, method for preparing the same, and organic electroluminescent element including the compound as constituent componnt
US20120256174A1 (en) * 2009-12-16 2012-10-11 Sung-Hyun Jung Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
US8362246B2 (en) 2010-12-13 2013-01-29 Basf Se Bispyrimidines for electronic applications
CN103193717A (en) * 2013-04-24 2013-07-10 南京工业大学 Phenylene bipyrimidinyl compound, as well as synthesis method and application thereof
US20130256634A1 (en) * 2012-03-27 2013-10-03 Hwan-Hee Cho Organic light-emitting device and organic light-emitting display apparatus including the same
US20140209884A1 (en) * 2012-06-18 2014-07-31 Lg Chem Ltd. Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same
KR101508424B1 (en) 2012-07-13 2015-04-07 주식회사 엘지화학 Hetero-cyclic compound and organic electronic device comprising the same
KR20150055553A (en) 2013-11-13 2015-05-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
CN104870602A (en) * 2012-12-31 2015-08-26 第一毛织株式会社 Compound for organic optoelectronic element, organic light-emitting element comprising same, and display device comprising the organic light-emitting element
US9196835B2 (en) 2010-12-13 2015-11-24 Samsung Electronics Co., Ltd. Polymer, method of manufacture thereof, and organic light-emitting device including the polymer
KR20160079675A (en) 2014-12-26 2016-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
JP2018070537A (en) * 2016-11-01 2018-05-10 東ソー株式会社 Triazine compound, and production method, production intermediate, and use thereof
JP2018135305A (en) * 2017-02-22 2018-08-30 東ソー株式会社 Bistriazine compound and method for producing the same, and wavelength conversion emission film prepared therewith
CN108467371A (en) * 2018-06-15 2018-08-31 宝鸡文理学院 A kind of synthetic method of the chloro- 4,6- di-p-tolyls -1,3,5- triazines of 2-
CN109265445A (en) * 2018-09-20 2019-01-25 武汉天马微电子有限公司 Azepine biphenyl organic compound, display panel and display device
US10230051B2 (en) * 2014-02-20 2019-03-12 Samsung Display Co., Ltd. Organic light-emitting device
US10476009B2 (en) 2015-02-18 2019-11-12 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
WO2021101157A1 (en) * 2019-11-18 2021-05-27 주식회사 엘지화학 Compound, and organic light-emitting element comprising same
US11211563B2 (en) 2017-03-09 2021-12-28 Lg Chem, Ltd. Organic light emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225467B1 (en) * 2000-01-21 2001-05-01 Xerox Corporation Electroluminescent (EL) devices
US6229012B1 (en) * 1998-10-01 2001-05-08 Xerox Corporation Triazine compositions
US6821643B1 (en) * 2000-01-21 2004-11-23 Xerox Corporation Electroluminescent (EL) devices
JP2006510732A (en) * 2002-10-30 2006-03-30 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Electroluminescent device
JP2006225321A (en) * 2005-02-17 2006-08-31 Tosoh Corp Thin film composed of 1,3,5-triazine derivative and method for producing the same thin film
JP2006225320A (en) * 2005-02-17 2006-08-31 Tosoh Corp 1,3,5-triazine derivative

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229012B1 (en) * 1998-10-01 2001-05-08 Xerox Corporation Triazine compositions
US6225467B1 (en) * 2000-01-21 2001-05-01 Xerox Corporation Electroluminescent (EL) devices
US6821643B1 (en) * 2000-01-21 2004-11-23 Xerox Corporation Electroluminescent (EL) devices
JP2006510732A (en) * 2002-10-30 2006-03-30 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Electroluminescent device
JP2006225321A (en) * 2005-02-17 2006-08-31 Tosoh Corp Thin film composed of 1,3,5-triazine derivative and method for producing the same thin film
JP2006225320A (en) * 2005-02-17 2006-08-31 Tosoh Corp 1,3,5-triazine derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012061498; Transactions of the Materials Research Society of Japan vol.32, no.2, 2007, p.333-336 *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951647B2 (en) 2008-08-08 2015-02-10 Merck Patent Gmbh Organic electroluminescence device
JP2011530802A (en) * 2008-08-08 2011-12-22 メルク パテント ゲーエムベーハー Organic electroluminescent device
JP2011084553A (en) * 2009-09-15 2011-04-28 Tosoh Corp Pyrimidine derivative, production method therefor, and organic electroluminescent element including the same as constituent
JP2013514348A (en) * 2009-12-16 2013-04-25 チェイル インダストリーズ インコーポレイテッド Compound for organic photoelectric device and organic photoelectric device including the same
EP2514798A4 (en) * 2009-12-16 2014-04-16 Cheil Ind Inc Compound for organic photoelectric device and organic photoelectric device including same
US9093652B2 (en) 2009-12-16 2015-07-28 Cheil Industries, Inc. Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
CN102803437B (en) * 2009-12-16 2015-06-17 第一毛织株式会社 Compound for organic photoelectric device and organic photoelectric device including same
CN102803437A (en) * 2009-12-16 2012-11-28 第一毛织株式会社 Compound for organic photoelectric device and organic photoelectric device including same
US20120256174A1 (en) * 2009-12-16 2012-10-11 Sung-Hyun Jung Compound for an organic photoelectric device, organic photoelectric device including the same, and display device including the organic photoelectric device
EP2514798A2 (en) * 2009-12-16 2012-10-24 Cheil Industries Inc. Compound for organic photoelectric device and organic photoelectric device including same
JP2011126851A (en) * 2009-12-21 2011-06-30 Tosoh Corp Cyclic azine derivative and method for producing the same, and organic electroluminescent element containing the same as constituent
US8362246B2 (en) 2010-12-13 2013-01-29 Basf Se Bispyrimidines for electronic applications
US9196835B2 (en) 2010-12-13 2015-11-24 Samsung Electronics Co., Ltd. Polymer, method of manufacture thereof, and organic light-emitting device including the polymer
WO2012080052A1 (en) 2010-12-13 2012-06-21 Basf Se Bispyrimidines for electronic applications
JP2012140414A (en) * 2010-12-16 2012-07-26 Tosoh Corp 1,2,4,5-substituted phenyl derivative, method for producing the same, and organic electroluminescent element including the same as constituent
KR101968353B1 (en) 2010-12-17 2019-04-11 토소가부시키가이샤 1, 2, 4, 5-substituted phenyl derivative, production method for same, and organic electroluminescent element
KR20130130781A (en) * 2010-12-17 2013-12-02 토소가부시키가이샤 1, 2, 4, 5-substituted phenyl derivative, production method for same, and organic electroluminescent element
JP2012144523A (en) * 2010-12-17 2012-08-02 Tosoh Corp 1, 2, 4, 5-substituted phenyl derivative, production method for the same and organic electroluminescent element
WO2012081541A1 (en) * 2010-12-17 2012-06-21 東ソー株式会社 1, 2, 4, 5-substituted phenyl derivative, production method for same, and organic electroluminescent element
JP2012149059A (en) * 2010-12-27 2012-08-09 Tosoh Corp 1,3,5-triazine compound, method for preparing the same, and organic electroluminescent element including the compound as constituent componnt
US20130256634A1 (en) * 2012-03-27 2013-10-03 Hwan-Hee Cho Organic light-emitting device and organic light-emitting display apparatus including the same
US9466801B2 (en) * 2012-03-27 2016-10-11 Samsung Display Co., Ltd. Organic light-emitting device and organic light-emitting display apparatus including the same
US9299935B2 (en) 2012-06-18 2016-03-29 Lg Chem, Ltd. Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same
US9203033B2 (en) * 2012-06-18 2015-12-01 Lg Chem, Ltd. Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same
US20140209884A1 (en) * 2012-06-18 2014-07-31 Lg Chem Ltd. Nitrogen-containing heterocyclic compounds and organic electronic device comprising the same
JP2015524797A (en) * 2012-07-13 2015-08-27 エルジー・ケム・リミテッド Heterocyclic compounds and organic electronic devices using the same
US9391281B2 (en) 2012-07-13 2016-07-12 Lg Chem, Ltd. Heterocyclic compound and organic electronic element containing same
US9412954B2 (en) 2012-07-13 2016-08-09 Lg Chem, Ltd. Heterocyclic compound and organic electronic element containing same
KR101508424B1 (en) 2012-07-13 2015-04-07 주식회사 엘지화학 Hetero-cyclic compound and organic electronic device comprising the same
JP2017095514A (en) * 2012-07-13 2017-06-01 エルジー・ケム・リミテッド Heterocyclic compound and organic electronic element containing same
US9882146B2 (en) 2012-07-13 2018-01-30 Lg Chem, Ltd. Heterocyclic compound and organic electronic element containing same
CN104870602A (en) * 2012-12-31 2015-08-26 第一毛织株式会社 Compound for organic optoelectronic element, organic light-emitting element comprising same, and display device comprising the organic light-emitting element
CN103193717A (en) * 2013-04-24 2013-07-10 南京工业大学 Phenylene bipyrimidinyl compound, as well as synthesis method and application thereof
US9917261B2 (en) 2013-11-13 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
KR20150055553A (en) 2013-11-13 2015-05-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
US10230051B2 (en) * 2014-02-20 2019-03-12 Samsung Display Co., Ltd. Organic light-emitting device
JP2016124869A (en) * 2014-12-26 2016-07-11 株式会社半導体エネルギー研究所 Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
US9929352B2 (en) 2014-12-26 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
KR102456659B1 (en) 2014-12-26 2022-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
CN105732588B (en) * 2014-12-26 2020-10-09 株式会社半导体能源研究所 Organic compound, light-emitting element, and light-emitting device
CN105732588A (en) * 2014-12-26 2016-07-06 株式会社半导体能源研究所 Organic Compound, Light-Emitting Element, Display Module, Lighting Module, Light-Emitting Device, Display Device, Electronic Device, and Lighting Device
KR20160079675A (en) 2014-12-26 2016-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
US10476009B2 (en) 2015-02-18 2019-11-12 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
KR20230088859A (en) 2015-02-18 2023-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
JP2018070537A (en) * 2016-11-01 2018-05-10 東ソー株式会社 Triazine compound, and production method, production intermediate, and use thereof
JP2018135305A (en) * 2017-02-22 2018-08-30 東ソー株式会社 Bistriazine compound and method for producing the same, and wavelength conversion emission film prepared therewith
US11211563B2 (en) 2017-03-09 2021-12-28 Lg Chem, Ltd. Organic light emitting device
CN108467371A (en) * 2018-06-15 2018-08-31 宝鸡文理学院 A kind of synthetic method of the chloro- 4,6- di-p-tolyls -1,3,5- triazines of 2-
CN109265445A (en) * 2018-09-20 2019-01-25 武汉天马微电子有限公司 Azepine biphenyl organic compound, display panel and display device
CN109265445B (en) * 2018-09-20 2021-06-29 武汉天马微电子有限公司 Azabiphenyl organic compound, display panel and display device
WO2021101157A1 (en) * 2019-11-18 2021-05-27 주식회사 엘지화학 Compound, and organic light-emitting element comprising same

Also Published As

Publication number Publication date
JP5207760B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5207760B2 (en) Novel pyrimidine-based or triazine-based derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP4878819B2 (en) Novel triazine derivative and organic electroluminescence device containing the same
JP5063992B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP5325402B2 (en) Novel bicarbazole derivative, host material and organic electroluminescence device using the same
EP2447335B1 (en) Compound for organic photoelectric device, organic light emitting diode including the same, and display including the organic light emitting diode
KR101026171B1 (en) Novel condensed carbazole derivatives and organic electroluminescent device comprising same
KR101663527B1 (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
JP2008120696A (en) Novel tripyridylphenyl derivative, electron-transporting material comprising the same and organoelectroluminescent element comprising the same
KR101529164B1 (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
JP4960045B2 (en) Heteroaryl compound having novel biphenyl central skeleton and organic electroluminescence device comprising the same
WO2006073112A1 (en) Metal complex compound and organic electroluminescent element using the same
JP4264048B2 (en) Imidazole ring-containing compound and organic electroluminescence device using the same
JP2008106015A (en) New phenanthroline derivative, its lithium complex, electron transport material using the same, electron injection material and organic el element
JP2007070282A (en) Novel triarylboron derivative and organic electroluminescent device containing the same
JP5201956B2 (en) Novel di (pyridylphenyl) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
KR101551466B1 (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
JP5495578B2 (en) Novel triarylphosphine oxide derivative, host material comprising the same, and organic electroluminescence device containing the same
JP5086608B2 (en) Novel di (phenanthroline) derivative, electron transport material comprising the same, and organic electroluminescence device including the same
JP4648922B2 (en) Novel pyrimidinyl group-containing iridium complex, light emitting material comprising the same, and organic EL device using the same
JP5220429B2 (en) NOVEL DIPYLENE DERIVATIVE, ELECTRON TRANSPORT MATERIAL, LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE CONTAINING THE SAME
KR20170013373A (en) Organic compounds for an organic electroluminescent device and an organic electroluminescent device comprising the same
JP5476034B2 (en) Novel triarylamine compound, hole transport material comprising the same, and organic electroluminescence device using the same
KR20140010875A (en) New organic electroluminescent compounds and organic electroluminescent device comprising the same
JP5349889B2 (en) Novel terphenyl derivative, electron transport material comprising the same, and organic electroluminescence device including the same
TWI608008B (en) Material for organic electroluminescent element and organic electroluminescent element using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250