JP2009176394A - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP2009176394A
JP2009176394A JP2008098384A JP2008098384A JP2009176394A JP 2009176394 A JP2009176394 A JP 2009176394A JP 2008098384 A JP2008098384 A JP 2008098384A JP 2008098384 A JP2008098384 A JP 2008098384A JP 2009176394 A JP2009176394 A JP 2009176394A
Authority
JP
Japan
Prior art keywords
light
region
transmittance
outer edge
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008098384A
Other languages
Japanese (ja)
Inventor
Koji Miyasaka
浩司 宮坂
Koichi Murata
浩一 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008098384A priority Critical patent/JP2009176394A/en
Publication of JP2009176394A publication Critical patent/JP2009176394A/en
Ceased legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical head device capable of reducing crosstalk during playback of a multilayer optical disk. <P>SOLUTION: In the optical head device wherein light outputted from a light source is reflected by an information recording layer of an optical disk and guided to an optical detector, in an optical path from the optical disk to the optical detector, a light reducing element, which is provided with a first region having a high transmittance, a second region having a low transmittance and a third region having a medium transmittance between the high transmittance and the low transmittance, is arranged, and return light which is form a layer different from the information recording layer and causes crosstalk is reduced by the optical detector. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばCD、DVD、BD、HD−DVD等の光記録媒体(以下「光ディスク」という。)、とくに複数層の情報記録層を有する複層光ディスクに対して記録再生を行う必要のある光ヘッド装置に関する。   In the present invention, it is necessary to perform recording and reproduction on an optical recording medium (hereinafter referred to as “optical disk”) such as a CD, a DVD, a BD, and an HD-DVD, particularly a multilayer optical disk having a plurality of information recording layers. The present invention relates to an optical head device.

光ディスクには、情報記録層が単層の単層光ディスクと、複数層ある複層光ディスクとがある。例えば2層の記録層を有する2層光ディスクに対して情報の記録再生を行うとき、光ディスクで反射されて光検出器に戻る戻り光は、光源からの出射光を集光させた所望の情報記録層により反射される光(以下、「信号光」という。)のみならず、隣接した情報記録層などにより反射された光(以下、「迷光」という。)の影響を受ける。複層光ディスクの記録再生を行う光ヘッド装置では、このような異なる記録層から反射される光によるクロストーク成分がサーボ信号に影響を与えないような構成にする必要がある。なお、本明細書では、光ディスクに対する記録若しくは再生、または、記録および再生を総称して「記録再生」と表現する。   Optical discs include single-layer optical discs having a single information recording layer and multi-layer optical discs having a plurality of layers. For example, when recording / reproducing information with respect to a two-layer optical disc having two recording layers, the return light reflected by the optical disc and returning to the photodetector is a desired information recording in which the light emitted from the light source is condensed. Not only the light reflected by the layer (hereinafter referred to as “signal light”) but also the light reflected by the adjacent information recording layer or the like (hereinafter referred to as “stray light”). An optical head device that performs recording / reproduction of a multi-layer optical disk needs to be configured so that the crosstalk component due to light reflected from such different recording layers does not affect the servo signal. In this specification, recording or reproduction with respect to an optical disc, or recording and reproduction is generically expressed as “recording and reproduction”.

図15に従来の複層光ディスクの記録再生を行う光ヘッド装置における2層光ディスク再生時の光路の模式図を示す。2層光ディスクの光入射面から近い層をL1層、遠い層をL2層とする。例えば、L1層を202面として再生時に光検出器に受光される光206に対し、L2層を201面として反射された光204は、その焦点が光206より前方に位置する。一方、L2層を202面として再生時に光検出器に受光される光206に対し、L1層を203面として反射された光205は、その焦点が光206より後方に位置する。   FIG. 15 shows a schematic diagram of an optical path during reproduction of a double-layer optical disc in a conventional optical head device that performs recording and reproduction of a multilayer optical disc. A layer close to the light incident surface of the two-layer optical disk is defined as an L1 layer, and a layer far from the light incident surface is defined as an L2 layer. For example, the light 204 reflected by the L2 layer as the 201 surface is positioned in front of the light 206 with respect to the light 206 received by the photodetector during reproduction with the L1 layer as the 202 surface. On the other hand, the light 205 reflected with the L1 layer as the 203 plane is positioned behind the light 206 with respect to the light 206 received by the photodetector during reproduction with the L2 layer as the 202 plane.

L1層の再生時においてL1層(自層)からの戻り光は、回折素子の回折により0次透過光、±1次回折光がそれぞれ光検出器の検出面上に集光される。L1層を基準として、L2層(他層)より反射された戻り光は、ビーム径が大きく光密度は低いものの光検出器の検出面上に迷光となって照射されて、L1層(自層)からの戻り光と光検出器上で干渉を生じる。情報記録層の層間隔や光源波長の変化により光の干渉条件が変化すると、信号強度が変化して読み取り性能が低下する問題を引き起こす。とくに3ビーム法を用いる光ヘッド装置では、信号光のサブビームとなる±1次回折光は光量がメインビームに比べて少ないので、迷光の干渉による影響をより受けやすい。   At the time of reproduction of the L1 layer, the return light from the L1 layer (own layer) is condensed on the detection surface of the photodetector by 0th order transmitted light and ± 1st order diffracted light by diffraction of the diffraction element. Return light reflected from the L2 layer (other layers) with the L1 layer as a reference is irradiated as stray light on the detection surface of the photodetector, although the beam diameter is large and the light density is low, and the L1 layer (own layer) ) And interference on the photodetector. If the light interference condition changes due to a change in the distance between the information recording layers or the light source wavelength, the signal intensity changes, causing a problem of deterioration in reading performance. In particular, in an optical head device using the three-beam method, ± 1st-order diffracted light, which is a sub-beam of signal light, is smaller in amount of light than the main beam, and thus is more susceptible to stray light interference.

この対策として、例えば特許文献1に示すような光ヘッド装置が提案されている。これは、図16に示すようなホログラム素子210を光束中に配置し、光ディスクからの戻り光の一部を回折するよう領域211に回折格子を設けることで、サブビームとなる±1次回折光が光検出器に照射される領域の迷光を取り除くものである。   As a countermeasure, for example, an optical head device as shown in Patent Document 1 has been proposed. This is because a hologram element 210 as shown in FIG. 16 is arranged in the light beam, and a diffraction grating is provided in the region 211 so as to diffract part of the return light from the optical disk, so that the ± first-order diffracted light that becomes a sub-beam becomes light. It removes stray light from the area irradiated to the detector.

特開2005−203090号公報JP 2005-203090 A

特許文献1に示された構成では、ホログラム素子110の回折格子の無い領域112を透過した光は、高い透過率で光検出器に導かれる。一方、回折格子がある領域111を透過した光は回折(以下、「位相格子回折」という)されるので、透過率の低い領域の光が光検出器へ導かれる。しかしながら、光検出器に導かれる光束中に透過率の高い領域と低い領域の境界が混在すると光束中に光の強度変調が生じ、この強度変調により光が回り込み回折(以下、「強度変調回折」という)する。この強度変調回折により、サブビームの光検出器に光ディスクの他層からの迷光が回り込んで照射されるので、有効に迷光を取り除くことができない。このため、光検出器上で自層からの光と他層からの光が干渉し、情報記録層の層間隔や光源波長の変化によって光の干渉条件が変化すると、信号強度が変化して読み取り性能が低下する問題があった。また、この対策として強度変調回折した迷光が光検出器に到達しないよう位相格子回折格子領域の面積を大きくすると、他層からの迷光のみならず、本来情報を読み出したい自層からの光もホログラム素子で位相格子回折することになり、光検出器に入る信号光強度も低下してしまうという問題があった。   In the configuration disclosed in Patent Document 1, the light transmitted through the region 112 without the diffraction grating of the hologram element 110 is guided to the photodetector with high transmittance. On the other hand, the light transmitted through the region 111 where the diffraction grating is located is diffracted (hereinafter referred to as “phase grating diffraction”), so that light in a region with low transmittance is guided to the photodetector. However, if the boundary between a high transmittance region and a low transmittance region is mixed in the light beam guided to the photodetector, light intensity modulation occurs in the light beam, and this intensity modulation causes the light to wrap around diffraction (hereinafter referred to as “intensity modulation diffraction”). Say). Due to this intensity-modulated diffraction, stray light from the other layers of the optical disk irradiates and irradiates the sub-beam photodetector, so that stray light cannot be effectively removed. For this reason, when the light from the own layer interferes with the light from the other layer on the photodetector, and the light interference condition changes due to the change in the distance between the information recording layers and the light source wavelength, the signal intensity changes and reads. There was a problem that performance deteriorated. As a countermeasure, if the area of the phase grating diffraction grating region is increased so that stray light intensity-diffracted and diffracted does not reach the photodetector, not only stray light from other layers but also light from its own layer from which information is originally read is generated by the hologram. There is a problem in that the intensity of the signal light entering the photodetector is also reduced due to phase grating diffraction by the element.

本発明は、従来技術のかかる問題を解決するためになされたものであり、光検出器上での迷光成分を十分に除去し、さらに信号強度を低下させることなく複層光ディスクを記録再生することができる光ヘッド装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and is capable of sufficiently removing stray light components on a photodetector and recording / reproducing a multi-layered optical disk without lowering the signal intensity. It is an object of the present invention to provide an optical head device capable of performing

本発明は、光源と、前記光源からの出射光を光ディスクの情報記録面上に集光させる対物レンズと、集光されて光ディスクの情報記録面によって反射された戻り光を検出する複数の受光エリアを有する前記光検出器とを備える光ヘッド装置であって、前記光ディスクから光検出器へ向かう戻り光の光路中に、前記戻り光が入射する面内に前記戻り光の光量を減じて透過または回折させる機能を有する減光素子が配置され、前記減光素子の少なくとも前記戻り光が入射する有効領域は、第1の領域と第2の領域と第3の領域からなる3つの領域に分割され、前記第2の領域の外縁は、前記第3の領域の外縁と接しない内側にあるかまたは、前記第3の領域の外縁と一部接する内側にあり、前記第3の領域の外縁は、前記第1の領域の外縁と接しない内側にあるかまたは、前記第1の領域の外縁と一部接する内側にあり、前記減光素子に入射する前記戻り光を直進透過して前記光検出器に入射する光の割合を透過率とすると、前記第1の領域の前記戻り光の透過率をT、前記第2の領域の前記戻り光の透過率をTとするときTはTより大きく、前記第3の領域の前記戻り光の透過率はTより小さくかつTより大きく、前記光源からの光が集光された前記情報記録面とは異なる前記光ディスクの面から反射されて前記光検出器に導かれる迷光の光束のうち、少なくとも一部が前記減光素子の前記第2の領域に入射し、前記光検出器の少なくとも一部の受光エリアへ到達する迷光の光量を減少させる光ヘッド装置を提供する。 The present invention includes a light source, an objective lens that condenses light emitted from the light source on an information recording surface of an optical disc, and a plurality of light receiving areas that detect return light that is collected and reflected by the information recording surface of the optical disc. An optical head device comprising: the optical detector having a light path; wherein the optical path of the return light from the optical disc to the optical detector is reduced or transmitted through a surface on which the return light is incident. A dimming element having a function of diffracting is disposed, and at least the effective area of the dimming element where the return light is incident is divided into three areas including a first area, a second area, and a third area. The outer edge of the second region is on the inner side not in contact with the outer edge of the third region, or on the inner side partially in contact with the outer edge of the third region, and the outer edge of the third region is In contact with the outer edge of the first region The ratio of the light that is inwardly transmitted through the return light incident on the dimming element and incident on the photodetector. when, T 1 the transmittance of the returning light of the first region, T 1 when the transmittance of the returning light of the second region and T 2 are greater than T 2, the third region The return light has a transmittance smaller than T 1 and larger than T 2 , and is reflected from the surface of the optical disc different from the information recording surface on which the light from the light source is collected and guided to the photodetector. Provided is an optical head device that reduces the amount of stray light that reaches at least a part of the light receiving area of the light detector by at least part of the stray light flux entering the second region of the dimming element. .

この構成により、光が入射する減光素子の平面内で、第1の領域から第2の領域までに第3の領域があることで透過率がなめらかに変化するため、減光素子の透過率分布により生じる透過光の強度変調回折による迷光の回り込み影響を抑制できる。とくにサブビームを受光する光検出器への迷光の回り込みを低減でき、信号光と迷光との干渉が少ない複層光ディスクの記録再生が可能な光ヘッド装置を提供することができる。   With this configuration, the transmittance changes smoothly due to the presence of the third region from the first region to the second region in the plane of the dimming device on which light is incident. The influence of stray light wraparound due to intensity-modulated diffraction of transmitted light generated by the distribution can be suppressed. In particular, it is possible to provide an optical head device that can reduce stray light wraparound to a photodetector that receives a sub beam and can record and reproduce a multilayer optical disk with less interference between signal light and stray light.

また、前記減光素子は、前記第3の領域内の前記戻り光の透過率が一様であるTとするとき、前記減光素子のTとTとの差および、前記減光素子のTとTとの差が、0%より大きく60%以下である上記に記載の光ヘッド装置を提供する。 Further, when the light attenuation element is T 3 in which the transmittance of the return light in the third region is uniform, the difference between T 1 and T 3 of the light attenuation element, and the light attenuation The optical head device according to the above, wherein the difference between T 3 and T 2 of the element is greater than 0% and 60% or less.

この構成により、減光素子の3つの領域の透過率分布によって入射する光の透過率がなめらかに変化するため強度変調回折の影響を制御することができ、とくにサブビームを受光する光検出器の迷光の回り込みの影響を効率よく低減でき、信号光と迷光との干渉が少ない複層光ディスクの記録再生が可能な光ヘッド装置を提供することができる。   With this configuration, the transmittance of incident light changes smoothly depending on the transmittance distribution of the three regions of the light reducing element, so that the influence of intensity modulation diffraction can be controlled. In particular, the stray light of the photodetector that receives the sub-beams Therefore, it is possible to provide an optical head device capable of efficiently reducing the influence of the wraparound and recording / reproducing the multilayer optical disc with less interference between the signal light and the stray light.

また、前記第3の領域はm個の領域R〜R(m≧2の整数)に分割され、前記領域Rの外縁は、前記第1の領域の外縁と接しない内側にあるかまたは、前記第1の領域の外縁と一部接する内側にあり、xを2〜mの間の整数とするとき領域Rx−1の外縁は領域Rの外縁と接しない内側にあるかまたは、前記領域Rx−1の外縁と一部接する内側にあり、前記第2の領域の外縁は、前記領域Rの外縁と接しない内側にあるかまたは、前記領域Rと一部接する内側にあり、前記領域R、領域R、…、領域Rを透過または回折する前記戻り光の透過率をそれぞれTr1、Tr2、…、Trmとするとき、Tr1<Tr2<…<Trmである請求項1に記載の光ヘッド装置を提供する。 In addition, the third region is divided into m regions R 1 to R m (an integer of m ≧ 2), and the outer edge of the region R m is inside not in contact with the outer edge of the first region. Or the outer edge of the region R x-1 is on the inner side not in contact with the outer edge of the region R x when x is an integer between 2 and m. , The outer edge of the region R x-1 is partially in contact with the outer edge of the region R x-1 , and the outer edge of the second region is not in contact with the outer edge of the region R 1 , or the inner surface is partially in contact with the region R 1 located, the region R 1, region R 2, ..., the transmittance of the returning light transmitted through or diffracts region R m each T r1, T r2, ..., when the T rm, T r1 <T r2 < The optical head device according to claim 1, wherein <T rm is satisfied.

また、前記減光素子のTとTrmとの差、前記減光素子のTrxとTrx−1との差および、前記減光素子のTr1とTとの差が、0%より大きく40%以下である上記に記載の光ヘッド装置を提供する。 Further, the difference between T 1 and T rm of the dimming element, the difference between T rx and T rx−1 of the dimming element, and the difference between T r1 and T 2 of the dimming element are 0%. The optical head device according to the above, which is larger and 40% or less.

この構成により、第1の領域から第2の領域までの光の透過率分布がさらになめらかに変化するため、減光素子に入射する光の強度変調回折をさらに抑制することができる。とくにサブビームを受光する光検出器への迷光の回り込みをさらに低減でき、信号光と迷光との干渉がさらに少ない複層光ディスクの記録再生が可能な光ヘッド装置を提供することができる。以上のような構成により、透過率の低い第2の領域の面積を大きくせずに迷光の制御が可能なので、信号強度を大きく低下させることなく複層光ディスクの記録・再生が可能となる。   With this configuration, the light transmittance distribution from the first region to the second region changes more smoothly, so that the intensity-modulated diffraction of the light incident on the dimming element can be further suppressed. In particular, it is possible to provide an optical head device capable of further reducing stray light sneaking into a photodetector that receives a sub-beam and capable of recording / reproducing a multilayer optical disk with less interference between signal light and stray light. With the configuration as described above, stray light can be controlled without increasing the area of the second region having low transmittance, so that recording / reproduction of a multi-layer optical disc can be performed without greatly reducing the signal intensity.

また、前記減光素子は、少なくとも前記第2の領域および前記第3の領域が、入射する前記戻り光の光量を減ずる光学多層膜または、コレステリック相液晶層を含む上記に記載の光ヘッド装置を提供する。   In the above optical head device, the dimming element includes at least the second region and the third region including an optical multilayer film or a cholesteric phase liquid crystal layer that reduces the amount of incident return light. provide.

この構成により、減光素子の領域ごとに入射する光の透過率を調整することができ、さらに、入射する光の波長によって透過率が変化する特性を利用することで自由度の高い減光素子の機能を実現することができる。   With this configuration, it is possible to adjust the transmittance of incident light for each area of the dimming element, and further, a dimming element having a high degree of freedom by utilizing the characteristic that the transmittance varies depending on the wavelength of the incident light. The function can be realized.

また、前記減光素子は、少なくとも前記第2の領域および前記第3の領域が、入射する前記戻り光を回折させて直進透過する光を減ずる回折格子構造を含む上記に記載の光ヘッド装置を提供する。   The optical head device according to the above, wherein the dimming element includes a diffraction grating structure in which at least the second region and the third region diffract the incident return light and reduce the light that passes straight through. provide.

この構成により、回折格子構造を領域ごとに変化させて直進透過する光(以下、「0次透過光」という)の透過率を制御することができ、減光素子に入射する光の強度変調回折による迷光の回り込みを低減することができる。また、入射する光の波長によって直進透過する光の効率(以下、「0次透過率」という)を変化させることができるため、迷光の波長を選択して低減することもできる。   With this configuration, it is possible to change the diffraction grating structure for each region, and to control the transmittance of light that is transmitted in a straight line (hereinafter referred to as “0th-order transmitted light”). It is possible to reduce stray light wraparound. Further, since the efficiency of light that is transmitted in a straight line (hereinafter referred to as “0th-order transmittance”) can be changed depending on the wavelength of incident light, the wavelength of stray light can be selected and reduced.

また、前記減光素子は、少なくとも前記第1に領域および前記第3の領域が入射する前記戻り光を回折させる回折光を発現する回折格子構造を有し、前記回折光の光路の光検出器で受光させる上記に記載の光ヘッド装置を提供する。   In addition, the dimming element has a diffraction grating structure that expresses diffracted light that diffracts the return light that is incident on at least the first region and the third region, and a photodetector for the optical path of the diffracted light The above-described optical head device for receiving light is provided.

この構成により、回折光を光検出器に導く光ヘッド装置の光学系でもクロストークによる干渉を低減させることができるので、設計の自由度も高くなる。また、回折光を光検出器に導く場合、第2の領域を出射する光は回折方向に到達しないことが好ましいので、第2の領域の断面形状は回折格子構造でなくてもよい。   With this configuration, interference due to crosstalk can be reduced even in the optical system of the optical head device that guides the diffracted light to the photodetector, so that the degree of freedom in design is increased. In addition, when the diffracted light is guided to the photodetector, it is preferable that the light emitted from the second region does not reach the diffraction direction. Therefore, the cross-sectional shape of the second region may not be a diffraction grating structure.

また、前記減光素子の前記回折格子構造は、屈折率異方性を有する複屈折材料で形成され、前記回折格子構造は前記複屈折材料の常光屈折率または異常光屈折率と実質的に等しい屈折率を有する等方性材料によって充填平坦化されている上記に記載の光ヘッド装置を提供する。   The diffraction grating structure of the dimming element is formed of a birefringent material having refractive index anisotropy, and the diffraction grating structure is substantially equal to the ordinary light refractive index or the extraordinary light refractive index of the birefringent material. The above-described optical head device is provided which is filled and flattened with an isotropic material having a refractive index.

この構成により、減光素子を光ヘッド装置の光源から光ディスクまでの光路(以下、「往路」という)、光ディスクから光検出器までの光路(以下、「復路」という)が共通する光路中に配置しても、往路の光をほぼ100%透過させ、復路の光を回折減光させることができるので往路の光を効率よく光ディスクに導くことができる。また、減光素子の配置の自由度も高くなる。   With this configuration, the dimming element is arranged in a common optical path from the light source of the optical head device to the optical disk (hereinafter referred to as “outward path”) and the optical path from the optical disk to the photodetector (hereinafter referred to as “return path”). Even so, the light in the forward path can be transmitted almost 100% and the light in the backward path can be diffracted and attenuated, so that the light in the forward path can be efficiently guided to the optical disc. Further, the degree of freedom of arrangement of the dimming element is increased.

また、前記減光素子は、入射する光の進行方向の順に入射する光の偏光状態の少なくとも一部を変える変調素子と偏光子とが配置される構成であり、前記偏光子は第1の偏光状態の光を透過させるとともに前記第1の偏光状態と直交する第2の偏光状態の光を遮断させ、前記第1の領域を出射する光は、前記変調素子で第1の偏光状態の光となって前記偏光子を透過し、前記第2の領域を出射する光は、前記変調素子で第2の偏光状態となって前記偏光子を透過せず、前記第3の領域を出射する光は、前記変調素子で前記第1の偏光状態と前記第2の偏光状態が混在して前記第1の偏光状態の光のみ透過させる上記に記載の光ヘッド装置を提供する。   The dimming element includes a modulator and a polarizer that change at least a part of the polarization state of incident light in order of the traveling direction of the incident light, and the polarizer is a first polarized light. Light in a second polarization state orthogonal to the first polarization state is transmitted and light emitted from the first region is transmitted by the modulation element as light in the first polarization state. The light that passes through the polarizer and exits the second region becomes the second polarization state by the modulation element and does not pass through the polarizer, and the light that exits the third region is The optical head device according to the above, wherein the first polarization state and the second polarization state are mixed in the modulation element and only the light in the first polarization state is transmitted.

この構成により、第2の領域から光が出射されないようにできるため、透過率をほぼ0とすることによって迷光の光量を大きく減光させることができ、クロストークによる干渉を大きく低減させることができる。また、光吸収型の偏光子を用いることで、ノイズとなる光も低減できる。なお、変調素子は後述するが、波長板によって偏光状態を変えるものであってもよく、旋光子を用いることにより厚さによって旋光角を変化させ、入射する直線偏光の光を領域ごと異なる方向の直線偏光の光に変換して出射させるものでもよい。   With this configuration, light can be prevented from being emitted from the second region, so that the amount of stray light can be greatly reduced by setting the transmittance to approximately 0, and interference due to crosstalk can be greatly reduced. . In addition, light that becomes noise can be reduced by using a light absorbing polarizer. Although the modulation element will be described later, the polarization state may be changed by a wave plate. By using an optical rotator, the optical rotation angle is changed by the thickness, and the incident linearly polarized light is changed in different directions for each region. It may be converted into linearly polarized light and emitted.

本発明は、光検出器上での迷光成分を十分に除去し、さらに信号強度を大きく低下させることなく複層光ディスクを記録再生することができるという効果を有する光ヘッド装置を提供することができるものである。   INDUSTRIAL APPLICABILITY The present invention can provide an optical head device that has the effect of sufficiently removing stray light components on a photodetector and recording and reproducing a multi-layer optical disc without greatly reducing the signal intensity. Is.

(第1の実施の態様)
図1は、本実施の形態に係る光ヘッド装置10の概念的な構成を示す図である。光ヘッド装置10は、所定の波長の光束を出射する光源11と、光源11が出射した光束の一部を回折させてメインビームと2つのサブビームの3つのビームを生成する回折素子12と、入射された光束を平行光に変換するコリメータレンズ14aと、コリメータレンズ14aから出射された上記3つのビームを光ディスク16の方向に透過させるとともに、光ディスク16の情報記録面16aにより反射された3つのビームの戻り光を偏向分離して光検出器17に導くビームスプリッタ13と、上記3つのビームを光ディスク16の情報記録面16aに集光する対物レンズ15と、上記3つのビームの戻り光を光検出器17に集光するコリメータレンズ14b、上記3つのビームの戻り光を検出する光検出器17、および、減光素子18aあるいは18bとを備える。
(First Embodiment)
FIG. 1 is a diagram showing a conceptual configuration of an optical head device 10 according to the present embodiment. The optical head device 10 includes a light source 11 that emits a light beam having a predetermined wavelength, a diffraction element 12 that diffracts a part of the light beam emitted from the light source 11 to generate three beams of a main beam and two sub beams, and an incident light. The collimator lens 14a that converts the emitted light beam into parallel light and the three beams emitted from the collimator lens 14a are transmitted in the direction of the optical disc 16, and the three beams reflected by the information recording surface 16a of the optical disc 16 are transmitted. A beam splitter 13 for deflecting and separating the return light to the photodetector 17; an objective lens 15 for condensing the three beams on the information recording surface 16a of the optical disc 16; and a photodetector for the return light of the three beams. A collimator lens 14b for condensing the light, a photodetector 17 for detecting the return light of the three beams, and a light reducing element 18a. Rui and a 18b.

本発明の減光素子は、往路と復路とが同じ光路となる位置や、往路と復路の光路が異なる復路光路中に配置する。図1では、減光素子18bは復路のみの光路中に配置し、減光素子18aは往路/復路共通の光路中に配置する例である。減光素子は、2つの光路に配置する構成に限らず、いずれか一方の光路にのみ配置してもよい。   The dimming element of the present invention is disposed in a position where the forward path and the return path are the same optical path, or in a return path optical path where the forward path and the return path are different. In FIG. 1, the dimming element 18b is arranged in the optical path only for the return path, and the dimming element 18a is arranged in the optical path common to the forward path / return path. The dimming element is not limited to the configuration arranged in the two optical paths, and may be arranged only in one of the optical paths.

光検出器17において、光ディスク16の再生する情報記録面16aに記録された情報の読み取り信号、フォーカスエラー信号およびトラッキングエラー信号が検出される。なお、光ヘッド装置10は、上記のフォーカスエラー信号に基づいてレンズを光軸方向に制御する図示しないフォーカスサーボと、上記のトラッキングエラー信号に基づいてレンズを光軸にほぼ垂直な方向に制御する図示しないトラッキングサーボとを備える。   In the photodetector 17, a read signal, a focus error signal, and a tracking error signal of information recorded on the information recording surface 16 a reproduced from the optical disc 16 are detected. The optical head device 10 controls the lens in a direction substantially perpendicular to the optical axis based on the focus servo (not shown) that controls the lens in the optical axis direction based on the focus error signal and the tracking error signal. A tracking servo (not shown).

光源11は、例えば650nm波長帯の直線偏光の発散光束を出射する半導体レーザで構成される。なお、本発明で用いられる光源11は、650nm波長帯の光に限定されず、例えば400nm波長帯の光や780nm波長帯の光、その他の波長帯の光であってもよい。ここで、400nm波長帯、波長650nm波長帯および780nm波長帯は、それぞれ、385nm〜430nm、630nm〜690nmおよび760nm〜800nmの範囲とする。   The light source 11 is configured by a semiconductor laser that emits a linearly polarized divergent light beam having a wavelength band of 650 nm, for example. The light source 11 used in the present invention is not limited to light in the 650 nm wavelength band, and may be, for example, light in the 400 nm wavelength band, light in the 780 nm wavelength band, or light in other wavelength bands. Here, the 400 nm wavelength band, the wavelength 650 nm wavelength band, and the 780 nm wavelength band are in the ranges of 385 nm to 430 nm, 630 nm to 690 nm, and 760 nm to 800 nm, respectively.

また、光源11は、2種類または3種類の波長の光束を出射する構成としてもよい。かかる構成の光源としては、2個または3個の半導体レーザチップが同一基板上にマウントされた、所謂ハイブリッド型の2波長レーザ光源または3波長レーザ光源や、互いに異なる波長の光を出射する2個または3個の発光点を有するモノリシック型の2波長レーザ光源または3波長レーザ光源でもよい。   The light source 11 may be configured to emit light beams of two or three types of wavelengths. As a light source having such a configuration, a so-called hybrid two-wavelength laser light source or three-wavelength laser light source in which two or three semiconductor laser chips are mounted on the same substrate, or two light sources emitting different wavelengths of light are used. Alternatively, a monolithic type two-wavelength laser light source or three-wavelength laser light source having three light emitting points may be used.

図2(a)、図2(b)、図2(c)および図2(d)に、第1の実施態様における減光素子20a、20b、20cおよび20dそれぞれの平面模式図を示す。減光素子20aは、減光素子の外枠を含む第1の領域21aと、第1の領域21aの外縁の内側にある第3の領域23a、第3の領域の外縁の内側にある第2の領域22aに分割される。ここで、外縁とは領域を構成するもっとも外にある境界線のことである。第2の領域の外縁は必ずしも第3の領域の外縁より内側でなくともよく、図2(b)および図2(c)のように一部これらの外縁が接していてもよい。また、例えば図2(b)のように第2の領域22bの外縁が第3の領域23bの外縁の連続しない2箇所に接して、第3の領域が2つに分離される場合も、その2つを合わせて第3の領域23bとし、第3の領域の外縁は一義的に決定ものとする。図2(c)においては第2の領域22cと第3の領域23cが、第1の領域21cの外縁の2箇所に接していても同様に外縁は一義的に決定するものとする。図2(d)のような例でも第1の領域21dは2つを合わせたものであり、第1の領域の外縁は、第2の領域22dの一部の外縁および第3の領域23dの一部の外縁も含む太線として一義的に決定されるものとする。   FIG. 2A, FIG. 2B, FIG. 2C, and FIG. 2D are schematic plan views of the dimming elements 20a, 20b, 20c, and 20d in the first embodiment. The dimming element 20a includes a first area 21a including the outer frame of the dimming element, a third area 23a inside the outer edge of the first area 21a, and a second area inside the outer edge of the third area. Are divided into regions 22a. Here, the outer edge is an outermost boundary line constituting the region. The outer edge of the second region does not necessarily need to be inside the outer edge of the third region, and these outer edges may partially touch each other as shown in FIGS. 2 (b) and 2 (c). Further, for example, as shown in FIG. 2B, the outer edge of the second region 22b is in contact with two non-continuous outer edges of the third region 23b, and the third region is separated into two. The two are combined into a third region 23b, and the outer edge of the third region is uniquely determined. In FIG. 2C, even if the second region 22c and the third region 23c are in contact with two locations on the outer edge of the first region 21c, the outer edge is determined uniquely in the same manner. In the example as shown in FIG. 2D, the first region 21d is a combination of the two, and the outer edge of the first region is a part of the second region 22d and the third region 23d. It shall be uniquely determined as a thick line including some outer edges.

第1の領域、第2の領域および第3の領域を透過する光の透過率をそれぞれT、TおよびTとすると、
>T>T
の関係に設定する。とくにTとTとの差が大きくなるように設定すると減光素子を透過する迷光を抑制でき好ましい。各領域の透過率は、光の吸収、反射、回折などの特性を利用するかまたは、それらの特性を組み合わせて利用することで調整ができる。後述するが、光検出器で受光する光は減光素子を直進透過する光に限らず、回折格子構造を有する減光素子の場合、例えば領域ごと回折効率が異なる+1次回折光を受光させてもよい。この場合、+1次回折効率は前述の透過率に相当するので、以下、回折光を光検出器で受光させる光学系では回折効率も透過率に含まれることとする。同様に前述の0次透過光を光検出器で受光する場合、の0次透過率も透過率に含まれる。
When the transmittance of light passing through the first region, the second region, and the third region is T 1 , T 2, and T 3 , respectively,
T 1 > T 3 > T 2
Set to the relationship. In particular, it is preferable to set the difference between T 1 and T 2 to be large because stray light transmitted through the light reducing element can be suppressed. The transmittance of each region can be adjusted by using characteristics such as light absorption, reflection, and diffraction, or by combining these characteristics. As will be described later, the light received by the photodetector is not limited to light that passes straight through the light reducing element, but in the case of a light reducing element having a diffraction grating structure, for example, even if + 1st order diffracted light having different diffraction efficiency is received for each region Good. In this case, since the + 1st order diffraction efficiency corresponds to the above-described transmittance, hereinafter, in an optical system in which diffracted light is received by a photodetector, the diffraction efficiency is also included in the transmittance. Similarly, when the above-described 0th-order transmitted light is received by the photodetector, the 0th-order transmittance is also included in the transmittance.

減光素子の平面において透過率は、第1の領域から第3の領域、そして第2の領域の方向に対してガウス分布のようになめらかに変化をしていると強度変調回折が抑制され、信号光と迷光によるS/Nを大きくすることができるので好ましい。第1の実施形態では第3の領域が実質的に均一な透過率の構成としているが、ガウス分布のような連続的な透過率変化を有する構成であるとより好ましい。また、第3の領域の透過率が実質的に均一であってもガウス分布に近似させた透過率であれば強度変調回折を抑制できる。図3(a)に第2の実施態様の構成による透過率変化のグラフを示す。X軸は第1の領域と第3の領域の境界を原点(X=0)として第2の領域へ直線で向かう任意の距離を表し、Y軸はTを正規化(=1)したときの第3の領域の透過率分布を表すものである。実線はガウス分布、点線はT/T=0のときのT/Tのガウス近似分布、一点鎖線はT/T=0.1のときのT/Tのガウス近似分布、を表す。この近似は、ガウス分布を平均化して計算したものである。T/Tが大きくなると迷光を十分に減光させるのを妨げるので、少なくとも減光素子を挿入しない場合に比べ光検出器に到達する迷光が10%以下となるように0.1を上限とした。この構成のときに、
/T≦0.1
であるとき、
0.3≦T/T≦0.7
の範囲で設計されていると、ガウス分布に近似させることができるので、好ましく、
0.4≦T/T≦0.6
の範囲であるとより好ましい。
If the transmittance in the plane of the dimming element changes smoothly like a Gaussian distribution from the first region to the third region and the direction of the second region, intensity modulation diffraction is suppressed, This is preferable because the S / N ratio due to signal light and stray light can be increased. In the first embodiment, the third region has a substantially uniform transmittance. However, it is more preferable that the third region has a continuous transmittance change such as a Gaussian distribution. Further, even if the transmittance of the third region is substantially uniform, intensity modulation diffraction can be suppressed if the transmittance approximates a Gaussian distribution. FIG. 3A shows a graph of transmittance change according to the configuration of the second embodiment. The X axis represents an arbitrary distance that goes straight to the second area with the boundary between the first area and the third area as the origin (X = 0), and the Y axis when T 1 is normalized (= 1) Represents the transmittance distribution of the third region. Solid line is Gaussian distribution, dotted line is Gaussian approximate distribution of T 3 / T 1 when T 2 / T 1 = 0, and alternate long and short dash line is Gaussian approximation of T 3 / T 1 when T 2 / T 1 = 0.1 Distribution. This approximation is calculated by averaging the Gaussian distribution. When T 2 / T 1 is increased, stray light is prevented from being sufficiently attenuated, so at least 0.1 is set so that stray light reaching the photodetector is 10% or less as compared with the case where no dimming element is inserted. It was. With this configuration,
T 2 / T 1 ≦ 0.1
When
0.3 ≦ T 3 / T 1 ≦ 0.7
Since it can be approximated to a Gaussian distribution if it is designed in the range of
0.4 ≦ T 3 / T 1 ≦ 0.6
It is more preferable in the range.

例えば、Tが80%以上となるように設計することで、信号光を効率よく光検出器に導くことができるので好ましく、90%以上であるとより好ましい。また、第2の領域は、光検出器上に到達する迷光を除去するので、Tが50%以下となるように設計することで迷光の光量を半分以下に減衰できる。迷光を実質的に遮光するには、Tが実質的に0%となるような設計が好ましいが、TとTとの差、TとTとの差が大きいと、領域の界面において光の強度変調回折が大きくなるので、光検出器において迷光の回り込みがないように60%以下であると好ましい。また、第3の領域の透過率Tは、第1の領域の透過率Tと第2の領域の透過率Tの間に設計することが好ましく、実質的に中間の値に設計することがより好ましい。 For example, by designing so that T 1 is of 80% or more, preferably it is possible to guide the signal light efficiently photodetector, and more preferably is 90% or more. In addition, since the second region removes stray light that reaches the photodetector, the amount of stray light can be attenuated to less than half by designing the T 2 to be 50% or less. In order to substantially block stray light, a design in which T 2 is substantially 0% is preferable. However, if the difference between T 1 and T 3 and the difference between T 3 and T 2 are large, Since intensity-modulated diffraction of light increases at the interface, it is preferably 60% or less so that stray light does not wrap around the photodetector. Further, the transmittance T 3 of the third region is preferably designed between the transmittance T 1 of the first region and the transmittance T 2 of the second region, and is designed to be a substantially intermediate value. It is more preferable.

本実施形態の減光素子は、3ビーム法の光ヘッド装置に対して説明しているが、当然ながら1ビーム法の光ヘッド装置にも適応できる。また、上記いずれの方法でも、少なくとも減光素子に信号光が入射する領域である有効領域は第1の領域を含むようにする。なお、有効領域は、入射する信号光の最大となる光強度に対して10%以上の光強度となる領域とする。また、減光素子に信号光が入射する領域となる有効領域のうち第1の領域の面積の割合が多いほど光検出器上に集光する信号光の光量を低減することなく光利用効率も高くなる。したがって有効領有効領域のうち70%以上の面積を第1の領域が占める設計とすることが好ましい。また、光利用効率を大きく低減しないように、第2の領域は少なくとも有効領域に対して30%より小さい面積となるようにすることが要求される。また、第2の領域の有効領域に対する面積を小さくしすぎると、光軸の変動などによって信号光が集光する位置に迷光が低減されずに到達してS/Nが低下することがあるので、この範囲を考慮して有効領域に対する面積比が1%以上あればよい。   Although the dimming element of this embodiment has been described with respect to a three-beam optical head device, it is naturally applicable to a one-beam optical head device. In any of the above methods, at least the effective region, which is the region where the signal light is incident on the dimming element, includes the first region. The effective area is an area having a light intensity of 10% or more with respect to the maximum light intensity of the incident signal light. In addition, as the proportion of the area of the first region in the effective region that is the region where the signal light is incident on the dimming element is larger, the light use efficiency is reduced without reducing the amount of the signal light collected on the photodetector. Get higher. Therefore, it is preferable that the first region occupies 70% or more of the effective region effective region. Further, the second region is required to be at least an area smaller than 30% with respect to the effective region so as not to greatly reduce the light utilization efficiency. Also, if the area of the second region with respect to the effective region is made too small, stray light may reach the position where the signal light is condensed without being reduced due to fluctuations in the optical axis and the S / N may be lowered. In consideration of this range, the area ratio to the effective region may be 1% or more.

このように、低透過率の第2の領域と高透過率の第1の領域との間にこれらの中間の透過率の第3の領域を設けることで、領域界面での透過率変化を低減できるため、減光素子の透過率分布により生じる透過光の強度変調回折を抑制できる。これより、サブビームを受光する光検出器上への迷光の回り込みを低減できるので、信号光と迷光の干渉を抑制できる。   As described above, by providing the third region having the intermediate transmittance between the second region having the low transmittance and the first region having the high transmittance, the change in the transmittance at the region interface is reduced. Therefore, intensity-modulated diffraction of transmitted light caused by the transmittance distribution of the dimming element can be suppressed. As a result, the wraparound of stray light onto the photodetector that receives the sub-beam can be reduced, so that interference between the signal light and the stray light can be suppressed.

次に、減光素子の配置について説明する。図4に減光素子32をコリメートレンズ31と光検出器33との間の光路中に配置したときの光の状態の断面模式図を示す。図4(a)、(b)は、それぞれ光検出器上に集光しない迷光の状態、図4(c)は、信号光の集光状態である。減光素子32は、3つの分離した第2の領域32a、32bを有する。なお、各第2の領域の周りには図示しない第3の領域がそれぞれあるものとする。32aは後述するようにサブビーム用の第2の領域であり、32bはメインビーム用の第2の領域である。また、光検出器33はサブビーム用の受光エリア33aとメインビーム用の受光エリア33bを有する。   Next, the arrangement of the dimming elements will be described. FIG. 4 shows a schematic cross-sectional view of the state of light when the dimming element 32 is disposed in the optical path between the collimating lens 31 and the photodetector 33. FIGS. 4A and 4B show the stray light that is not condensed on the photodetector, and FIG. 4C shows the condensing state of the signal light. The dimming element 32 has three separated second regions 32a and 32b. It is assumed that there is a third region (not shown) around each second region. As will be described later, 32a is a second region for a sub beam, and 32b is a second region for a main beam. The photodetector 33 has a light receiving area 33a for the sub beam and a light receiving area 33b for the main beam.

まず、光検出器33上で焦点を結ばない迷光について説明する。図4(a)において、光検出器の後ろに焦点を有する迷光34は、光路中で大きく集光されずに光検出器33に到達する。このとき、第2の領域32aの中心を通る迷光の光線35を一点鎖線で示す。この光線35は、受光エリア33aの中心に導かれるようにする。また、図4(b)において光検出器の手前に焦点を有する迷光36は、光の幅が広がって光検出器33に到達する。このとき、第2の領域32aの中心を通る迷光の光線36を一点鎖線で示すが、同じように受光エリア33aの中心に導かれるようにする。なお、メインビーム用に第2の領域32bを設ける場合、第2の領域32bはメインビームの光軸を含みメインビーム用の受光エリア33bに集光されるようにするとよく、第2の領域32bの中心と受光エリア33bの中心に光軸が合うようにするとさらによい。   First, stray light that is not focused on the photodetector 33 will be described. In FIG. 4A, the stray light 34 having a focal point behind the photodetector reaches the photodetector 33 without being largely collected in the optical path. At this time, the stray light beam 35 passing through the center of the second region 32a is indicated by a one-dot chain line. The light beam 35 is guided to the center of the light receiving area 33a. In addition, the stray light 36 having a focal point in front of the photodetector in FIG. 4B reaches the photodetector 33 with an increased width of the light. At this time, although the stray light beam 36 passing through the center of the second region 32a is indicated by a one-dot chain line, it is similarly guided to the center of the light receiving area 33a. When the second region 32b is provided for the main beam, the second region 32b may include the optical axis of the main beam so as to be focused on the light receiving area 33b for the main beam, and the second region 32b. More preferably, the optical axis is aligned with the center of the light receiving area 33b.

このように減光素子の第2の領域を通る迷光がサブビーム用の受光エリア33aに導かれるようにすることで、受光エリアに到達する迷光が低減されて到達し、さらに第3の領域を有することで効果的に迷光が低減できる。なお、迷光は光記録媒体によるメインビームおよびサブビームの反射によってそれぞれ生成されるが、光検出器上では集光されず、さらに、サブビームの迷光はメインビームの迷光の光量に比べて強度が弱いので、迷光は概ねメインビームによる反射光として考えることができる。また、受光エリアと第2の領域の形状は、外縁が相似した形になっていると光利用効率が大きくなり、好ましい。また、図4(c)には、信号光の集光状態を示すが、サブビーム39a、39bはそれぞれサブビーム用の受光エリア33aへ、メインビーム38はメインビーム用の受光エリア33bへ集光して導かれる。   In this way, stray light passing through the second region of the light reducing element is guided to the sub-beam light receiving area 33a, so that the stray light reaching the light receiving area is reduced and reaches, and further has a third region. Thus, stray light can be effectively reduced. The stray light is generated by the reflection of the main beam and the sub beam by the optical recording medium, but is not collected on the photodetector, and the sub beam stray light has a lower intensity than the amount of stray light of the main beam. The stray light can be generally considered as reflected light by the main beam. In addition, it is preferable that the light receiving area and the second region have a similar outer edge because the light use efficiency increases. FIG. 4 (c) shows the condensing state of the signal light. The sub beams 39a and 39b are condensed on the light receiving area 33a for the sub beam, and the main beam 38 is condensed on the light receiving area 33b for the main beam. Led.

(第2の実施の態様)
図5(a)に第3の領域をさらに複数に分割した場合の減光素子の模式的平面図を示す。図5(a)に示す減光素子40は、透過率の高い第1の領域41、2つの第2の領域42、44と、2つの第3の領域43、45に分割されている。また、第3の領域43、45は、さらにそれぞれ43a、43b、43cと45a、45b、45cの3つの分割領域で構成されている。第3の領域の分割数は、3に限らず2または4以上であってもよく、第1の領域と第2の領域の透過率の間で連続して変化する分布を有してもよい。本例では、3ビーム法で回折される2つのサブビームに合わせて第2の領域を2つ設定する減光素子である。また、本実施の形態は、第2の領域および第3の領域が同心円状に分布している領域構成に限らず多角形や任意の曲線を含む形状でもよく、各領域の外縁が別の領域の外縁に接する部分があってもよい。第2の実施形態は、迷光によるクロストークの影響を受けやすいサブビームに対して作用させる減光素子の構成であるが、メインビームに対しても同様の領域を有する減光素子の構成であってもよい。
(Second Embodiment)
FIG. 5A shows a schematic plan view of the light reducing element when the third region is further divided into a plurality of parts. The light attenuating element 40 shown in FIG. 5A is divided into a first region 41 having high transmittance, two second regions 42 and 44, and two third regions 43 and 45. The third regions 43 and 45 are further composed of three divided regions 43a, 43b and 43c and 45a, 45b and 45c, respectively. The number of divisions of the third region is not limited to 3, and may be 2 or 4 or more, and may have a distribution that continuously changes between the transmittances of the first region and the second region. . In this example, the light reducing element sets two second regions in accordance with two sub beams diffracted by the three beam method. In addition, the present embodiment is not limited to the region configuration in which the second region and the third region are concentrically distributed, and may have a shape including a polygon or an arbitrary curve, and the outer edge of each region is a different region. There may be a portion in contact with the outer edge of. The second embodiment is a configuration of a dimming element that acts on a sub-beam that is easily affected by crosstalk due to stray light. Also good.

第1の領域41の透過率をT、第2の領域42、44の透過率をTとする。また、第3の領域43a、45aの透過率をTr1、領域43b、45bの透過率をTr2、領域43c、45cの透過率をTr3とする。このとき、の各透過率の関係を
>Tr3>Tr2>Tr1>T
と設定すると、領域2を中心に外側の領域に向けて透過率が段階的に大きくなり、領域の境界における迷光の強度変調回折を抑制できるので好ましい。上述のように第3の領域をさらに分割して透過率を段階的に細かく変化させたり、連続的に変化させたりするように設計することで抑制効果はさらに向上する。
The transmittance of the first region 41 is T 1 , and the transmittance of the second regions 42 and 44 is T 2 . Also, the transmittance of the third regions 43a and 45a is T r1 , the transmittance of the regions 43b and 45b is T r2 , and the transmittance of the regions 43c and 45c is T r3 . At this time, the relationship between the respective transmittances is as follows : T 1 > T r3 > T r2 > T r1 > T 2
Is preferable because the transmittance increases stepwise from the region 2 toward the outer region, and the intensity-modulated diffraction of stray light at the region boundary can be suppressed. As described above, the suppression effect is further improved by further dividing the third region and designing so that the transmittance is finely changed stepwise or continuously.

次に第3の領域を複数に分割したとき、透過率の異なる領域間での透過率差の値を設定する方法ついて図3(b)を用いて説明する。例として、減光素子36が図3(b)に示すような領域に分割されており、第3の領域39は領域39a、領域39bに分割されかつ、これらの領域の幅はdが等しいものとする。図3(b)に、第3の領域を2つの領域に分割したときの透過率変化のグラフを示す。X軸は、第1の領域37と領域39bとの境界を原点(X=0)とし、第2の領域38と領域39aとの境界へ直線で向かう任意の距離を表し、Y軸はTを正規化(=1)したときの第3の領域の透過率分布を表すものである。実線はガウス分布、点線はT/T=0のときの正規化した第3の領域のガウス近似分布、一点鎖線はT/T=0.1のときの正規化した第3の領域のガウス近似分布、を表す。この近似は、ガウス分布を平均化して計算したものである。この構成のときに、
/T≦0.1
であるとき、透過率の異なる領域間での正規化された透過率差の最大値は(Tr2−Tr1)/Tの0.6である。したがって、1つの境界を隔てて透過率が異なる領域の正規化された透過率差を0より大きく0.7以下にすることが好ましく、0より大きく0.6以下であればより好ましい。また、第3の領域を透過率が段階的に変化するように3以上の領域に分割すると、分割数が増加するにつれてこの正規化された透過率差は0.6よりも小さくでき、よりガウス分布の変化に近づく。
Next, a method for setting the value of the transmittance difference between regions having different transmittances when the third region is divided into a plurality of regions will be described with reference to FIG. As an example, the dimming element 36 is divided into regions as shown in FIG. 3B, the third region 39 is divided into regions 39a and 39b, and the widths of these regions are equal to d. And FIG. 3B shows a graph of transmittance change when the third region is divided into two regions. The X axis represents an arbitrary distance heading straight from the boundary between the first region 37 and the region 39b to the boundary between the second region 38 and the region 39a with the origin (X = 0), and the Y axis represents T 1. Represents the transmittance distribution of the third region when is normalized (= 1). The solid line is the Gaussian distribution, the dotted line is the Gaussian approximate distribution of the normalized third region when T 2 / T 1 = 0, and the alternate long and short dash line is the normalized third region when T 2 / T 1 = 0.1 Represents the Gaussian approximate distribution of the region. This approximation is calculated by averaging the Gaussian distribution. With this configuration,
T 2 / T 1 ≦ 0.1
, The maximum value of the normalized transmittance difference between regions having different transmittances is 0.6 of (T r2 −T r1 ) / T 1 . Therefore, it is preferable that the normalized transmittance difference between regions having different transmittances across one boundary is greater than 0 and less than or equal to 0.7, and more preferably greater than 0 and less than or equal to 0.6. Further, when the third region is divided into three or more regions so that the transmittance changes stepwise, the normalized transmittance difference can be made smaller than 0.6 as the number of divisions increases, and more Gaussian. Approach the distribution change.

また、透過率の差T−Tr3、Tr3−Tr2、Tr2−Tr1、Tr1−Tを40%以下とすることで、領域間の透過率差による回折をさらに抑制でき好ましい。 Further, by making the difference in transmittance T 1 −T r3 , T r3 −T r2 , T r2 −T r1 , and T r1 −T 2 to be 40% or less, diffraction due to the difference in transmittance between regions can be further suppressed. preferable.

次に、第1の態様、第2の態様に共通する減光素子を作用させる具体的な構成について説明する。図6に、各領域が光の反射作用を有する光学多層膜により形成される減光素子50の断面模式図を示す。なお図6は、図5(a)の模式的平面図において2つの第2の領域の中心点を通る直線上を切断する断面模式図であり、以下の断面模式図も同様である。この場合、第2の領域51および第3の領域52を構成する3つの分割領域52a、52b、52cは、それぞれ段階的に反射作用により透過率が異なる多層膜より構成される。透過率は上述のようにそれぞれの第2の領域がもっとも低い透過率で第2の領域より外側の領域ほど高い透過率となるように設計する。言い換えると、第2の領域がもっとも高い反射率で、第2の領域より外側の領域ほど低い反射率となる。   Next, a specific configuration for operating the dimming element common to the first and second modes will be described. FIG. 6 is a schematic cross-sectional view of a light reducing element 50 in which each region is formed of an optical multilayer film having a light reflecting action. FIG. 6 is a schematic cross-sectional view cut along a straight line passing through the center points of the two second regions in the schematic plan view of FIG. 5A, and the following schematic cross-sectional views are also the same. In this case, the three divided regions 52a, 52b, and 52c constituting the second region 51 and the third region 52 are each composed of a multilayer film having different transmittances due to the reflection action in stages. As described above, the transmittance is designed such that each of the second regions has the lowest transmittance, and the region outside the second region has a higher transmittance. In other words, the second region has the highest reflectance, and the region outside the second region has a lower reflectance.

光学多層膜は、Si、Ta、Nb、Ti、Ca、Mgなどの無機酸化物やフッ化物、窒化物または、有機材料から構成できる。また、これらの材料の膜厚など積層構造を領域ごとに変えることで、反射率を変化させることができるので好ましい。透過率がほぼ0%と遮光する領域を設定するには、Al、CrなどのメタルやCr酸化物を用いてもよい。また、多層膜はガラス基板53上に積層する構成に限らず、プラスチック樹脂など透光性の材料であってもよい。また、信頼性を向上するために多層膜の上に保護膜などを積層してもよい。さらに、着色膜のような単層遮光膜で構成してもよい。   The optical multilayer film can be composed of inorganic oxides such as Si, Ta, Nb, Ti, Ca, and Mg, fluorides, nitrides, or organic materials. Further, it is preferable to change the laminated structure such as the film thickness of these materials for each region because the reflectance can be changed. In order to set a light shielding region where the transmittance is approximately 0%, a metal such as Al or Cr or a Cr oxide may be used. Further, the multilayer film is not limited to the configuration of being laminated on the glass substrate 53, and may be a translucent material such as a plastic resin. In order to improve reliability, a protective film or the like may be stacked on the multilayer film. Furthermore, you may comprise with a single layer light shielding film like a coloring film.

図7に、各領域が光の反射作用を有するコレステリック相液晶により形成される減光素子60の断面模式図を示す。コレステリック相液晶分子は、減光素子の厚さ方向と平行な螺旋軸で連続して回転しており、このように液晶分子が螺旋した状態で紫外線照射・固化させたコレステリック相高分子液晶を用いるのが好ましい。   FIG. 7 is a schematic cross-sectional view of a light reducing element 60 in which each region is formed of a cholesteric phase liquid crystal having a light reflecting action. The cholesteric phase liquid crystal molecules are continuously rotated by a helical axis parallel to the thickness direction of the light reducing element. In this way, cholesteric phase polymer liquid crystals that are irradiated with ultraviolet rays and solidified in a spiral state are used. Is preferred.

コレステリック相液晶による光の反射作用について説明する。コレステリック相液晶分子は、螺旋する特性を有し、一様な配向処理をした2枚の基板を対向させた空隙に注入すると基板の厚さ方向に一様に螺旋する。コレステリック相液晶は、螺旋ピッチPが入射光の波長λとコレステリック液晶相の屈折率nとの積と同程度の場合、螺旋軸方向と平行に入射する光のうち、液晶分子のねじれ方向と同じ回転方向となる円偏光がほぼ反射され、逆向きの回転方向となる円偏光はほぼ透過する円偏光依存性を有する。この反射特性を示す波長帯域の中心波長λは、螺旋ピッチをP、液晶の常光屈折率をn、異常光屈折率をnとすると(1)式の関係で示される。また、反射帯域幅Δλは、(2)式の関係で示される。また、以下(λ±Δλ)を反射波長帯域と定義する。 The light reflection effect of the cholesteric phase liquid crystal will be described. Cholesteric phase liquid crystal molecules have a spiraling property, and when two substrates subjected to uniform alignment treatment are injected into the opposed gap, they are uniformly spiraled in the thickness direction of the substrate. A cholesteric phase liquid crystal is the same as the twist direction of liquid crystal molecules in light incident parallel to the helical axis direction when the helical pitch P is about the same as the product of the wavelength λ of incident light and the refractive index n of the cholesteric liquid crystal phase. The circularly polarized light in the rotational direction is substantially reflected, and the circularly polarized light in the reverse rotational direction has a circular polarization dependency that is substantially transmitted. Central wavelength lambda c of the wavelength band showing the reflection characteristic, the helical pitch P, and ordinary refractive index of the liquid crystal n o, shown the extraordinary refractive index in relation to when the n e (1) formula. Further, the reflection bandwidth Δλ is expressed by the relationship of the expression (2). Hereinafter, (λ c ± Δλ) is defined as a reflection wavelength band.

Figure 2009176394
Figure 2009176394

反射波長帯域内で液晶分子と同じねじれ方向の回転方向となる円偏光の光が入射されると、コレステリック相高分子液晶層内で反射する。また、(λ±Δλ)の反射波長帯域と異なる波長の光が入射すると液晶分子と同じねじれ方向の回転方向となる円偏光の光でも透過する特性を有する。 When circularly polarized light having the same rotational direction as the liquid crystal molecules in the reflection wavelength band is incident, it is reflected in the cholesteric phase polymer liquid crystal layer. Further, when light having a wavelength different from the reflection wavelength band of (λ c ± Δλ) is incident, it has a characteristic of transmitting even circularly polarized light having the same rotational direction as the liquid crystal molecules.

図7の減光素子60は、第2の領域61および第3の領域62を構成する3つの分割領域62a、62b、62cは、それぞれ反射作用により透過率が異なるコレステリック相高分子液晶より構成される。このとき、いずれの領域の液晶分子の螺旋方向および螺旋ピッチPは同一であるが、それぞれの領域の厚さが異なる。この場合、厚さが大きくなるほど反射率が増すので、それぞれ第3の領域62、第2の領域の順の厚さを大きくするように、さらに第3の領域62もそれぞれ領域62c、62b、62aの順に厚さが大きくなるように透過率の分布を設計する。減光素子60は対向するガラス基板63、64で狭持されていると信頼性が向上し好ましい。また、第1の領域に相当する空間には透光性材料が充填されていると透過率が高くなり好ましい。   In the dimming element 60 of FIG. 7, the three divided regions 62a, 62b, and 62c constituting the second region 61 and the third region 62 are each composed of cholesteric phase polymer liquid crystals having different transmittances due to reflection effects. The At this time, the spiral direction and the spiral pitch P of the liquid crystal molecules in any region are the same, but the thickness of each region is different. In this case, since the reflectivity increases as the thickness increases, the third region 62 also has the regions 62c, 62b, and 62a, respectively, so as to increase the thickness in the order of the third region 62 and the second region, respectively. The transmittance distribution is designed so that the thickness increases in the order of. It is preferable that the dimming element 60 is sandwiched between the opposing glass substrates 63 and 64 because the reliability is improved. In addition, it is preferable that the space corresponding to the first region is filled with a translucent material because the transmittance is increased.

コレステリック相液晶を用いる減光素子60を図1の光ヘッド装置10の減光素子18aとするときに、光源11から出射した光が、光ディスク16に向かう往路の光の偏光を円偏光に変換する1/4波長板(図示せず)を減光素子18aとビームスプリッタ13との間の光路に配置する。この往路の円偏光の光に対し、コレステリック相液晶は全ての領域で高い透過率を示すように配置する。このようにすると、光ディスク16で反射された復路の光は、往路と反対に回転する円偏光の光となり、この光が減光素子18aの各領域により異なる透過率(反射率)により光量を変えて透過する。したがって、往路の光に対しては透過率が高く、復路の光に対して領域により反射率が異なる(透過率が異なる)減光素子を実現でき、往路/復路が共通の光路に配置しても往路の光を効率よく光ディスクに導くことができるので好ましい。   When the light attenuating element 60 using the cholesteric phase liquid crystal is used as the light attenuating element 18a of the optical head device 10 in FIG. 1, the light emitted from the light source 11 converts the polarization of the forward light toward the optical disk 16 into circularly polarized light. A quarter wavelength plate (not shown) is disposed in the optical path between the light reducing element 18 a and the beam splitter 13. The cholesteric phase liquid crystal is disposed so as to exhibit high transmittance in all regions with respect to the forward circularly polarized light. By doing so, the return light reflected by the optical disk 16 becomes circularly polarized light that rotates in the opposite direction to the forward path, and this light changes its light amount depending on the transmittance (reflectance) that varies depending on each region of the light reducing element 18a. Through. Therefore, it is possible to realize a dimming element that has high transmittance with respect to the forward light and has different reflectivity (difference in transmittance) depending on the region with respect to the light of the backward path, and the forward / return paths are arranged in a common optical path. However, it is preferable because the outgoing light can be efficiently guided to the optical disk.

また、例えば単層光ディスク用と、多層光ディスク用との2種類の波長の光を使用する光ヘッド装置において、減光素子のコレステリック相液晶の反射波長帯域を多層光ディスク用の波長を含むように設定する。さらに、クロストークの影響が少ない単層光ディスク用の波長の光はほぼ100%透過させることで、波長選択型の減光素子になり、自由度が高い光ヘッド装置を構成できる。   Also, for example, in an optical head device that uses light of two types of wavelengths, one for a single-layer optical disk and one for a multilayer optical disk, the reflection wavelength band of the cholesteric phase liquid crystal of the dimming element is set to include the wavelength for the multilayer optical disk To do. Furthermore, by transmitting almost 100% of light having a wavelength for a single-layer optical disk that is less affected by crosstalk, it becomes a wavelength-selective dimming element, and an optical head device having a high degree of freedom can be configured.

次に減光素子として、減光素子が光の回折作用からなる領域による構成について図8(a)の模式的断面図を用いて説明する。図8(a)の減光素子70の第2の領域71および第3の領域72を構成する3つの分割領域72a、72b、72cは、領域表面に形成された周期的な凹凸を有する回折格子構造を有する。それぞれの領域において凹凸の周期の回折格子による異なる回折特性を利用し、入射する光の0次透過率を変化させることができる。このとき、0次透過率は上述のようにそれぞれ第2の領域、第3の領域、第1の領域の順に高くなるように設計する。   Next, the configuration of the light-attenuating element as a region where the light-attenuating element is composed of a light diffraction effect will be described with reference to the schematic cross-sectional view of FIG. The three divided regions 72a, 72b, and 72c constituting the second region 71 and the third region 72 of the dimming element 70 in FIG. 8A are diffraction gratings having periodic irregularities formed on the surface of the region. It has a structure. Different diffraction characteristics due to the diffraction grating having the uneven period can be used in each region to change the zero-order transmittance of incident light. At this time, the 0th-order transmittance is designed to increase in the order of the second region, the third region, and the first region as described above.

各領域の回折格子構造に入射する光の0次透過率は、各領域表面に形成する回折格子構造凹凸の深さを変えることや、凹凸の格子材料屈折率を変えることで調整することができる。また、格子の凸部と凹部の幅の比(Duty比)を変えたり、深さ、材料等の組み合わせによって透過率の変化を実現させたりしてもよい。また、回折格子構造は断面形状が矩形に限らず、鋸刃形状など回折作用により0次透過率が異なる構造であればよい。   The zero-order transmittance of light incident on the diffraction grating structure in each region can be adjusted by changing the depth of the diffraction grating structure unevenness formed on the surface of each region, or by changing the refractive index of the grating material of the unevenness. . Further, the ratio of the width of the convex portion to the concave portion (duty ratio) of the lattice may be changed, or the change in transmittance may be realized by a combination of depth, material, and the like. In addition, the diffraction grating structure is not limited to a rectangular cross section, and may have a structure in which the zero-order transmittance is different due to a diffraction action such as a saw blade shape.

Duty比は、格子をフォトリソグラフィーで作成する場合には、フォトマスクの格子の開口幅を領域ごとに変えることで実現でき、低コストで実現できるので好ましい。また、格子の深さを変える方法や、格子の材料を変える方法において、狭いピッチの格子を作製する場合など、Duty比を変えることで、線幅が非常に細くなりプロセスの制限上難しい場合にも対応ができて好ましい。また、図8(b)に図8(a)の断面の拡大模式図を示す。各領域は、複屈折性を示す材料によって形成され、表面の凹凸構造は、複屈折性材料の常光屈折率(n)または異常光屈折率(n)に実質的に等しい材料73で充填平坦化されていることが好ましい。 When the grating is formed by photolithography, the duty ratio can be realized by changing the opening width of the grating of the photomask for each region, which is preferable because it can be realized at low cost. Also, when changing the duty ratio in a method of changing the grating depth or changing the material of the grating, such as when producing a narrow pitch grating, the line width becomes very narrow and difficult due to process limitations. Is also preferable. FIG. 8B shows an enlarged schematic view of the cross section of FIG. Each region is formed of a material which exhibits birefringence, the uneven structure of the surface is filled with a substantially equal material 73 to the ordinary refractive index of the birefringent material (n o) or the extraordinary refractive index (n e) It is preferable that it is planarized.

減光素子70を図1の光ヘッド装置10の減光素子18aとするときに、光源11から出射した光が、光ディスク16に向かう往路の光の偏光を円偏光に変換する1/4波長板(図示せず)を減光素子18aと対物レンズ15との間の光路に配置する。このとき往路の直線偏光の光に対し、減光素子18aは全ての領域で高い透過率を示すように配置する。一方、光ディスク16で反射された復路の光は、図示しない1/4波長板を透過後、往路の直線偏光の光と直交する直線偏光の光となり、この光が減光素子18aの領域ごとの異なる0次透過率により光量を変えて直進透過する。したがって、往路/復路が共通の光路に配置しても往路の光を効率よく光ディスクに導くことができるので好ましい。   When the light reducing element 70 is used as the light reducing element 18a of the optical head device 10 in FIG. 1, a quarter-wave plate that converts the polarized light of the light traveling from the light source 11 toward the optical disk 16 into circularly polarized light. (Not shown) is disposed in the optical path between the light reducing element 18 a and the objective lens 15. At this time, the dimming element 18a is arranged so as to exhibit high transmittance in all regions with respect to the linearly polarized light in the forward path. On the other hand, the return light reflected by the optical disk 16 passes through a quarter-wave plate (not shown) and becomes linearly polarized light that is orthogonal to the forward linearly polarized light. Transmits light in a straight line while changing the amount of light with different zero-order transmittance. Therefore, even if the forward / return paths are arranged on a common optical path, it is preferable because the forward light can be efficiently guided to the optical disc.

回折格子構造の特性として0次透過率について説明したが、±1次などの回折光の光路に光検出器を配置してもよい。利用する次元の回折光に合わせて光検出器を配置する光学系とする場合、領域ごとに回折効率を同様の光量の分布で受光させることで迷光を低減することができる。また、0次透過光以外の回折光を光検出器に導く減光素子は、往路と復路が共通する光路中に配置して復路で往路と異なる光路にすることができるので、減光素子がビームスプリッタの機能も含むので好ましい。   Although the 0th-order transmittance has been described as the characteristic of the diffraction grating structure, a photodetector may be disposed in the optical path of diffracted light such as ± 1st order. In the case of an optical system in which the photodetector is arranged in accordance with the diffracted light of the dimension to be used, stray light can be reduced by receiving the diffraction efficiency with a similar light amount distribution for each region. In addition, the dimming element that guides the diffracted light other than the 0th-order transmitted light to the photodetector can be arranged in an optical path that is common to the forward path and the return path so that the optical path can be different from the forward path. Since the function of a beam splitter is also included, it is preferable.

以上のような減光素子を光ヘッド装置10の18aおよび18b、またはいずれか一方に配置し、光検出器17に導かれる光は、図9の平面模式図として示される。光源11から出射される光が回折素子12で前述のように3つの光になる。光ディスク16の光情報記録層16aからの戻り光は、ビームスプリッタ13より光検出器17に導かれる。光検出器17には1つのメインビーム84と2つのサブビーム85、86がそれぞれ分割された受光エリア81、82、83へ導かれる。これらの受光エリアは、図9のようにさらに分割されていてもよい。   The light dimming elements as described above are arranged in one or both of 18a and 18b of the optical head device 10, and the light guided to the photodetector 17 is shown as a schematic plan view in FIG. The light emitted from the light source 11 is converted into three lights by the diffraction element 12 as described above. Return light from the optical information recording layer 16 a of the optical disk 16 is guided to the photodetector 17 by the beam splitter 13. One main beam 84 and two sub beams 85 and 86 are led to the light receiving areas 81, 82 and 83, respectively, which are divided into the photodetector 17. These light receiving areas may be further divided as shown in FIG.

一方、情報記録層16aと異なる図示しない層で反射される光は該層で焦点が合わないために光検出器17では大きく径が広がった迷光87となる。このとき、減光素子を光路中に配置しない場合、迷光87は、受光エリア81、82、83にも到達し、情報記録層16aからの信号光と重なり合い干渉する。そこで、本発明の減光素子を光路中に用いることで、88、89に示すような迷光が到達しない領域ができるので、信号光との干渉を低減できる。なお図9は、減光素子内の透過率変調による強度変調回折を考慮しない幾何光学的なシミュレーションを行った場合の模式図である。   On the other hand, light reflected by a layer (not shown) different from the information recording layer 16a is not focused on the layer, and therefore becomes stray light 87 having a large diameter in the photodetector 17. At this time, when the dimming element is not arranged in the optical path, the stray light 87 reaches the light receiving areas 81, 82, and 83, and overlaps with the signal light from the information recording layer 16a to interfere. Therefore, by using the dimming element of the present invention in the optical path, a region where stray light does not reach as shown in 88 and 89 can be formed, so that interference with signal light can be reduced. FIG. 9 is a schematic diagram when a geometric optical simulation is performed without considering intensity-modulated diffraction due to transmittance modulation in the light-reducing element.

この例では、図9の光検出器のサブビームの受光エリア82、83には、それぞれ減光素子のそれぞれの第2の領域と第3の領域に対応させて配置している。また、前述のようにメインビームの受光エリア81に対しても第2の領域と第3の領域に相当する領域を減光素子に設けることでメインビームと迷光との干渉を低減できるのでさらに好ましい。また、領域は複数の受光エリアを包絡する形状や、受光エリア形状と相似形であってもよい。   In this example, the light receiving areas 82 and 83 of the sub beam of the photodetector shown in FIG. 9 are arranged corresponding to the second and third areas of the light reducing element, respectively. Further, as described above, it is further preferable that the light receiving area 81 for the main beam is provided with regions corresponding to the second region and the third region in the light reducing element so that interference between the main beam and stray light can be reduced. . The region may have a shape that envelops a plurality of light receiving areas, or a shape similar to the shape of the light receiving areas.

このように第2の領域および第3の領域の形状は、図1の減光素子18aまたは18bを透過する多層光ディスクの他層からの戻り光である迷光の光束のうち、図9の受光エリア82、83あるいは、受光エリア81、82、83に到達する光束が透過する領域に配置するのが好ましい。また、情報記録層が4層以上ある多層光ディスクの場合、他層とは自層に対して隣り合う層に対応することが好ましい。これは隣り合う層からの迷光の光密度が光検出器上で高いクロストークとしてとくに問題となるためである。   Thus, the shape of the second region and the third region is the light receiving area of FIG. 9 among the stray light flux that is the return light from the other layer of the multilayer optical disk that transmits the light reducing element 18a or 18b of FIG. 82 or 83, or in a region where a light beam reaching the light receiving areas 81, 82, and 83 is transmitted. In the case of a multilayer optical disc having four or more information recording layers, the other layer preferably corresponds to a layer adjacent to the own layer. This is because the light density of stray light from adjacent layers is particularly problematic as high crosstalk on the photodetector.

(第3の実施の態様)
図10に変調素子と偏光子とを組み合わせた減光素子からなる第3の実施形態を示す。入射する光を減光する方法として、入射する光の偏光方向を変調素子によって変調し、特定の偏光状態の光の成分を遮断することによって実現するものである。変調素子は、偏光板によって入射する光の偏光状態に対す出射する光の偏光状態を変えるものでもよく、また旋光子のように入射光の偏光状態を回転させて出射させるものであってもよい。ここでは変調素子として波長板を用いた態様について説明する。図10(a)は、偏光子97の平面模式図であり、偏光子は透過領域98と偏光遮断領域99からなる。偏光遮断領域99は、入射する光の特定の成分を反射、回折などで直進透過させない作用を有する。例えば、図10(a)の偏光子97の平面内でX−X´の直線方向に平行な直線偏光の光をs偏光、偏光子97の平面内でX−X´の直線方向に垂直な直線偏光の光をp偏光、と定義し、偏光遮断領域99はp偏光の成分のみを透過させない機能を有するものである。当然ながら、s偏光に対応する偏光遮断領域であってもよい。
(Third embodiment)
FIG. 10 shows a third embodiment including a dimming element in which a modulation element and a polarizer are combined. As a method of dimming incident light, the polarization direction of incident light is modulated by a modulation element, and light components in a specific polarization state are blocked. The modulation element may be one that changes the polarization state of the emitted light with respect to the polarization state of the incident light by the polarizing plate, or may be one that rotates the polarization state of the incident light and emits it like an optical rotator. . Here, a mode in which a wave plate is used as the modulation element will be described. FIG. 10A is a schematic plan view of the polarizer 97, and the polarizer includes a transmission region 98 and a polarization blocking region 99. The polarization blocking region 99 has a function of preventing a specific component of incident light from being transmitted straight through reflection or diffraction. For example, linearly polarized light parallel to the XX ′ linear direction in the plane of the polarizer 97 in FIG. 10A is s-polarized light, and perpendicular to the XX ′ linear direction in the plane of the polarizer 97. Linearly polarized light is defined as p-polarized light, and the polarization blocking region 99 has a function of not transmitting only the p-polarized component. Of course, it may be a polarization blocking region corresponding to s-polarized light.

また、波長板96を構成する領域の形状は、図5(a)の平面模式図と同じ形状を有し同一部分には同一符号を付して重複説明を避ける。X−X´の直線方向に切断したとき図10(b)に減光素子94の断面図を示す。減光素子94は、波長板96と偏光子97とを重ねて構成する場合、少なくとも波長板の96の第2の領域61および第3の領域62を出射する迷光が偏光子97の偏光遮断領域99に入射するように光軸方向から見たときに偏光遮断領域99内に位置するとよい。ここでは偏光遮断領域99は正方形としているが、第2の領域および第3の領域を出射する光が入射するように配置すれば偏光遮断領域の外縁の形状は問わない。   Moreover, the shape of the area | region which comprises the wavelength plate 96 has the same shape as the plane schematic diagram of Fig.5 (a), attaches | subjects the same code | symbol to the same part, and avoids duplication description. FIG. 10B shows a cross-sectional view of the dimming element 94 when cut in the linear direction of XX ′. When the light reducing element 94 is configured by overlapping the wave plate 96 and the polarizer 97, stray light emitted from at least the second region 61 and the third region 62 of the wave plate 96 is a polarization blocking region of the polarizer 97. When viewed from the direction of the optical axis so as to be incident on the optical axis 99, it may be positioned within the polarization blocking region 99. Here, the polarization blocking region 99 is square, but the outer edge shape of the polarization blocking region is not limited as long as the light emitted from the second region and the third region is incident.

第2の領域61および第3の領域62は、光学的に複屈折性を示す材料で構成され、厚さを調整することによって各領域のリタデーション値を調整する。このようにリタデーション値を与えることで一様な偏光状態で入射する光の偏光状態を波長板から光が出射する領域ごとに変化させることができる。例えば、減光素子94にs偏光100%となる直線偏光の光が入射する場合、波長板の第1の領域を出射する光は偏光状態を変えずs偏光で出射し、第2の領域51は入射する光の波長λに対し、(2n+1)λ/2のリタデーション値を有するように設計する(n≧0の整数)。つまり、s偏光100%で入射した光は、p偏光の成分がほぼ100%となって出射する。第3の領域62はさらに3つの分割領域62a、62bおよび62cに分割され、62a、62b、62cの順にs偏光で出射する光の成分の割合が段階的に大きくなるように設計される。   The second region 61 and the third region 62 are made of a material exhibiting optically birefringence, and the retardation value of each region is adjusted by adjusting the thickness. By providing the retardation value in this way, the polarization state of light incident in a uniform polarization state can be changed for each region where light is emitted from the wave plate. For example, when linearly polarized light having 100% s-polarized light is incident on the dimming element 94, the light emitted from the first region of the wave plate is emitted as s-polarized light without changing the polarization state, and the second region 51 Is designed to have a retardation value of (2n + 1) λ / 2 with respect to the wavelength λ of the incident light (n ≧ 0). That is, light incident with 100% s-polarized light is emitted with a p-polarized component of almost 100%. The third region 62 is further divided into three divided regions 62a, 62b, and 62c, and is designed so that the ratio of the component of light emitted as s-polarized light increases stepwise in the order of 62a, 62b, and 62c.

波長板のそれぞれの領域を出射する光は、偏光子97に入射し、偏光遮断領域99でp偏光成分を遮断してs偏光成分を出射する。減光素子94を出射する光(s偏光)は、領域ごとに光の強度が異なって出射されるので、光ヘッド装置において信号光と迷光とのクロストークによる影響を低減できるものである。この場合は、偏光遮断領域99をサブビームに対応して配置したが、メインビームを含む領域にも配置してもよい。また上記の例のようにs偏光100%の光が入射する場合は、偏光遮断領域を光が入射する有効領域全面に設けてもよく、第1の領域を出射する光は偏光子で大きく減光されることなく減光素子94を出射するので同様の効果が得られる。なお、偏光子97は、回折格子を用いてs偏光を透過してp偏光を直進方向とは別の方向に回折させるものでもよく、複屈折材料として液晶を用いて実現することができる。また、液晶に電圧を印加できるように透明電極で液晶を挟持させると、例えば、非電圧印加時に偏光子として機能し、電圧印加時に透過させる切り替えをすることができる。この場合、クロストークの影響が少ない単層の光ディスクの記録・再生時には液晶に電圧を印加して光利用効率を高めることができる。また、偏光子に限らず、波長板にも電圧を印加できるようにすることで、同様に減光する機能の切り替えができる。   The light emitted from the respective regions of the wave plate enters the polarizer 97, blocks the p-polarized component at the polarization blocking region 99, and emits the s-polarized component. Since the light (s-polarized light) emitted from the dimming element 94 is emitted with different light intensity for each region, the influence of crosstalk between signal light and stray light can be reduced in the optical head device. In this case, the polarization blocking region 99 is arranged corresponding to the sub beam, but may be arranged also in the region including the main beam. When 100% s-polarized light is incident as in the above example, the polarization blocking region may be provided over the entire effective region where the light is incident, and the light emitted from the first region is greatly reduced by the polarizer. Since the dimming element 94 is emitted without being illuminated, the same effect can be obtained. The polarizer 97 may be one that transmits s-polarized light using a diffraction grating and diffracts p-polarized light in a direction different from the straight direction, and can be realized using liquid crystal as a birefringent material. Further, when the liquid crystal is sandwiched between transparent electrodes so that a voltage can be applied to the liquid crystal, for example, it can function as a polarizer when a non-voltage is applied, and can be switched to transmit when a voltage is applied. In this case, it is possible to increase the light utilization efficiency by applying a voltage to the liquid crystal at the time of recording / reproduction of a single-layer optical disc with little influence of crosstalk. In addition, the function of dimming can be similarly switched by applying a voltage to the wave plate as well as the polarizer.

減光素子94は、波長板96と偏光子97とが重ねて一体化した構成に限らず、これらが離れて配置されていてもよい。例えば、復路の光路において波長板96がコリメータレンズ14bの直後、偏光子97が光検出器の直前に配置される場合、信号光のメインビームは、集光された状態で偏光子97の透過領域98を通過するのでs偏光成分だけでなくp偏光成分も減光されずに光検出器に到達するため、メインビームの光利用効率は大きくなる。   The dimming element 94 is not limited to the configuration in which the wave plate 96 and the polarizer 97 are overlapped and integrated, but they may be arranged apart from each other. For example, when the wave plate 96 is disposed immediately after the collimator lens 14b and the polarizer 97 is disposed immediately before the photodetector in the return optical path, the main beam of the signal light is condensed and transmitted through the polarizer 97. Since the light passes through 98, not only the s-polarized component but also the p-polarized component reaches the photodetector without being dimmed, so that the light utilization efficiency of the main beam increases.

また、減光素子94に入射する光の偏光状態が直線偏光である場合の作用について説明したが、入射する偏光状態が円偏光や楕円偏光でもよく、例えば位相板に円偏光から直線偏光の状態に変換する機能を有する形態で、偏光子に入射させてもよい。また、偏光子は直線偏光の特定の成分を遮断する作用を有するほかに、コレステリック液晶を用いるなどして特定の方向の円偏光を遮断する作用を有してもよい。このように入射する光の偏光状態を変える波長板を含む減光素子は光ヘッド装置において往路/復路に共通する光路ではなく、図1の光ヘッド装置において復路の光路となる減光素子18bの位置に配置する。   In addition, the operation in the case where the polarization state of the light incident on the dimming element 94 is linearly polarized light has been described, but the incident polarization state may be circularly polarized light or elliptically polarized light. The light may be incident on the polarizer in a form having a function of converting into a polarizer. In addition to the action of blocking a specific component of linearly polarized light, the polarizer may have a function of blocking circularly polarized light in a specific direction by using a cholesteric liquid crystal. The dimming element including the wave plate for changing the polarization state of the incident light is not an optical path common to the forward path / return path in the optical head apparatus, but the dimming element 18b serving as the optical path of the return path in the optical head apparatus of FIG. Place in position.

(実施例1)
図5(a)に示す減光素子40の構成により、波長405nmにおける各領域の透過率を下記のように設定する。各領域は、ガラス基板上に真空蒸着法によりSiOとTaの多層膜を積層し、領域ごとの全膜厚を変えることで透過率の調整を行う。とくに高い透過率を必要とする第1の領域41には反射防止膜を積層し、約100%に近い透過率を実現する。また、透過率約0%の領域42、44には真空蒸着法によりガラス基板上にAl膜を積層する。以上の方法により、第1の領域41の透過率=約100%、第3の領域(領域R)43c、45cの透過率=約90%、第3の領域(領域R)43b、45bの透過率=約50%、第3の領域(領域R)43a、45aの透過率=約10%、第2の領域42、44の透過率=約0%と領域ごとの透過率に変化を与える。
Example 1
With the configuration of the light reducing element 40 shown in FIG. 5A, the transmittance of each region at a wavelength of 405 nm is set as follows. In each region, a multilayer film of SiO 2 and Ta 2 O 5 is laminated on a glass substrate by vacuum deposition, and the transmittance is adjusted by changing the total film thickness for each region. In particular, an antireflection film is laminated on the first region 41 that requires a high transmittance to achieve a transmittance close to about 100%. Further, in the regions 42 and 44 having a transmittance of about 0%, an Al film is laminated on the glass substrate by vacuum deposition. By the above method, the transmittance of the first region 41 is about 100%, the transmittance of the third regions (region R 3 ) 43c and 45c is about 90%, and the third region (region R 2 ) 43b and 45b. The transmittance of the third region (region R 1 ) 43a and 45a is about 10%, the transmittance of the second regions 42 and 44 is about 0%, and the transmittance of each region changes. give.

ここで、偏光素子40に入射する信号光の有効径を約4mmφ、第2の領域の径は約800μmφ、第3の領域を構成する分割領域R、RおよびRの幅はそれぞれ75μm、50μmおよび75μmとする。 Here, the effective diameter of the signal light incident on the polarizing element 40 is about 4 mmφ, the diameter of the second region is about 800 μmφ, and the widths of the divided regions R 1 , R 2 and R 3 constituting the third region are each 75 μm. , 50 μm and 75 μm.

図11はこの減光素子40を図1の光ヘッド装置の18aまたは18bに配置するときの光検出器17で受光するメインビームの迷光の強弱を波動工学的なシミュレーションによって示す図であり、色が濃いほど光が強い位置を示す。図9で領域88、89は、図11の領域101a、101bに相当する。このように領域101a、101bのサブビーム用の光受光器に対応する迷光が十分に抑制することができる。また、図14の実線は領域101a、101bの中心を通る断面で迷光の強度分布を示す図であるが、これからも光検出器への迷光を小さく抑制できることがわかる。   FIG. 11 is a diagram showing the intensity of stray light of the main beam received by the photodetector 17 when the dimming element 40 is disposed on the optical head device 18a or 18b of FIG. The darker the position, the stronger the light. In FIG. 9, areas 88 and 89 correspond to the areas 101a and 101b in FIG. In this manner, stray light corresponding to the sub-beam optical receivers in the regions 101a and 101b can be sufficiently suppressed. Moreover, although the solid line of FIG. 14 is a figure which shows the intensity distribution of a stray light in the cross section which passes along the center of area | region 101a, 101b, it turns out that the stray light to a photodetector can be suppressed small from now on.

ここで、光検出器の受光エリアとなる領域に到達する信号光と迷光との重なりを次の式を用いて評価する。
I=∫I・IdS
は信号光の強度、Iは迷光の強度を示し、この積を面積で積分することによってIを導き出す。すなわち、Iの値が大きいほど信号光と迷光とが重なって受光エリアに到達する光量が多く、干渉の影響を受けやすい。1つのサブビームの受光エリアについて評価したところ、Iの値は、減光素子40を設置しない場合を100%としたときに対して1.9%となる。
Here, the overlap of the signal light and the stray light that reaches the region serving as the light receiving area of the photodetector is evaluated using the following equation.
I = ∫I 1 · I 2 dS
I 1 represents the intensity of the signal light, I 2 represents the intensity of the stray light, and I is derived by integrating this product with the area. That is, as the value of I increases, the amount of signal light and stray light overlap to reach the light receiving area, and is more susceptible to interference. When the light receiving area of one sub-beam is evaluated, the value of I is 1.9% when the case where the dimming element 40 is not installed is 100%.

(実施例2)
実施例1と同じ減光素子40の構成において、減光素子40に入射する信号光の有効径を約4mmφ、第2の領域の径は約800μmφ、第3の領域を構成する分割領域R、RおよびRの幅はそれぞれ495μm、330μmおよび495μmとする。その他の透過率の条件は実施例1と同じとする。
(Example 2)
In the same configuration of the dimming element 40 as in the first embodiment, the effective diameter of the signal light incident on the dimming element 40 is about 4 mmφ, the diameter of the second region is about 800 μmφ, and the divided region R 1 constituting the third region. , R 2 and R 3 have widths of 495 μm, 330 μm and 495 μm, respectively. Other transmittance conditions are the same as those in the first embodiment.

このとき、光検出器の受光エリアとなる領域に到達する信号光と迷光との重なりを上記と同様に評価する。その結果、Iの値は、1.4%となる。   At this time, the overlap between the signal light and the stray light that reaches the region serving as the light receiving area of the photodetector is evaluated in the same manner as described above. As a result, the value of I is 1.4%.

(実施例3)
同様に減光素子40の構成において、減光素子40に入射する信号光の有効径を約4mmφ、第2の領域の径は約560μmφ、第3の領域を構成する分割領域R、RおよびRの幅はそれぞれ75μm、50μmおよび75μmとする。また、透過率は、第1の領域41の透過率=約100%、第3の領域(領域R)43c、45cの透過率=約36%、第3の領域(領域R2)43b、45bの透過率=約16%、第3の領域(領域R)43a、45aの透過率=約4%、第2の領域42、44の透過率=約0%と領域ごとの透過率に変化を与える。
(Example 3)
Similarly, in the configuration of the dimming element 40, the effective diameter of the signal light incident on the dimming element 40 is about 4 mmφ, the diameter of the second region is about 560 μmφ, and the divided regions R 1 and R 2 constituting the third region. And the width of R 3 is 75 μm, 50 μm and 75 μm, respectively. The transmittance of the first region 41 is about 100%, the transmittance of the third regions (region R 3 ) 43c and 45c is about 36%, and the third regions (region R2) 43b and 45b. The transmittance of the third region (region R 1 ) 43a and 45a is about 4%, the transmittance of the second regions 42 and 44 is about 0%, and the transmittance of each region changes. give.

このとき、光検出器の受光エリアとなる領域に到達する信号光と迷光との重なりを上記と同様に評価する。その結果、Iの値は、2.2%となる。   At this time, the overlap between the signal light and the stray light that reaches the region serving as the light receiving area of the photodetector is evaluated in the same manner as described above. As a result, the value of I is 2.2%.

(比較例)
図12に示すように、透過率が約100%の第1の領域111と透過率が0%の第2の領域112、113で形成される減光素子110を用いた場合について説明する。このとき、実施例において環状形となる第3の領域が、その幅を二分してそれぞれ第2の領域と第1の領域とした他は実施例と同様である。すなわち、第2の領域の径は約1mmφとする。作製方法は実施例と同様にガラス基板上にSiOとTaの多層膜で透過率が約100%の第1の領域111、Al膜により透過率約0%の領域112、113を形成する。
(Comparative example)
As shown in FIG. 12, a description will be given of a case in which a light reducing element 110 formed of a first region 111 having a transmittance of about 100% and second regions 112 and 113 having a transmittance of 0% is used. At this time, the third region having an annular shape in the embodiment is the same as the embodiment except that the width is divided into the second region and the first region, respectively. That is, the diameter of the second region is about 1 mmφ. As in the embodiment, the first region 111 having a transmittance of about 100% made of a multilayer film of SiO 2 and Ta 2 O 5 is formed on a glass substrate, and the regions 112 and 113 having a transmittance of about 0% made of an Al film are formed on the glass substrate. Form.

図13はこの減光素子110を図1の光ヘッド装置の18aまたは18bに配置するときの光検出器17で受光するメインビーム迷光の強弱を波動工学的なシミュレーションによって示す図であり、同様に色が濃いほど光が強い位置を示す。図9で領域88、89は、図13の領域121a、121bに相当する。このように領域121a、121bのサブビーム用の光受光器に対応する迷光が強度変調回折によって領域121a、121bの内部に回りこんでいることがわかる。また、図14の破線は領域121a、121bの中心を通る断面で迷光の強度分布を示す図であるが、とくに領域121a、121bの中心部で高い強度を示す。これは透過率が異なる領域間での強度変調による光の回り込みの影響で、迷光を十分に抑制できないことがわかる。   FIG. 13 is a diagram showing the intensity of the main beam stray light received by the photodetector 17 when the dimming element 110 is disposed in the optical head device 18a or 18b of FIG. The darker the color, the stronger the light. Regions 88 and 89 in FIG. 9 correspond to the regions 121a and 121b in FIG. Thus, it can be seen that stray light corresponding to the sub-beam optical receivers in the regions 121a and 121b wraps around the regions 121a and 121b by intensity modulation diffraction. 14 shows the intensity distribution of stray light in a cross section passing through the centers of the regions 121a and 121b. In particular, the broken lines show high intensity at the center of the regions 121a and 121b. This indicates that stray light cannot be sufficiently suppressed due to the influence of light wraparound due to intensity modulation between regions having different transmittances.

実施例と同様に信号光と迷光の重なりを評価するIの値は、減光素子40を設置しない場合を100%としたときに対して8.7%となり、実施例のように第3の領域を設ける減光素子40に比べて迷光が大きく低減されない。これにより、信号光のサブビームと迷光が干渉しノイズが発生するクロストークを引き起こす原因となる。とくに光検出器が複数の受光エリアに分割され、各分割エリアに到達する光量の差動信号をエラー信号として検出する検出系では、このIの値が大きくなることで生成される信号の誤り率も高くなるので、比較例に対する実施例の結果は、誤り率を大きく低減することが期待できるものである。   Similar to the example, the value of I for evaluating the overlap of the signal light and the stray light is 8.7% when the dimming element 40 is not installed and is 100%. The stray light is not greatly reduced compared to the dimming element 40 provided with the region. As a result, the sub beam of the signal light and the stray light interfere with each other, causing a crosstalk that generates noise. In particular, in a detection system in which a photodetector is divided into a plurality of light receiving areas and a differential signal having a light quantity reaching each divided area is detected as an error signal, an error rate of a signal generated by increasing this I value. Therefore, the result of the example for the comparative example can be expected to greatly reduce the error rate.

以上のように、本発明に係る光ヘッド装置は、多層光ディスクから反射されて光検出器までの光路中に減光素子を配置することで、光検出器の受光エリアに多層光ディスクによって発現する迷光の光量を効率よく減じることができる。したがって、信号光とのクロストークによる影響を低減でき有用である。   As described above, the optical head device according to the present invention has the stray light that is reflected by the multilayer optical disc in the light receiving area of the photodetector by arranging the dimming element in the optical path reflected from the multilayer optical disc to the photodetector. The amount of light can be reduced efficiently. Therefore, the influence of crosstalk with signal light can be reduced, which is useful.

光ヘッド装置の概念的構成図Conceptual configuration diagram of optical head device 減光素子の平面模式図(第1の実施態様)Planar schematic diagram of the light-reducing element (first embodiment) 第3の領域の透過率分布図Transmittance distribution diagram of the third region 減光素子を透過する光路の断面模式図Schematic cross-sectional view of the optical path that passes through the dimmer 減光素子の平面模式図(第2の実施態様)Planar schematic diagram of the light reduction element (second embodiment) 光学多層膜により形成される減光素子の断面模式図Cross-sectional schematic diagram of a light-reducing element formed by an optical multilayer film コレステリック相液晶材料により形成される減光素子の断面模式図Cross-sectional schematic diagram of a light-reducing element formed of a cholesteric phase liquid crystal material 回折作用を有する減光素子の断面模式図Cross-sectional schematic diagram of a dimming element with diffractive action 光検出器の受光模式図Photodetection schematic diagram of photodetector 偏光子の平面模式図および減光素子の断面模式図(第3の実施態様)Planar schematic diagram of polarizer and cross-sectional schematic diagram of dimming element (third embodiment) 光検出器で受光する迷光の強度分布図(実施例)Example of intensity distribution of stray light received by photodetector 減光素子の平面模式図(比較例)Schematic diagram of the dimming element (comparative example) 光検出器で受光する迷光の強度分布図(比較例)Intensity distribution diagram of stray light received by photodetector (comparative example) サブビーム受光エリアの受光強度分布図Received light intensity distribution in the sub-beam light receiving area 2層光ディスク再生時の光路模式図Schematic diagram of the optical path when playing a two-layer optical disc 回折素子の平面模式図(従来例)Schematic diagram of diffraction element (conventional example)

符号の説明Explanation of symbols

10:光ヘッド装置
11:光源
12:回折素子
13:ビームスプリッタ
14a、14b、31:コリメータレンズ
15:対物レンズ
16:光ディスク
16a:情報記録面
17、33:光検出器
18a、18b、20a、20b、20c、20d、32、40、46、50、60、70、94、110:減光素子
21a、21b、21c、21d、41、47、111:第1の領域
22a、22b、22c、22d、32a、32b、42、44、48、51、61、71、112、113:第2の領域
23a、23b、23c、23d、43、45、49、52、62、72:第3の領域
33a、33b、81、82、83:受光エリア
34、36:迷光の外径
35、37:第2の領域の中心を通る迷光の光線軌道
38、84:メインビーム(信号光)
39a、39b、85、86:サブビーム(信号光)
43a、45a、49a、52a、62a、72a:領域R
43b、45b、49b、52b、62b、72b:領域R
43c、45c、52c、62c、72c:領域R
53、63、64、74:ガラス基板
73:等方性材料
87:迷光
88、89:迷光が到達しない領域
96:波長板
97:偏光子
98:透過領域
99:偏光遮断領域
100:光検出器の迷光強度分布シミュレーション図(実施例)
101a、101b、121a、121b:サブビーム検出領域
102、122:迷光の外径
120:光検出器の迷光強度分布シミュレーション図(比較例)
201、202、203:光ディスクの層
204、205、206:光ディスクから反射される光
210:ホログラム素子
211:回折格子
212:回折格子の無い領域
DESCRIPTION OF SYMBOLS 10: Optical head apparatus 11: Light source 12: Diffraction element 13: Beam splitter 14a, 14b, 31: Collimator lens 15: Objective lens 16: Optical disk 16a: Information recording surface 17, 33: Photo detectors 18a, 18b, 20a, 20b 20c, 20d, 32, 40, 46, 50, 60, 70, 94, 110: Dimming elements 21a, 21b, 21c, 21d, 41, 47, 111: First regions 22a, 22b, 22c, 22d, 32a, 32b, 42, 44, 48, 51, 61, 71, 112, 113: second region 23a, 23b, 23c, 23d, 43, 45, 49, 52, 62, 72: third region 33a, 33b, 81, 82, 83: light receiving areas 34, 36: stray light outer diameter 35, 37: stray light ray trajectories 38, 84 passing through the center of the second region: main beam Signal light)
39a, 39b, 85, 86: sub beam (signal light)
43a, 45a, 49a, 52a, 62a, 72a: region R 1
43b, 45b, 49b, 52b, 62b, 72b: region R 2
43c, 45c, 52c, 62c, 72c: region R 3
53, 63, 64, 74: Glass substrate 73: Isotropic material 87: Stray light 88, 89: Area where stray light does not reach 96: Wave plate 97: Polarizer 98: Transmission area 99: Polarization blocking area 100: Photo detector Of stray light intensity distribution (Example)
101a, 101b, 121a, 121b: sub-beam detection regions 102, 122: stray light outer diameter 120: stray light intensity distribution simulation diagram of photodetector (comparative example)
201, 202, 203: Optical disc layers 204, 205, 206: Light reflected from the optical disc 210: Hologram element 211: Diffraction grating 212: Area without diffraction grating

Claims (9)

光源と、前記光源からの出射光を光ディスクの情報記録面上に集光させる対物レンズと、集光されて光ディスクの情報記録面によって反射された戻り光を検出する複数の受光エリアを有する光検出器とを備える光ヘッド装置であって、
前記光ディスクから前記光検出器へ向かう戻り光の光路中に、前記戻り光が入射する面内に前記戻り光の光量を減じて透過または回折させる機能を有する減光素子が配置され、
前記減光素子の少なくとも前記戻り光が入射する有効領域は、第1の領域と第2の領域と第3の領域からなる3つの領域に分割され、
前記第2の領域の外縁は、前記第3の領域の外縁と接しない内側にあるかまたは、前記第3の領域の外縁と一部接する内側にあり、
前記第3の領域の外縁は、前記第1の領域の外縁と接しない内側にあるかまたは、前記第1の領域の外縁と一部接する内側にあり、
前記減光素子に入射する前記戻り光を直進透過して前記光検出器に入射する光の割合を透過率とすると、前記第1の領域の前記戻り光の透過率をT、前記第2の領域の前記戻り光の透過率をTとするときTはTより大きく、
前記第3の領域の前記戻り光の透過率はTより小さくかつTより大きく、
前記光源からの光が集光された前記情報記録面とは異なる前記光ディスクの面から反射されて前記光検出器に導かれる迷光の光束のうち、少なくとも一部が前記減光素子の前記第2の領域に入射し、前記光検出器の少なくとも一部の受光エリアへ到達する迷光の光量を減少させる光ヘッド装置。
Light detection having a light source, an objective lens for condensing the light emitted from the light source on the information recording surface of the optical disc, and a plurality of light receiving areas for detecting the return light that is collected and reflected by the information recording surface of the optical disc An optical head device comprising:
In the optical path of the return light from the optical disc to the photodetector, a dimming element having a function of reducing or transmitting or diffracting the amount of the return light is disposed in a plane on which the return light is incident,
The effective region where at least the return light of the dimming element is incident is divided into three regions including a first region, a second region, and a third region,
The outer edge of the second region is on the inner side not in contact with the outer edge of the third region, or is on the inner side partially in contact with the outer edge of the third region,
The outer edge of the third region is on the inner side not in contact with the outer edge of the first region, or on the inner side partially in contact with the outer edge of the first region,
When the ratio of the light that travels straight through the return light incident on the dimming element and is incident on the photodetector is the transmittance, the transmittance of the return light in the first region is T 1 , the second T 1 is greater than T 2 when the transmittance of the returning light region and T 2,
The return light transmittance of the third region is less than T 1 and greater than T 2 ;
At least a part of the stray light beam reflected from the surface of the optical disc different from the information recording surface on which the light from the light source is collected and guided to the photodetector is the second of the dimming element. An optical head device that reduces the amount of stray light that enters the region and reaches at least a part of the light receiving area of the photodetector.
前記減光素子は、前記第3の領域内の前記戻り光の透過率が一様であるTとするとき、前記減光素子のTとTとの差および、前記減光素子のTとTとの差が、0%より大きく60%以下である請求項1に記載の光ヘッド装置。 When the light attenuation element is T 3 in which the transmittance of the return light in the third region is uniform, the difference between T 1 and T 3 of the light attenuation element and the light attenuation element 2. The optical head device according to claim 1, wherein a difference between T 3 and T 2 is greater than 0% and equal to or less than 60%. 前記第3の領域はm個の領域R〜R(m≧2の整数)に分割され、
前記領域Rの外縁は、前記第1の領域の外縁と接しない内側にあるかまたは、前記第1の領域の外縁と一部接する内側にあり、
xを2〜mの間の整数とするとき領域Rx−1の外縁は領域Rの外縁と接しない内側にあるかまたは、前記領域Rx−1の外縁と一部接する内側にあり、
前記第2の領域の外縁は、前記領域Rの外縁と接しない内側にあるかまたは、前記領域Rと一部接する内側にあり、
前記領域R、領域R、…、領域Rを透過または回折する前記戻り光の透過率をそれぞれTr1、Tr2、…、Trmとするとき、Tr1<Tr2<…<Trmである請求項1に記載の光ヘッド装置。
The third region is divided into m regions R 1 to R m (an integer of m ≧ 2),
Outer edge of the region R m is either on the inside which is not in contact with the outer edge of the first region or is inside the contact outer edge and a portion of said first region,
the outer edge of the region R x-1 when the integer between the x of 2~m is or are inside which is not in contact with the outer edge of the region R x, is inside the contact part and the outer edge of said region R x-1,
The outer edge of the second region is on the inner side not in contact with the outer edge of the region R 1 , or is on the inner side partially in contact with the region R 1 ,
The region R 1, region R 2, ..., region R m transmission or diffraction that the transmittance of the returning light respectively T r1, T r2, ..., when the T rm, T r1 <T r2 <... <T The optical head device according to claim 1, which is rm .
前記減光素子のTとTrmとの差、前記減光素子のTrxとTrx−1との差および、前記減光素子のTr1とTとの差が、0%より大きく40%以下である請求項3に記載の光ヘッド装置。 The difference between T 1 and T rm of the dimming element, the difference between T rx and T rx−1 of the dimming element, and the difference between T r1 and T 2 of the dimming element is greater than 0%. 4. The optical head device according to claim 3, wherein the optical head device is 40% or less. 前記減光素子は、少なくとも前記第2の領域および前記第3の領域が、入射する前記戻り光の光量を減ずる光学多層膜または、コレステリック相液晶層を含む請求項1〜4いずれか1項に記載の光ヘッド装置。   5. The light-attenuating element according to claim 1, wherein at least the second region and the third region include an optical multilayer film or a cholesteric phase liquid crystal layer that reduces the amount of incident return light. The optical head device described. 前記減光素子は、少なくとも前記第2の領域および前記第3の領域が、入射する前記戻り光を回折させて直進透過する光を減ずる回折格子構造を含む請求項1〜4いずれか1項の記載の光ヘッド装置。   5. The light attenuation element according to claim 1, wherein at least the second region and the third region include a diffraction grating structure that diffracts the incident return light and reduces light that passes straight through. The optical head device described. 前記減光素子は、少なくとも前記第1の領域および前記第3の領域が入射する前記戻り光を回折させる回折光を発現する回折格子構造を有し、前記回折光の光路の光検出器で受光させる請求項1〜4のいずれか1項に記載の光ヘッド装置。   The dimming element has a diffraction grating structure that expresses diffracted light that diffracts the return light incident on at least the first region and the third region, and is received by a photodetector in the optical path of the diffracted light. The optical head device according to any one of claims 1 to 4. 前記減光素子の前記回折格子構造は、屈折率異方性を有する複屈折材料で形成され、
前記回折格子構造は前記複屈折材料の常光屈折率または異常光屈折率と実質的に等しい屈折率を有する等方性材料によって充填平坦化されている請求項7に記載の光ヘッド装置。
The diffraction grating structure of the dimming element is formed of a birefringent material having refractive index anisotropy,
8. The optical head device according to claim 7, wherein the diffraction grating structure is filled and flattened with an isotropic material having a refractive index substantially equal to an ordinary light refractive index or an extraordinary light refractive index of the birefringent material.
前記減光素子は、入射する光の進行方向の順に入射する光の偏光状態の少なくとも一部を変える変調素子と偏光子とが配置される構成であり、
前記偏光子は第1の偏光状態の光を透過させるとともに前記第1の偏光状態と直交する第2の偏光状態の光を遮断させ、
前記第1の領域を出射する光は、前記変調素子で第1の偏光状態の光となって前記偏光子を透過し、前記第2の領域を出射する光は、前記変調素子で第2の偏光状態となって前記偏光子を透過せず、前記第3の領域を出射する光は、前記変調素子で前記第1の偏光状態と前記第2の偏光状態が混在して前記第1の偏光状態の光のみ透過させる請求項1〜4いずれか1項に記載の光ヘッド装置。
The dimming element has a configuration in which a modulation element and a polarizer that change at least a part of the polarization state of incident light in order of the traveling direction of the incident light are arranged,
The polarizer transmits light in a first polarization state and blocks light in a second polarization state orthogonal to the first polarization state;
The light emitted from the first region becomes light in the first polarization state by the modulation element, passes through the polarizer, and the light emitted from the second region is second by the modulation element. The light that is polarized and does not transmit through the polarizer and exits the third region is mixed with the first polarization state and the second polarization state in the modulation element. The optical head device according to claim 1, wherein only the light in the state is transmitted.
JP2008098384A 2007-04-06 2008-04-04 Optical head device Ceased JP2009176394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008098384A JP2009176394A (en) 2007-04-06 2008-04-04 Optical head device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007100785 2007-04-06
JP2007334859 2007-12-26
JP2008098384A JP2009176394A (en) 2007-04-06 2008-04-04 Optical head device

Publications (1)

Publication Number Publication Date
JP2009176394A true JP2009176394A (en) 2009-08-06

Family

ID=41031317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008098384A Ceased JP2009176394A (en) 2007-04-06 2008-04-04 Optical head device

Country Status (1)

Country Link
JP (1) JP2009176394A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234121A (en) * 1992-02-24 1993-09-10 Alps Electric Co Ltd Optical head device
JP2005203090A (en) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd Optical pickup
JP2006344344A (en) * 2005-03-02 2006-12-21 Ricoh Co Ltd Extraction optical system, optical pickup apparatus, and optical disk apparatus
WO2007105767A1 (en) * 2006-03-16 2007-09-20 Asahi Glass Co., Ltd. Optical head device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234121A (en) * 1992-02-24 1993-09-10 Alps Electric Co Ltd Optical head device
JP2005203090A (en) * 2004-01-14 2005-07-28 Samsung Electronics Co Ltd Optical pickup
JP2006344344A (en) * 2005-03-02 2006-12-21 Ricoh Co Ltd Extraction optical system, optical pickup apparatus, and optical disk apparatus
WO2007105767A1 (en) * 2006-03-16 2007-09-20 Asahi Glass Co., Ltd. Optical head device

Similar Documents

Publication Publication Date Title
JP4341332B2 (en) Optical head device
WO2007105767A1 (en) Optical head device
US7463569B2 (en) Optical disk apparatus with a wavelength plate having a two-dimensional array of birefringent regions
JP2655077B2 (en) Optical head device
US8040782B2 (en) Wavelength-selective light-shielding element and optical head using the same
WO2010016559A1 (en) Diffraction grating, aberration correction element and optical head device
JP4560906B2 (en) Optical head device
US6894958B2 (en) Optical system for detecting data signal and tracking error signal
KR101450934B1 (en) Optical head device
JP4797706B2 (en) Optical head device
JP4561080B2 (en) Diffraction element and optical head device
JP2009176394A (en) Optical head device
JP4949262B2 (en) Optical disk device
JP2009158075A (en) Optical head device
JP4507738B2 (en) Laminated wave plate and optical pickup using the same
JP2009076187A (en) Optical head device
JP3470781B2 (en) Optical pickup
JP5298916B2 (en) Selective optical element and optical pickup device
JP2008262660A (en) Optical head device
JP4985081B2 (en) Optical head device
JP2006331594A (en) Optical pickup device
JP2008004146A (en) Optical element and optical head device provided with optical element
JP2009099159A (en) Optical head device
JP4861934B2 (en) Optical pickup, optical disc apparatus, and optical element
KR100922430B1 (en) Optical pickup comprising polorization hologram unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

AA92 Notification of invalidation

Free format text: JAPANESE INTERMEDIATE CODE: A971092

Effective date: 20120327