JP2009172771A - ラインヘッドおよび画像形成装置 - Google Patents

ラインヘッドおよび画像形成装置 Download PDF

Info

Publication number
JP2009172771A
JP2009172771A JP2008010607A JP2008010607A JP2009172771A JP 2009172771 A JP2009172771 A JP 2009172771A JP 2008010607 A JP2008010607 A JP 2008010607A JP 2008010607 A JP2008010607 A JP 2008010607A JP 2009172771 A JP2009172771 A JP 2009172771A
Authority
JP
Japan
Prior art keywords
lens
light emitting
emitting element
curvature
spot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008010607A
Other languages
English (en)
Inventor
Ken Sowa
健 宗和
Nozomi Inoue
望 井上
Yujiro Nomura
雄二郎 野村
Takeshi Ikuma
健 井熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008010607A priority Critical patent/JP2009172771A/ja
Publication of JP2009172771A publication Critical patent/JP2009172771A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Facsimile Heads (AREA)

Abstract

【課題】複数のレンズを2次元的に配置したレンズアレイの離型性向上を可能とする技術を提供する。
【解決手段】複数の発光素子をグループ化したヘッド基板と、レンズを発光素子グループ毎に設けたレンズアレイと、発光素子グループ毎に開口絞りが設けられた絞り部材とを備え、レンズにおいて、レンズおよび開口絞りを含む結像光学系の光軸から所定距離以内の領域をレンズ内周領域とし、当該光軸から所定距離より離れた領域をレンズ外周領域としたとき、結像光学系の光軸を含むレンズの断面において、レンズ外周領域の曲率は、レンズ中心の曲率と逆の符号を有する、あるいは、レンズ中心の曲率よりも小さい絶対値を有しており、結像光学系の光軸方向から見て、レンズ内周領域は開口絞りの開口の内部に含まれる。
【選択図】図16

Description

この発明は、発光素子グループ毎に設けられたレンズを複数配したレンズアレイを備えたラインヘッド、および該ラインヘッドを用いた画像形成装置に関するものである。
このようなラインヘッドとしては、複数の発光素子に対して一つのレンズを設けるとともに、発光素子からの光をレンズにより結像して、潜像担持体表面等の像面を露光するラインヘッドが知られている。例えば、特許文献1に記載のラインヘッドでは、複数の発光素子をグループ化した発光素子グループ(同特許文献における発光ダイオード素子アレイに設けられた複数の発光ダイオードに相当)が、長手方向に複数並べられている。そして、レンズアレイでは各発光素子グループ毎にレンズが設けられており、発光素子グループはレンズに向けて光ビームを射出する。
特許第2801838号公報 特開2005−276849号公報
ところで、より高精細な露光動作等を目的として、複数の発光素子グループを長手方向(第1方向)に並べて発光素子グループ行を構成するとともに、複数の発光素子グループ行を幅方向(第2方向)に並べたラインヘッドを用いることができる。つまり、このラインヘッドでは、発光素子グループが2次元的に配置されている。また、このような発光素子グループの配置に対応して、レンズアレイにおいてレンズも2次元的に配置されることとなり、その結果、レンズアレイは2次元的な凹凸形状を有することとなる。
しかしながら、このように2次元的な凹凸形状を有するレンズアレイを作成するにあたっては、次のような問題が発生する場合があった。つまり、レンズアレイの作成は、レンズ形状に応じて凹部が形成された、いわゆる金型を用いて行なうことができる。詳述すると、例えば特許文献2では、ガラス基板と金型(同文献の型112)とを当接させた状態で凹部に光硬化性樹脂が充填されるとともに、光硬化性樹脂が光照射により固められることで、ガラス基板にレンズが形成される。そして、光硬化性樹脂が固まったところで、金型がレンズおよびガラス基板から離される(離型)。このような工程を経て、複数のレンズを設けたレンズアレイが形成される。これに対して、レンズアレイが2次元的な凹凸形状を有していると、金型を離型する際にレンズアレイが金型から適切に離れずに、レンズアレイの離型性が悪化する場合があった。
この発明は、上記課題に鑑みなされたものであり、複数のレンズを2次元的に配置したレンズアレイの離型性向上を可能とする技術の提供を目的とする。
この発明にかかるラインヘッドは、上記目的を達成するために、複数の発光素子をグループ化した発光素子グループを第1方向に複数並べた、発光素子グループ行が第1方向に直交もしくは略直交する第2方向に複数配したヘッド基板と、レンズを発光素子グループ毎に設けたレンズアレイと、発光素子グループ毎に開口絞りが設けられた絞り部材とを備え、発光素子から射出された光は当該発光素子グループに対応して設けられたレンズおよび開口絞りを含む結像光学系により結像され、レンズにおいて、結像光学系の光軸から所定距離以内の領域をレンズ内周領域とし、当該光軸から所定距離より離れた領域をレンズ外周領域としたとき、結像光学系の光軸を含むレンズの断面において、レンズ外周領域の曲率は、レンズ中心の曲率と逆の符号を有する、あるいは、レンズ中心の曲率よりも小さい絶対値を有しており、結像光学系の光軸方向から見て、レンズ内周領域は開口絞りの開口の内部に含まれることを特徴としている。
この発明にかかる画像形成装置は、上記目的を達成するために、複数の発光素子をグループ化した発光素子グループを第1方向に複数並べた、発光素子グループ行が第1方向に直交もしくは略直交する第2方向に複数配したヘッド基板と、レンズを発光素子グループ毎に設けたレンズアレイと、発光素子グループ毎に開口絞りが設けられた絞り部材とを有するラインヘッドと、ラインヘッドの発光素子が射出する光により露光される潜像担持体とを備え、発光素子から射出された光は当該発光素子グループに対応して設けられたレンズおよび開口絞りを含む結像光学系により結像され、レンズにおいて、結像光学系の光軸から所定距離以内の領域をレンズ内周領域とし、当該光軸から所定距離より離れた領域をレンズ外周領域としたとき、結像光学系の光軸を含むレンズの断面において、レンズ外周領域の曲率は、レンズ中心の曲率と逆の符号を有する、あるいは、レンズ中心の曲率よりも小さい絶対値を有しており、結像光学系の光軸方向から見て、レンズ内周領域は開口絞りの開口の内部に含まれることを特徴としている。
このように構成された発明(ラインヘッド、画像形成装置)では、結像光学系の光軸を含むレンズの断面において、レンズ外周領域の曲率は、レンズ中心の曲率と逆の符号を有する、あるいは、レンズ中心の曲率よりも小さい絶対値を有している。したがって、レンズ外周部における接線角度が小さく抑えられており、各レンズは金型から離れやすい形状を有している。その結果、レンズアレイの離型性の向上が可能となっている。
さらに上記発明では、結像光学系の光軸方向から見て、レンズ内周領域は開口絞りの開口の内部に含まれる。したがって、多くの光をレンズに取り込むことができ、良好な露光が実現可能となっている。
また、レンズの直径が0.5[mm]以上であるラインヘッドに対しては、本発明を適用することが特に好適である。なぜなら、このラインヘッドでは、レンズアレイは0.5[mm]以上と比較的大きなレンズを有することとなり、離型性が悪化する可能性がある。そこで、本発明を適用して、レンズアレイの離型性の向上を図ることが好適であるからである。
また、レンズは、当該レンズの光軸を回転対称軸とする回転対称レンズであるように構成しても良い。なぜなら、レンズ構成の簡素化が可能となるからである。
また、レンズは光硬化性樹脂で形成されても良い。なんとなれば、光硬化性樹脂は光を照射することで速やかに硬化させることができる。したがって、簡便にレンズを形成することができるため、レンズアレイの作成工程を簡素化して、レンズアレイのコスト低下可能となるからである。
また、発光素子が有機EL素子であるラインヘッドに対しては、本発明を適用することが特に好適である。つまり、発光素子として有機EL素子を用いた場合、LED等を用いた場合と比較して発光素子の光量が少ない。特に、ボトムエミッション型の有機EL素子を発光素子として用いた場合はなおさらである。したがって、十分な光をレンズに取り込むためにレンズ直径を大きくする必要が生じる場合がある。しかしながら、レンズ直径を大きくしたことで、上述のような離型性が悪化する可能性があった。これに対して本発明を適用した場合、レンズ外周部における接線角度が小さく抑えられて、各レンズは金型から離れやすい形状を有することとなる。その結果、レンズ直径を大きくした場合であっても、レンズアレイの離型性の向上が可能となっている。
以下では、最初に本明細書で用いる用語について説明する(「A.用語の説明」の項参照)。この用語の説明に続いて、本発明の適用対象であるラインヘッドを装備した画像形成装置の基本構成(「B.基本構成」の項参照)、および該ラインヘッドの基本動作(「C.基本動作」の項参照)について説明する。そして、これらの基本構成および基本動作の説明に続いて、本実施形態にかかるラインヘッドのレンズアレイに求められる構成(「D.レンズアレイに求められる構成」の項参照)について説明するとともに、本発明の実施形態におけるレンズアレイが備える構成(「E.本実施形態におけるレンズアレイの構成」の項参照)について説明する。
A.用語の説明
図1および図2は、本明細書で用いる用語の説明図である。ここで、これらの図を用いて本明細書において用いる用語について整理する。本明細書では、感光体ドラム21の表面(像面IP)の搬送方向を副走査方向SDと定義し、該副走査方向SDに直交あるいは略直交する方向を主走査方向MDと定義している。また、ラインヘッド29は、その長手方向LGDが主走査方向MDに対応し、その幅方向LTDが副走査方向SDに対応するように、感光体ドラム21の表面(像面IP)に対して配置されている。
レンズアレイ299が有する複数のレンズLSに一対一の対応関係でヘッド基板293に配置された、複数(図1および図2においては8個)の発光素子2951の集合を、発光素子グループ295と定義する。つまり、ヘッド基板293において、複数の発光素子2951からなる発光素子グループ295は、複数のレンズLSのそれぞれに対して配置されている。また、発光素子グループ295からの光ビームが該発光素子グループ295に対応するレンズLSにより結像されて、像面IPに形成される複数のスポットSPの集合を、スポットグループSGと定義する。つまり、複数の発光素子グループ295に一対一で対応して、複数のスポットグループSGを形成することができる。また、各スポットグループSGにおいて、主走査方向MDおよび副走査方向SDに最上流のスポットを、特に第1のスポットと定義する。そして、第1のスポットに対応する発光素子2951を、特に第1の発光素子と定義する。
また、図2の「像面上」の欄に示すように、スポットグループ行SGR、スポットグループ列SGCを定義する。つまり、主走査方向MDに並ぶ複数のスポットグループSGをスポットグループ行SGRと定義する。そして、複数行のスポットグループ行SGRは、所定のスポットグループ行ピッチPsgrで副走査方向SDに並んで配置される。また、副走査方向SDにスポットグループ行ピッチPsgrで且つ主走査方向MDにスポットグループピッチPsgで並ぶ複数(同図においては3個)のスポットグループSGをスポットグループ列SGCと定義する。なお、スポットグループ行ピッチPsgrは、副走査方向SDに互いに隣接する2つのスポットグループ行SGRそれぞれの幾何重心の、副走査方向SDにおける距離である。また、スポットグループピッチPsgは、主走査方向MDに互いに隣接する2つのスポットグループSGそれぞれの幾何重心の、主走査方向MDにおける距離である。
同図の「レンズアレイ」の欄に示すように、レンズ行LSR、レンズ列LSCを定義する。つまり、長手方向LGDに並ぶ複数のレンズLSをレンズ行LSRと定義する。そして、複数行のレンズ行LSRは、所定のレンズ行ピッチPlsrで幅方向LTDに並んで配置される。また、幅方向LTDにレンズ行ピッチPlsrで且つ長手方向LGDにレンズピッチPlsで並ぶ複数(同図においては3個)のレンズLSをレンズ列LSCと定義する。なお、レンズ行ピッチPlsrは、幅方向LTDに互いに隣接する2つのレンズ行LSRそれぞれの幾何重心の、幅方向LTDにおける距離である。また、レンズピッチPlsは、長手方向LGDに互いに隣接する2つのレンズLSそれぞれの幾何重心の、長手方向LGDにおける距離である。
同図の「ヘッド基板」の欄に示すように、発光素子グループ行295R、発光素子グループ列295Cを定義する。つまり、長手方向LGDに並ぶ複数の発光素子グループ295を発光素子グループ行295Rと定義する。そして、複数行の発光素子グループ行295Rは、所定の発光素子グループ行ピッチPegrで幅方向LTDに並んで配置される。また、幅方向LTDに発光素子グループ行ピッチPegrで且つ長手方向LGDに発光素子グループピッチPegで並ぶ複数(同図においては3個)の発光素子グループ295を発光素子グループ列295Cと定義する。なお、発光素子グループ行ピッチPegrは、幅方向LTDに互いに隣接する2つの発光素子グループ行295Rそれぞれの幾何重心の、幅方向LTDにおける距離である。また、発光素子グループピッチPegは、長手方向LGDに互いに隣接する2つの発光素子グループ295それぞれの幾何重心の、長手方向LGDにおける距離である。
同図の「発光素子グループ」の欄に示すように、発光素子行2951R、発光素子列2951Cを定義する。つまり、各発光素子グループ295において、長手方向LGDに並ぶ複数の発光素子2951を発光素子行2951Rと定義する。そして、複数行の発光素子行2951Rは、所定の発光素子行ピッチPelrで幅方向LTDに並んで配置される。また、幅方向LTDに発光素子行ピッチPelrで且つ長手方向LGDに発光素子ピッチPelで並ぶ複数(同図においては2個)の発光素子2951を発光素子列2951Cと定義する。なお、発光素子行ピッチPelrは、幅方向LTDに互いに隣接する2つの発光素子行2951Rそれぞれの幾何重心の、幅方向LTDにおける距離である。また、発光素子ピッチPelは、長手方向LGDに互いに隣接する2つの発光素子2951それぞれの幾何重心の、長手方向LGDにおける距離である。
同図の「スポットグループ」の欄に示すように、スポット行SPR、スポット列SPCを定義する。つまり、各スポットグループSGにおいて、長手方向LGDに並ぶ複数のスポットSPをスポット行SPRと定義する。そして、複数行のスポット行SPRは、所定のスポット行ピッチPsprで幅方向LTDに並んで配置される。また、幅方向LTDにスポットピッチPsprで且つ長手方向LGDにスポットピッチPspで並ぶ複数(同図においては2個)のスポットをスポット列SPCと定義する。なお、スポット行ピッチPsprは、副走査方向SDに互いに隣接する2つのスポット行SPRそれぞれの幾何重心の、副走査方向SDにおける距離である。また、スポットピッチPspは、主走査方向MDに互いに隣接する2つのスポットSPそれぞれの幾何重心の、長手方向LGDにおける距離である。
B.基本構成
図3は本発明の適用対象であるラインヘッドを装備した画像形成装置の一例を示す図である。また、図4は図3の画像形成装置の電気的構成を示す図である。この装置は、ブラック(K)、シアン(C)、マゼンダ(M)、イエロー(Y)の4色のトナーを重ね合わせてカラー画像を形成するカラーモードと、ブラック(K)のトナーのみを用いてモノクロ画像を形成するモノクロモードとを選択的に実行可能な画像形成装置である。なお図3は、カラーモード実行時に対応する図面である。この画像形成装置では、ホストコンピューターなどの外部装置から画像形成指令がCPUやメモリなどを有するメインコントローラMCに与えられると、このメインコントローラMCはエンジンコントローラECに制御信号などを与えるとともに画像形成指令に対応するビデオデータVDをヘッドコントローラHCに与える。また、このヘッドコントローラHCは、メインコントローラMCからのビデオデータVDとエンジンコントローラECからの垂直同期信号Vsyncおよびパラメータ値とに基づき各色のラインヘッド29を制御する。これによって、エンジン部EGが所定の画像形成動作を実行し、複写紙、転写紙、用紙およびOHP用透明シートなどのシートに画像形成指令に対応する画像を形成する。
画像形成装置が有するハウジング本体3内には、電源回路基板、メインコントローラMC、エンジンコントローラECおよびヘッドコントローラHCを内蔵する電装品ボックス5が設けられている。また、画像形成ユニット7、転写ベルトユニット8および給紙ユニット11もハウジング本体3内に配設されている。また、図3においてハウジング本体3内右側には、2次転写ユニット12、定着ユニット13、シート案内部材15が配設されている。なお、給紙ユニット11は、装置本体1に対して着脱自在に構成されている。そして、該給紙ユニット11および転写ベルトユニット8については、それぞれ取り外して修理または交換を行うことが可能な構成になっている。
画像形成ユニット7は、複数の異なる色の画像を形成する4個の画像形成ステーションY(イエロー用)、M(マゼンダ用)、C(シアン用)、K(ブラック用)を備えている。また、各画像形成ステーションY,M,C,Kは、主走査方向MDに所定長さの表面を有する円筒形の感光体ドラム21を設けている。そして、各画像形成ステーションY,M,C,Kそれぞれは、対応する色のトナー像を、感光体ドラム21の表面に形成する。感光体ドラムは、軸方向が主走査方向MDに略平行となるように配置されている。また、各感光体ドラム21はそれぞれ専用の駆動モータに接続され図中矢印D21の方向に所定速度で回転駆動される。これにより感光体ドラム21の表面が、主走査方向MDに直交もしくは略直交する副走査方向SDに搬送されることとなる。また、感光体ドラム21の周囲には、回転方向に沿って帯電部23、ラインヘッド29、現像部25および感光体クリーナ27が配設されている。そして、これらの機能部によって帯電動作、潜像形成動作及びトナー現像動作が実行される。したがって、カラーモード実行時は、全ての画像形成ステーションY,M,C,Kで形成されたトナー像を転写ベルトユニット8が有する転写ベルト81に重ね合わせてカラー画像を形成するとともに、モノクロモード実行時は、画像形成ステーションKで形成されたトナー像のみを用いてモノクロ画像を形成する。なお、図3において、画像形成ユニット7の各画像形成ステーションは構成が互いに同一のため、図示の便宜上一部の画像形成ステーションのみに符号をつけて、他の画像形成ステーションについては符号を省略する。
帯電部23は、その表面が弾性ゴムで構成された帯電ローラを備えている。この帯電ローラは帯電位置で感光体ドラム21の表面と当接して従動回転するように構成されており、感光体ドラム21の回転動作に伴って感光体ドラム21に対して従動方向に周速で従動回転する。また、この帯電ローラは帯電バイアス発生部(図示省略)に接続されており、帯電バイアス発生部からの帯電バイアスの給電を受けて帯電部23と感光体ドラム21が当接する帯電位置で感光体ドラム21の表面を帯電させる。
ラインヘッド29は、その長手方向が主走査方向MDに対応するとともに、その幅方向が副走査方向SDに対応するように、感光体ドラム21に対して配置されており、ラインヘッド29の長手方向は主走査方向MDと略平行となっている。ラインヘッド29は、長手方向に並べて配置された複数の発光素子を備えるとともに、感光体ドラム21から離間配置されている。そして、これらの発光素子から、帯電部23により帯電された感光体ドラム21の表面に対して光が照射されて、該表面に静電潜像が形成される。
現像部25は、その表面にトナーが担持する現像ローラ251を有する。そして、現像ローラ251と電気的に接続された現像バイアス発生部(図示省略)から現像ローラ251に印加される現像バイアスによって、現像ローラ251と感光体ドラム21とが当接する現像位置において、帯電トナーが現像ローラ251から感光体ドラム21に移動してラインヘッド29により形成された静電潜像が顕在化される。
このように上記現像位置において顕在化されたトナー像は、感光体ドラム21の回転方向D21に搬送された後、後に詳述する転写ベルト81と各感光体ドラム21が当接する1次転写位置TR1において転写ベルト81に1次転写される。
また、この実施形態では、感光体ドラム21の回転方向D21の1次転写位置TR1の下流側で且つ帯電部23の上流側に、感光体ドラム21の表面に当接して感光体クリーナ27が設けられている。この感光体クリーナ27は、感光体ドラムの表面に当接することで1次転写後に感光体ドラム21の表面に残留するトナーをクリーニング除去する。
転写ベルトユニット8は、駆動ローラ82と、図3において駆動ローラ82の左側に配設される従動ローラ83(ブレード対向ローラ)と、これらのローラに張架され図示矢印D81の方向(搬送方向)へ循環駆動される転写ベルト81とを備えている。また、転写ベルトユニット8は、転写ベルト81の内側に、感光体カートリッジ装着時において各画像形成ステーションY,M,C,Kが有する感光体ドラム21各々に対して一対一で対向配置される、4個の1次転写ローラ85Y,85M,85C,85Kを備えている。これらの1次転写ローラ85は、それぞれ1次転写バイアス発生部(図示省略)と電気的に接続される。そして、後に詳述するように、カラーモード実行時は、図3に示すように全ての1次転写ローラ85Y,85M,85C,85Kを画像形成ステーションY,M,C,K側に位置決めすることで、転写ベルト81を画像形成ステーションY,M,C,Kそれぞれが有する感光体ドラム21に押し遣り当接させて、各感光体ドラム21と転写ベルト81との間に1次転写位置TR1を形成する。そして、適当なタイミングで上記1次転写バイアス発生部から1次転写ローラ85に1次転写バイアスを印加することで、各感光体ドラム21の表面上に形成されたトナー像を、それぞれに対応する1次転写位置TR1において転写ベルト81表面に転写してカラー画像を形成する。
一方、モノクロモード実行時は、4個の1次転写ローラ85のうち、カラー1次転写ローラ85Y,85M,85Cをそれぞれが対向する画像形成ステーションY,M,Cから離間させるとともにモノクロ1次転写ローラ85Kのみを画像形成ステーションKに当接させることで、モノクロ画像形成ステーションKのみを転写ベルト81に当接させる。その結果、モノクロ1次転写ローラ85Kと画像形成ステーションKとの間にのみ1次転写位置TR1が形成される。そして、適当なタイミングで前記1次転写バイアス発生部からモノクロ1次転写ローラ85Kに1次転写バイアスを印加することで、各感光体ドラム21の表面上に形成されたトナー像を、1次転写位置TR1において転写ベルト81表面に転写してモノクロ画像を形成する。
さらに、転写ベルトユニット8は、モノクロ1次転写ローラ85Kの下流側で且つ駆動ローラ82の上流側に配設された下流ガイドローラ86を備える。また、この下流ガイドローラ86は、モノクロ1次転写ローラ85Kが画像形成ステーションKの感光体ドラム21に当接して形成する1次転写位置TR1での1次転写ローラ85Kと感光体ドラム21との共通内接線上において、転写ベルト81に当接するように構成されている。
駆動ローラ82は、転写ベルト81を図示矢印D81の方向に循環駆動するとともに、2次転写ローラ121のバックアップローラを兼ねている。駆動ローラ82の周面には、厚さ3mm程度、体積抵抗率が1000kΩ・cm以下のゴム層が形成されており、金属製の軸を介して接地することにより、図示を省略する2次転写バイアス発生部から2次転写ローラ121を介して供給される2次転写バイアスの導電経路としている。このように駆動ローラ82に高摩擦かつ衝撃吸収性を有するゴム層を設けることにより、駆動ローラ82と2次転写ローラ121との当接部分(2次転写位置TR2)へのシートが進入する際の衝撃が転写ベルト81に伝達しにくく、画質の劣化を防止することができる。
給紙ユニット11は、シートを積層保持可能である給紙カセット77と、給紙カセット77からシートを一枚ずつ給紙するピックアップローラ79とを有する給紙部を備えている。ピックアップローラ79により給紙部から給紙されたシートは、レジストローラ対80において給紙タイミングが調整された後、シート案内部材15に沿って2次転写位置TR2に給紙される。
2次転写ローラ121は、転写ベルト81に対して離当接自在に設けられ、2次転写ローラ駆動機構(図示省略)により離当接駆動される。定着ユニット13は、ハロゲンヒータ等の発熱体を内蔵して回転自在な加熱ローラ131と、この加熱ローラ131を押圧付勢する加圧部132とを有している。そして、その表面に画像が2次転写されたシートは、シート案内部材15により、加熱ローラ131と加圧部132の加圧ベルト1323とで形成するニップ部に案内され、該ニップ部において所定の温度で画像が熱定着される。加圧部132は、2つのローラ1321,1322と、これらに張架される加圧ベルト1323とで構成されている。そして、加圧ベルト1323の表面のうち、2つのローラ1321,1322により張られたベルト張面を加熱ローラ131の周面に押し付けることで、加熱ローラ131と加圧ベルト1323とで形成するニップ部が広くとれるように構成されている。また、こうして定着処理を受けたシートはハウジング本体3の上面部に設けられた排紙トレイ4に搬送される。
また、この装置では、ブレード対向ローラ83に対向してクリーナ部71が配設されている。クリーナ部71は、クリーナブレード711と廃トナーボックス713とを有する。クリーナブレード711は、その先端部を転写ベルト81を介してブレード対向ローラ83に当接することで、2次転写後に転写ベルトに残留するトナーや紙粉等の異物を除去する。そして、このように除去された異物は、廃トナーボックス713に回収される。また、クリーナブレード711及び廃トナーボックス713は、ブレード対向ローラ83と一体的に構成されている。したがって、次に説明するようにブレード対向ローラ83が移動する場合は、ブレード対向ローラ83と一緒にクリーナブレード711及び廃トナーボックス713も移動することとなる。
図5は、本発明にかかるラインヘッドの概略を示す斜視図である。また、図6は、図5に示したラインヘッドの幅方向断面図である。上述した通り、その長手方向LGDが主走査方向MDに対応するとともに、その幅方向LTDが副走査方向SDに対応するように、ラインヘッド29は感光体ドラム21に対して配置されている。なお、長手方向LGDと幅方向LTDは、互いに直交もしくは略直交している。後述するように、このラインヘッド29では、ヘッド基板293に複数の発光素子が形成されており、各発光素子は感光体ドラム21の表面に向けて光ビームを射出する。そこで、本明細書では、長手方向LGDおよび幅方向LTDに直交する方向であって、発光素子から感光体ドラム表面に向う方向を、光ビームの進行方向Doaとする。この光ビームの進行方向Doaは、後述する光軸OAと平行もしくは略平行である。
ラインヘッド29は、ケース291を備えるとともに、かかるケース291の長手方向LGDの両端には、位置決めピン2911とねじ挿入孔2912が設けられている。そして、かかる位置決めピン2911を、感光体ドラム21を覆うとともに感光体ドラム21に対して位置決めされた感光体カバー(図示省略)に穿設された位置決め孔(図示省略)に嵌め込むことで、ラインヘッド29が感光体ドラム21に対して位置決めされる。そして更に、ねじ挿入孔2912を介して固定ねじを感光体カバーのねじ孔(図示省略)にねじ込んで固定することで、ラインヘッド29が感光体ドラム21に対して位置決め固定される。
ケース291の内部には、ヘッド基板293、遮光部材297、および2枚のレンズアレイ299(299A,299B)が配置されている。ヘッド基板293の表面293−hにはケース291の内部が当接する一方、ヘッド基板293の裏面293−tには裏蓋2913が当接している。この裏蓋2913は、固定器具2914によりヘッド基板293を介してケース291内部に押圧されている。つまり、固定器具2914は、裏蓋2913をケース291内部側(図6における上側)に押圧する弾性力を有しており、かかる弾性力により裏蓋が押圧されることで、ケース291の内部が光密に(換言すれば、ケース291内部から光が漏れないように、及び、ケース291の外部から光が侵入しないように)密閉される。なお、固定器具2914は、ケース291の長手方向LGDに複数箇所設けられている。
ヘッド基板293の裏面293−tには、複数の発光素子をグループ化した発光素子グループ295が設けられている。ヘッド基板293はガラス等の光透過性部材で形成されており、発光素子グループ295の各発光素子が射出した光ビームは、ヘッド基板293の裏面293−tから表面293−hへと透過可能である。この発光素子はボトムエミッション型の有機EL(Electro-Luminescence)素子であり、封止部材294により覆われている。このヘッド基板293の裏面293−tにおける、発光素子の配置の詳細は次の通りである。
図7はヘッド基板の裏面の構成を示す図であり、ヘッド基板の表面から裏面を見た場合に相当する。また、図8は、ヘッド基板裏面に設けられた発光素子グループの構成を示す図である。なお、図7において、レンズLSが二点鎖線で示されているが、これはレンズLSに対して発光素子グループ295が一対一で設けられていることを示すためのものであり、レンズLSがヘッド基板裏面に配置されていることを示すものではない。図7に示すように、発光素子グループ295は8個の発光素子2951をグループ化して構成されている。そして、各発光素子グループ295において、8個の発光素子2951は次のように配置されている。つまり、図8に示すように、発光素子グループ295では、長手方向LGDに沿って4個の発光素子2951を並べて発光素子行2951Rが構成されるとともに、2個の発光素子行2951Rが幅方向LTDに発光素子行ピッチPelrで並んで設けられている。また、各発光素子行2951Rは長手方向LGDに相互にずれており、各発光素子2951の長手方向LGDにおける位置は互いに異なる。そして、このように構成された発光素子グループ295は、長手方向LGDに長手発光素子グループ幅W295gmを有するとともに、幅方向LTDに幅発光素子グループ幅W295gsを有しており、長手発光素子グループ幅W295gmは、幅発光素子グループ幅W295gsよりも大きい。
また、ヘッド基板293の裏面293−tでは、このように構成された発光素子グループ295が複数配置されている。つまり、幅方向LTDにおいて互いに異なる位置に3個の発光素子グループ295を配置した発光素子グループ列295Cが、長手方向LGDに沿って複数並んでいる。換言すれば、長手方向LGDに複数の発光素子グループ295を並べて発光素子グループ行295Rが構成されるとともに、3行の発光素子グループ行295Rが幅方向LTDに設けられている。また、各発光素子グループ行295Rは長手方向LGDに互いにずらして配置されており、各発光素子グループ295の長手方向LGDにおける位置PTEは互いに異なる。このように本実施形態では、ヘッド基板293において複数の発光素子グループ295が2次元的に配置されている。なお、同図においては、発光素子グループ295の位置は発光素子グループ295の重心位置で代表されており、発光素子グループ295の長手方向LGDにおける位置PTEは、発光素子グループ295の位置から長手方向軸LGDに下ろした垂線の足で表されている。
このようにしてヘッド基板293に形成された各発光素子2951は、例えばTFT(Thin Film Transistor)回路等からの駆動を受けて、互いに等しい波長の光ビームを射出する。この発光素子2951の発光面はいわゆる完全拡散面光源であり、発光面から射出される光ビームはランバートの余弦則に従う。
図5、図6に戻って説明を続ける。ヘッド基板293の表面293−hには、遮光部材297が当接配置されている。遮光部材297には、複数の発光素子グループ295毎に導光孔2971が設けられている(換言すれば、複数の発光素子グループ295に対して一対一で複数の導光孔2971が設けられている)。各導光孔2971は、光ビームの進行方向Doaに貫通する略円柱状の孔として、遮光部材297に形成されている。また、遮光部材297の上側(ヘッド基板293の反対側)には、2枚のレンズアレイ299が光ビームの進行方向Doaに並べて配置されている。
このように、光ビームDoaの進行方向において、発光素子グループ295とレンズアレイ299との間には、発光素子グループ295毎に導光孔2971を設けた遮光部材297が配置されている。したがって、発光素子グループ295から出た光ビームは、該発光素子グループ295に対応する導光孔2971を通過してレンズアレイ299へと向う。逆に言うと、発光素子グループ295から射出された光ビームのうち、該発光素子グループ295に対応する導光孔2971以外に向う光ビームは、遮光部材297により遮光されることとなる。こうして、1つの発光素子グループ295から出た光は全て同一の導光孔2971を介してレンズアレイ299へ向うとともに、異なる発光素子グループ295から出た光ビーム同士の干渉が遮光部材297により防止されている。
図9は、レンズアレイの平面図であり、像面側(図6における上側)からレンズアレイを見た場合に相当する。レンズアレイ299では、発光素子グループ295毎にレンズLSが設けられている。つまり、同図が示すように、レンズアレイ299では、幅方向LTDの異なる位置に配された3個のレンズLSからなるレンズ列LSCが、長手方向LTDに複数並んでいる。換言すれば、レンズアレイ299では、長手方向LGDに複数のレンズLSを並べてレンズ行LSRが構成されるとともに、3行のレンズ行LSRが幅方向LTDに設けられている。また、各レンズ行LSRは長手方向LGDに互いにずらして配置されており、各レンズLSの長手方向LGDにおける位置PTLは互いに異なる。このように、レンズアレイ299において複数のレンズLSは2次元的に配置されている。なお、同図においては、レンズLSの位置は、レンズLSのレンズ面LSFの中心で代表されており、レンズLSの長手方向LGDにおける位置PTLは、レンズLSの中心から長手方向軸LGDに下ろした垂線の足で表されている。
図10は、レンズアレイおよびヘッド基板等の長手方向の断面図であり、レンズアレイに形成されたレンズLSの光軸を含む長手方向断面を示している。レンズアレイ299は表面299−hおよび裏面299−tとを有しており、表面299−hには発光素子グループ295毎にレンズLSが形成されている。したがって、表面299−hには、レンズLSが形成されて有限の曲率を有する部分と、レンズLSが形成されずに無限大の曲率を有する平端部PLとが存在することになる。このレンズアレイ299は、例えば特開2005−276849号公報等に記載の方法により形成される。つまり、レンズLSの形状に応じた凹部を有する金型が、レンズ基板としての光透過性基板に対して当接される。この光透過性基板としては例えばガラス基板を用いることができる。金型と光透過性基板との間には、光硬化性樹脂が充填される。この光硬化性樹脂に光が照射されると、光構成樹脂が硬化して、光透過性基板にレンズLSが形成される。そして、光硬化性樹脂が硬化してレンズが形成されると、金型が離型される。このようにして、金型を用いてレンズアレイ299を形成することができる。本実施形態では、光を照射することで速やかに硬化させることができる光硬化性樹脂によりレンズLSが形成される。したがって、簡便にレンズLSを形成することができるため、レンズアレイ299の作成工程を簡素化して、レンズアレイ299のコスト低下可能となっている。
このラインヘッド29では、このような構成を有するレンズアレイ299が2枚(299A,299B)光ビームの進行方向Doaに並べて配置されており、光の進行方向Doaに並ぶ2枚のレンズLS1,LS2が各発光素子グループ295毎に配置されることとなる(図5、図6、図10)。また、互いに同じ発光素子グループ295に対応する第1レンズLS1および第2レンズLS2それぞれのレンズ中心を通る光軸OA(図10二点鎖線)は、ヘッド基板293の裏面293−tに直交もしくは略直交している。ここで、光ビームの進行方向Doaの上流側のラインヘッド299AのレンズLSが第1レンズLS1であり、光ビームの進行方向Doaの下流側のラインヘッド299AのレンズLSが第2レンズLS2である。このように、本実施形態では、複数のレンズアレイ299が光ビームの進行方向Doaに並べて配置されているため、光学設計の自由度を向上させることが可能となっている。
また、図5、図6では記載が省略されているが、光ビームの進行方向Doaにおいてレンズアレイ299A,299Bの間には、絞り板298(絞り部材)が設けられており、この絞り板298には開口2981(絞り開口2981)が発光素子グループ295毎に穿設されている。なお、絞り板298において、開口2981およびその周縁部分を「開口絞り2982」あるいは単に「絞り2982」と称することとするつまり、この開口絞り2982は発光素子グループ295毎に設けられている。
このように、ラインヘッド29は、第1・第2レンズLS1,LS2および開口絞り2982を有する結像光学系を備えている。したがって、発光素子グループ295から射出された光ビームは、第1レンズLS1を通過した後、絞り2982(絞り板298)により絞られて第2レンズLS2へと入射する。こうして、光ビームは第1・第2レンズLS1,LS2により結像されて、感光体ドラム表面(像面)にスポットSPが形成される。一方、上述のとおり、感光体ドラム表面は、スポット形成に先立って帯電部23により帯電されている。したがって、スポットSPが形成された領域は除電されて、スポット潜像Lspが形成される。そして、このように形成されたスポット潜像Lspは感光体ドラム表面に担持されながら、副走査方向SDの下流側へと搬送される。そして、次の「C.基本動作」の項で説明するように、スポットSPは感光体ドラム表面の移動に応じたタイミングで形成されて、主走査方向MDに並ぶ複数のスポット潜像Lspが形成される。
C.基本動作
図11はラインヘッドにより形成されるスポットを説明するための斜視図である。なお、図11においてレンズアレイ299の記載は省略されている。図11に示すように、各発光素子グループ295は、主走査方向MDにおいて互いに異なる露光領域ERにスポットグループSGを形成可能である。ここで、スポットグループSGは、発光素子グループ295の全発光素子2951が同時発光して形成される複数のスポットSPの集合である。同図に示すように、主走査方向MDに連続する露光領域ERにスポットグループSGを形成可能である3個の発光素子グループ295は、幅方向LTDに相互にずらして配置されている。つまり、例えば、主走査方向MDに連続する露光領域ER_1,ER_2,ER3にスポットグループSG_1,SG2,SG3を形成可能である3個の発光素子グループ295_1,295_2,295_3は、幅方向LTDに相互にずらして配置されている。これら3個の発光素子グループ295は発光素子グループ列295Cを構成し、複数の発光素子グループ列295Cが長手方向LGDに沿って並ぶ。その結果、図7の説明の際にも述べたが、3行の発光素子グループ行295R_A,295R_B,295R_Cが幅方向LTDに並ぶとともに、各発光素子グループ行295R_A等は、副走査方向SDにおいて互いに異なる位置にスポットグループSGを形成する。
つまり、このラインヘッド29では、複数の発光素子グループ295(例えば、発光素子グループ295_1,295_2,295_3)は、幅方向LTDにおいて互いに異なる位置に配置されている。そして、幅方向LTDにおいて互いに異なる位置に配置された各発光素子グループ295は、副走査方向SDにおいて互いに異なる位置にスポットグループSG(例えば、スポットグループSG_1,SG_2,SG_3)を形成する。
換言すれば、このラインヘッド29では、幅方向LTDにおいて互いに異なる位置に複数の発光素子2951が配置されている(例えば、発光素子グループ295_1に属する発光素子2951と、発光素子グループ295_2に属する発光素子2951とは、幅方向LTDにおいて互いに異なる位置に配置されている)。そして、幅方向LTDにおいて互いに異なる位置に配置された各発光素子2951は、副走査方向LTDにおいて互いに異なる位置にスポットSPを形成する(例えば、スポットグループSG_1に属するスポットSPと、スポットグループSG_2に属するスポットSPとは、副走査方向SDにおいて互いに異なる位置に形成される)。
このように、発光素子2951によって副走査方向SDにおけるスポットSPの形成位置が異なる。したがって、複数のスポット潜像Lspを主走査方向MDに並べて形成するためには(つまり、複数のスポット潜像Lspを副走査方向SDにおいて同じ位置に形成するためには)、かかるスポット形成位置の違いを考慮する必要がある。そこで、このラインヘッド29では、各発光素子2951は感光体ドラム表面の移動に応じたタイミングで発光する。
図12は、上述のラインヘッドによるスポット形成動作を示す図である。以下に、図7、図11、図12を用いてラインヘッドによるスポット形成動作を説明する。概略的には、感光体ドラム表面(潜像担持体表面)が副走査方向SDに移動するとともに、ヘッド制御モジュール54(図4)が感光体ドラム表面の移動に応じたタイミングで発光素子2951を発光させることで、主走査方向MDに並ぶ複数のスポット潜像Lspが形成される。
まず、幅方向LTDに最上流の発光素子グループ295_1,295A4等に属する発光素子行2951R(図11)のうち、幅方向LTDの下流側の発光素子行2951Rを発光させる。そして、かかる発光動作により射出される複数の光ビームは、レンズLSにより結像されて、感光体ドラム表面にスポットSPが形成される。なお、レンズLSは倒立特性を有し、発光素子2951からの光ビームは倒立して結像される。こうして、図12の「1回目」のハッチングパターンの位置にスポット潜像Lspが形成される。なお、同図において、白抜きの丸印は、未だ形成されておらず今後形成される予定のスポット潜像を表す。また、同図において、符号295_1〜295_4でラベルされたスポット潜像は、それぞれに付された符号に対応する発光素子グループ295により形成されるスポット潜像であることを示す。
次に、同発光素子グループ295_1,295A4等に属する発光素子行2951Rのうち、幅方向LTDの上流側の発光素子行2951Rを発光させる。そして、かかる発光動作により射出される複数の光ビームはレンズLSにより結像されて、感光体ドラム表面にスポットSPが形成される。こうして、図12の「2回目」のハッチングパターンの位置にスポット潜像Lspが形成される。ここで、幅方向LTDの下流側の発光素子行2951Rから順番に発光させたのは、レンズLSが倒立特性を有することに対応するためである。
次に、幅方向上流側から2番目の発光素子グループ295_2等に属する発光素子行2951Rのうち幅方向LTDの下流側の発光素子行2951Rを発光させる。そして、かかる発光動作により射出される複数の光ビームはレンズLSにより結像されて、感光体ドラム表面にスポットSPが形成される。こうして、図12の「3回目」のハッチングパターンの位置にスポット潜像Lspが形成される。
次に、幅方向上流側から2番目の発光素子グループ295_2等に属する発光素子行2951Rのうち幅方向LTDの上流側の発光素子行2951Rを発光させる。そして、かかる発光動作により射出される複数の光ビームはレンズLSにより結像されて、感光体ドラム表面にスポットSPが形成される。こうして、図12の「4回目」のハッチングパターンの位置にスポット潜像Lspが形成される。
次に、幅方向上流側から3番目の発光素子グループ295_3等に属する発光素子行2951Rのうち幅方向LTDの下流側の発光素子行2951Rを発光させる。そして、かかる発光動作により射出される複数の光ビームはレンズLSにより結像されて、感光体ドラム表面にスポットSPが形成される。こうして、図12の「5回目」のハッチングパターンの位置にスポット潜像Lspが形成される。
そして最後に、幅方向上流側から3番目の発光素子グループ295_3に属する発光素子行2951Rのうち幅方向LTDの上流側の発光素子行2951Rを発光させる。そして、かかる発光動作により射出される複数の光ビームはレンズLSにより結像されて、感光体ドラム表面にスポットSPが形成される。こうして、図12の「6回目」のハッチングパターンの位置にスポット潜像Lspが形成される。このように、1〜6回目までの発光動作を実行することで、副走査方向SDの上流側のスポットSPから順番にスポットSPが形成されて、主走査方向MDに並ぶ複数のスポット潜像Lspが形成される。
D.レンズアレイに求められる構成
上述の通り、レンズアレイ299では、複数のレンズLSが2次元的に配置されている。そこで、このようなレンズアレイ299に求められる構成について考える。一般的に知られているように、光の回折の影響から、エアリーディスク強度がゼロとなる直径aは、次式、
a=1.22×λ/NAimg
=1.22×λ/sin(θ) …式1
に従って決まる。ここで、λは光ビームの波長であり、NAimgは像側開口数であり、θは開口角(半角)である。よって、像面でのスポットSPの形状には、光源としての発光素子2951の形状および光学系の収差から決まる形状に加えて、回折の影響による太りが生じる。この式1によると、開口角(半角)が8[°]かつ波長が630[nm]の場合における、スポットSPの太りは5.5[μm]程度となる。これは解像度が1200dpi(dots per inch)の場合における画素ピッチ(換言すれば隣接して形成されるスポット潜像Lsp間のピッチ)の25%以上に相当する。したがって、高解像度の光書込を行なうとの観点からは、スポット形状に対する回折の影響が、これ以上大きくならないことが望まれる。すなわち、像側開口角(半角)を8[°]程度よりも大きくすることで、回折によるスポットSPの太りを抑制することが好適である。
また、ラインヘッド29は、像面(被照射面)に近接して使用されるが、部品の干渉や放電等の不具合を避けるために、最低限のクリアランスS(ラインヘッド29と像面との間隔)が必要となる。感光体ドラム21の表面の振れ等により生じるクリアランスSの変動により書込位置変動(感光体ドラム表面におけるスポットSPの位置の変動)が発生し難いように像側テレセントリックな光学系を採用した場合、次式
Wlpm≧2×S×tan(θ)×m/(m−1) …式2
が満たされる必要がある。ここで、mはレンズ行LSRの個数(行数)である。また、Wlpmは、光学系最終面での光線通過領域LPの主走査方向MD(長手方向LGD)における幅である。なお、光学系最終面とは最も非像面側にある光学面であり、図10に示した光学系においては第2レンズLS2のレンズ面が光学系最終面に相当する。また、光線通過領域LPとは、注目する光学面において光ビームが通過する範囲である。なお、式2の導出については後述する。
実際のレンズアレイ製造時において、レンズ外周近傍は面の精度が出しづらい傾向にある。したがって、レンズ直径DMは、光線通過領域幅LPに数10[μm]程度の余裕を持たせた大きさであることが望まれる。ここで、レンズ直径の余裕をαとすると、主走査方向MD(長手方向LGD)におけるレンズ直径DMm(主走査レンズ直径DMm)は、次式、
DMm=Wlpm+α …式3
で与えられる。さらに、レンズアレイ299において隣接するレンズLS間での干渉を抑制するためには、主走査レンズ直径DMmに対して、主走査方向MDにおけるスポットグループSGの幅Wsgm(主走査スポットグループ幅Wsgm)は、次式、
Wsgm>DMm/m …式4
で定められる範囲に設定される必要がある。したがって、像側開口角θが8[°]であり、クリアランスSが1[mm]であり、レンズ直径の余裕αが0.1[mm]であるとすると、レンズ直径および主走査スポットグループ幅Wsgmは次のようになる。すなわち、レンズ行LSRの行数m=2の場合は、DMm>0.66[mm]、かつ、Wsgm>DMm/2=0.33[mm]となる必要がある。また、レンズ行LSRの行数m=3の場合は、DMm>0.52[mm]、かつ、Wsgm>DMm/3=0.173[mm]となる必要がある。また、レンズ行LSRの行数m=4の場合は、DMm>0.47[mm]、かつ、Wsgm>DMm/4=0.1175[mm]となる必要がある。このように、レンズ直径は0.5[mm]程度以上のレンズを2次元的に配置した構成を、レンズアレイ299は備える必要がある。
ここで、式2を導出しておく。この式2は、スポットグループとレンズ径とが満たすべき関係から導出される。そこで、図13を用いてスポットグループに関する量について説明した後に、図14、図15を用いて式2の導出を行なう。図13は、像面に形成されるスポットグループを示す図である。図13に示すように、スポットグループSGは、主走査方向MDに主走査スポットグループ幅Wsgmを有するとともに、副走査方向SDに副走査スポットグループ幅Wsgsを有する。図13に示すように、この主走査スポットグループ幅Wsgmは、隣接する露光領域ERに形成される2つのスポットグループSG(例えば、図11におけるスポットグループSG1、SG2)それぞれの第1スポットSP1の間のピッチとして求めることができる。ここで、第1スポットSP1は、各スポットグループSGにおいて主走査方向MDの最上流にあるスポットSPである。
図14は、スポットグループとレンズ径等との関係を示す図であり、図15は、スポットグループと光学系最終面の光線通過領域との関係を示す図である。図14の「レンズアレイ」の欄では、レンズLSと、レンズLSにおける光線通過領域LPとの関係が示されている。また、レンズLSの主走査方向MD(長手方向LGD)における直径が主走査レンズ径DMmとして表されるとともに、レンズLSの副走査方向SD(幅方向LTD)における直径が副走査レンズ径DMsとして表されている。さらに、光線通過領域LPの主走査方向MD(長手方向LGD)における幅が主走査通過領域幅Wlpmとして表されるとともに、光線通過領域LPの副走査方向SD(幅方向LTD)における幅が副走査通過領域幅Wlpsとして表されている。なお、図8に示したように、発光素子グループ295において、長手発光素子グループ幅W295gmは幅発光素子グループ幅W295gsよりも大きい。したがって、これに対応して、主走査通過領域幅Wlpmは副走査通過領域幅Wlpsよりも大きい。また、図14の「感光体ドラム表面」の欄では、感光体ドラム表面(像面)に形成されるスポットグループSGが表される。なお、同欄の二点差線は、各スポットグループを形成するレンズLSを感光体ドラム表面に投影したものである。
レンズ行SGRにおいて隣接するレンズLS間のピッチ(行内レンズピッチ)は、(m×Wsgm)と表せる。レンズLSを配列するためには、この行内レンズピッチは、各レンズにおける光線通過領域LPの主走査方向MDの幅Wlpmよりも大きい必要があるので、次式
L≦m×Wsgm …式5
が満たされる必要がある。また、像面(被照射面)とラインヘッド29との距離の変動に起因した、スポットSPの形成位置(ビームスポットSPの入射位置)の変動を抑制するために、像側が略テレセントリックとなるように光学系を構成した場合、次式、
Wlpm/2≧Wsgm/2+S×tan(θ)
が成立する。この式の両辺を2倍すると、次式、
Wlpm≧Wsgm+2×S×tan(θ) …式6
が得られる。横軸Wsgm、縦軸Wlpmとして式5と式6をプロットすると、図15に示すようになり、両式を満たすのは図15の斜線範囲となる。そして、図15における2線の交点を求め、斜線部に対応するWlpmの取りうる範囲を求めると、次式、
Wlpm≧2×S×tan(θ)×m/(m−1) …式2
が導出される。
E.本実施形態におけるレンズアレイの構成
以上の検討より、グループ化された発光素子グループ295毎に1つのレンズLSを設けるとともに、このレンズLSを2次元的に配置したレンズアレイ299を構成するためには、レンズ直径は0.5[mm]程度以上とする必要がある。つまり、レンズアレイ299においては、0.5[mm]というマイクロレンズとしては比較的大きなレンズ直径を有するレンズLSが2次元的に配置されこととなり、凹凸形状が密に並ぶこととなる。このように、凹凸形状が密に並んだレンズアレイ299は、レンズアレイ形成に際して金型の離型性が低下する傾向にある。その結果、金型の離型時にレンズLSのレンズ面が欠損するような問題が発生する場合があり、レンズLSの面精度が損ねられるおそれがあった。
そこで、本実施形態では、結像光学系の光軸OAを含むレンズLSの断面において、レンズ外周領域OTRの曲率は、レンズ中心CTの曲率と逆の符号を有する、あるいは、レンズ中心CTの曲率よりも小さい絶対値を有する。ここで、「レンズ外周領域OTR」は、レンズLSにおいて当該レンズLSを含む結像光学系の光軸OAから所定距離より離れた領域である。また、後の説明のために、レンズLSにおいて当該レンズLSを含む結像光学系の光軸OAから所定距離以内の領域を「レンズ内周領域INR」と定義しておく。また、特に断らない限り、「レンズ断面」あるいは「レンズの断面」とは何れも、光軸OAを含むレンズLSの断面を表すものとする。そして、本実施形態では、レンズ外周領域OTRの曲率が上記の通り設定されているため、レンズ外周部OCにおける接線角度が小さく抑えられており、各レンズLSは金型から離れやすい形状を有している。その結果、レンズアレイの離型性の向上が可能となっている。これについて図面を用いつつ説明する。
図16は、レンズのレンズ中心を含む断面を示す図である。同図に示すレンズLSbあるいはレンズLScが、本発明にかかるレンズに相当する。レンズLSaは、本発明にかかるレンズとの比較のために記載されている。レンズLSa,LSb,LScは、いずれもレンズアレイ表面299−hに形成されている。同図において、レンズLSa,LSb,LScは、それぞれのレンズ中心が一致するように重ねて記載されており、レンズLSa,LSb,LScは互いに等しい大きさのサグを有する。また、各レンズLSa,LSb,LScは、レンズ中心CTにおいて互いに等しい曲率半径Raを有する。
同図において、レンズLSaの曲率中心CCは曲率中心CCaとして表されており、レンズLSbの曲率中心CCは曲率中心CCbとして表されており、レンズLScの曲率中心CCは曲率中心CCcとして表されている。また、本明細書における曲率CVは、次のように定義できる(図16の四角囲み参照)。つまり、曲率CV(CVa,CVb,CVc)の絶対値は曲率半径R(Ra,Rb,Rc)の逆数である。また、レンズLSのレンズ面よりも光ビームの進行方向Doaの先の空間(方向Doaの下流側)に曲率中心CCある場合は、該曲率中心CCで与えられる曲率CVは正である。一方、レンズLSのレンズ面よりも光ビームの進行方向Doaの手前側(方向Doaの上流側)に曲率中心CCある場合は、該曲率中心CCで与えられる曲率CVは負である。
同図に示すように、各レンズLSa,LSb,LScそれぞれにおいて、光軸OAから所定距離(=Dinr/2)以内の領域がレンズ内周領域INRであり、光軸OAから所定距離(=Dinr/2)より離れた領域がレンズ外周領域OTRである。ここで、距離Dinrは、レンズ内周領域INRの直径に相当する。さらに、同図において、レンズLSaの外周部OCには符合OCaが付されており、レンズLSbの外周部OCには符合OCbが付されており、レンズLScの外周部OCには符合OCcが付されている。なお、本明細書において、レンズLSの外周部OCは、次のように定義される。つまり、平端部PLを含む平坦な平坦面PLSとレンズLSとの境界がレンズ外周部である。なお、後にレンズ外周部における接線角度を用いた説明を行なう。そこで、この接線角度について定義しておく。
図17は、レンズ外周部における接線角度の定義図面であり、レンズ中心を含む断面を示している。まず、レンズ外周部OCにおけるレンズ面LSFに対する接線をTLとする。次に、レンズTLと平坦面PLSとが交差してできる角度のうち、レンズ側にできる角度を角度β1、β2とする。そして、これらの角度β1,β2のうち、レンズ中心側にできる角度β1が接線角度である。このとき、角度β1は、次式、
0°<β1<90°
の範囲の値をとりうる。また、接線傾きはtan(β1)で与えられるものとする。
そして、図16に示すように、レンズLSaでは、レンズ内周領域INRかレンズ外周領域OTRかに依らず曲率は一様(=CVa)であり、レンズLSaはいわゆる球面レンズである。これに対して、レンズLScでは、レンズ外周領域OTRの曲率はレンズ中心CTの曲率と逆の符号を有しており、また、レンズLSbでは、レンズ外周領域OTRの曲率はレンズ中心CTの曲率よりも小さい絶対値を有している。レンズ外周領域OTRの代表としてレンズ外周部OCについて具体的に見てみると、レンズLSaでは、レンズ中心CTにおける曲率とレンズ外周部OCaにおける曲率は何れも曲率CVa=−1/Raである。これに対して、レンズLSbにおいては、レンズ外周部OCbの曲率CVb=−1/Rbは、レンズ中心CTの曲率CVa=−1/Raよりも小さい絶対値を有する。また、レンズLScにおいては、レンズ外周部OCcの曲率CVc=1/Rcは、レンズ中心の曲率CVa=−1/Raと逆の符号を有する。このように、レンズLSb、LScは構成されているため、レンズ外周部OCb,OCcにおける接線角度は、レンズLSaのレンズ外周部OCaの接線角度よりも小さく抑えることが可能となっている。つまり、各レンズLSb,LScは金型から離れやすい形状を有しており、その結果、このようなレンズLSb,LScを配列したレンズアレイは良好な離型性を有することとなる。
さらに本実施形態では、このレンズ内周領域INRに対して絞り2982は次の図18に示すように構成されている。ここで、図18はレンズ内周領域と絞りとの関係を示す図であり、レンズLSを含む結像光学系の光軸OA方向(光ビームの進行方向Doa)から見た場合の平面図に相当する。同図が示すように、絞り2982の開口2981は、レンズLSの光軸OAを中心とした円状である。また、レンズLSの直径DMと、開口の直径D2981と、レンズ内周領域INR(同図破線内部の領域)の直径Dinrとは、次式
DM>D2981>Dinr
を満たす。つまり、本実施形態では、結像光学系の光軸OA方向から見て、レンズ内周領域INRは絞り2982の開口2981の内部に含まれている。したがって、多くの光ビームをレンズLSに取り込むことができ、良好な露光が実現可能となっている。
ところで、上記実施形態では、発光素子2951として有機EL素子が用いられており、この有機EL素子はLED(Light Emitting Diode)等と比較して光量が少ないため、レンズLSに取り込める光量は少なくなる傾向にある。特にボトムエミッション型の有機EL素子を用いた場合、有機EL素子から射出された光ビームの一部はヘッド基板293に吸収されるため、レンズLSに取り込める光量がなおさら少なくなる。このような場合、十分な光をレンズLSに取り込むためにレンズ直径を大きくすることが考えられる。しかしながら、従来では、レンズ直径を大きくすることで離型性が悪化するおそれがあった。これに対して、上記実施形態では、各レンズLSb,LScは金型から離れやすい形状を有しているため、離型性を悪化させること無く容易にレンズ直径を大きくすることができる。よって、レンズLSに十分な光ビームを取り込んで良好な露光が実行可能となっている。
F.その他
このように上記実施形態では、長手方向LGDおよび主走査方向SDが本発明の「第1方向」に相当し、幅方向LTDおよび副走査方向SDが本発明の「第2方向」に相当し、感光体ドラム21が本発明の「潜像担持体」に相当している。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、表面299−hにレンズLSが形成されたレンズアレイ299を用いて光学系が構成されている。しかしながら、光学系の構成態様はこれに限られない。
図19は、別の結像光学系における長手方向の断面図であり、レンズアレイに形成されたレンズLSの光軸を含む長手方向断面を示している。なお、以下の説明では、別の結像光学系の特徴部分について述べることとし、既に上述した結像光学系との共通部分については相当符号を付して説明を省略する。図19に示すように、別の結像光学系においては、レンズアレイ299の裏面299−tにレンズLSが形成されている。したがって、裏面299−tには、レンズLSが形成されて有限の曲率を有する部分と、レンズLSが形成されずに無限大の曲率を有する平端部PLとが存在することになる。
同図に示す光学系では、このような構成を有するレンズアレイ299が、2枚(299A,299B)光ビームの進行方向Doaに並べて配置されており、光の進行方向Doaに並ぶ2枚のレンズLS1,LS2が各発光素子グループ295毎に配置されることとなる。また、互いに同じ発光素子グループ295に対応する第1レンズLS1および第2レンズLS2それぞれのレンズ中心を通る光軸OA(図19二点鎖線)は、ヘッド基板293の裏面293−tに直交もしくは略直交している。また、光ビームの進行方向Doaにおいてヘッド基板293とレンズアレイ299Aとの間には、絞り板298が設けられており、この絞り板298には開口2981が発光素子グループ295毎に穿設されている。
このように、別の結像光学系は、絞り2982および第1・第2レンズLS1,LS2を有している。したがって、発光素子グループ295から射出された光ビームは、絞り2982(絞り板298)により絞られた後、第1・第2レンズLS1,LS2により結像される。
そして、別の光学系においても、結像光学系の光軸を含むレンズ断面において、レンズ外周領域OTRの曲率は、レンズ中心CTの曲率と逆の符号を有する、あるいは、レンズ中心CTの曲率よりも小さい絶対値を有している。したがって、レンズ外周部OCにおける接線角度が小さく抑えられており、各レンズLSは金型から離れやすい形状を有している。これについて詳述する。
図20は、レンズのレンズ中心を含む断面を示す図である。図20は、レンズアレイ299の裏面299−tにレンズLSが形成されている点においてのみ図16と異なり、その他の部分については図20は図16と同様である。したがって、以下では、図16との差異点について主に説明することとし、共通部分については説明を省略する。
図16の場合と同様に、図20に示すレンズLSbあるいはレンズLScが本発明にかかるレンズに相当し、レンズLSaは本発明にかかるレンズとの比較のために記載されている。そして、図20に示すように、レンズLSaでは、レンズ内周領域INRかレンズ外周領域OTRかに依らず曲率は一様(=CVa)であり、レンズLSaはいわゆる球面レンズである。これに対して、レンズLScでは、レンズ外周領域OTRの曲率はレンズ中心CTの曲率と逆の符号を有しており、また、レンズLSbでは、レンズ外周領域OTRの曲率はレンズ中心CTの曲率よりも小さい絶対値を有している。レンズ外周領域OTRの代表としてレンズ外周部OCについて具体的に見てみると、レンズLSaおいては、レンズ中心CTにおける曲率とレンズ外周部OCaにおける曲率は何れも曲率CVa=1/Raである。これに対して、レンズLSbにおいては、レンズ外周部OCbの曲率CVb=1/Rbは、レンズ中心CTの曲率CVa=1/Raよりも小さい絶対値を有する。また、レンズLScにおいては、レンズ外周部OCcの曲率CVc=−1/Rcは、レンズ中心の曲率CVa=1/Raと逆の符号を有する。このように、レンズLSb、LScは構成されているため、レンズ外周部OCb,OCcにおける接線角度は、レンズLSaのレンズ外周部OCaの接線角度よりも小さく抑えることが可能となっている。つまり、各レンズLSb,LScは金型から離れやすい形状を有しており、その結果、このようなレンズLSb,LScを配列したレンズアレイは良好な離型性を有することとなる。
また、別の光学系においても、レンズ内周領域INRに対して絞り2982は図18に示したように構成されており、結像光学系光軸OA方向から見て、レンズ内周領域INRは絞り2982の開口2981の内部に含まれている。したがって、多くの光ビームをレンズLSに取り込むことができ、良好な露光が実現可能となっている。
また、上述の実施形態では、レンズLSは、レンズアレイ299の表面299−hあるいは裏面299−tのいずれか一方面にのみ設けられているが、レンズアレイ299の両面にレンズLSが形成されるように構成しても良い。
また、上記実施形態では、2枚のレンズアレイ299が用いられているが、レンズアレイ299の枚数はこれに限られない。
また、上記実施形態では、レンズ基板としての光透過性基板に対してレンズLSとしての光硬化性樹脂を形成することで、レンズアレイ299は形成される。しかしながら、レンズアレイ299の形成方法はこれに限られず、特開2005−276849号公報等に記載のある次のような方法でレンズアレイ299を形成しても良い。この形成方法では、熱可塑性樹脂からなる基板(樹脂基板)が転移温度以上の温度に保たれた状態で、樹脂基板に金型が加圧密着される。そして、樹脂基板および金型が、樹脂基板の転移温度以下にまで冷却されたタイミングで、樹脂基板から金型が離型される。つまり、このような形成方法においても、レンズLSのレンズ中心CTを含むレンズ断面において、レンズ外周領域OTRの曲率は、レンズ中心CTの曲率と逆の符号を有する、あるいは、レンズ中心CTの曲率よりも小さい絶対値を有するように、レンズLSを構成することで、レンズアレイの良好な離型性を実現することが可能となる。
また、上記実施形態では、3個の発光素子グループ行295Rが幅方向LTDに並んでいる。しかしながら、発光素子グループ行295Rの個数は3個に限られず、2個以上であれば良い。
また、上記実施形態では、発光素子グループ295は、2個の発光素子行2951Rから構成されている。しかしながら、発光素子グループ295を構成する発光素子行2951Rの個数は2個に限られず、例えば1個であっても良い。
また、上記実施形態では、発光素子行2951Rは4個の発光素子2951から構成されている。しかしながら、発光素子行2951Rを構成する発光素子2951の個数は4個に限られない。
また、上記実施形態では、発光素子2951として有機EL素子が用いられている。しかしながら、有機EL素子以外のものを発光素子2951として用いても良く、例えば、LED(Light Emitting Diode)を発光素子2951として用いても良い。
次に本発明の実施例を示すが、本発明はもとより下記の実施例によって制限を受けるものではなく、前後記の趣旨に適合しうる範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に含まれる。
以下では、本発明の効果を示すために、レンズ内周領域INRかレンズ外周領域OTRかに依らず曲率が一様(=CVa)であるレンズを用いた比較例を示したあとに、本発明にかかるレンズを用いた実施例を示すこととする。
比較例
図21は、比較例における光学系のデータを示す図であり、図22は、比較例における光学系の主走査方向における断面図であり、図23は、比較例における副走査方向における断面図である。図24は、図22および図23に示す光路をシミュレーションにより求めるにあたり用いた条件を示す図である。図24に示すように、比較例において主走査スポットグループ幅Wsgmは0.26[mm]である。これに対応して、図22では、像IMm0,IMm1,IMm2を結ぶ光路が示されている。つまり、像IMm0は、光軸上にできる(換言すれば主走査方向MDにおける像高が0[mm]である)像であり、像IMm1は、主走査方向MDにおける像高が0.13[mm](=Wsgm/2)にできる像であり、像IMm2は、主走査方向MDにおける像高が−0.13[mm](=−Wsgm/2)にできる像である。また、図23では、像IMs0を結ぶ光路が示されている。つまり、像IMs0は、光軸上にできる(換言すれば副走査方向SDにおける像高が0[mm]である)像である。また、同図に示すように、比較例での倍率は−1.0である。
図25は、比較例におけるスポットダイアグラムを示す図である。図25において、スポットの位置は、主走査方向MDにおける像高で表されている。つまり、例えば、図25において最上にあるスポットダイアグラムは、主走査方向MDにおいて像高=0.13[mm]にできるスポットのスポットダイアグラムである。また、同図における入射角IRは、スポットを形成する光ビームの主光線の入射瞳に対する入射角を示している。
図26は、比較例における第1レンズのレンズデータを示す図である。同図に示すように、第1レンズLS1のレンズ直径DMは0.60[mm](=主走査通過領域幅Wlpm+0.096[mm])となっている。そして、この比較例では、第1レンズLS1において、レンズ中心CTでの曲率およびレンズ外周領域OTRでの曲率は何れも−1.425である。つまり、レンズ外周領域OTRの曲率はレンズ中心CTの曲率と等しい。その結果、レンズ外周部OCは、接線傾き(=0.473)を有する。
図27は、比較例における第2レンズのレンズデータを示す図である。同図に示すように、第2レンズLS1のレンズ直径は0.70[mm](=主走査通過領域幅Wlpm+0.06[mm])となっている。この比較例では、第2レンズLS2において、レンズ中心CTでの曲率およびレンズ外周領域OTRでの曲率は何れも−1.318である。つまり、レンズ外周領域OTRの曲率はレンズ中心CTの曲率と等しい。その結果、レンズ外周部OCは、接線傾き(=0.519)を有する。
図28は、比較例における絞りの開口の直径を示す図である。同図が示すように、比較例では、開口2981(絞り開口2981)の直径D2981は0.44[mm]である。
実施例
図29は、実施例における光学系のデータを示す図である。図29に示すように、実施例では、第1レンズLS1および第2レンズLS2のいずれにおいても、レンズ内周領域INRの直径Dinrは0.3[mm]である。また、第1レンズLS1において、レンズ内周領域Rinrは一様な曲率半径Rinr3=−0.702[mm]を有するとともに、レンズ外周領域Rotrは一様な曲率半径Rotr3=−0.770[mm]を有する。さらに、第2レンズLS2において、レンズ内周領域Rinrは一様な曲率半径Rinr3=−0.759[mm]を有するとともに、レンズ外周領域Rotrは一様な曲率半径Rotr3=−0.850[mm]を有する。
図30は、実施例における光学系の主走査方向における断面図であり、図31は、実施例における副走査方向における断面図である。図32は、図30および図31に示す光路をシミュレーションにより求めるにあたり用いた条件を示す図である。図32に示すように、実施例において主走査スポットグループ幅Wsgmは0.26[mm]である。これに対応して、図30では、像IMm0,IMm1,IMm2を結ぶ光路が示されている。つまり、像IMm0は、光軸上にできる(換言すれば主走査方向MDにおける像高が0[mm]である)像であり、像IMm1は、主走査方向MDにおける像高が0.13[mm](=Wsgm/2)にできる像であり、像IMm2は、主走査方向MDにおける像高が−0.13[mm](=−Wsgm/2)にできる像である。また、図31では、像IMs0を結ぶ光路が示されている。つまり、像IMs0は、光軸上にできる(換言すれば副走査方向SDにおける像高が0[mm]である)像である。また、同図に示すように、実施例での倍率は−1.0である。
図33は、実施例におけるスポットダイアグラムを示す図である。図33において、スポットの位置は、主走査方向MDにおける像高で表されている。つまり、例えば、図33において最上にあるスポットダイアグラムは、主走査方向MDにおいて像高=0.13[mm]にできるスポットのスポットダイアグラムである。また、同図における入射角IRは、スポットを形成する光ビームの主光線の入射瞳に対する入射角を示している。比較例における図25との比較から判るように、実施例では良好な結像特性が実現されている。つまり、入射角が互いに等しいスポットダイアグラムを比較した場合、図33に示す実施例でのスポットダイアグラムは、図25に示す比較例でのスポットダイアグラムよりも小さくまとまっており収差が改善していることが分かる。
図34は、実施例における第1レンズのレンズデータを示す図である。同図に示すように、第1レンズLS1のレンズ直径DMは0.60[mm](=主走査通過領域幅Wlpm+0.098[mm])となっている。ここで注目すべきは、第1レンズLS1において、レンズ中心での曲率は−1.425であるのに対して、レンズ外周領域OTRでの曲率は−1.299である点である。つまり、レンズ外周領域OTRの曲率はレンズ中心CTの曲率よりも絶対値において小さい。その結果、比較例における第1レンズLS1と比較して、実施例における第1レンズLS1では、レンズ外周部OCでの接線傾き(0.448)が小さく抑えられており、レンズアレイの離型性が改善されている。
図35は、実施例における第2レンズのレンズデータを示す図である。同図に示すように、第2レンズLS2のレンズ直径DMは0.70[mm](=主走査通過領域幅Wlpm+0.048[mm])となっている。ここで注目すべきは、第2レンズLS2において、レンズ中心での曲率は−1.318であるのに対して、レンズ外周領域OTRでの曲率は−1.176である点である。つまり、レンズ外周領域OTRの曲率はレンズ中心CTの曲率よりも絶対値において小さい。その結果、比較例における第2レンズLS2と比較して、実施例における第2レンズLS2では、レンズ外周部OCでの接線傾き(0.480)が小さく抑えられており、レンズアレイの離型性が改善されている。
図36は、実施例における絞りの開口の直径を示す図である。図29〜図31から判るように、光ビームの進行方向Doaにおいて第2レンズLS2の手前には絞り2982が配置されており、第2レンズLS2に向う光ビームは絞り2982により絞られる。そして、この実施例では、図36に示すように、開口2981(絞り開口2981)の直径D2981は0.44[mm]であり、第2レンズLS2のレンズ内周領域INRの直径0.3[mm]よりも大きい。つまり、この実施例では、レンズLSの光軸OA方向から見て、レンズ内周領域INRは絞り2982の開口2981の内部に含まれている。したがって、多くの光ビームを第2レンズLS2に取り込むことができ、良好な露光が実現可能となっている。
また、図29の光学系のデータから判るように、実施例における第1・第2レンズLS1,LS2は、当該レンズの光軸OAを回転対称軸とする回転対称レンズである。したがって、実施例では、レンズ構成の簡素化が可能となっている。
本明細書で用いる用語の説明図。 本明細書で用いる用語の説明図。 本発明にかかる画像形成装置の一例を示す図。 図3の画像形成装置の電気的構成を示す図。 本発明にかかるラインヘッドの概略を示す斜視図。 図5に示したラインヘッドの幅方向断面図。 ヘッド基板の裏面の構成を示す図。 ヘッド基板裏面に設けられた発光素子グループの構成を示す図。 レンズアレイの平面図。 レンズアレイおよびヘッド基板等の長手方向の断面図。 ラインヘッドにより形成されるスポットを説明するための斜視図。 上述のラインヘッドによるスポット潜像形成動作を示す図。 像面に形成されるスポットグループを示す図。 スポットグループとレンズ径等との関係を示す図。 スポットグループと光学系最終面の光線通過領域との関係を示す図。 レンズのレンズ中心を含む断面を示す図。 レンズ外周部における接線角度の定義図。 レンズ内周領域と絞りとの関係を示す図。 別の光学系における長手方向の断面図。 レンズのレンズ中心を含む断面を示す図。 比較例における光学系のデータを示す図。 比較例における光学系の主走査方向における断面図。 比較例における副走査方向における断面図。 図22および図23に示す光路を求めるにあたり用いた条件を示す図。 比較例におけるスポットダイアグラムを示す図。 比較例における第1レンズのレンズデータを示す図。 比較例における第2レンズのレンズデータを示す図。 比較例における絞りの開口の直径を示す図。 実施例における光学系のデータを示す図。 実施例における光学系の主走査方向における断面図。 実施例における副走査方向における断面図。 図30および図31に示す光路を求めるにあたり用いた条件を示す図。 実施例におけるスポットダイアグラムを示す図。 実施例における第1レンズのレンズデータを示す図。 実施例における第2レンズのレンズデータを示す図。 実施例における絞りの開口の直径を示す図。
符号の説明
21Y、21K…感光体ドラム(潜像担持体)、 29…ラインヘッド、 293…ヘッド基板、 295…発光素子グループ、 2951…発光素子、 299,299A,299B…レンズアレイ、 LS…レンズ、 CT…レンズ中心、 OC…レンズ外周部、 SP…スポット、 Lsp…スポット潜像、 MD…主走査方向(第1方向), SD…副走査方向(第2方向)、 LGD…長手方向(第1方向)、 LTD…幅方向(第2方向)

Claims (7)

  1. 複数の発光素子をグループ化した発光素子グループを第1方向に複数並べた、発光素子グループ行が前記第1方向に直交もしくは略直交する第2方向に複数配したヘッド基板と、
    レンズを前記発光素子グループ毎に設けたレンズアレイと、
    前記発光素子グループ毎に開口絞りが設けられた絞り部材と
    を備え、
    前記発光素子から射出された光は当該発光素子グループに対応して設けられた前記レンズおよび前記開口絞りを含む結像光学系により結像され、
    前記レンズにおいて、前記結像光学系の光軸から所定距離以内の領域をレンズ内周領域とし、当該光軸から所定距離より離れた領域をレンズ外周領域としたとき、
    前記結像光学系の光軸を含む前記レンズの断面において、前記レンズ外周領域の曲率は、レンズ中心の曲率と逆の符号を有する、あるいは、レンズ中心の曲率よりも小さい絶対値を有しており、
    前記結像光学系の光軸方向から見て、前記レンズ内周領域は前記開口絞りの開口の内部に含まれることを特徴とするラインヘッド。
  2. 前記レンズの直径は、0.5[mm]以上である請求項1記載のラインヘッド。
  3. 前記レンズは、当該レンズの光軸を回転対称軸とする回転対称レンズである請求項1または2記載のラインヘッド。
  4. 前記レンズは光硬化性樹脂で形成されている請求項1ないし3のいずれか一項に記載のラインヘッド。
  5. 前記発光素子は、有機EL素子である請求項1ないし4のいずれか一項に記載のラインヘッド。
  6. 前記有機EL素子は、ボトムエミッション型である請求項5に記載のラインヘッド。
  7. 複数の発光素子をグループ化した発光素子グループを第1方向に複数並べた、発光素子グループ行が前記第1方向に直交もしくは略直交する第2方向に複数配したヘッド基板と、レンズを前記発光素子グループ毎に設けたレンズアレイと、前記発光素子グループ毎に開口絞りが設けられた絞り部材とを有するラインヘッドと、
    前記ラインヘッドの前記発光素子が射出する光により露光される潜像担持体と
    を備え、
    前記発光素子から射出された光は当該発光素子グループに対応して設けられた前記レンズおよび前記開口絞りを含む結像光学系により結像され、
    前記レンズにおいて、前記結像光学系の光軸から所定距離以内の領域をレンズ内周領域とし、当該光軸から所定距離より離れた領域をレンズ外周領域としたとき、
    前記結像光学系の光軸を含む前記レンズの断面において、前記レンズ外周領域の曲率は、レンズ中心の曲率と逆の符号を有する、あるいは、レンズ中心の曲率よりも小さい絶対値を有しており、
    前記結像光学系の光軸方向から見て、前記レンズ内周領域は前記開口絞りの開口の内部に含まれることを特徴とする画像形成装置。
JP2008010607A 2008-01-21 2008-01-21 ラインヘッドおよび画像形成装置 Withdrawn JP2009172771A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010607A JP2009172771A (ja) 2008-01-21 2008-01-21 ラインヘッドおよび画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010607A JP2009172771A (ja) 2008-01-21 2008-01-21 ラインヘッドおよび画像形成装置

Publications (1)

Publication Number Publication Date
JP2009172771A true JP2009172771A (ja) 2009-08-06

Family

ID=41028446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010607A Withdrawn JP2009172771A (ja) 2008-01-21 2008-01-21 ラインヘッドおよび画像形成装置

Country Status (1)

Country Link
JP (1) JP2009172771A (ja)

Similar Documents

Publication Publication Date Title
JP2010076388A (ja) 画像形成装置および画像形成方法
JP2008036937A (ja) ラインヘッド及び該ラインヘッドを用いた画像形成装置
JP2009190397A (ja) 露光ヘッドおよび画像形成装置
JP2009196346A (ja) レンズアレイ、露光ヘッドおよび画像形成装置
US7952601B2 (en) Lens array, exposure head, and image forming apparatus
JP2009196345A (ja) ラインヘッドおよび画像形成装置
US20090185828A1 (en) Lens Array, Exposure Head, and Image Forming Apparatus
JP5157339B2 (ja) ラインヘッド及び該ラインヘッドを用いた画像形成装置
EP2085228B1 (en) Image forming apparatus having a lens array.
JP2009193060A (ja) レンズアレイ、露光ヘッドおよび画像形成装置
JP2009186981A (ja) ラインヘッドおよび画像形成装置
JP2010076390A (ja) 露光ヘッドおよび画像形成装置
JP2009173005A (ja) 露光ヘッド、画像形成装置
US8089499B2 (en) Exposure head and an image forming apparatus
JP2009172771A (ja) ラインヘッドおよび画像形成装置
JP2010139549A (ja) レンズアレイの製造方法、レンズアレイ、ラインヘッドおよび画像形成装置
JP2008049692A (ja) ラインヘッド及び該ラインヘッドを用いた画像形成装置
JP2009149051A (ja) ラインヘッドおよび該ラインヘッドを用いた画像形成装置
US8085470B2 (en) Line head and an image forming apparatus
JP5070839B2 (ja) ラインヘッド及び該ラインヘッドを用いた画像形成装置
JP2011000862A (ja) 露光ヘッド、画像形成装置
JP2009078538A (ja) 露光ヘッド及び該露光ヘッドを用いた画像形成装置
JP2011000864A (ja) 露光ヘッド、画像形成装置
JP2009137107A (ja) ラインヘッドおよび該ラインヘッドを用いた画像形成装置
JP2009160740A (ja) ラインヘッドおよび画像形成装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405