JP2009170758A - Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component - Google Patents

Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component Download PDF

Info

Publication number
JP2009170758A
JP2009170758A JP2008008891A JP2008008891A JP2009170758A JP 2009170758 A JP2009170758 A JP 2009170758A JP 2008008891 A JP2008008891 A JP 2008008891A JP 2008008891 A JP2008008891 A JP 2008008891A JP 2009170758 A JP2009170758 A JP 2009170758A
Authority
JP
Japan
Prior art keywords
electronic component
heat sink
high heat
package
type electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008008891A
Other languages
Japanese (ja)
Inventor
Akiyoshi Kosakata
明義 小阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2008008891A priority Critical patent/JP2009170758A/en
Publication of JP2009170758A publication Critical patent/JP2009170758A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive package for storing a high heat radiation type electronic component using a heatsink plate which has high thermal conductivity and has high mechanical bonding strength. <P>SOLUTION: In a package for storing a high heat radiation type electronic component 10 in which a ceramic frame body 13 is provided, by brazing, in un upper surface of a heatsink plate 12, and the heat generated from an electronic component 11 stored in a cavity section 14 radiates through a heatsink plate 12, the heatsink plate 12 is formed by brazing with copper plates 21, which are the same thickness as one another and are the same size as the insulating substrate 20, through a silver-cooper wax system wax material 17a, between nickel plating films 16a formed in the upper surface of metallize films 15a, which are made of tungsten or molybdenum, formed in each surface of a flat-shaped insulating substrate 20, which is made of aluminum nitride or silicon nitride. Further, the ratio a/b of the thickness b of the insulating substrate 20 to total thickness a of the copper plates 21 is 1.0 or more and 5.0 or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ヒートシンク板、セラミック枠体、外部接続リード端子等で構成される高放熱型電子部品収納用パッケージに関し、より詳細には、キャビティ部のヒートシンク板上面に半導体素子等の電子部品が搭載され、金属板等からなる外部接続リード端子のワイヤボンドパッド部と電子部品をボンディングワイヤで接続して電気的に導通状態とされ、蓋体で電子部品が気密に封止されるのに用いられる高放熱型電子部品収納用パッケージに関する。   The present invention relates to a high heat dissipation type electronic component storage package including a heat sink plate, a ceramic frame, an external connection lead terminal, and the like, and more specifically, an electronic component such as a semiconductor element is mounted on the upper surface of the heat sink plate of a cavity portion. The wire bond pad portion of the external connection lead terminal made of a metal plate or the like and the electronic component are connected by a bonding wire to be in an electrically conductive state, and the electronic component is hermetically sealed with a lid. The present invention relates to a high heat dissipation type electronic component storage package.

図3に示すように、従来から、高放熱型電子部品収納用パッケージ50には、例えば、RF(Radio Frequency)基地局用等のシリコンや、ガリウム砒素電界効果トランジスタ等の高周波、高出力の半導体素子等の電子部品51を収納したりするためのものがある。このような高放熱型電子部品収納用パッケージ50は、実装される電子部品51から高温、且つ大量の熱を発生するので、この熱を放熱するために、例えば、セラミックと熱膨張係数が近似し、ポーラス状からなるタングステンに熱伝導性に優れる銅を含浸させたりして作製される銅とタングステンの複合金属板等からなる高熱伝導率を有するヒートシンク板52上に電子部品51が搭載できるようにしている。また、この高放熱型電子部品収納用パッケージ50は、ヒートシンク板52上に電子部品51を囲繞して中空状態で気密に収納するキャビティ部53を形成するために、ヒートシンク板52上にアルミナ(Al)や、窒化アルミニウム(AlN)等のセラミックからなる窓枠形状のセラミック枠体54がろう付け接合されて設けられている。 As shown in FIG. 3, conventionally, the high heat radiation type electronic component storage package 50 includes, for example, silicon for RF (Radio Frequency) base stations, high frequency, high output semiconductors such as gallium arsenide field effect transistors. There are some for storing electronic components 51 such as elements. Such a high heat radiation type electronic component storage package 50 generates a high temperature and a large amount of heat from the electronic component 51 to be mounted. Therefore, in order to dissipate this heat, for example, the thermal expansion coefficient approximates that of ceramic. The electronic component 51 can be mounted on a heat sink plate 52 having a high thermal conductivity made of a composite metal plate of copper and tungsten or the like produced by impregnating porous tungsten with copper having excellent thermal conductivity. ing. In addition, the high heat dissipation type electronic component storage package 50 includes an alumina (Al) on the heat sink plate 52 in order to form a cavity portion 53 that surrounds the electronic component 51 on the heat sink plate 52 and stores the electronic component 51 in a hollow state. 2 O 3 ) and a window frame-shaped ceramic frame 54 made of ceramic such as aluminum nitride (AlN) is brazed and provided.

上記の銅とタングステンの複合金属板等からなるヒートシンク板52は、高熱伝導率を確保できると共に、セラミック枠体54のアルミナや、窒化アルミニウム等のセラミックと熱膨張係数が近似しているので、接合部にクラック等の発生を防止して接合体が形成できるようになっている。更に、この高放熱型電子部品収納用パッケージ50は、セラミック枠体54の上面に、外部と電気的に導通状態とするためのセラミックと熱膨張係数が近似するKV(Fe−Ni−Co系合金、商品名「Kovar(コバール)」)や、42アロイ(Fe−Ni系合金)等の金属板からなる外部接続リード端子55がろう付け接合されて設けられている。なお、この高放熱型電子部品収納用パッケージ50には、電子部品51を実装させたり、外部との酸化や硫化を防止する等のために、表面に露出する全ての金属部分にニッケルめっき被膜、及び金めっき被膜が形成されている。   The heat sink plate 52 made of the above-described composite metal plate of copper and tungsten can secure high thermal conductivity and has a thermal expansion coefficient similar to that of alumina of the ceramic frame 54 or ceramic such as aluminum nitride. It is possible to form a joined body by preventing the occurrence of cracks and the like in the portion. Further, the high heat dissipation electronic component storage package 50 has a KV (Fe—Ni—Co alloy) having a thermal expansion coefficient approximate to that of the ceramic for electrically connecting to the outside on the upper surface of the ceramic frame 54. , An external connection lead terminal 55 made of a metal plate such as 42 alloy (Fe-Ni alloy) or the like is provided by brazing and joining. In this high heat dissipation type electronic component storage package 50, in order to mount the electronic component 51, to prevent oxidation and sulfurization with the outside, etc., a nickel plating film is applied to all metal parts exposed on the surface, And the gold plating film is formed.

図4(A)、(B)に示すように、上記の高放熱型電子部品収納用パッケージ50には、キャビティ部53のヒートシンク板52の上面のAuめっき被膜面に電子部品51がAu−Siろう材等で接合している。この接合は、電子部品51の裏面に形成されているAu蒸着面と、キャビティ部53のヒートシンク板52の上面のAuめっき被膜面との間にAu−Siろう材等のろう材を挟み込んで加熱しながら電子部品51を加圧スクラブして擦り付けることで、強固な接着強度を確保している。そして、キャビティ部53に収納された電子部品51は、外部接続リード端子55との間をボンディングワイヤ56で直接接続して電気的導通を形成している。なお、この外部接続リード端子55には、外部と接続するための端子部と、ボンディングワイヤ56を接続するためのワイヤボンドパッド部が兼ね備えて設けられている。高放熱型電子部品収納用パッケージ50には、電子部品51がキャビティ部53内に実装された後、樹脂や、セラミックや、金属等からなる蓋体57がセラミック枠体54の上面に樹脂や、ガラス等の絶縁性接着材58で接合されて、電子部品51がキャビティ部53内で気密に封止される。   As shown in FIGS. 4A and 4B, in the high heat dissipation type electronic component storage package 50 described above, the electronic component 51 is Au-Si on the Au plating film surface of the heat sink plate 52 of the cavity portion 53. Joined with brazing material. In this bonding, a brazing material such as an Au—Si brazing material is sandwiched between the Au vapor deposition surface formed on the back surface of the electronic component 51 and the Au plating film surface of the upper surface of the heat sink plate 52 of the cavity portion 53. While the electronic component 51 is scrubbed and rubbed with pressure, a strong adhesive strength is ensured. The electronic component 51 housed in the cavity 53 is directly connected to the external connection lead terminal 55 by a bonding wire 56 to form electrical conduction. The external connection lead terminal 55 is provided with a terminal portion for connecting to the outside and a wire bond pad portion for connecting the bonding wire 56. In the high heat dissipation type electronic component storage package 50, after the electronic component 51 is mounted in the cavity 53, a lid 57 made of resin, ceramic, metal, or the like is formed on the upper surface of the ceramic frame 54 with resin, Bonded with an insulating adhesive 58 such as glass, the electronic component 51 is hermetically sealed in the cavity 53.

そして、電子部品51が収納された高放熱型電子部品収納用パッケージ50は、外部接続リード端子55の端子部下面が配線回路パターンの施されたボード基板59等に半田60で接合される。また、電子部品51が収納された高放熱型電子部品収納用パッケージ50は、ヒートシンク板52の長手方向両端部に設けられている取付部61で放熱性の向上を兼ねる金属製からなる基台62にねじ63でねじ止めする、及び/又は、ヒートシンク板52下面を基台62に半田60で接合している。なお、電子部品51が収納された高放熱型電子部品収納用パッケージ50は、ヒートシンク板52下面のAuめっき被膜面と、基台62との間をできるだけ密接させることで熱伝導性を向上させて放熱性を向上させることができるので、ヒートシンク板52の下面を半田60で接合すると共に、ヒートシンク板52の取付部61で基台62にねじ63でねじ止めすることが好ましいとされている。   The high heat dissipation type electronic component storage package 50 in which the electronic component 51 is stored is joined by solder 60 to a board substrate 59 or the like on which a wiring circuit pattern is provided on the lower surface of the external connection lead terminal 55. Further, the high heat dissipation type electronic component storage package 50 in which the electronic components 51 are stored is a base 62 made of a metal that also serves to improve heat dissipation at the mounting portions 61 provided at both ends in the longitudinal direction of the heat sink plate 52. And / or the lower surface of the heat sink plate 52 is joined to the base 62 with solder 60. The high heat dissipation type electronic component storage package 50 in which the electronic component 51 is stored has improved thermal conductivity by bringing the Au plating film surface on the lower surface of the heat sink plate 52 and the base 62 as close as possible. Since heat dissipation can be improved, it is preferable that the lower surface of the heat sink plate 52 is joined with the solder 60 and screwed to the base 62 with the screw 63 at the mounting portion 61 of the heat sink plate 52.

上記の高放熱型電子部品収納用パッケージ50には、実装される電子部品51の高周波化、高出力化の進行と共に、電子部品51からの発熱量が増大しているので、ヒートシンク板52に少なくとも240W/mK以上程度の高い熱伝導率を有することが求められることがある。このようなヒートシンク板52としては、例えば、高熱伝導率で安価な銅(熱伝導率:390W/mK)を用いたヒートシンク板52が有効となっている。しかしながら、ヒートシンク板52に銅板を用いた高放熱型電子部品収納用パッケージ50は、銅板と、セラミック枠体54のセラミック(例えば、アルミナ)の熱膨張係数がそれぞれ17×10−6/℃、7.2×10−6/℃と極端に異なるので、接合体に大きな反りが発生する。この反りについては、高放熱型電子部品収納用パッケージ50のヒートシンク板52と、基台62との密着性をよくして熱伝導性を向上させて放熱性を向上させるためや、ヒートシンク板52上に寸法の大きな電子部品を安定させてダイボンドさせるために、接合体としたときの反り具合を少なくとも70μm以下程度に小さくすることが求められることがある。このためにヒートシンク板52には、セラミック枠体54の熱膨張係数に近似させた金属板が必要となっている。更には、上記の高放熱型電子部品収納用パッケージ50には、あらゆる環境条件でも電子部品51に信頼性の高い機能が発揮できるようにするために、極端な環境条件を想定した−65〜150℃の温度サイクル試験(JIS C7021−A−4)でパッケージのセラミック枠体54にクラックが発生するまでの回数を少なくとも600回以上程度の長い回数に耐えられるようにすることが求められることがある。従って、上記の高放熱型電子部品収納用パッケージ50には、比較的高熱伝導率で、熱膨張係数がセラミック枠体54の熱膨張係数に近似する、例えば、銅とタングステンの複合金属板(熱伝導率:190W/mK、熱膨張係数:7.0×10−6/℃)からなるヒートシンク板52が用いられてきたが、このヒートシンク板52では熱伝導率が最近の電子部品51からの発熱量に対応しきれなくなっていた。そこで、最近では、ヒートシンク板52に銅とモリブデン系金属板の両面のそれぞれに同一厚さの銅板をクラッドして反りの発生を抑えながら熱伝導率を向上させた金属板(熱伝導率:240W/mK、熱膨張係数:10.1×10−6/℃)が用いられている。 In the high heat dissipation type electronic component storage package 50, the amount of heat generated from the electronic component 51 increases as the frequency of the electronic component 51 to be mounted increases and the output increases. It may be required to have a high thermal conductivity of about 240 W / mK or more. As such a heat sink plate 52, for example, a heat sink plate 52 using high-conductivity and inexpensive copper (thermal conductivity: 390 W / mK) is effective. However, the high heat dissipation electronic component storage package 50 using a copper plate as the heat sink plate 52 has a thermal expansion coefficient of 17 × 10 −6 / ° C., 7 × 10 −6 / ° C. for the copper plate and ceramic of the ceramic frame 54 (for example, alumina), respectively. Since it is extremely different from 2 × 10 −6 / ° C., a large warp occurs in the joined body. As for this warpage, in order to improve the heat conductivity by improving the adhesion between the heat sink plate 52 of the high heat dissipation type electronic component storage package 50 and the base 62 and to improve the heat dissipation, In order to stabilize and die bond an electronic component having a large size, it is sometimes required to reduce the degree of warpage when it is used as a joined body to at least about 70 μm or less. For this reason, the heat sink plate 52 requires a metal plate approximated to the thermal expansion coefficient of the ceramic frame 54. Furthermore, in order to allow the electronic component 51 to exhibit a highly reliable function under any environmental conditions, the above-described high heat dissipation electronic component storage package 50 assumes an extreme environmental condition of −65 to 150. It may be required that the number of times until a crack is generated in the ceramic frame body 54 of the package in a temperature cycle test (JIS C7021-A-4) at a temperature of at least 600 times can be withstood. . Therefore, the high heat dissipation electronic component housing package 50 has a relatively high thermal conductivity and a thermal expansion coefficient that approximates the thermal expansion coefficient of the ceramic frame 54, for example, a composite metal plate of copper and tungsten (thermal A heat sink plate 52 having a conductivity of 190 W / mK and a thermal expansion coefficient of 7.0 × 10 −6 / ° C. has been used. In this heat sink plate 52, the heat conductivity is the heat generated from the recent electronic component 51. I couldn't keep up with the amount. Therefore, recently, a metal plate (heat conductivity: 240 W) having improved heat conductivity while clad with a copper plate of the same thickness on both sides of the copper and molybdenum metal plates on the heat sink plate 52 to suppress the occurrence of warpage. / MK, coefficient of thermal expansion: 10.1 × 10 −6 / ° C.).

従来の高放熱型電子部品収納用パッケージには、ヒートシンク板となる底板が窒化アルミニウム基板の両面に活性金属法で直接銅板を接合して、−65〜150℃の温度サイクル試験で100回程度耐えることができるようにしたパッケージが提案されている(例えば、特許文献1参照)。
また、従来の高放熱型電子部品収納用パッケージには、ヒートシンク板として窒化アルミニウム基板の両面、又は片面に酸化処理法、又は活性金属法で直接銅板を接合するものが提案されている(例えば、特許文献2参照)。
In a conventional high heat dissipation type electronic component storage package, a bottom plate serving as a heat sink plate is bonded directly to both surfaces of an aluminum nitride substrate by an active metal method and withstands about 100 times in a temperature cycle test at −65 to 150 ° C. There has been proposed a package that can be used (see, for example, Patent Document 1).
In addition, a conventional high heat dissipation type electronic component storage package has been proposed in which a copper plate is directly bonded to both surfaces or one surface of an aluminum nitride substrate as a heat sink plate by an oxidation method or an active metal method (for example, Patent Document 2).

特開平8−222670号公報JP-A-8-222670 特開平10−247698号公報Japanese Patent Laid-Open No. 10-247698

しかしながら、前述したような従来の高放熱型電子部品収納用パッケージは、次のような問題がある。
(1)最近の高周波化、高出力化が進行し発熱量が増大した半導体素子等の電子部品を収納する高放熱型電子部品収納用パッケージには、電子部品からの発熱を速やかに放熱させるために高い熱伝導率と、接合されるセラミック枠体のセラミックと熱膨張係数を近似させることが必要となっている。しかしながら、ヒートシンク板に従来の銅とモリブデン系金属板の両面のそれぞれに同一厚さの銅板をクラッドさせた金属板では、熱伝導率が240W/mK程度で限界があり、高放熱型電子部品収納用パッケージへの適用に限界が生じてきている。また、この金属板からなるヒートシンク板は、価格が高く、高放熱型電子部品収納用パッケージのコストアップとなっている。
(2)特開平8−222670号公報や、特開平10−247698号公報で開示されるような高放熱型電子部品収納用パッケージは、ヒートシンク板が窒化アルミニウム基板の両面に、銅板を活性金属法で直接接合して形成されており高い熱伝導率を得られるものの、接合部の接合強度が低く温度サイクル試験での耐用回数が低くいので、高放熱型電子部品収納用パッケージとしての信頼性が低くいものとなっている。
However, the conventional high heat dissipation electronic component storage package as described above has the following problems.
(1) In a high heat dissipation type electronic component storage package for storing electronic components such as semiconductor elements whose heat generation has increased due to the recent progress of high frequency and high output, heat generated from the electronic components can be quickly dissipated. In addition, it is necessary to approximate the thermal expansion coefficient to the ceramic of the ceramic frame to be joined. However, a metal plate in which a copper plate having the same thickness is clad on both sides of a conventional copper and molybdenum-based metal plate on a heat sink plate has a limit of thermal conductivity of about 240 W / mK. Limitations have arisen in the application to packaging. In addition, the heat sink plate made of this metal plate is expensive and increases the cost of the high heat dissipation type electronic component storage package.
(2) The high heat dissipation type electronic component storage package disclosed in Japanese Patent Application Laid-Open No. 8-222670 and Japanese Patent Application Laid-Open No. 10-247698 has a heat sink plate on both sides of an aluminum nitride substrate and a copper plate using an active metal method. Although it is formed by direct bonding and can obtain high thermal conductivity, the bonding strength of the bonded portion is low and the durability in the temperature cycle test is low, so it is reliable as a package for storing high heat dissipation type electronic components It is low.

本発明は、かかる事情に鑑みてなされたものであって、高い熱伝導率を有すると共に、機械的な高い接合強度を有するヒートシンク板を用いた安価な高放熱型電子部品収納用パッケージを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an inexpensive high heat dissipation electronic component storage package using a heat sink plate having high thermal conductivity and high mechanical bonding strength. For the purpose.

前記目的に沿う本発明に係る高放熱型電子部品収納用パッケージは、平板状のヒートシンク板の上面に窓枠形状からなるセラミック枠体をろう付け接合して設け、ヒートシンク板の上面とセラミック枠体の内周側壁面で形成されるキャビティ部に収納される電子部品からの発熱をヒートシンク板を介して放熱する高放熱型電子部品収納用パッケージにおいて、ヒートシンク板が窒化アルミニウム又は窒化珪素からなる平板状の絶縁基板のそれぞれの表面に形成するタングステン又はモリブデンからなるメタライズ膜の上面に形成したニッケルめっき被膜との間に銀−銅ろう系ろう材を介してそれぞれが同一厚さで絶縁基板と同一大きさからなる銅板がろう付け接合されてなり、しかも銅板の合計厚さaに対する絶縁基板の厚さbの比a/bが1.0を超え5.0未満である。   The high heat radiation type electronic component storage package according to the present invention that meets the above object is provided by brazing a ceramic frame body having a window frame shape to the upper surface of a flat heat sink plate, and the upper surface of the heat sink plate and the ceramic frame body. In a high heat dissipation type electronic component storage package that dissipates heat from an electronic component stored in a cavity formed on the inner peripheral side wall surface of the heat sink plate through a heat sink plate, the heat sink plate is a flat plate made of aluminum nitride or silicon nitride The same thickness and the same size as the insulating substrate through a silver-copper brazing filler metal between the nickel plating film formed on the upper surface of the metallized film made of tungsten or molybdenum formed on the surface of each of the insulating substrates. The copper plate is made by brazing and the ratio a / b of the thickness b of the insulating substrate to the total thickness a of the copper plate is 2.0 is less than 5.0 exceed.

請求項1記載の高放熱型電子部品収納用パッケージは、ヒートシンク板が窒化アルミニウム又は窒化珪素からなる平板状の絶縁基板のそれぞれの表面に形成するタングステン又はモリブデンからなるメタライズ膜の上面に形成したニッケルめっき被膜との間に銀−銅ろう系ろう材を介してそれぞれが同一厚さで絶縁基板と同一大きさからなる銅板がろう付け接合されてなり、しかも銅板の合計厚さaに対する絶縁基板の厚さbの比a/bが1.0を超え5.0未満であるので、比較的熱伝導率の高い絶縁基板の両面に極めて熱伝導率の高い銅板を強固に接合したヒートシンク板が従来の銅とモリブデンの合金板の両面に銅板をクラッドさせた金属板の熱伝導率より高く、最近の発熱量が増大した半導体素子等の電子部品の収納を可能とすると共に、価格も安く抑えられてるのでパッケージのコストアップを抑えることができる。また、ヒートシンク板の絶縁基板と銅板との接合は、絶縁基板のそれぞれの表面に形成するメタライズ膜の上面に形成したニッケルめっき被膜との間に銀−銅ろう系ろう材を介して接合されているので、極めて接合強度が高く、極端な環境条件を想定した−65〜150℃の温度サイクル試験でパッケージのセラミック枠体にクラックが発生するまでの回数を少なくとも600回以上程度の長い回数耐えることができる。   The high heat dissipation electronic component storage package according to claim 1, wherein the heat sink plate is nickel formed on the upper surface of a metallized film made of tungsten or molybdenum formed on each surface of a flat insulating substrate made of aluminum nitride or silicon nitride. A copper plate having the same thickness and the same size as the insulating substrate is brazed and joined to the plating film via a silver-copper brazing filler metal, and the insulating substrate has a total thickness a of the insulating substrate. Since the ratio a / b of the thickness b is more than 1.0 and less than 5.0, a heat sink plate in which a copper plate having a very high thermal conductivity is firmly bonded to both surfaces of an insulating substrate having a relatively high thermal conductivity has been conventionally used. It is higher than the thermal conductivity of a metal plate clad with a copper plate on both sides of an alloy plate of copper and molybdenum, and it is possible to store electronic components such as semiconductor elements that have recently increased in heat generation To, because the price is also suppressed and are cheap it is possible to suppress the package cost up. In addition, the insulating substrate and the copper plate of the heat sink plate are bonded via a silver-copper brazing filler metal between the nickel plating film formed on the upper surface of the metallized film formed on each surface of the insulating substrate. Because it has extremely high bonding strength, it must withstand a long period of at least 600 times until a crack occurs in the ceramic frame of the package in a temperature cycle test of −65 to 150 ° C. assuming extreme environmental conditions. Can do.

続いて、添付した図面を参照しつつ、本発明を具体化した実施するための最良の形態について説明し、本発明の理解に供する。
ここに、図1(A)、(B)はそれぞれ本発明の一実施の形態に係る高放熱型電子部品収納用パッケージの斜視図、A−A’線拡大縦断面図、図2(A)、(B)はそれぞれ同高放熱型電子部品収納用パッケージに電子部品を実装した状態の斜視図、B−B’線拡大縦断面図である。
Subsequently, the best mode for carrying out the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
Here, FIGS. 1A and 1B are a perspective view, an AA ′ line enlarged vertical sectional view, and a FIG. 2A, respectively, of a high heat dissipation electronic component storage package according to an embodiment of the present invention. (B) is the perspective view of the state which mounted the electronic component in the high heat dissipation type electronic component storage package, respectively, and a BB 'line enlarged vertical sectional view.

図1(A)、(B)に示すように、本発明の一実施の形態に係る高放熱型電子部品収納用パッケージ10は、実装される電子部品11から発生する高温、且つ大量の熱を放熱するための高放熱特性を有する略長方形平板状のヒートシンク板12の上面に、窓枠形状からなるセラミック枠体13をろう付け接合して有している。このセラミック枠体13には、電気絶縁性の高い、例えば、アルミナ(Al)や、窒化アルミニウム(AlN)等のセラミックが用いられている。あるいは、セラミック枠体13には、図示しないが、例えば、セラミックに変わって、BT樹脂(ビスマレイミドトリアジンを主成分とする樹脂)や、ポリイミド等からなる樹脂が用いられる場合がある。 As shown in FIGS. 1A and 1B, a high heat dissipation electronic component storage package 10 according to an embodiment of the present invention generates a high temperature and a large amount of heat generated from an electronic component 11 to be mounted. A ceramic frame 13 having a window frame shape is brazed and joined to the upper surface of a heat sink plate 12 having a substantially rectangular flat plate shape having high heat dissipation characteristics for heat dissipation. For the ceramic frame 13, a ceramic having high electrical insulation, such as alumina (Al 2 O 3 ) or aluminum nitride (AlN), is used. Alternatively, although not shown, the ceramic frame 13 may be made of, for example, BT resin (resin mainly composed of bismaleimide triazine), resin made of polyimide, or the like, instead of ceramic.

上記の高放熱型電子部品収納用パッケージ10には、電子部品11を載置して接合するためのヒートシンク板12の上面と、電子部品11を囲繞するためのセラミック枠体13の内周側壁面とで電子部品11を収納するためのキャビティ部14が設けられている。このキャビティ部14は、セラミックからなるセラミック枠体13の場合に、その下面となる窓枠形状の一方の主面にタングステンや、モリブデン等の導体金属で形成されたメタライズ膜15が設けられ、更にその上にニッケルや、ニッケル−コバルト等の第1のニッケルめっき被膜16が施されたセラミック枠体13がヒートシンク板12の上面との間に銀−銅ろう系ろう材17を介して加熱してろう付け接合されることで形成されている。また、樹脂からなるセラミック枠体13の場合には、図示しないが、例えば、シリコーン系接着樹脂や、オレフィン系接着樹脂や、ポリイミド系接着樹脂等の耐熱性のある接着樹脂を介して接合されることで形成されている。   The high heat dissipation type electronic component storage package 10 includes an upper surface of a heat sink plate 12 for mounting and bonding the electronic component 11, and an inner peripheral side wall surface of the ceramic frame 13 for surrounding the electronic component 11. The cavity part 14 for accommodating the electronic component 11 is provided. In the case of the ceramic frame body 13 made of ceramic, the cavity portion 14 is provided with a metallized film 15 formed of a conductive metal such as tungsten or molybdenum on one main surface of the window frame shape which is the lower surface thereof. A ceramic frame 13 on which a first nickel plating film 16 such as nickel or nickel-cobalt is applied is heated between the upper surface of the heat sink plate 12 via a silver-copper brazing filler metal 17. It is formed by brazing and joining. In the case of the ceramic frame 13 made of resin, although not shown in the figure, for example, it is bonded via a heat-resistant adhesive resin such as a silicone-based adhesive resin, an olefin-based adhesive resin, or a polyimide-based adhesive resin. It is formed by that.

セラミックからなるセラミック枠体13の上面となる窓枠形状の他方の主面には、上記と同様にタングステンや、モリブデン等の導体金属パターンからなるメタライズ膜15が形成され、更にその上にニッケルや、ニッケル−コバルト等の第1のニッケルめっき被膜16が施されている。このセラミック枠体13の第1のニッケルめっき被膜16が施されたメタライズ膜15の上面には、KV(Fe−Ni−Co系合金、商品名「Kovar(コバール)」)や、42アロイ(Fe−Ni系合金)等の金属板からなる外部接続リード端子18が間に銀−銅ろう系ろう材17を介して加熱してろう付け接合されている。この外部接続リード端子18には、電子部品11とボンディングワイヤ19を介して直接接続して電気的に導通状態とするためのワイヤボンドパッド部と、外部と電気的に導通状態とするための端子部が設けられ、外部接続リード端子18が2つの役目を行うことができるようになっている。そして、この外部接続リード端子18を含む高放熱型電子部品収納用パッケージ10の表面に露出する全ての金属部分には、ニッケルや、ニッケル−コバルト等からなる第2のニッケルめっき被膜(図示せず)、更に、この上に金めっき被膜(図示せず)が形成されて有している。また、樹脂からなるセラミック枠体13の場合には、その上面となる窓枠形状の他方の主面に、図示しないが、外部接続リード端子18が間に、例えば、シリコーン系接着樹脂や、オレフィン系接着樹脂や、ポリイミド系接着樹脂等の耐熱性のある接着樹脂を介して接合されている。そして、この外部接続リード端子18を含むパッケージの表面に露出する全ての金属部分には、ニッケルや、ニッケル−コバルト等からなる第2のニッケルめっき被膜、更に、この上に金めっき被膜が形成されて有している。この高放熱型電子部品収納用パッケージ10には、キャビティ部14のヒートシンク板12の上面に最近の高周波化、高出力化が進行し発熱量が増大した半導体素子等の電子部品11を搭載し、電子部品11からの発熱をヒートシンク板12を介して放熱させている。   On the other main surface of the window frame shape which is the upper surface of the ceramic frame body 13 made of ceramic, a metallized film 15 made of a conductive metal pattern such as tungsten or molybdenum is formed in the same manner as described above. A first nickel plating film 16 such as nickel-cobalt is applied. On the upper surface of the metallized film 15 to which the first nickel plating film 16 of the ceramic frame 13 is applied, KV (Fe—Ni—Co-based alloy, trade name “Kovar”) or 42 alloy (Fe An external connection lead terminal 18 made of a metal plate such as a (Ni-based alloy) is heated and brazed and joined via a silver-copper brazing filler metal 17. The external connection lead terminal 18 is connected directly to the electronic component 11 via the bonding wire 19 to be in an electrically conductive state, and a terminal for electrically connecting to the outside. The external connection lead terminal 18 can perform two functions. Then, a second nickel plating film (not shown) made of nickel, nickel-cobalt, or the like is formed on all the metal portions exposed on the surface of the high heat dissipation electronic component storage package 10 including the external connection lead terminals 18. Further, a gold plating film (not shown) is formed thereon. Further, in the case of the ceramic frame 13 made of resin, the other main surface of the window frame shape on the upper surface is not shown, but the external connection lead terminal 18 is interposed, for example, a silicone-based adhesive resin or olefin Are bonded via a heat-resistant adhesive resin such as a polyimide-based adhesive resin or a polyimide-based adhesive resin. A second nickel plating film made of nickel, nickel-cobalt, or the like is further formed on all the metal portions exposed on the surface of the package including the external connection lead terminals 18, and a gold plating film is formed thereon. Have. In this high heat radiation type electronic component storage package 10, an electronic component 11 such as a semiconductor element whose heat generation amount has increased due to recent progress of higher frequency and higher output on the upper surface of the heat sink plate 12 of the cavity portion 14, Heat generated from the electronic component 11 is dissipated through the heat sink plate 12.

上記の高放熱型電子部品収納用パッケージ10に用いられるヒートシンク板12は、窒化アルミニウム(AlN)、又は窒化珪素(SiN)からなる平板状の絶縁基板20の両面のそれぞれに、それぞれが同一厚さで、絶縁基板20と同一大きさからなる銅板21が接合される接合体からなっている。この接合体にするためには、先ず、絶縁基板20の焼成前の窒化アルミニウムセラミックグリーンシート、又は窒化珪素セラミックグリーンシートのそれぞれの表面にタングステン、又はモリブデンからなるメタライズペーストを用いてスクリーン印刷等でパターンを形成し、セラミックとメタライズパターンを同時焼成して絶縁基板20の両面にメタライズ膜15aを形成している。次に、それぞれのメタライズ膜15aの上面には、ニッケルや、ニッケル−コバルト等からなる第1のニッケルめっき被膜16aを形成している。そして、ヒートシンク板12は、第1のニッケルめっき被膜16aと、銅板21の間にBAg−8等からなる銀−銅ろう系ろう材17aを介して加熱接合し接合体としている。上記のヒートシンク板12は、それぞれの銅板21の合計厚さをaとしたときの絶縁基板19の厚さbの比、a/bが1.0を超え、5.0未満からなっている。   The heat sink plate 12 used in the high heat dissipation electronic component storage package 10 has the same thickness on each of both surfaces of a flat insulating substrate 20 made of aluminum nitride (AlN) or silicon nitride (SiN). Therefore, it consists of a joined body to which a copper plate 21 having the same size as the insulating substrate 20 is joined. In order to form this joined body, first, the surface of each of the aluminum nitride ceramic green sheet or the silicon nitride ceramic green sheet before firing of the insulating substrate 20 is screen printed using a metallized paste made of tungsten or molybdenum. A pattern is formed, and a ceramic and a metallized pattern are simultaneously fired to form a metallized film 15 a on both surfaces of the insulating substrate 20. Next, a first nickel plating film 16a made of nickel, nickel-cobalt, or the like is formed on the upper surface of each metallized film 15a. The heat sink plate 12 is heated and joined between the first nickel plating film 16a and the copper plate 21 via a silver-copper brazing filler metal 17a made of BAg-8 or the like to form a joined body. The heat sink plate 12 has a ratio of the thickness b of the insulating substrate 19 where the total thickness of the copper plates 21 is a, a / b exceeds 1.0 and is less than 5.0.

このヒートシンク板12は、熱伝導率が高い銅板21と、熱伝導率が比較的高い窒化アルミニウム、又は窒化珪素からなる絶縁基板20を熱伝導率が高い銀−銅ろう系ろう材17aで接合させることで熱伝導率が250W/mK以上と高くすることができ、電子部品11からの発熱を速やかに放熱させることができる。また、このヒートシンク板12は、絶縁基板20の両面に接合される銅板21の厚さを同一とすることで絶縁基板20と、銅板21の熱膨張係数の差による反り発生を平衡化させて反りの発生を抑えることができ、電子部品11をヒートシンク板12上に安定させてマウントさせることができる。これと共に、ヒートシンク板12は、絶縁基板20によって熱膨張が抑えられてセラミック枠体13との熱膨張整合を計ることができ、極端な環境条件を想定した−65〜150℃の温度サイクル試験でもパッケージのセラミック枠体13にクラックが発生するまでの回数を少なくとも600回以上程度の長い回数に耐えさせることができる。更に、このヒートシンク板12は、絶縁基板20と、銅板21の接合を、絶縁基板20と同時焼成して形成するメタライズ膜15a、その上に形成する第1のニッケルめっき被膜16aの間に銀−銅ろう系ろう材17aを介して銅板21と接合させることで接合強度を強くすることができ、酸化処理法、又は活性金属法で絶縁基板20と、銅板21を接合する場合より格段に信頼性を向上させることができる。   The heat sink plate 12 joins a copper plate 21 having a high thermal conductivity and an insulating substrate 20 made of aluminum nitride or silicon nitride having a relatively high thermal conductivity with a silver-copper brazing filler metal 17a having a high thermal conductivity. Thus, the thermal conductivity can be increased to 250 W / mK or higher, and the heat generated from the electronic component 11 can be quickly dissipated. In addition, the heat sink plate 12 is warped by balancing the occurrence of warpage due to the difference in thermal expansion coefficient between the insulating substrate 20 and the copper plate 21 by making the thickness of the copper plate 21 bonded to both surfaces of the insulating substrate 20 the same. The electronic component 11 can be stably mounted on the heat sink plate 12. At the same time, the thermal expansion of the heat sink plate 12 is suppressed by the insulating substrate 20 and the thermal expansion matching with the ceramic frame 13 can be measured. Even in a temperature cycle test of −65 to 150 ° C. assuming extreme environmental conditions. The number of times until a crack is generated in the ceramic frame body 13 of the package can endure a long number of at least about 600 times. Further, the heat sink plate 12 is composed of a metallized film 15a formed by simultaneously firing the insulating substrate 20 and the copper plate 21 together with the insulating substrate 20, and a silver-metal layer between the first nickel plating film 16a formed thereon. Bonding strength can be increased by bonding to the copper plate 21 via the copper brazing filler metal 17a, and the reliability is much higher than when the insulating substrate 20 and the copper plate 21 are bonded by the oxidation treatment method or the active metal method. Can be improved.

上記の高放熱型電子部品収納用パッケージ10のヒートシンク板12は、a/bが1.0以下の場合には、絶縁基板20の厚み比率が大きくなり、この熱伝導率、例えば、絶縁基板20が窒化アルミニウムからなる場合には160W/mK程度の影響が大きくなり、240W/mKを下まわることとなる。また、ヒートシンク板12は、a/bが5.0以上の場合には、銅板21の厚み比率が大きくなり、この熱膨張係数の影響を受けて−65〜150℃の温度サイクル試験でパッケージのセラミック枠体13にクラックが発生するまでの回数が500回程度と少なくなって、少なくとも600回以上程度の長い回数に耐えられるようにするという目標が達成できなくなる。   In the heat sink plate 12 of the high heat dissipation electronic component storage package 10 described above, when a / b is 1.0 or less, the thickness ratio of the insulating substrate 20 becomes large, and this thermal conductivity, for example, the insulating substrate 20 When aluminum is made of aluminum nitride, the effect is about 160 W / mK, which is below 240 W / mK. Further, when the heat sink plate 12 has a / b of 5.0 or more, the thickness ratio of the copper plate 21 becomes large. Under the influence of this thermal expansion coefficient, the temperature of the package is determined by a temperature cycle test of −65 to 150 ° C. The number of times until a crack is generated in the ceramic frame 13 is reduced to about 500 times, and the goal of enduring a long number of times of at least about 600 times cannot be achieved.

図2(A)、(B)に示すように、この高放熱型電子部品収納用パッケージ10は、キャビティ部14のヒートシンク板12の上面に電子部品11を搭載し、電子部品11と外部接続リード端子18間をボンディングワイヤ19で接続して電気的導通を形成した後、キャビティ部14を蓋体22で中空状態の気密に封止することで、例えば、RF基地局用等デバイスとしている。そして、図2(A)には示さないが、電子部品11が実装された高放熱型電子部品収納用パッケージ10は、外部と電気的に導通状態とするために外部接続リード端子18をボード基板23等に形成された配線パターンに半田24で接合するようになっている。また、電子部品11が実装された高放熱型電子部品収納用パッケージ10は、ヒートシンク板12の下面を金属製からなる基台25に半田24で接合すると共に、場合によって、ねじ26(図2(A)参照)等で金属製の基台25にねじ止めしている。   As shown in FIGS. 2A and 2B, the high heat dissipation electronic component storage package 10 has the electronic component 11 mounted on the upper surface of the heat sink plate 12 of the cavity portion 14, and the electronic component 11 and the external connection lead. After the terminals 18 are connected by bonding wires 19 to form electrical continuity, the cavity portion 14 is hermetically sealed in a hollow state with a lid 22 to provide a device for an RF base station, for example. Although not shown in FIG. 2 (A), the high heat radiation type electronic component storage package 10 on which the electronic component 11 is mounted has the external connection lead terminals 18 connected to the board substrate in order to be electrically connected to the outside. The wiring pattern formed at 23 or the like is joined by solder 24. Further, the high heat radiation type electronic component storage package 10 on which the electronic component 11 is mounted is joined to the base 25 made of metal with the solder 24 and the screw 26 (FIG. 2 (FIG. 2)). A) and the like, and are screwed to the metal base 25.

本発明者は、銅板と、窒化アルミニウムからなる絶縁基板の厚みを銅板の合計厚さaとしたときの絶縁基板の厚さbの比、a/bが1.0を超え5.0未満とし、ろう付け接合して形成したヒートシンク板を用いた高放熱型電子部品収納用パッケージの実施例1、2と、絶縁基板の材質を窒化珪素としたヒートシンク板を用いた高放熱型電子部品収納用パッケージの実施例3のサンプルを作製した。併せて、本発明者は、銅板の合計厚さaとしたときの絶縁基板の厚さbの比、a/bが1.0以下、5.0以上のヒートシンク板を用いた高放熱型電子部品収納用パッケージの比較例1、2のサンプルを作製した。更に、本発明者は、銅板のみからなるヒートシンク板を用いた高放熱型電子部品収納用パッケージの比較例3と、絶縁基板の両面に接合する銅板の厚みが異なるヒートシンク板を用いた高放熱型電子部品収納用パッケージの比較例4のサンプルを作製した。そして、高放熱型電子部品収納用パッケージに組み立てる前のヒートシンク板の熱伝導率と、高放熱型電子部品収納用パッケージに組み立てた後のヒートシンク板の反りと、−65〜150℃の温度サイクル試験でパッケージのセラミック枠体にクラックが発生するまでの回数を測定した。その結果を表1に示す。   The present inventor considered that the ratio of the thickness b of the insulating substrate when the thickness of the copper plate and the insulating substrate made of aluminum nitride is the total thickness a of the copper plate, a / b is more than 1.0 and less than 5.0. Examples 1 and 2 of high heat dissipation electronic component storage packages using heat sink plates formed by brazing and high heat dissipation electronic component storage using heat sink plates with insulating substrate made of silicon nitride A sample of Example 3 of the package was produced. In addition, the inventor of the present invention has disclosed the ratio of the thickness b of the insulating substrate when the total thickness a of the copper plate is a high heat dissipation type electron using a heat sink plate having a / b of 1.0 or less and 5.0 or more. Samples of Comparative Examples 1 and 2 of the component storage package were produced. Furthermore, the inventor of the present invention has compared the comparative example 3 of the high heat radiation type electronic component storage package using the heat sink plate made only of the copper plate and the high heat radiation type using the heat sink plate having different thicknesses of the copper plates bonded to both surfaces of the insulating substrate. A sample of Comparative Example 4 of the electronic component storage package was produced. And the heat conductivity of the heat sink plate before assembling into the high heat dissipation type electronic component storage package, the warp of the heat sink plate after assembling into the high heat dissipation type electronic component storage package, and the temperature cycle test of −65 to 150 ° C. The number of times until cracks occurred in the ceramic frame of the package was measured. The results are shown in Table 1.

Figure 2009170758
Figure 2009170758

実施例1、2、3については、熱伝導率を目標とする250W/mK以上、反りの大きさを目標とする70μm以下、−65〜150℃の温度サイクル試験でのクラック発生耐回数を目標とする600回以上を満足していることが確認された。   For Examples 1, 2, and 3, the target is the number of cracks to be generated in a temperature cycle test of −65 to 150 ° C. with a thermal conductivity of 250 W / mK or more, a warp magnitude of 70 μm or less. It was confirmed that 600 times or more were satisfied.

比較例1については、反りの大きさ、及び−65〜150℃の温度サイクル試験でのクラック発生耐回数を満足するものの、熱伝導率が235W/mK程度と目標の250W/mKを下まわることが確認された。この比較例1の反りの結果は、絶縁基板の両面に接合する銅板の厚みが同一であるので、反りを小さくすることができるからである。また、比較例1の温度サイクル試験の結果は、銅板の合計厚さaとしたときの絶縁基板の厚さbの比、a/bが1.0以下で絶縁基板の厚さの占める割合が大きく、これによって熱膨張が抑えられてセラミック枠体との熱膨張整合が増加し、温度サイクル試験でもセラミック枠体にクラックが発生するまでの回数を長くすることができるからである。更に、比較例1の熱伝導率の結果は、ヒートシンク板としての銅板の厚さの占める割合が小さく銅板の高熱伝導率が与える影響が少なくなるので、熱伝導率が小さくなったからである。   For Comparative Example 1, the thermal conductivity is about 235 W / mK, which is less than the target 250 W / mK, although the warpage and the number of cracks generated in the temperature cycle test at −65 to 150 ° C. are satisfied. Was confirmed. The result of the warp in Comparative Example 1 is that the warp can be reduced because the thickness of the copper plate bonded to both surfaces of the insulating substrate is the same. Moreover, the result of the temperature cycle test of Comparative Example 1 is that the ratio of the insulating substrate thickness b when the total thickness a of the copper plate is a ratio of the insulating substrate thickness when a / b is 1.0 or less. This is because the thermal expansion is suppressed and the thermal expansion matching with the ceramic frame is increased, and the number of times until a crack is generated in the ceramic frame can be increased even in the temperature cycle test. Furthermore, the result of the thermal conductivity of Comparative Example 1 is that the ratio of the thickness of the copper plate as the heat sink plate is small and the influence of the high thermal conductivity of the copper plate is reduced, so that the thermal conductivity is reduced.

比較例2については、熱伝導率、及び反りの大きさを満足するものの、温度サイクル試験でのクラック発生耐回数が500回程度と目標の600回以上を下まわることが確認された。この比較例2の熱伝導率は、a/bが5.0以上で銅板の厚さの占める割合が大きく、銅板の高熱伝導率が与える影響が大きくなって熱伝導率を大きくすることができるからである。また、比較例2の反りの結果は、上記の比較例1の反りの結果と同じ理由である。更に、比較例2の温度サイクル試験の結果は、銅板の合計厚さaとしたときの絶縁基板の厚さbの比、a/bが5.0以上で絶縁基板の厚さの占める割合が小さく、銅板の高熱膨張の抑止が効かなくなってセラミック枠体との熱膨張整合が小さくなり、セラミック枠体にクラックが発生するまでの回数が短くなったからである。   In Comparative Example 2, it was confirmed that although the thermal conductivity and the magnitude of the warp were satisfied, the number of occurrences of cracking in the temperature cycle test was about 500 times, which was lower than the target of 600 times. The thermal conductivity of Comparative Example 2 is such that the ratio of the thickness of the copper plate is large when a / b is 5.0 or more, and the influence of the high thermal conductivity of the copper plate is increased, so that the thermal conductivity can be increased. Because. Further, the warping result of Comparative Example 2 is the same reason as the warping result of Comparative Example 1 described above. Furthermore, the result of the temperature cycle test of Comparative Example 2 is that the ratio of the insulating substrate thickness b when the total thickness a of the copper plate is a ratio of the insulating substrate thickness when a / b is 5.0 or more. This is because the thermal expansion matching with the ceramic frame is reduced because the suppression of the high thermal expansion of the copper plate is small and the number of times until the crack is generated in the ceramic frame is shortened.

比較例3については、熱伝導率を満足するものの、反りの大きさが590μmと非常に大きいのと、温度サイクル試験でのクラック発生耐回数が20回と非常に少なく、大きく目標を下まわることが確認された。この比較例3の熱伝導率の結果は、ヒートシンク板が銅板のみで395W/mKと高熱伝導率であるからである。また、比較例3の反りの結果は、銅板からなるヒートシンク板と、セラミック枠体との接合において、銅板の熱膨張を抑制する絶縁基板が存在せず、銅板と、セラミック枠体の互いの熱膨張係数が極端に異なり、この影響によって極端に大きな反りが発生するからである。更に、比較例3の温度サイクル試験の結果は、ヒートシンク板に絶縁基板がなく、セラミック枠体との熱膨張整合がとれないからである。   For Comparative Example 3, although satisfying the thermal conductivity, the warpage is very large at 590 μm, and the resistance to cracking in the temperature cycle test is very small at 20 times, which is largely below the target. Was confirmed. The result of the thermal conductivity of Comparative Example 3 is that the heat sink plate is only a copper plate and has a high thermal conductivity of 395 W / mK. In addition, the warping result of Comparative Example 3 is that there is no insulating substrate that suppresses the thermal expansion of the copper plate in the joining of the heat sink plate made of the copper plate and the ceramic frame, and the mutual heat of the copper plate and the ceramic frame. This is because the expansion coefficients are extremely different and an extremely large warp occurs due to this influence. Furthermore, the result of the temperature cycle test of Comparative Example 3 is that there is no insulating substrate on the heat sink plate, and thermal expansion matching with the ceramic frame cannot be achieved.

比較例4については、熱伝導率、及び温度サイクル試験でのクラック発生耐回数を満足するものの、反りの大きさが200μmと大きいことが確認された。この比較例4の熱伝導率の結果は、a/bが1.5でヒートシンク板としての銅板の厚さの占める割合が比較的大きく、銅板の高熱伝導率が与える影響によって熱伝導率を大きくすることができるからである。また、比較例4の温度サイクル試験の結果は、絶縁基板の厚さによって熱膨張が抑えられてセラミック枠体との熱膨張整合を計ることができるからである。更に、比較例4の反りの結果は、ヒートシンク板が絶縁基板のそれぞれの表面に厚さの異なる銅板を接合しているので、絶縁基板と、銅板の熱膨張係数の差による反り発生を平衡化させることができないからである。   In Comparative Example 4, although the thermal conductivity and the number of occurrences of crack occurrence in the temperature cycle test were satisfied, it was confirmed that the warpage was as large as 200 μm. As a result of the thermal conductivity of Comparative Example 4, the ratio of the thickness of the copper plate as the heat sink plate is relatively large when a / b is 1.5, and the thermal conductivity is increased due to the influence of the high thermal conductivity of the copper plate. Because it can be done. Further, the result of the temperature cycle test of Comparative Example 4 is that the thermal expansion is suppressed by the thickness of the insulating substrate, and the thermal expansion matching with the ceramic frame can be measured. Furthermore, the result of the warpage of Comparative Example 4 is that the heat sink plate joins the copper plates having different thicknesses to the respective surfaces of the insulating substrate, so that the occurrence of warping due to the difference in thermal expansion coefficient between the insulating substrate and the copper plate is balanced. It is because it cannot be made to do.

本発明の高放熱型電子部品収納用パッケージは、シリコンや、ガリウム砒素電界効果トランジスタ等の高周波、高出力の半導体素子等の電子部品を実装させて、例えば、RF(Radio Frequency)基地局用等の電子装置とするのに用いることができる。   The high heat dissipation type electronic component storage package according to the present invention has a high frequency, high output semiconductor element such as silicon or gallium arsenide field effect transistor mounted thereon, for example, for an RF (Radio Frequency) base station. It can be used as an electronic device.

(A)、(B)はそれぞれ本発明の一実施の形態に係る高放熱型電子部品収納用パッケージの斜視図、A−A’線拡大縦断面図である。(A), (B) is the perspective view of the high heat dissipation type electronic component storage package which concerns on one embodiment of this invention, respectively, and an A-A 'line enlarged vertical sectional view. (A)、(B)はそれぞれ同高放熱型電子部品収納用パッケージに電子部品を実装した状態の斜視図、B−B’線拡大縦断面図である。(A), (B) is the perspective view of the state which mounted the electronic component in the high heat dissipation type electronic component storage package, respectively, and a B-B 'line enlarged vertical sectional view. 従来の高放熱型電子部品収納用パッケージの斜視図である。It is a perspective view of the conventional high heat radiation type electronic component storage package. (A)、(B)はそれぞれ同高放熱型電子部品収納用パッケージに電子部品を実装した状態の斜視図、C−C’線拡大縦断面図である。(A), (B) is the perspective view of the state which mounted the electronic component in the high heat dissipation type electronic component storage package, respectively, and a C-C 'line enlarged vertical sectional view.

符号の説明Explanation of symbols

10:高放熱型電子部品収納用パッケージ、11:電子部品、12:ヒートシンク板、13:セラミック枠体、14:キャビティ部、15、15a:メタライズ膜、16、16a:第1のニッケルめっき被膜、17、17a:銀−銅ろう系ろう材、18:外部接続リード端子、19:ボンディングワイヤ、20:絶縁基板、21:銅板、22:蓋体、23:ボード基板、24:半田、25:基台、26:ねじ   10: High heat dissipation type electronic component storage package, 11: Electronic component, 12: Heat sink plate, 13: Ceramic frame, 14: Cavity, 15, 15a: Metallized film, 16, 16a: First nickel plating film, 17, 17a: Silver-copper brazing filler metal, 18: External connection lead terminal, 19: Bonding wire, 20: Insulating substrate, 21: Copper plate, 22: Lid, 23: Board substrate, 24: Solder, 25: Base Table 26: Screw

Claims (1)

平板状のヒートシンク板の上面に窓枠形状からなるセラミック枠体をろう付け接合して設け、前記ヒートシンク板の上面と前記セラミック枠体の内周側壁面で形成されるキャビティ部に収納される電子部品からの発熱を前記ヒートシンク板を介して放熱する高放熱型電子部品収納用パッケージにおいて、
前記ヒートシンク板が窒化アルミニウム又は窒化珪素からなる平板状の絶縁基板のそれぞれの表面に形成するタングステン又はモリブデンからなるメタライズ膜の上面に形成したニッケルめっき被膜との間に銀−銅ろう系ろう材を介してそれぞれが同一厚さで前記絶縁基板と同一大きさからなる銅板がろう付け接合されてなり、しかも前記銅板の合計厚さaに対する前記絶縁基板の厚さbの比a/bが1.0を超え5.0未満であることを特徴とする高放熱型電子部品収納用パッケージ。
A ceramic frame having a window frame shape is brazed and joined to the upper surface of the flat heat sink plate, and the electrons stored in the cavity formed by the upper surface of the heat sink plate and the inner peripheral side wall surface of the ceramic frame body In a high heat dissipation type electronic component storage package that dissipates heat from a component through the heat sink plate,
A silver-copper brazing filler metal is provided between the heat sink plate and the nickel plating film formed on the upper surface of the metallized film made of tungsten or molybdenum formed on the surface of each of the flat insulating substrates made of aluminum nitride or silicon nitride. A copper plate having the same thickness and the same size as the insulating substrate is brazed and joined, and the ratio a / b of the thickness b of the insulating substrate to the total thickness a of the copper plate is 1. A package for storing a high heat radiation type electronic component, wherein the package is greater than 0 and less than 5.0.
JP2008008891A 2008-01-18 2008-01-18 Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component Pending JP2009170758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008891A JP2009170758A (en) 2008-01-18 2008-01-18 Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008891A JP2009170758A (en) 2008-01-18 2008-01-18 Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component

Publications (1)

Publication Number Publication Date
JP2009170758A true JP2009170758A (en) 2009-07-30

Family

ID=40971594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008891A Pending JP2009170758A (en) 2008-01-18 2008-01-18 Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component

Country Status (1)

Country Link
JP (1) JP2009170758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220183138A1 (en) * 2020-12-09 2022-06-09 Schweizer Electronic Ag Printed circuit board module, printed circuit board element, heatsink, heat-conducting element and method of producing a thermally conductive layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220183138A1 (en) * 2020-12-09 2022-06-09 Schweizer Electronic Ag Printed circuit board module, printed circuit board element, heatsink, heat-conducting element and method of producing a thermally conductive layer
US12028963B2 (en) * 2020-12-09 2024-07-02 Schweizer Electronic Ag Printed circuit board module, printed circuit board element, heatsink, heat-conducting element and method of producing a thermally conductive layer

Similar Documents

Publication Publication Date Title
JP4610414B2 (en) Electronic component storage package, electronic device, and electronic device mounting structure
JP5091459B2 (en) Manufacturing method of high heat radiation type electronic component storage package
JP3816821B2 (en) High frequency power module substrate and manufacturing method thereof
CN115136297A (en) Power module and method for manufacturing the same
JP2006269966A (en) Wiring substrate and its manufacturing method
JP2005150133A (en) Container for housing semiconductor element
JP4608409B2 (en) High heat dissipation type electronic component storage package
JP2009170758A (en) Package for storing high heat radiation type electronic component package for storing high heat radiation type electronic component
JP4459031B2 (en) Electronic component storage package and electronic device
US20230008518A1 (en) Semiconductor package and manufacturing method therefor
JP2004288949A (en) Semiconductor element storage package and semiconductor device
JP2012064616A (en) Storage package for high heat radiation type electronic component
JP4514598B2 (en) Electronic component storage package and electronic device
JP2000183253A (en) Package for storing semiconductor elements
JP4377769B2 (en) Electronic component storage package and electronic device
JP2000340896A (en) Wiring board module
JP2007012718A (en) Electronic component storage package and electronic device
JP2006013241A (en) Semiconductor device and package therefor
JP2005252121A (en) Package for storing semiconductor element and method for manufacturing the same
JP2006041231A (en) Ceramic circuit board and electrical device
JP2006114601A (en) Package for lid body and electronic component
JPH07211822A (en) Package for storing semiconductor devices
JP2011035340A (en) High heat dissipation-type package for housing electronic component
JP2007088190A (en) Package for receiving high heat-dissipation electronic component
JP2011258618A (en) Production method for package for housing high heat dissipation type electronic component