JP2009132010A - Manufacturing method of mold for microlens array - Google Patents

Manufacturing method of mold for microlens array Download PDF

Info

Publication number
JP2009132010A
JP2009132010A JP2007309235A JP2007309235A JP2009132010A JP 2009132010 A JP2009132010 A JP 2009132010A JP 2007309235 A JP2007309235 A JP 2007309235A JP 2007309235 A JP2007309235 A JP 2007309235A JP 2009132010 A JP2009132010 A JP 2009132010A
Authority
JP
Japan
Prior art keywords
mold
transfer
microlens array
substrate
resist layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007309235A
Other languages
Japanese (ja)
Other versions
JP5010445B2 (en
Inventor
Nobuyuki Miyagawa
Yuichi Uchida
Tadahiro Yamaji
雄一 内田
展幸 宮川
忠寛 山路
Original Assignee
Panasonic Electric Works Co Ltd
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd, パナソニック電工株式会社 filed Critical Panasonic Electric Works Co Ltd
Priority to JP2007309235A priority Critical patent/JP5010445B2/en
Publication of JP2009132010A publication Critical patent/JP2009132010A/en
Application granted granted Critical
Publication of JP5010445B2 publication Critical patent/JP5010445B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a mold for a microlens array which can easily manufacture an optional shape mold for a microlens array.
SOLUTION: This manufacturing method comprises: the resist layer 11 forming process to form a resist layer 11 on one surface side of a substrate 10 (Fig.1(b)); the transfer process to transfer the shape of each conical element 21 of a mold for transfer 20 to the resist layer 11 by pressing the mold for transfer 20 where the conical element 21 is formed at a region corresponding with each of a plurality of microlens (Fig.1(c) to (e)); the curved surface forming process to form a plurality of curved surfaces 12 corresponding with each lens face of each microlens on one surface side of the substrate 10 by dry-etching the substrate 10 from one surface side of the substrate 10 (Fig.1(f), (g)); and the electroforming process to form the mold for microlens array 16 consisting of a plurality of duplicate molds obtained by duplicating a master, with the help of the electroforming process using the substrate 10 with each curved surfaces 12 as the master (Fig.1(h), (i)).
COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マイクロレンズアレイ用金型の製造方法に関するものである。 The present invention relates to a manufacturing method of a microlens array mold.

従来から、マイクロレンズアレイ用金型の製造方法として、超精密加工機を用い、ダイヤモンドのアールバイトを3軸制御駆動して鏡面切削(精密シェーパ加工)することによりマイクロレンズアレイ用金型を製造する方法が提案されている(非特許文献1)。 Conventionally, as a method of manufacturing a microlens array mold, using the ultraprecision machine, producing a microlens array mold by a diamond Earl byte 3-axis control drive to mirror machining (fine shaper processing) how to have been proposed (non-Patent Document 1).

なお、上記非特許文献1では、1mm程度のレンズ径のマイクロレンズが2次元的に配列されたマイクロレンズアレイ用金型が例示されている。 The above Non-Patent Document 1, a microlens array mold is illustrated in which the micro lenses of the lens diameter of about 1mm are two-dimensionally arranged.

ところで、上記非特許文献1に開示されたマイクロレンズアレイ用金型の製造方法では、各マイクロレンズそれぞれのレンズ形状のレンズ面に対応する各曲面を得るために、超精密加工機において、アールバイトを曲面ごとに複数回、動かして加工しているが、曲面ごとにアールバイトを1回ずつどのように動かせばよいか計算で求め、プログラムに基づいて自動で加工が行われる。 Meanwhile, in the Non-patent disclosed in Reference 1 a microlens array mold manufacturing method, in order to obtain the curved surface corresponding to the lens surfaces of the micro lenses each lens shape, the ultraprecision machine, Earl bytes a plurality of times for each curved surface, although the machining moving, determined by calculation or Earle bytes should be moved and how, once for each curved surface, processing is performed automatically on the basis of the program.

しかしながら、上記非特許文献1に開示されたマイクロレンズアレイ用金型の製造方法では、レンズサイズが更に小さくなり、mmレベルからμmレベルに小さくなった場合には、各曲面ごとにアールバイトを1回だけ動かして加工するようになり、所望のレンズ形状におけるレンズ面の曲率半径と同じ曲率半径を有するアールバイトを作製しなければならず、所望のレンズ形状ごとにアールバイトを作製する必要があり、アールバイトの作製に費用および時間がかかっていた。 However, in the method of manufacturing a microlens array mold disclosed in Non-Patent Document 1, the lens size becomes smaller, when it becomes smaller from the mm level in μm level, Earl bytes per each surface 1 comes to machining by moving only times, it is necessary to prepare a radius bytes having the same radius of curvature as the radius of curvature of the lens surface in the desired lens shape, it is necessary to produce a rounded bytes for each desired lens shape , it takes a long cost and time in the production of Earl bytes. また、上記非特許文献1に開示されたマイクロレンズアレイ用金型の製造方法では、レンズサイズが小さくなってマイクロレンズアレイ用金型に形成する曲面の数が増えた場合、加工時間が長くなり、コストアップの原因となってしまう。 Further, in the non-patent disclosed in Reference 1 a microlens array mold manufacturing method, if the number of curved lens size is formed on the microlens array mold smaller has increased, the processing time increases , it becomes a cause of the cost up.

本発明は上記事由に鑑みて為されたものであり、その目的は、任意形状のマイクロレンズアレイ用金型を容易に製造することが可能なマイクロレンズアレイ用金型の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, that the aim is to provide a microlens array mold manufacturing method of capable of easily manufacturing a microlens array mold having an arbitrary shape It is in.

請求項1の発明は、基板の一表面側にレジスト層を形成するレジスト層形成工程と、複数のマイクロレンズそれぞれに対応する部位に錐体が形成された転写用金型をレジスト層に押し付けて転写用金型の各錐体の形状をレジスト層に転写する転写工程と、転写工程の後で基板の前記一表面側から基板をドライエッチングすることにより基板の前記一表面側に各マイクロレンズそれぞれのレンズ面に対応する複数の曲面を形成する曲面形成工程と、曲面形成工程にて各曲面が形成された基板をマスタとして電鋳法によりマスタを反転させた型もしくはマスタを複製した複製型からなるマイクロレンズアレイ用金型を形成する電鋳工程とを備えることを特徴とする。 The invention of claim 1 is pressed and the resist layer forming step of forming a resist layer on the one surface side of the substrate, a transfer die cone is formed at a portion corresponding to a plurality of microlenses on the resist layer a transfer step of transferring the shape of each cone of the transfer mold to the resist layer, each of the microlenses on the one surface of the substrate by dry-etching the substrate from the one surface of the substrate after the transferring step and the curved surface forming step of forming a plurality of curved surfaces corresponding to the lens surface, the substrate having the curved surface is formed by a curved surface forming step of replicative form which replicates the mold or master by inverting the master by electroforming as a master characterized in that it comprises a electroforming step of forming a microlens array mold made.

この発明によれば、基板の一表面側にレジスト層を形成するレジスト層形成工程、複数のマイクロレンズそれぞれに対応する部位に錐体が形成された転写用金型をレジスト層に押し付けて転写用金型の各錐体の形状をレジスト層に転写する転写工程、基板の前記一表面側から基板をドライエッチングすることにより基板の前記一表面側に各マイクロレンズそれぞれのレンズ面に対応する複数の曲面を形成する曲面形成工程を順次行うことにより、基板に複数の曲面を一括して形成することができるだけでなく、曲面形成工程におけるドライエッチングのエッチング条件を適宜設定してエッチング速度の等方性を高めたり異方性を高めたりすることにより、曲面の曲率半径を制御することができて曲面形状の設計変更に容易に対応することがで According to the present invention, a transfer presses resist layer forming step of forming a resist layer on the one surface side of the substrate, a transfer die cone is formed at a portion corresponding to a plurality of microlenses on the resist layer transfer step of transferring the shape of each cone of the mold to the resist layer, a plurality corresponding to the lens surface of each of the microlenses on the one surface of the substrate by dry-etching the substrate from the one surface of the substrate by sequentially performing the curved surface forming step of forming a curved surface, the substrate not only can be collectively formed a plurality of curved surfaces, isotropic etching rate by appropriately setting the etching conditions of the dry etching in the curved surface forming step it is a by and increasing the anisotropy or enhance, possible to easily cope with design changes of the curved shape can control the radius of curvature of the curved surface 、電鋳工程において、各曲面が形成された基板をマスタとして電鋳法によりマスタを反転させた型もしくはマスタを複製した複製型からなるマイクロレンズアレイ用金型を形成することができるので、任意形状のマイクロレンズアレイ用金型を容易に製造することが可能となる。 In electroforming step, since the substrate having the curved surface is formed can be formed a microlens array mold consisting of replicative form which replicates the mold or master obtained by inverting the master by electroforming as the master, optionally it is possible to easily manufacture a microlens array mold shape.

請求項2の発明は、請求項1の発明において、前記転写工程では、前記転写用金型として前記錐体が2次元的に配列され隣り合う前記錐体間に平坦部が形成されたものを用い、前記曲面形成工程では、前記レジスト層において各平坦部に対応する部分がなくなるまでドライエッチングを行うことを特徴とする。 According to a second aspect of the invention, in the invention of claim 1, in the transfer step, those flat portions between the said cones adjacent are two-dimensionally arranged cone as the transfer mold is formed used, in the curved surface forming step, and carrying out dry etching until a portion corresponding to the flat portion in the resist layer is eliminated.

この発明によれば、隣り合うマイクロレンズのレンズ面間に平坦な部位がなく集光効率の高いマイクロレンズアレイを成形するためのマイクロレンズ用金型を容易に製造することが可能となる。 According to the present invention, it is possible to easily manufacture a microlens mold for molding the high microlens array of light collecting efficiency without a flat portion between the lens surfaces of adjacent microlenses.

請求項3の発明は、請求項1の発明において、前記転写工程では、前記転写用金型として前記錐体が角錐状の形状であり前記錐体が隙間なく2次元的に配列されたものを用いることを特徴とする。 The invention according to claim 3, in the invention of claim 1, the one in the transferring step, wherein the cone as the transfer mold is pyramidal shape the cone is two-dimensionally arranged without a gap which comprises using.

この発明によれば、隣り合うマイクロレンズのレンズ面間に平坦な部位がなく集光効率の高いマイクロレンズアレイを成形するためのマイクロレンズ用金型を容易に製造することが可能となり、しかも、請求項2の発明に比べて、より微細なマイクロレンズを有するマイクロレンズアレイを成形するためのマイクロレンズ用金型を容易に製造することが可能となる。 According to the present invention, it is possible to easily manufacture a microlens mold for molding the high microlens array of light collecting efficiency without a flat portion between the lens surfaces of adjacent microlenses, moreover, compared to the invention of claim 2, it is possible to easily manufacture the micro lens mold for molding the micro lens array having a finer microlenses.

請求項4の発明は、請求項1または請求項2の発明において、前記転写工程では、前記転写用金型として前記各錐体それぞれが棒状体の先端部に形成されたものを用いることを特徴とする。 The invention of claim 4 is the invention of claim 1 or claim 2, in the transfer step, characterized by using one each of the respective cone as the transfer mold is formed at the distal end of the rod-shaped body to.

この発明によれば、前記転写用金型を簡単に低コストで作製することが可能となる。 According to the present invention, it is possible to produce a simple low cost the transfer mold.

請求項5の発明は、請求項1または請求項2または請求項4の発明において、前記転写工程では、前記転写用金型として単位格子が正三角形の仮想的な2次元三角格子の各格子点に対応する各部位に前記錐体が形成されたものを用いることを特徴とする。 The invention of claim 5 is the invention of claim 1 or claim 2 or claim 4, in the transfer step, the lattice points of the virtual 2-dimensional triangular lattice of unit cells as the transfer mold is an equilateral triangle characterized in that used as said cone is formed on the portion corresponding to.

この発明によれば、平面視における前記レンズ面の外周形状が六角形状で且つ隣り合うマイクロレンズのレンズ面間に平坦な部位がなく集光効率の高いマイクロレンズアレイを成形するためのマイクロレンズ用金型を容易に製造することが可能となる。 According to the present invention, a micro lens for shaping the lens surface high microlens array peripheral shape is light collection efficiency without a flat portion between the lens surfaces and the adjacent microlenses in hexagonal in plan view it is possible to easily manufacture the mold.

請求項6の発明は、請求項1または請求項2または請求項4または請求項5の発明において、前記転写工程では、前記転写用金型として平面視における外周形状が同じで高さが異なる複数の錐体が形成されたものを用いることを特徴とする。 According to a sixth aspect of the invention, a plurality in the invention of claim 1 or claim 2 or claim 4 or claim 5, in the transfer step, the outer peripheral shape height the same in plan view as the transfer mold different characterized by using those cones are formed.

この発明によれば、曲率半径の異なる複数の曲面を有するマイクロレンズ用金型を製造することができるので、曲率半径の異なる複数のマイクロレンズを備えたマイクロレンズアレイを成形するためのマイクロレンズ用金型を容易に製造することが可能となる。 According to the present invention, it is possible to manufacture the microlens mold having a radius of curvature different plurality of curved surfaces, for microlenses for forming a microlens array having a plurality of micro lenses having different radii of curvature it is possible to easily manufacture the mold.

請求項1の発明は、任意形状のマイクロレンズアレイ用金型を容易に製造することが可能になるという効果がある。 The invention of claim 1 has the advantage of being able to easily manufacture a microlens array mold having an arbitrary shape.

(実施形態1) (Embodiment 1)
以下、本実施形態のマイクロレンズアレイ用金型の製造方法について図1〜図5を参照しながら説明する。 A method for fabricating a microlens array mold according to the present embodiment will be described with reference to FIGS. 1 to 5 for.

まず、図1(a)に示すシリコン基板からなる基板10の一表面側に有機材料(熱硬化性樹脂、光硬化性樹脂など)からなるレジストをスピンコート法により回転塗布してレジスト層11を形成するレジスト層形成工程を行うことによって、図1(b)に示す構造を得る。 First, FIGS. 1 (a) an organic material on the one surface side of the substrate 10 made of silicon substrate shown in (a thermosetting resin, such as photo-curable resin) to resist consisting of the resist layer 11 is rotated by spin coating by performing the resist layer forming step of forming, the structure shown in FIG. 1 (b). なお、レジスト層11のレジストとしては、一般的なレジストの中で転写性が良く、且つ、耐熱性の高いものを用いればよい。 As the resist of the resist layer 11, good transferability within the general resist, and may be used having a high heat resistance.

その後、所望形状のマイクロレンズアレイ30(図6参照)の複数のマイクロレンズ31(図6参照)それぞれに対応する部位に錐体(本実施形態では、角錐)21が形成された転写用金型20をレジスト層11に押し付けて転写用金型20の各錐体21の形状をレジスト層11に転写する転写工程を行うことによって、図1(e)および図4に示す構造を得る。 Thereafter, a plurality of (in this embodiment, pyramidal) microlens 31 (see FIG. 6) cone in a portion corresponding to each transfer mold for 21 is formed of a desired shape microlens array 30 (see FIG. 6) by performing a transfer step of transferring the 20 to the resist layer 11 the shape of each cone 21 of the transfer mold 20 is pressed against the resist layer 11 to obtain a structure shown in FIG. 1 (e) and FIG. ここにおいて、転写工程では、図1(c)に示すように転写用金型20をレジスト層11の表面に対向させた後、図1(d)に示すように転写用金型20をレジスト層11にプレスしてからレジスト層11を硬化させ、続いて、レジスト層11から転写用金型20を離型する。 Here, in the transfer step, after facing the transfer mold 20 as shown in FIG. 1 (c) on the surface of the resist layer 11, the resist layer a transfer mold 20 as shown in FIG. 1 (d) 11 to cure the resist layer 11 is pressed into and subsequently releasing the transfer mold 20 from the resist layer 11. なお、転写用金型20は、所定の金型材料(本実施形態では、Ni−P)により形成され当該転写用金型20の基礎となる転写金型用基板20a(図2(a)参照)の一表面を図2(b)に示すようにダイヤモンドバイト240により切削加工することによって作製してあり、図3に示すように、複数の錐体21が隙間なく2次元的に配列されており、レジスト層11は、図4に示すように各錐体21に対応する部分が凹んだ形状の凹凸パターンとなる。 The transfer mold 20 (in the present embodiment, Ni-P) predetermined mold material is formed by a transfer mold substrate 20a underlying the transfer mold 20 (see FIG. 2 (a) one surface of) Yes be made by cutting with a diamond byte 240 as shown in FIG. 2 (b), as shown in FIG. 3, a plurality of cones 21 is two-dimensionally arranged without a gap cage, the resist layer 11 becomes uneven pattern shape dented portion corresponding to Kakukiritai 21 as shown in FIG.

上述の転写工程の後で基板10の上記一表面側から基板10を等方性あるいは等方性に近いエッチング条件でドライエッチングすることにより基板10の上記一表面側に各マイクロレンズ31(図6参照)それぞれのレンズ面31a(図6の例では凸曲面)に対応する複数の曲面(凹曲面)12を形成する曲面形成工程を行うことによって、図1(g)および図5に示す構造を得る。 The first surface side to each microlens 31 of the substrate 10 by dry etching in the near etching conditions from the first surface side of the substrate 10 to the substrate 10 in an isotropic or isotropic after the above transfer step (Fig. 6 by performing the curved surface forming step of forming a plurality of curved surfaces (concave surface) 12 corresponding to the reference) each lens surface 31a (convex surface in the example of FIG. 6), the structure shown in FIG. 1 (g) and 5 obtain. なお、図1(f)は曲面形成工程の途中(エッチングの途中)での断面形状を示してある。 Incidentally, there is shown a cross-sectional shape at and 1 (f) show the subimages middle of the curved surface forming step (during the etching).

ところで、仮に、図7(a)に示すように、基板10の上記一表面側のレジスト層11に微細な円形状の開口部11bが1つだけ形成されているとし、基板10の上記一表面側から等方性エッチングを行うと、レジスト層11も徐々にエッチングされるので、図7(b)→図7(c)→図7(d)のように断面形状が変化する。 Meanwhile, if, as shown in FIG. 7 (a), and the first surface side of the resist layer 11 into a fine circular opening 11b of the substrate 10 is formed only one, the one surface of the substrate 10 Doing isotropic etching from the side, since the resist layer 11 is also gradually etched, changes the cross-sectional shape as shown in FIG. 7 (b) → Fig. 7 (c) → Fig. 7 (d). すなわち、図7(c)に示すようにレジスト層11がなくなるまではレジスト層11の開口径のサイズで曲面12が形成されるが、レジスト層11がなくなった後もエッチングを続けると、エッチングは基板10の上記一表面に対して垂直方向に進むので、図7(d)に示すように曲面12は曲率半径が大きくなるようにエッチングされ且つ平面部は平坦なままエッチングされる。 That is, until there is no resist layer 11 as shown in FIG. 7 (c) curved 12 with the size of the opening diameter of the resist layer 11 is formed, when also continued etching after the resist layer 11 is depleted, etching since advances in a direction perpendicular to the first surface of the substrate 10, a curved surface 12 as shown in FIG. 7 (d) and flat portions are etched such curvature radius increases are etched remains flat.

したがって、レジスト層11に複数の開口部11bを隣接して形成して等方性エッチングを行えば、基板10の上記一表面側に図8(a)の実線イに示すような曲面12が隣接した形状を形成することができ、等方性エッチングを更に続ければ図8(a)の破線ロ(エッチング進行面)に示すようにエッチングが進行し、隣接する曲面12間に残っていた平面部12bの面積は徐々に減少する(なお、図8中の矢印はエッチングの進行方向を示している)。 Therefore, by performing the isotropic etching a plurality of openings 11b in the resist layer 11 is formed adjacent curved 12 as shown by the solid line b shown in FIG. 8 (a) to the first surface side of the substrate 10 adjacent shape can be formed, if further Continuing isotropic etching proceeds etching as shown in broken line b (etching progression face) of FIG. 8 (a), the flat portion remaining in between adjacent curved surface 12 area 12b gradually decreases (arrows in Figure 8 show the traveling direction of the etching). ここで、実線ハに示すように曲面12と平面部12bとの境界部分はエッジ状に角がついた状態が保たれ、丸みを帯びることはない。 Here, the boundary portion between the curved surface 12 and the flat portion 12b, as shown by the solid line c is a state in which with a corner edge shape is maintained, never rounded. したがって、図8(b)に示すように最終的に平面部12bがなくなった実線イの状態からエッチングを続けても、図8(b)の破線ロ(エッチング進行面)に示すようにエッチングが進行し、図8(b)の実線ハに示すように隣り合う曲面12と曲面12との境界がきれいに残るので、これらの曲面12を平面視したときの外周形状は、開口部11bの配置により決まることになる。 Therefore, even if continuing etching from the state of the solid line b eventually planar portion 12b is gone, as shown in FIG. 8 (b), the etching as shown in broken line B (etching progression plane) shown in FIG. 8 (b) progresses, the boundary between the curved surface 12 and the curved surface 12 adjacent as shown by the solid line c shown in FIG. 8 (b) remains clean, the outer peripheral shape when these curved surfaces 12 in plan view, the arrangement of openings 11b It will be determined.

ここで、本実施形態では、上述のように複数の錐体21が2次元的に配列された転写用金型20の各錐体21をレジスト層11に転写しており、レジスト層11には各錐体21に対応する部位に擂鉢状の凹みが形成されているので、曲面形成工程においてドライエッチングを行うと、レジスト層11における凹みの中央から基板10が露出し始めるから、錐体21のピッチが開口部のピッチとなり、最終的なマイクロレンズ31のピッチとなる。 Here, in the present embodiment, by transferring the respective cone 21 of a plurality of cones 21 two-dimensionally arranged transcription mold 20 in the resist layer 11 as described above, the resist layer 11 is each cone 21 conical depressions at positions corresponding to the is formed, the dry etching in the curved surface forming step, since the substrate 10 begins to expose from the middle of the indentation in the resist layer 11, the cone 21 pitch is the pitch of the openings, the pitch of the final microlens 31. また、錐体21の配置によってマイクロレンズ31がどのように隣り合うかが決まることとなる。 Also, so that one microlens 31 is how adjacent determines the arrangement of the cone 21. しかして、転写用金型20に設ける錐体21の形状や配置を変えることで種々のマイクロレンズ31を隙間なく並べたマイクロレンズアレイを成形するためのマイクロレンズアレイ用金型を容易に作製することが可能となる。 Thus, readily prepared microlens array mold for molding the micro lens array various microlens 31 by changing the shape and arrangement of the cone 21 arranged without a gap provided in the transfer mold 20 it becomes possible. 本実施形態では、レジスト層11の断面形状は三角形が並んだ形状であるから、等方性のドライエッチングを行うと、レジスト層11の厚みの薄いところから基板10が露出し、露出した部位を基点として基板10がエッチングされ、全方向にエッチングが進行するので、断面形状が円弧状の曲面12が形成される。 In the present embodiment, since the cross-sectional shape of the resist layer 11 is shaped lined triangle, when the isotropic dry etching, the substrate 10 is exposed from where thin thickness of the resist layer 11, the exposed portion substrate 10 is etched as a base, an etching in all directions because progresses, the cross-sectional shape arcuate curved surface 12 is formed.

ここにおいて、曲面形成工程では、ドライエッチングのエッチング条件(例えば、エッチングガス、エッチングガスの流量、エッチング圧力、エッチング時間など)を適宜設定してエッチング速度の等方性を高めたり異方性を高めたりすることにより、図9に示すように曲面12の曲率半径を制御することができる。 Here, the curved surface forming step, enhanced etching dry etching conditions (e.g., an etching gas, the flow rate of the etching gas, etching pressure, etching time, etc.) by setting the appropriate anisotropy and increasing the isotropic etch rate by or can control the curvature radius of the curved surface 12 as shown in FIG. なお、図9の上段には、各エッチング方向のエッチング速度を矢印の方向と長さで表したベクトルの矢の先端の包絡面を記載し、下段にはエッチング後の基板10の断面形状を記載してあり、図9は、異方性の度合いが高い(強い)ほど曲面12の曲率半径が小さく、異方性の度合いが低い(弱い)ほど曲面12の曲率半径が大きくなることを示している。 The upper area of ​​Fig. 9, describes the envelope of the tips of arrows vector representing the etch rate of the etching direction in the direction and length of the arrow, wherein the cross-sectional shape of the substrate 10 after etching the lower Yes and, FIG. 9, the degree of anisotropy is high (strong) as the radius of curvature of the curved surface 12 is small, it shows that the degree of anisotropy is low (weak) enough curved 12 curvature radius increases there.

ここで、本実施形態のように基板10としてシリコン基板を用いている場合には、例えば、エッチングガスとしてSF ガスを採用することにより、プラズマにより励起されたFラジカルが主としてエッチングに関与し、基板20表面での反応が化学的に進行しやすくなるので、等方性の高いエッチングが可能となる。 Here, in the case of using the silicon substrate as the substrate 10 as in this embodiment, for example, by employing the SF 6 gas as an etching gas, F radicals excited by plasma is involved primarily etching, since the reaction of the substrate 20 surface is likely to proceed chemically, it is possible to highly isotropic etching. また、エッチングガスとしてSF ガスのみを用いるのではなく、O ガス、N ガス、Arガスなどを混合して、イオンによる物理的なエッチング効果を付加することでエッチング速度の等方性の度合いを低くする(つまり、異方性の度合いを高める)ことが可能となる。 Also, rather than using a SF 6 gas alone as the etching gas, O 2 gas, N 2 gas, a mixture of such as Ar gas, isotropic etching rate by adding a physical etching effect due to ions the degree of lowering (that is, increase the degree of anisotropy) it becomes possible. また、レジスト層11のレジスト材料の種類によって基板20とレジスト層11とのエッチング速度比(選択比)が変化するので、レジスト層11の材料を変えることによってもエッチング後の曲面12の曲率半径を変えることができる。 Further, since the etching rate ratio between the substrate 20 and the resist layer 11 by the type of the resist material of the resist layer 11 (selection ratio) varies, the radius of curvature of the curved surface 12 after etching by changing the material of the resist layer 11 it is possible to change. また、レジスト材料が同じであっても、エッチング条件を変えることによってエッチング速度やトータルのエッチング量が変化するので、同様に曲面12の曲率半径の制御が可能となる。 Also, the resist material is the same, the etching amount of etching rate and total by changing the etching conditions are changed, it is possible to control the curvature radius of similarly curved 12. なお、本実施形態では、基板10としてシリコン基板10を用いているが、基板10は、シリコン基板に限定するものではなく、例えば、ガラス基板などを用いてもよく、曲面形成工程では、基板10の材料に応じてエッチングガスを含めたエッチング条件を適宜設定すればよい。 In the present embodiment uses a silicon substrate 10 as the substrate 10, the substrate 10 is not limited to silicon substrate, for example, it may be used such as a glass substrate, a curved surface forming step, the substrate 10 etching conditions including an etching gas according to the material may be appropriately set.

次に、曲面形成工程にて各曲面12が形成された基板20をマスタ(母型)としてマスタを複製した複製型からなるマイクロレンズアレイ用金型16を形成する電鋳工程を行うことによって、図1(i)に示すマイクロレンズアレイ用金型16を形成するようにしている。 Then, by performing the electroforming step of forming a microlens array mold 16 comprising a substrate 20 of each surface 12 is formed by a curved surface forming step of replicating duplicating the master as the master (mold), and so as to form a microlens array mold 16 shown in FIG. 1 (i). ここにおいて、電鋳工程では、図1(h)に示すように各曲面12が形成された基板20をマスタ(母型)として電鋳法によってマスタを反転させたニッケル製の型(以下、反転型と称する)15を作製し、その後、反転型15を型として用いて電鋳法によってニッケル製のマイクロレンズアレイ用金型16を形成している。 Here, in the electroforming step, FIG. 1 (h) to the substrate 20 to the curved surface 12 is formed as shown master (mold) as electroformed nickel mold obtained by inverting the master by method (hereinafter, inversion referred to as type) to prepare a 15, then to form a microlens array mold 16 made of nickel by electroforming method using a reverse type 15 as a type.

なお、本実施形態では、上述のようにマイクロレンズ31のレンズ面31aが凸曲面なので、各曲面12が形成された基板20をマスタとしてマスタを複製した複製型をマイクロレンズアレイ用金型16としているが、マイクロレンズ31のレンズ面31aが凹曲面の場合には、各曲面12が形成された基板20をマスタとして反転させた型をマイクロレンズアレイ用金型とすればよい。 In the present embodiment, since the lens surface 31a of the microlens 31 as described above is convex curved surface, a replicative form which replicates the master substrate 20 that each surface 12 is formed as a master as a microlens array mold 16 it is, but if the lens surface 31a of the micro lens 31 of the concave surface may be the type obtained by inverting the substrate 20 in which each curved surface 12 is formed as a master and a microlens array mold.

以上説明した本実施形態のマイクロレンズアレイ用金型16の製造方法によれば、基板10の上記一表面側にレジスト層11を形成するレジスト層形成工程、複数のマイクロレンズ31それぞれに対応する部位に錐体21が形成された転写用金型20をレジスト層11に押し付けて転写用金型20の各錐体21の形状をレジスト層11に転写する転写工程、基板10の上記一表面側から基板10をドライエッチングすることにより基板10の上記一表面側に各マイクロレンズ31それぞれのレンズ面31aに対応する複数の曲面12を形成する曲面形成工程を順次行うことにより、基板10に複数の曲面12を一括して形成することができるだけでなく、曲面形成工程におけるドライエッチングのエッチング条件を適宜設定してエッチング速 According to the micro lens manufacturing method of the array mold 16 of the present embodiment described above, the resist layer forming step of forming a resist layer 11 on the first surface side of the substrate 10, portions corresponding to the plurality of micro lenses 31, respectively the shape of each cone 21 of the transfer mold 20 which cone 21 is formed against the resist layer 11 transfer mold 20 transfer step of transferring the resist layer 11, from the first surface side of the substrate 10 in by sequentially performing the curved surface forming step of forming a plurality of curved surfaces 12 that correspond to each microlens 31 each lens surface 31a on the first surface side of the substrate 10 by dry etching the substrate 10, a plurality of curved surfaces on the substrate 10 12 not only can be formed at once, an etching speed by appropriately setting the etching conditions of the dry etching in the curved surface forming step の等方性を高めたり異方性を高めたりすることにより、曲面12の曲率半径を制御することができて曲面形状の設計変更に容易に対応することができ、電鋳工程において、各曲面12が形成された基板10をマスタとして電鋳法によりマスタを反転させた型もしくはマスタを複製した複製型からなるマイクロレンズアレイ用金型16を形成することができるので、任意形状のマイクロレンズアレイ用金型16を容易に製造することが可能となる。 By and increasing the anisotropy and increasing the isotropic, it is possible to control the curvature radius of the curved surface 12 can be easily correspond to the design change of the curved shape, the electroforming process, each surface it is possible to form the microlens array mold 16 comprising a substrate 10 which 12 is formed from the replica mold which replicates the mold or master by inverting the master by electroforming as a master, of any shape microlens array it is possible to easily manufacture the mold 16. また、基板10としてウェハを用いることにより、大面積のマイクロレンズアレイ用金型を容易に作製することが可能になるとともに、複数のマイクロレンズアレイ用金型16を一度に作製することも可能となる。 Further, by using a wafer as a substrate 10, it becomes possible to easily manufacture a microlens array mold having a large area, and also possible to produce a plurality of micro-lens array mold 16 at a time Become.

図6は上述のマイクロレンズアレイ用金型16を用いて成形したマイクロレンズアレイ30の使用例の一例を示したものであり、ベース基板41の一表面側に複数の赤外線検出素子からなる受光素子42が2次元アレイ状に配列されたセンサ素子40と、センサ素子40の各受光素子42に光を集光するマイクロレンズアレイ30とを備えたセンサ装置である。 Figure 6 is an illustration of an example of a usage example of the microlens array 30 molded by using a microlens array mold 16 described above, the light-receiving element comprising a plurality of infrared detection elements on one surface side of the base substrate 41 42 the sensor element 40 arranged in a two-dimensional array, a sensor device that includes a microlens array 30 for condensing light on each light receiving element 42 of the sensor element 40. なお、受光素子42は、赤外線検出素子に限らず、フォトダイオードなどでもよい。 The light receiving element 42 is not limited to the infrared detection element may be a photodiode or the like.

また、本実施形態のマイクロレンズアレイ用金型16の製造方法では、転写工程において、転写用金型20として角錐状の錐体21が2次元的に配列され隣り合う錐体21間に平坦部が形成されたものを用いた場合、図10(a)に示すようにレジスト層11に転写されるので、曲面形成工程にて、図10(c)に示すようにレジスト層11において転写用金型20の各平坦部に対応する部分がなくなるまでドライエッチングを行うようにすれば、隣り合うマイクロレンズ31のレンズ面31a間に平坦な部位がなく集光効率の高いマイクロレンズアレイ30を成形するためのマイクロレンズ用金型16を容易に製造することが可能となる。 In the method of manufacturing a microlens array mold 16 of the present embodiment, in the transfer step, the flat portion between the pyramidal cone 21 cone 21 adjacent the two-dimensionally arranged as the transfer mold 20 If but with those formed, because it is transferred to the resist layer 11 as shown in FIG. 10 (a), at the curved surface forming step, the transfer gold in the resist layer 11 as shown in FIG. 10 (c) if so dry etching until the part is eliminated corresponding to the flat portion of the mold 20, for molding the micro lens array 30 higher flat region between the lens surface 31a is light collection efficiency without microlenses 31 adjacent it is possible to easily manufacture the microlens mold 16 for. なお、図10(b)は曲面形成工程におけるエッチング途中でのレジスト層11および基板10の形状を示しており、エッチングで形成される曲面が徐々に広がっていき、隣り合う曲面12同士が接すると曲面12の拡大は止まる。 Incidentally, FIG. 10 (b) shows the resist layer 11 and the shape of the substrate 10 in the middle etching in a curved formation step, gradually curved surface gradually spreads formed by etching, when the curved surface 12 adjacent contact expansion of the curved surface 12 stops. また、図10(a)〜(b)の上段は平面図、下段は上段のA−A'断面図である。 Further, the upper plan view of FIG. 10 (a) ~ (b), the lower is the A-A 'sectional view of the upper.

また、転写工程において、転写用金型20として円錐状の錐体21が2次元的に配列され隣り合う錐体21間に平坦部が形成されたものを用いた場合、図11(a)に示すようにレジスト層11に転写されるので、曲面形成工程にて、図11(c)に示すようにレジスト層11において転写用金型20の各平坦部に対応する部分がなくなるまでドライエッチングを行うようにすれば、隣り合うマイクロレンズ31のレンズ面31a間に平坦な部位がなく集光効率の高いマイクロレンズアレイ30を成形するためのマイクロレンズ用金型16を容易に製造することが可能となる。 Further, in the transfer step, when used as the flat portion between the conical cone 21 cone 21 adjacent the two-dimensionally arranged is formed as a transfer mold 20, FIG. 11 (a) because it is transferred to the resist layer 11 as shown at the curved surface forming step, a dry etching until there is no portion corresponding to the flat portion of the transfer mold 20 in the resist layer 11 as shown in FIG. 11 (c) if so performed, possible to manufacture a micro lens mold 16 for molding the lens surface 31a microlens array 30 having high light collecting efficiency without a flat portion between the microlenses 31 adjacent readily to become. 図11の見方は図10と同じである。 View of Figure 11 is identical to FIG. 10.

また、転写工程において、転写用金型20として錐体21が角錐状の形状であり錐体21が隙間なく2次元的に配列されたものを用いた場合、図12(a)に示すようにレジスト層11に転写されるので、曲面形成工程にて、図12(c)に示すように少なくともレジスト層11がなくなるまでドライエッチングを行うようにすれば、隣り合うマイクロレンズ31のレンズ面31a間に平坦な部位がなく集光効率の高いマイクロレンズアレイ30を成形するためのマイクロレンズ用金型16を容易に製造することが可能となり、しかも、図10や図11の例に比べて、より微細なマイクロレンズ31を有するマイクロレンズアレイ30を成形するためのマイクロレンズ用金型16を容易に製造することが可能となり、センサ素子40側の微細 Further, in the transfer step, if a shape cone 21 is pyramidal as the transfer mold 20 cone 21 was used are two-dimensionally arranged without gaps, as shown in FIG. 12 (a) because it is transferred to the resist layer 11 at the curved surface forming step, if to perform dry etching until no least resist layer 11 as shown in FIG. 12 (c), between the lens surface 31a of the adjacent micro lenses 31 it is possible to easily manufacture a micro lens mold 16 for molding the micro lens array 30 having high light collecting efficiency without a flat site, moreover, in comparison with the example of FIG. 10 and FIG. 11, and more a microlens mold 16 for molding the micro lens array 30 having a fine micro lenses 31 makes it possible to easily manufacture, of the sensor element 40 side fine にも対応可能となる。 It becomes possible to cope with. また、転写用金型21の錐体21の平面サイズが平面視における曲面12の外周のサイズと同じになるという利点がある。 Further, there is an advantage that the plane size of the cone 21 of the transfer mold 21 is the same as the outer peripheral size of the curved surface 12 in plan view. 図12の見方は図10と同じである。 View of Figure 12 is identical to FIG. 10.

なお、本実施形態では、錐体21の形状として角錐状や円錐状の形状を例示したが、角錐台状や円錐台状の形状でもよい。 In the present embodiment has illustrated a pyramidal or conical shape as the shape of the cone 21, may be a truncated pyramid or truncated cone shape.

(実施形態2) (Embodiment 2)
本実施形態のマイクロレンズアレイ用金型の製造方法は実施形態1と略同じであって、転写工程において、図13に示すように各錐体21それぞれが棒状体22の先端部に形成されたものを用いる点が相違するだけである。 Method of manufacturing a microlens array mold according to the present embodiment is a substantially same as that in Embodiment 1, in the transfer step, each Kakukiritai 21 as shown in FIG. 13 is formed at the distal end of the rod-shaped body 22 only that it uses things are different. すなわち、実施形態1では、転写用金型20を簡易的な切削加工により形成していたのに対して、本実施形態では、転写用金型20のベースとなる平板に複数の棒状体22を所定ピッチでセットしている。 That is, in the embodiment 1, whereas the transfer mold 20 has been formed by simple machining, in the present embodiment, a plurality of bar-like member 22 a flat plate serving as a base of the transfer mold 20 It is set at a predetermined pitch. また、本実施形態では、各棒状体22として丸棒状のものを用いており、各錐体21が円錐状の形状に形成されている。 Further, in this embodiment, by using those round bar as the bar-like member 22, the cone 21 is formed in a conical shape.

しかして、本実施形態のマイクロレンズアレイ用金型の製造方法によれば、転写用金型20の作製にあたって、各棒状体22の先端部のみを加工すればよいので、転写用金型20を簡単に低コストで作製することが可能となる。 Thus, according to the method of manufacturing a microlens array mold according to the present embodiment, when manufacturing a transfer mold 20, so may be processed only tips of the rod-shaped body 22, the transfer mold 20 easily it is possible to manufacture at low cost.

(実施形態3) (Embodiment 3)
本実施形態のマイクロレンズアレイ用金型の製造方法は実施形態1と略同じであって、転写工程において、図14に示すように各錐体21それぞれが棒状体22の先端部に形成されたものを用いる点が相違するだけである。 Method of manufacturing a microlens array mold according to the present embodiment is a substantially same as that in Embodiment 1, in the transfer step, each Kakukiritai 21 as shown in FIG. 14 is formed at the distal end of the rod-shaped body 22 only that it uses things are different. ここで、本実施形態では、各棒状体22として角棒状のものを用いており、各錐体21が角錐状の形状に形成されている。 Here, in this embodiment, by using those square rod as the rod-shaped body 22, the cone 21 is formed in a pyramidal shape.

しかして、本実施形態のマイクロレンズアレイ用金型の製造方法によれば、転写用金型20の作製にあたって、各棒状体22の先端部のみを加工すればよいので、転写用金型20を簡単に低コストで作製することが可能となる。 Thus, according to the method of manufacturing a microlens array mold according to the present embodiment, when manufacturing a transfer mold 20, so may be processed only tips of the rod-shaped body 22, the transfer mold 20 easily it is possible to manufacture at low cost. なお、本実施形態のように棒状体22を束ねて転写用金型20のベースとなる平板にセットする場合、棒状体22の長手方向に直交する断面は矩形状に限らず、棒状体22の配列が容易となる断面形状であればよく、円形状や六角形状でもよい。 In the case of flat plate set of the base of the transfer mold 20 are bundled rod-like body 22 as in this embodiment, a cross section perpendicular to the longitudinal direction of the rod-like body 22 is not limited to a rectangular shape, the rod-shaped body 22 it may be any cross-sectional shape arrangement is facilitated, may be circular or hexagonal shape.

(実施形態4) (Embodiment 4)
本実施形態のマイクロレンズアレイ用金型の製造方法は実施形態1と略同じであって、転写工程において、実施形態1で説明した転写用金型20として単位格子が正三角形の仮想的な2次元三角格子の各格子点に対応する各部位に錐体21が形成されたものを用いる点が相違するだけである。 The method of manufacturing a microlens array mold according to the present embodiment is a substantially same as that in Embodiment 1, in the transfer step, a virtual unit cell is a regular triangle as the transfer mold 20 described in Embodiment 1 2 only that it uses what cone 21 is formed on each site is different for each grid point of the dimension triangular lattice.

したがって、転写工程では、転写用金型20の形状が図15(a)に示すようにレジスト層11に転写されるので、曲面形成工程にて、図15(c)に示すように隣り合う曲面12同士の境界が直線となるまでドライエッチングを行うようにすれば、平面視における外周形状が六角形状の曲面12が隙間なく並ぶこととなるから、平面視におけるレンズ面31aの外周形状が六角形状で且つ隣り合うマイクロレンズ31のレンズ面31a間に平坦な部位がなく集光効率の高いマイクロレンズアレイ30を成形するためのマイクロレンズ用金型16を容易に製造することが可能となる。 Thus, in the transfer step, the shape of the transfer mold 20 is transferred to the resist layer 11 as shown in FIG. 15 (a), at the curved surface forming step, adjacent to shown in FIG. 15 (c) curved if so 12 boundary between the dry etching until a straight line, because the curved 12 outer peripheral shape hexagonal in plan view so that the aligned without a gap, the outer peripheral shape hexagonal lens surface 31a in plan view in it is possible to easily manufacture a micro lens mold 16 for molding the micro lens array 30 having high light collecting efficiency without a flat portion between and lens surfaces of adjacent microlenses 31 31a. 図15の見方は図10と同じである。 View of Figure 15 is identical to FIG. 10.

(実施形態5) (Embodiment 5)
ところで、実施形態1にて説明したセンサ装置をカメラなどの撮像装置に利用する場合、図16に示すように、マイクロレンズアレイ30の前方にレンズ(撮像レンズなど)50が配置されるが、レンズ50からマイクロレンズアレイ30への入射光の角度やレンズ収差などを考慮すると、マイクロレンズアレイ30における各マイクロレンズ31の位置によって曲率半径を変化させたほうが各マイクロレンズ31の集光効率が高くなり、マイクロレンズアレイ30全体としての集光効率を高められる場合がある。 Incidentally, when using the sensor device described in Embodiment 1 for an image pickup apparatus such as a camera, as shown in FIG. 16, (such as the imaging lens) forward of the microlens array 30 is 50 is arranged, the lens When considering the angles and lens aberrations of the incident light to the microlens array 30 from 50, it increases more with varying radius of curvature depending on the position of each microlens 31 in the microlens array 30 is the collection efficiency of the micro lenses 31 , which may be enhanced light collection efficiency of the entire microlens array 30.

そこで、本実施形態のマイクロレンズアレイ用金型の製造方法は実施形態1と略同じであって、転写工程において、転写用金型20として平面視における外周形状が同じで高さが異なる複数の錐体21が形成されたものを用いるようにしている。 Therefore, in this embodiment the manufacturing method of a microlens array mold is a substantially same as that in Embodiment 1, in the transfer step, heights different in shape of an outer periphery equal in plan view as the transfer mold 20 so that use one cone 21 is formed.

したがって、転写工程では、転写用金型20の形状が図17(a)に示すようにレジスト層11に転写されるので、曲面形成工程にて、図17(c)に示すようにレジスト層11がなくなり且つ隣り合う曲面12同士の境界が直線となるまでドライエッチングを行うようにすれば、平面視における外周形状が矩形状の曲面12が隙間なく並ぶこととなる。 Thus, in the transfer step, the shape of the transfer mold 20 is transferred to the resist layer 11 as shown in FIG. 17 (a), at the curved surface forming step, the resist as shown in FIG. 17 (c) layer 11 if so dry etching to the boundary of the curved surface 12 between the disappears and adjacent a straight line, so that the outer peripheral shape in plan view arranged without rectangular curved surface 12 is a gap. 図17の見方は図10と同じである。 View of Figure 17 is identical to FIG. 10.

しかして、本実施形態のマイクロレンズアレイ用金型の製造方法によれば、曲面形成工程においてドライエッチングを行ったときに基板10が露出するタイミングにずれが生じるから、曲率半径の異なる複数の曲面を有するマイクロレンズ用金型を製造することができるので、曲率半径の異なる複数のマイクロレンズ31を備えたマイクロレンズアレイ30を成形するためのマイクロレンズ用金型を容易に製造することが可能となる。 Thus, according to the method of manufacturing a microlens array mold according to the present embodiment, since the deviation occurs in the timing of the substrate 10 is exposed when the dry etching was performed in the curved surface forming step, a plurality of different radii of curvature a curved surface it is possible to manufacture the microlens mold having, it is possible to easily manufacture a microlens mold for molding the micro lens array 30 having a plurality of micro lenses 31 having different radii of curvature Become.

実施形態1のマイクロレンズアレイ用金型の製造方法を説明するための主要工程断面図である。 Is a main cross-sectional views for explaining a manufacturing method of a microlens array mold according to the first embodiment. 同上のマイクロレンズアレイ用金型の製造方法を説明するための主要工程断面図である。 Method of manufacturing a microlens array mold of the same is a main cross-sectional views for explaining. 同上のマイクロレンズアレイ用金型の製造方法を説明するための斜視図である。 Method of manufacturing a microlens array mold of the same is a perspective view for explaining the. 同上のマイクロレンズアレイ用金型の製造方法を説明するための斜視図である。 Method of manufacturing a microlens array mold of the same is a perspective view for explaining the. 同上のマイクロレンズアレイ用金型の製造方法を説明するための斜視図である。 Method of manufacturing a microlens array mold of the same is a perspective view for explaining the. 同上のマイクロレンズアレイ用金型の製造方法により製造されたマイクロレンズアレイの使用例の概略断面図である。 Manufactured by the manufacturing method of a microlens array mold of the same is a schematic cross-sectional view of a usage example of the microlens array. 同上のマイクロレンズアレイ用金型の製造方法を説明するための斜視図である。 Method of manufacturing a microlens array mold of the same is a perspective view for explaining the. 同上のマイクロレンズアレイ用金型の製造方法の説明図である。 It is an explanatory view of a microlens array mold manufacturing method of the same as above. 同上のマイクロレンズアレイ用金型の製造方法の説明図である。 It is an explanatory view of a microlens array mold manufacturing method of the same as above. 同上のマイクロレンズアレイ用金型の製造方法の説明図である。 It is an explanatory view of a microlens array mold manufacturing method of the same as above. 同上のマイクロレンズアレイ用金型の製造方法の説明図である。 It is an explanatory view of a microlens array mold manufacturing method of the same as above. 同上のマイクロレンズアレイ用金型の製造方法の説明図である。 It is an explanatory view of a microlens array mold manufacturing method of the same as above. 実施形態2のマイクロレンズアレイ用金型の製造方法で用いる転写用金型の概略斜視図である。 It is a schematic perspective view of a transfer mold used in the method of manufacturing a microlens array mold according to the second embodiment. 実施形態3のマイクロレンズアレイ用金型の製造方法で用いる転写用金型の概略斜視図である。 It is a schematic perspective view of a transfer mold used in the method of manufacturing a microlens array mold according to the third embodiment. 実施形態4のマイクロレンズアレイ用金型の製造方法の説明図である。 It is an explanatory view of a method of manufacturing a microlens array mold according to the fourth embodiment. 実施形態5のマイクロレンズアレイ用金型の製造方法により製造するマイクロレンズアレイの使用例の概略断面図である。 It is a schematic cross-sectional view of an example of using a micro lens array to be manufactured by the manufacturing method of a microlens array mold according to the fifth embodiment. 同上のマイクロレンズアレイ用金型の製造方法の説明図である。 It is an explanatory view of a microlens array mold manufacturing method of the same as above.

符号の説明 DESCRIPTION OF SYMBOLS

10 基板 11 レジスト層 12 曲面 16 マイクロレンズアレイ用金型 20 転写用金型 21 錐体 30 マイクロレンズアレイ 31 マイクロレンズ 31a レンズ面 10 substrate 11 resist layer 12 curved 16 microlens array mold 20 transfer mold 21 pyramidal 30 micro-lens array 31 micro-lenses 31a lens surface

Claims (6)

  1. 基板の一表面側にレジスト層を形成するレジスト層形成工程と、複数のマイクロレンズそれぞれに対応する部位に錐体が形成された転写用金型をレジスト層に押し付けて転写用金型の各錐体の形状をレジスト層に転写する転写工程と、転写工程の後で基板の前記一表面側から基板をドライエッチングすることにより基板の前記一表面側に各マイクロレンズそれぞれのレンズ面に対応する複数の曲面を形成する曲面形成工程と、曲面形成工程にて各曲面が形成された基板をマスタとして電鋳法によりマスタを反転させた型もしくはマスタを複製した複製型からなるマイクロレンズアレイ用金型を形成する電鋳工程とを備えることを特徴とするマイクロレンズアレイ用金型の製造方法。 Each cone of the resist layer forming step and the transfer mold is pressed against the transfer die cone is formed at a portion corresponding to a plurality of micro-lenses in the resist layer to form a resist layer on the one surface of the substrate a transfer step of transferring the body shape in the resist layer, a plurality corresponding to each microlens of the respective lens surfaces on the one surface of the substrate by dry-etching the substrate from the one surface of the substrate after the transferring step and the curved surface forming a curved surface, a microlens array mold comprising a substrate on which each surface is formed by a curved surface forming step of replicative form which replicates the mold or master by inverting the master by electroforming as a master a microlens array mold fabrication method characterized by comprising the electroforming step of forming a.
  2. 前記転写工程では、前記転写用金型として前記錐体が2次元的に配列され隣り合う前記錐体間に平坦部が形成されたものを用い、前記曲面形成工程では、前記レジスト層において各平坦部に対応する部分がなくなるまでドライエッチングを行うことを特徴とする請求項1記載のマイクロレンズアレイ用金型の製造方法。 Wherein in the transfer step, with which the flat portion between the cone the cones adjacent are two-dimensionally arranged as the transfer mold is formed, in the curved surface forming step, the flat in the resist layer a microlens array mold fabrication method of claim 1, wherein the dry etching is performed until the portion disappears corresponds to the part.
  3. 前記転写工程では、前記転写用金型として前記錐体が角錐状の形状であり前記錐体が隙間なく2次元的に配列されたものを用いることを特徴とする請求項1記載のマイクロレンズアレイ用金型の製造方法。 Wherein in the transfer step, a microlens array of claim 1, wherein the use of what the cone is a pyramid-like shape in which the cone as the transfer mold is two-dimensionally arranged without a gap mold method of manufacturing.
  4. 前記転写工程では、前記転写用金型として前記各錐体それぞれが棒状体の先端部に形成されたものを用いることを特徴とする請求項1または請求項2記載のマイクロレンズアレイ用金型の製造方法。 Wherein in the transfer step, each of the respective cone as the transfer mold is a microlens array mold according to claim 1 or claim 2, wherein the use of what is formed in the distal end portion of the rod-shaped body Production method.
  5. 前記転写工程では、前記転写用金型として単位格子が正三角形の仮想的な2次元三角格子の各格子点に対応する各部位に前記錐体が形成されたものを用いることを特徴とする請求項1または請求項2または請求項4記載のマイクロレンズアレイ用金型の製造方法。 Wherein in the transferring step, wherein, wherein the use of what the cone to the site where the unit lattice corresponding to the lattice points of the virtual 2-dimensional triangular lattice of equilateral triangles as the transfer mold is formed claim 1 or claim 2 or claim 4 microlens array mold manufacturing method according.
  6. 前記転写工程では、前記転写用金型として平面視における外周形状が同じで高さが異なる複数の錐体が形成されたものを用いることを特徴とする請求項1または請求項2または請求項4または請求項5記載のマイクロレンズアレイ用金型の製造方法。 In the transfer process, according to claim 1 or claim 2 or claim 4, characterized in that used as said peripheral shape height the same in plan view as the transfer mold is different cones are formed or claim 5 microlens array mold manufacturing method according.
JP2007309235A 2007-11-29 2007-11-29 Method of manufacturing a microlens array mold Expired - Fee Related JP5010445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007309235A JP5010445B2 (en) 2007-11-29 2007-11-29 Method of manufacturing a microlens array mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007309235A JP5010445B2 (en) 2007-11-29 2007-11-29 Method of manufacturing a microlens array mold

Publications (2)

Publication Number Publication Date
JP2009132010A true JP2009132010A (en) 2009-06-18
JP5010445B2 JP5010445B2 (en) 2012-08-29

Family

ID=40864419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007309235A Expired - Fee Related JP5010445B2 (en) 2007-11-29 2007-11-29 Method of manufacturing a microlens array mold

Country Status (1)

Country Link
JP (1) JP5010445B2 (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013522681A (en) * 2010-03-17 2013-06-13 ペリカン イメージング コーポレーションPelican Imaging Corporation Methods for making master imaging lens array
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9158124B2 (en) 2012-12-21 2015-10-13 Ricoh Company, Ltd. Image display device and vehicle incorporating the same
JP2015182465A (en) * 2014-03-21 2015-10-22 ナルックス株式会社 Mold, optical element, and production method of them
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9798140B2 (en) 2012-12-21 2017-10-24 Ricoh Company, Ltd. Lens array and image display device incorporating the same
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10031343B2 (en) 2014-02-05 2018-07-24 Ricoh Company, Ltd. Image display device and mobile object
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6315240B2 (en) 2014-02-03 2018-04-25 株式会社リコー Image display apparatus, the moving body and the lens array
EP3104212A3 (en) 2015-06-11 2017-02-22 Ricoh Company, Ltd. Microlens array, image display apparatus, and optical scanner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214623A (en) * 1983-05-20 1984-12-04 Nippon Kogaku Kk <Nikon> Mold for molding fine pattern of plastic
JPH10232306A (en) * 1997-02-20 1998-09-02 Canon Inc Manufacture of diffraction optical element
JPH11223708A (en) * 1998-02-09 1999-08-17 Nikon Corp Indentator and production of micro-optical element array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59214623A (en) * 1983-05-20 1984-12-04 Nippon Kogaku Kk <Nikon> Mold for molding fine pattern of plastic
JPH10232306A (en) * 1997-02-20 1998-09-02 Canon Inc Manufacture of diffraction optical element
JPH11223708A (en) * 1998-02-09 1999-08-17 Nikon Corp Indentator and production of micro-optical element array

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9041829B2 (en) 2008-05-20 2015-05-26 Pelican Imaging Corporation Capturing and processing of high dynamic range images using camera arrays
US9049390B2 (en) 2008-05-20 2015-06-02 Pelican Imaging Corporation Capturing and processing of images captured by arrays including polychromatic cameras
US9055213B2 (en) 2008-05-20 2015-06-09 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by monolithic camera arrays including at least one bayer camera
US9060121B2 (en) 2008-05-20 2015-06-16 Pelican Imaging Corporation Capturing and processing of images captured by camera arrays including cameras dedicated to sampling luma and cameras dedicated to sampling chroma
US9077893B2 (en) 2008-05-20 2015-07-07 Pelican Imaging Corporation Capturing and processing of images captured by non-grid camera arrays
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9124815B2 (en) 2008-05-20 2015-09-01 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by arrays of luma and chroma cameras
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9191580B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by camera arrays
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9188765B2 (en) 2008-05-20 2015-11-17 Pelican Imaging Corporation Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9235898B2 (en) 2008-05-20 2016-01-12 Pelican Imaging Corporation Systems and methods for generating depth maps using light focused on an image sensor by a lens element array
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US9264610B2 (en) 2009-11-20 2016-02-16 Pelican Imaging Corporation Capturing and processing of images including occlusions captured by heterogeneous camera arrays
JP2013522681A (en) * 2010-03-17 2013-06-13 ペリカン イメージング コーポレーションPelican Imaging Corporation Methods for making master imaging lens array
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9516222B2 (en) 2011-06-28 2016-12-06 Kip Peli P1 Lp Array cameras incorporating monolithic array camera modules with high MTF lens stacks for capture of images used in super-resolution processing
US9128228B2 (en) 2011-06-28 2015-09-08 Pelican Imaging Corporation Optical arrangements for use with an array camera
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9100635B2 (en) 2012-06-28 2015-08-04 Pelican Imaging Corporation Systems and methods for detecting defective camera arrays and optic arrays
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9798140B2 (en) 2012-12-21 2017-10-24 Ricoh Company, Ltd. Lens array and image display device incorporating the same
US9158124B2 (en) 2012-12-21 2015-10-13 Ricoh Company, Ltd. Image display device and vehicle incorporating the same
US9746669B2 (en) 2012-12-21 2017-08-29 Ricoh Company, Ltd. Image display device and vehicle incorporating the same
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9787911B2 (en) 2013-03-14 2017-10-10 Fotonation Cayman Limited Systems and methods for photometric normalization in array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9100586B2 (en) 2013-03-14 2015-08-04 Pelican Imaging Corporation Systems and methods for photometric normalization in array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9438888B2 (en) 2013-03-15 2016-09-06 Pelican Imaging Corporation Systems and methods for stereo imaging with camera arrays
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10031343B2 (en) 2014-02-05 2018-07-24 Ricoh Company, Ltd. Image display device and mobile object
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
JP2015182465A (en) * 2014-03-21 2015-10-22 ナルックス株式会社 Mold, optical element, and production method of them
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras

Also Published As

Publication number Publication date
JP5010445B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
EP2356675B1 (en) Three dimensional thin film solar cell and manufacturing method thereof
US20040156108A1 (en) Articles comprising nanoscale patterns with reduced edge roughness and methods of making same
US20140010988A1 (en) Dry adhesives and methods for making dry adhesives
JP5416753B2 (en) Molding an optical element using a tool having a overflow volume
US20070177116A1 (en) Method and apparatus for manufacturing microstructure and device manufactured thereby
US6432328B2 (en) Method for forming planar microlens and planar microlens obtained thereby
WO2009147858A1 (en) Antireflection film, optical element comprising antireflection film, stamper, process for producing stamper, and process for producing antireflection film
US20050180690A1 (en) Micro lens array and a method of manufacturing a replication mold for the same
JP4401383B2 (en) Manufacturing structured elements
CN1960855A (en) Compliant hard template for UV imprinting
JP4945460B2 (en) Forming method and anti-reflection structure of the antireflection structure
US8643953B2 (en) Manufacturing optical elements
JP5266059B2 (en) The method of manufacturing a diffraction grating
JP4161745B2 (en) Optical element and manufacturing method thereof
WO2007123819A2 (en) Method for making lens features
US20080199653A1 (en) Method of forming two-dimensional pattern by using nanospheres
Albero et al. Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques
CN100461003C (en) Hemi-spherical structure and method for fabricating the same
JP5916804B2 (en) Lamination of thin film
JP5024047B2 (en) Method of fabricating the micro-structure
WO2007107027A1 (en) Molding of an array of optical elements
AU2004314440B2 (en) Method for making micro-lens array
JP4550089B2 (en) Method of manufacturing anti-reflection structure and a method for manufacturing the same, and an optical member
CN102844883B (en) Template sided semiconductor substrate for fabricating photovoltaic cells and microelectronic devices reusable
CN101573659A (en) Method for expelling gas positioned between a substrate and a mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100816

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120601

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees