JP2009121835A - Multi-channel pulse test method - Google Patents

Multi-channel pulse test method Download PDF

Info

Publication number
JP2009121835A
JP2009121835A JP2007293099A JP2007293099A JP2009121835A JP 2009121835 A JP2009121835 A JP 2009121835A JP 2007293099 A JP2007293099 A JP 2007293099A JP 2007293099 A JP2007293099 A JP 2007293099A JP 2009121835 A JP2009121835 A JP 2009121835A
Authority
JP
Japan
Prior art keywords
pulse
dut
test
devices
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007293099A
Other languages
Japanese (ja)
Inventor
Zhao Yuegang
ザオー アージング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keithley Instruments LLC
Original Assignee
Keithley Instruments LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keithley Instruments LLC filed Critical Keithley Instruments LLC
Priority to JP2007293099A priority Critical patent/JP2009121835A/en
Publication of JP2009121835A publication Critical patent/JP2009121835A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evade the problem that a pulsed instrument is required for each connection of each DUT (device under test) so as to sufficiently shorten pulse measurement to evade a charge trapping effect. <P>SOLUTION: A large number of DUT 20 are tested by using a large number of DC instruments 12 and a single pulsed instrument 14. To these DUT 20, DC signals are applied with the large number of DC instruments 12 simultaneously, and subsequently pulse measurements of the DUT 20 are performed one by one through the use of the pulsed instrument 14. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体デバイスの試験に関し、特に、パルス試験の使用に関するものである。   The present invention relates to semiconductor device testing, and more particularly to the use of pulse testing.

半導体デバイス、例えば、電界効果トランジスタの試験は、常に増大する課題を有している。形状が小さくなり、複雑さが増し、出力密度が増加し、速度が増加し、また、新しい素材と製造工程が導入されている。 Testing of semiconductor devices, such as field effect transistors, has an ever increasing challenge. Shapes are becoming smaller, complexity is increased, power density is increased, speed is increased, and new materials and manufacturing processes are introduced.

古い試験方法は、多くの場合、これらの展開に照らして不十分である。これらの進歩を満足させ、監視するのに必要な技巧を提供するためには、新しい方法論が必要である。   Old test methods are often inadequate in light of these developments. New methodologies are needed to provide the necessary skills to satisfy and monitor these advances.

本発明は、多数の直流機器とパルス機器を使用する多数の被試験デバイス(DUT)を試験する方法であって、個々のパルス機器でDUTに直流信号を同時に印加する工程と、その後パルス機器でDUTのパルス測定を順次に行う工程とを含んでいる。   The present invention is a method for testing a large number of devices under test (DUTs) using a large number of DC devices and pulse devices, the step of simultaneously applying a DC signal to the DUT with each pulse device, and then the pulse device. And sequentially performing DUT pulse measurement.

図1を参照すると、試験装置10は、直流(DC)機器(複数)12、パルス機器(pulsed instrument)(単数)14及びスイッチング・マトリックス(単数)16を含んでいる。動作時には、試験装置10は、試験を行なうために、被試験デバイス(devices under test)(DUT)20に接続される。 Referring to FIG. 1, a test apparatus 10 includes direct current (DC) equipment 12, a pulsed instrument (single) 14 and a switching matrix 16. In operation, the test apparatus 10 is connected to a devices under test (DUT) 20 for testing.

直流機器12は、例えば、精密電圧ソース、精密電流ソース又はソース測定ユニット(SMU)(ソース測定器)の如きその両方の機能を有する機器とすることができる。SMUは、電圧又は電流を非常に正確に発生し、その結果発生する電流又は電圧をそれぞれ非常に正確に測定することができる。   The DC device 12 may be a device having both functions, such as, for example, a precision voltage source, a precision current source, or a source measurement unit (SMU) (source measurement device). The SMU can generate a voltage or current very accurately and measure the resulting current or voltage, respectively, very accurately.

パルス機器14は、例えば、測定機器24と組み合わされるパルス発生器(PGU)22とすることができる。典型的には、PGUは、所望の振幅、長さ、形及び比率のパルスを発生する。この測定機器24は、例えば、DUTに印加された信号の効果を測定したり、処理したり、記録したりするのに好適なディジタル・オシロスコープ又は他のデバイスとすることができる。   The pulse device 14 may be, for example, a pulse generator (PGU) 22 that is combined with the measurement device 24. Typically, the PGU generates pulses of the desired amplitude, length, shape and ratio. The measurement instrument 24 can be, for example, a digital oscilloscope or other device suitable for measuring, processing, and recording the effect of a signal applied to the DUT.

スイッチング・マトリックス16は、それぞれのDUT20に直流機器12を接続したり切り離したりするように構成されている。動作時には、これらの接続は同時になされるので、DUT接続部に並列直流機器列を付与する。   The switching matrix 16 is configured to connect or disconnect the DC device 12 to each DUT 20. At the time of operation, these connections are made at the same time, so a parallel DC device row is added to the DUT connection part.

スイッチング・マトリックス16は、更に、各DUT20にパルス機器14を連続して接続するか切り離すように構成されている。   The switching matrix 16 is further configured to continuously connect or disconnect the pulse device 14 to each DUT 20.

直流信号とパルス信号との間の特性の差によって、スイッチング・マトリックス16を直流スイッチ部分と交流スイッチ部分とに分けることが有利である。   It is advantageous to divide the switching matrix 16 into a DC switch portion and an AC switch portion due to the difference in characteristics between the DC signal and the pulse signal.

一例を揚げると、この機器は、しばしば、このような機能を付与する実質回路群を包含しているので、装置10の全体動作は、装置10の機器内に含まれるプログラムによって制御されるのがよい。それに代えて、例えば、装置の動作を制御するために、装置10の各構成要素に図示されない別個のコンピュータ・システム又は他のコントローラーを装置10に接続してもよい。   As an example, since this device often includes a group of substantial circuits that provide such a function, the overall operation of the device 10 is controlled by a program included in the device 10 device. Good. Alternatively, a separate computer system or other controller not shown in each component of the device 10 may be connected to the device 10, for example, to control the operation of the device.

図2を参照して述べると、各DUT20は、それぞれ1つ以上のバイアス・ティー26を介して試験装置10に配線することができる。バイアス・ティー26には直流信号用の直流ポートDC、交流信号(例えば、パルス信号)用の交流ポートAC、及び交流信号と直流信号の両方の信号用のポートAC+DCを有する。簡単なバイアス・ティーは、例えば、交流ポートを経て直流信号が出るのを阻止するキャパシタと直流ポートを経て交流信号が出るのを阻止するインダクタとを含んでいる。交流信号と直流信号とは、共に、交流―直流ポートを通過する。   Referring to FIG. 2, each DUT 20 can be wired to the test apparatus 10 via one or more bias tees 26, respectively. The bias tee 26 has a DC port DC for a DC signal, an AC port AC for an AC signal (for example, a pulse signal), and a port AC + DC for both an AC signal and a DC signal. A simple bias tee includes, for example, a capacitor that blocks the output of a DC signal through an AC port and an inductor that blocks the output of an AC signal through the DC port. Both the AC signal and the DC signal pass through the AC-DC port.

動作時に、直流機器12は、それぞれのDUT 20に直流信号を同時に印加する。次いで、パルス機器14は、DUTのパルス測定を順次連続して行なう。   In operation, the DC device 12 applies a DC signal simultaneously to each DUT 20. Next, the pulse device 14 sequentially and continuously performs DUT pulse measurement.

この方法の使用の2つの例としては、高誘電率(高−k)ゲート誘電体デバイスの負のバイアス温度不安定性(NBTI)と信頼性の試験がある。   Two examples of the use of this method are testing negative bias temperature instability (NBTI) and reliability of high dielectric constant (high-k) gate dielectric devices.

NBTI試験においては、直流信号がDUTに印加されてDUTにストレスを付与する。典型的に、これらの直流信号は、デバイスの正常な動作範囲外であり、予期された寿命の如きデバイスの特性や長期間にわたって生ずる他の変化の評価を迅速に得るのに用いられる。   In the NBTI test, a DC signal is applied to the DUT to apply stress to the DUT. Typically, these DC signals are outside the normal operating range of the device and are used to quickly obtain an assessment of device characteristics such as expected lifetime and other changes that occur over time.

デバイスのストレス効果の測定が早くなされない場合には、デバイスがこの「ストレス」から回復ないし「弛緩(緩和)」するのは、デバイスの特性であることがよくある。このストレスの付与は、全く長い間続くことが必要であるが、1ミリ秒は長すぎてストレス除去後の測定を行うことができない。   If a device's stress effect is not measured quickly, it is often a property of the device that the device recovers or “relaxes” from this “stress”. This application of stress needs to continue for a very long time, but 1 millisecond is too long to perform measurement after stress removal.

DUTに平行にストレスを付与することによって、各デバイスに順次ストレスを付与しなければならない望ましくない遅れが回避される。各デバイスにパルス測定を順次使用すると、パルス測定が弛緩を回避するのに充分に短くなるように、各DUT接続部毎にパルス機器を有しなければならないことが回避される。試験された最後のDUTに先立って幾つかのDUTがあったとしても、試験時間は、例えば、それぞれ100ナノ秒のオーダーであるので、弛緩が問題になる前に、多数のDUTを試験することができる。   By applying stress in parallel to the DUT, undesirable delays that must be sequentially applied to each device are avoided. The sequential use of pulse measurements for each device avoids having to have a pulse instrument for each DUT connection so that the pulse measurements are sufficiently short to avoid relaxation. Even if there are several DUTs prior to the last DUT tested, the test time is on the order of, for example, 100 nanoseconds, so test multiple DUTs before relaxation becomes a problem. Can do.

動作時には、直流機器12は、DUT20にストレスを付与するために、それぞれのDUT20に同時に直流信号を印加する。その後、パルス機器14は、DUTのパルス測定を順次連続して行なう。このようにすると、測定に最小の弛緩(緩和)効果を付与する。   In operation, the DC device 12 applies a DC signal simultaneously to each DUT 20 in order to apply stress to the DUT 20. Thereafter, the pulse device 14 sequentially and continuously performs DUT pulse measurement. This gives the measurement a minimal relaxation effect.

形状が小さくなるにつれて、高−κゲート誘電体デバイスは、一層ポピュラーになってきている。高−κゲート誘電体の例としては、酸化ハフニウム、酸化ジルコニウム及びアルミナがある。これらのデバイスに関する1つの問題は、これらの誘電体の中での電荷トラッピングである。   As geometries get smaller, high-κ gate dielectric devices are becoming more popular. Examples of high-κ gate dielectrics are hafnium oxide, zirconium oxide and alumina. One problem with these devices is charge trapping within these dielectrics.

誘電体の中の電荷は、デバイスの性能及び信頼性に影響を及ぼす。しかし、測定自体は、トラッピングされた電荷、従って測定の質に影響することがある。測定を速くすることができるなら、この影響が回避される。   The charge in the dielectric affects device performance and reliability. However, the measurement itself can affect the trapped charge and thus the quality of the measurement. This effect is avoided if the measurement can be made faster.

各デバイスにパルス測定を順次連続して使用すると、パルス測定は、電荷トラッピング効果を避けるのに充分に短くすることができるように、各DUT接続毎にパルス機器を有しなければならないことが回避される。試験された最後のDUTに先立つ幾つかのDUTがあったとしても、試験時間は、僅かに約100ナノ秒のオーダーに過ぎないので、電荷トラッピング効果が問題になる前に、多くのDUTが試験されるのを可能にする。   Using sequential pulse measurements on each device avoids having to have a pulse instrument for each DUT connection so that the pulse measurements can be made short enough to avoid charge trapping effects. Is done. Even if there were several DUTs prior to the last DUT tested, the test time was only on the order of about 100 nanoseconds, so many DUTs were tested before the charge trapping effect became a problem. Make it possible.

動作時には、直流機器12は、それぞれのDUT20に直流信号を同時に印加する。その後、パルス機器14がDUTのパルス測定を順次行なう。このため、最小の電荷トラッピング効果を付与することになる。例えば、測定は、DUT用のパルス1−V測定となる。   In operation, the DC device 12 applies DC signals simultaneously to the respective DUTs 20. Thereafter, the pulse device 14 sequentially performs DUT pulse measurement. For this reason, the minimum charge trapping effect is given. For example, the measurement is a pulse 1-V measurement for DUT.

本発明の開示は、例示的であり、この開示に含まれる教示の明瞭な範囲から逸脱することなく、細部を加えたり、修正したり、削除したりすることによって種々の変更を行うことができる。従って、本発明は、以下の特許請求の範囲の記載が必要的に限定していることを除いて、この開示の特定の細部に限定されるものではない。:   The present disclosure is illustrative and various changes can be made by adding, modifying, or deleting details without departing from the clear scope of the teachings contained in this disclosure. . Accordingly, the invention is not limited to the specific details of this disclosure except as required by the following claims. :

発明を実施するのに好適な装置の一例のブロック図である。1 is a block diagram of an example of an apparatus suitable for carrying out the invention. DUTの接続例のブロック図である。It is a block diagram of the example of a connection of DUT.

符号の説明Explanation of symbols

10 試験装置
12 直流機器
14 パルス機器
16 スイッチング・マトリックス
20 被試験デバイス(DUT)
22 パルス発生器(PGU)
24 測定機器
26 バイアスティー
10 Test Equipment 12 DC Equipment 14 Pulse Equipment 16 Switching Matrix 20 Device Under Test (DUT)
22 Pulse generator (PGU)
24 Measuring equipment 26 Bias tee

Claims (5)

多数の直流機器とパルス機器とを使用する多数のDUTを試験する方法であって、個々の直流機器で前記DUTに同時に直流信号を印加し、前記パルス機器で前記DUTのパルス測定を順次行なう多チャンネル・パルス試験方法。    A method for testing a large number of DUTs using a large number of DC devices and pulse devices, wherein a DC signal is simultaneously applied to the DUT by each DC device, and pulse measurements of the DUT are sequentially performed by the pulse device. Channel pulse test method. 多数の直流機器とパルス機器とを使用する多数のDUTを試験する方法であって、個々の直流機器で前記DUTに同時に直流信号を印加して前記DUTにストレスを付与し、前記パルス機器で前記DUTのパルス測定を順次行なって、前記パルス測定の弛緩効果が最小化するようにした多チャンネル・パルス試験方法。    A method for testing a large number of DUTs using a large number of DC devices and pulse devices, wherein a DC signal is simultaneously applied to the DUT by each DC device to apply stress to the DUT, and the pulse device is used to A multi-channel pulse testing method in which DUT pulse measurements are sequentially performed to minimize the relaxation effect of the pulse measurements. 請求項2に記載の方法であって、前記試験はバイアス温度不安定の試験である多チャンネル・パルス試験方法。   3. The method of claim 2, wherein the test is a bias temperature instability test. 多数の直流機器とパルス機器とを使用して高−kゲート誘電体を有する多数のDUTを試験する方法であって、個々の直流機器で前記DUTに同時に直流信号を印加し、前記パルス機器で前記DUTのパルス測定を順次行って、前記パルス試験の電荷トラッピング効果が最小化されるようにする多チャンネル・パルス試験方法。   A method for testing a number of DUTs having a high-k gate dielectric using a number of DC devices and pulse devices, wherein a DC signal is simultaneously applied to the DUT with each DC device, A multi-channel pulse test method in which the pulse measurement of the DUT is sequentially performed to minimize the charge trapping effect of the pulse test. 請求項4に記載の方法であって、前記試験はパルスI−V測定の試験である多チャンネル・パルス試験方法。   5. The method of claim 4, wherein the test is a pulse IV measurement test.
JP2007293099A 2007-11-12 2007-11-12 Multi-channel pulse test method Ceased JP2009121835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007293099A JP2009121835A (en) 2007-11-12 2007-11-12 Multi-channel pulse test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007293099A JP2009121835A (en) 2007-11-12 2007-11-12 Multi-channel pulse test method

Publications (1)

Publication Number Publication Date
JP2009121835A true JP2009121835A (en) 2009-06-04

Family

ID=40814154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007293099A Ceased JP2009121835A (en) 2007-11-12 2007-11-12 Multi-channel pulse test method

Country Status (1)

Country Link
JP (1) JP2009121835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267271A (en) * 2014-08-27 2015-01-07 华北电力大学 Circuit and method for quickly obtaining dynamic parameters of power electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622278A (en) * 1979-07-27 1981-03-02 Fujitsu Ltd Decoder selection system
JPS63258000A (en) * 1987-04-15 1988-10-25 Mitsubishi Electric Corp Semiconductor memory device
JPH0335491A (en) * 1989-06-30 1991-02-15 Toshiba Corp Semiconductor memory device
JPH04225182A (en) * 1990-12-26 1992-08-14 Toshiba Corp Semiconductor memory
JPH05264651A (en) * 1992-03-23 1993-10-12 Tekunoroogu:Kk Evaluating device
JP2003075469A (en) * 2001-09-05 2003-03-12 Mitsubishi Electric Corp Evaluation method in wafer level for probe card and semiconductor element
JP2006258686A (en) * 2005-03-18 2006-09-28 Agilent Technol Inc Reliability measuring device and measuring method
JP2007198836A (en) * 2006-01-25 2007-08-09 Agilent Technol Inc Method and instrument for measuring characteristic of fet

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622278A (en) * 1979-07-27 1981-03-02 Fujitsu Ltd Decoder selection system
JPS63258000A (en) * 1987-04-15 1988-10-25 Mitsubishi Electric Corp Semiconductor memory device
JPH0335491A (en) * 1989-06-30 1991-02-15 Toshiba Corp Semiconductor memory device
JPH04225182A (en) * 1990-12-26 1992-08-14 Toshiba Corp Semiconductor memory
JPH05264651A (en) * 1992-03-23 1993-10-12 Tekunoroogu:Kk Evaluating device
JP2003075469A (en) * 2001-09-05 2003-03-12 Mitsubishi Electric Corp Evaluation method in wafer level for probe card and semiconductor element
JP2006258686A (en) * 2005-03-18 2006-09-28 Agilent Technol Inc Reliability measuring device and measuring method
JP2007198836A (en) * 2006-01-25 2007-08-09 Agilent Technol Inc Method and instrument for measuring characteristic of fet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267271A (en) * 2014-08-27 2015-01-07 华北电力大学 Circuit and method for quickly obtaining dynamic parameters of power electronic device

Similar Documents

Publication Publication Date Title
US8120356B2 (en) Measurement methodology and array structure for statistical stress and test of reliabilty structures
US20060208754A1 (en) Method and apparatus for a reliability testing
KR20020038588A (en) Method and apparatus for defect analysis of semiconductor integrated circuit
US7868640B2 (en) Array-based early threshold voltage recovery characterization measurement
JP5254794B2 (en) Strobe technique for testing the timing of digital signals
JPH0862308A (en) Timing calibration method for measuring signal of semiconductor testing device and its circuit
WO2018236080A1 (en) Processor-based measuring method for testing device under test, and measuring device using same
US7724017B2 (en) Multi-channel pulse tester
JP2008203077A (en) Circuit inspection device and method
KR101348425B1 (en) Device for timing calibration of automatic test equipment
JP5215148B2 (en) Insulation inspection device and insulation inspection method
US20090093987A1 (en) Method for accurate measuring stray capacitance of automatic test equipment and system thereof
US8615373B2 (en) Voltage driver for a voltage-driven intelligent characterization bench for semiconductor
JP2009121835A (en) Multi-channel pulse test method
JP2007327791A (en) Fet characteristic measuring instrument
JP2007309706A (en) Method, device and program for evaluating electrostatic discharge damage in electronic device
US8400179B1 (en) Method for load-line correction of pulsed measurements
US9772371B2 (en) Voltage-driven intelligent characterization bench for semiconductor
JP2010511866A (en) Multipoint, multiparameter data acquisition for multi-layer ceramic capacitor testing
JP2010156553A (en) Method for controlling testing device
KR20070077553A (en) Multi test embodiment system of wafer tester
JPH0689932A (en) Burn-in device for power mosfet
RU2324194C1 (en) Method of integrated circuit division upon reliability criterion
US20120179943A1 (en) Method for information transfer in a voltage-driven intelligent characterization bench for semiconductor
JP2002299460A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100604

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100609

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100705

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100708

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100803

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110805

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110810

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110905

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111007

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121106

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20131224