JP2009115067A - Two-stage compression rotary compressor - Google Patents

Two-stage compression rotary compressor Download PDF

Info

Publication number
JP2009115067A
JP2009115067A JP2007292498A JP2007292498A JP2009115067A JP 2009115067 A JP2009115067 A JP 2009115067A JP 2007292498 A JP2007292498 A JP 2007292498A JP 2007292498 A JP2007292498 A JP 2007292498A JP 2009115067 A JP2009115067 A JP 2009115067A
Authority
JP
Japan
Prior art keywords
stage
low
vane
compression
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007292498A
Other languages
Japanese (ja)
Inventor
Naoya Morozumi
尚哉 両角
Takeshi Ueda
健史 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2007292498A priority Critical patent/JP2009115067A/en
Publication of JP2009115067A publication Critical patent/JP2009115067A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a low-cost two-stage compression rotary compressor improving mechanical efficiency by suppressing sliding loss of a low-stage vane and a low-stage piston of a low-stage compression part, reducing wear amount of the low-stage vane and low-stage piston and having simple structure. <P>SOLUTION: The two-stage compression rotary compressor is provided with the low-stage compression part, a high-stage compression part laminated on the low-stage compression part via an intermediate partition wall, a sealed compressor casing storing the low-stage compression part and high-stage compression part, and back pressure introduction passages for communicating inside of the compressor casing with back parts of a low-stage vane groove and high-stage vane groove. The thickness of the low-stage vane and low-stage vane groove is set thinner than that of the high-stage vane and high-stage vane groove. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気調和機の冷凍サイクルに使用される2段圧縮ロータリー圧縮機(以下、単に「ロータリー圧縮機」ともいう。)に関するものである。   The present invention relates to a two-stage compression rotary compressor (hereinafter also simply referred to as “rotary compressor”) used in a refrigeration cycle of an air conditioner.

2段圧縮ロータリー圧縮機は、密閉容器である円筒状の圧縮機筐体の内部に、低段圧縮部及び高段圧縮部と、低段、高段圧縮部の低段、高段ピストンを低段、高段偏芯部により駆動するモータとを備え、圧縮機筐体の外側部にアキュムレータを備えている。   The two-stage compression rotary compressor has a low-stage compression section and a high-stage compression section, and a low-stage and a high-stage compression section with a low-stage and a high-stage piston inside a cylindrical compressor housing that is a sealed container. A motor driven by a stage and a high stage eccentric part, and an accumulator on the outer side of the compressor housing.

従来、密閉圧縮機筐体内にモータを上部に収納し、モータに駆動され2つの偏芯部を有する回転軸と、モータの下部に回転軸を支持する上軸受部と、中間仕切板を介して低段圧縮部と高段圧縮部とを積層状に重ねた圧縮部と、該圧縮部の下部に回転軸を支持する下軸受部と、を備えた2段圧縮ロータリー圧縮機において、前記低段圧縮部及び前記高段圧縮部のそれぞれは、円筒形状のシリンダと、前記シリンダの内壁に沿って偏心して回転する円筒形のピストンと、前記ピストンの外周と前記シリンダの内壁でできる空間を仕切る平板状の同一厚さのベーンを備え、前記低段圧縮部の前記ベーンから前記シリンダの内壁と前記ピストンの外周とのクリアランスが最小となる位置までの角度θ1を150°から210°としたものがある(例えば、特許文献1参照)。   Conventionally, a motor is housed in an upper part of a hermetic compressor housing, and a rotary shaft driven by the motor and having two eccentric parts, an upper bearing part supporting the rotary shaft at the lower part of the motor, and an intermediate partition plate In the two-stage compression rotary compressor, comprising: a compression section in which a low-stage compression section and a high-stage compression section are stacked in layers; and a lower bearing section that supports a rotating shaft at a lower portion of the compression section. Each of the compression section and the high-stage compression section includes a cylindrical cylinder, a cylindrical piston that rotates eccentrically along the inner wall of the cylinder, and a flat plate that partitions a space formed by the outer periphery of the piston and the inner wall of the cylinder. In which the angle θ1 from the vane of the low-stage compression portion to the position where the clearance between the inner wall of the cylinder and the outer periphery of the piston is minimized is set to 150 ° to 210 °. Is (e.g. See Patent Document 1).

特開2005−127167号公報JP 2005-127167 A

しかしながら、上記従来の技術によれば、圧縮機筐体内部高圧型の圧縮機の場合、高段側圧縮部において、ベーンの先端がピストンの外周部に押付けられる力F(H)、及び、低段側圧縮部においてベーンの先端がピストンの外周部に押付けられる力F(L)は、補助的にベーンを押し付けるベーンスプリングの力を無視すると、図7の2段圧縮ロータリ圧縮機の圧縮室容積と圧縮室圧力の関係、及び、図8の低段側圧縮部及び高段側圧縮部のベーンにかかる圧力、に示すように、圧縮機筐体内圧力(密閉容器内圧力)すなわち高段側吐出圧力をPd(H)、高段側吸入室の圧力をPs(H)、高段側圧縮室の圧力をPc(H)、また、低段側吸入室の圧力をPs(L)、低段側圧縮室の圧力をPc(L)、ベーンの高さをh、ベーンの厚さをt、ベーンの先端がピストン外周と接するシールポイントから吸入室側の厚さをts、シールポイントから圧縮室側の厚さをtcとすれば、
F(H)=(Pd(H)×t−Ps(H)×ts−Pc(H)×tc)×h
F(L)=(Pd(H)×t−Ps(L)×ts−Pc(L)×tc)×h
となる。
However, according to the above conventional technique, in the case of a high-pressure compressor inside the compressor housing, in the high stage side compression portion, the force F (H) that the tip of the vane is pressed against the outer peripheral portion of the piston, and low The force F (L) by which the tip of the vane is pressed against the outer peripheral portion of the piston in the stage side compression portion is neglected by the force of the vane spring that presses the vane in an auxiliary manner, and the compression chamber volume of the two-stage compression rotary compressor in FIG. And the compression chamber pressure and the pressure applied to the vanes of the low-stage compression section and the high-stage compression section in FIG. The pressure is Pd (H), the high-stage suction chamber pressure is Ps (H), the high-stage compression chamber pressure is Pc (H), the low-stage suction chamber pressure is Ps (L), and the low-stage suction chamber pressure is Ps (H). Side compression chamber pressure is Pc (L), vane height is h, vane thickness t, the thickness of the suction chamber side from the sealing point of the tip of the vane is in contact with the piston outer peripheral ts, if the seal point to the thickness of the compression chamber side and tc,
F (H) = (Pd (H) × t−Ps (H) × ts−Pc (H) × tc) × h
F (L) = (Pd (H) × t−Ps (L) × ts−Pc (L) × tc) × h
It becomes.

ここで、Ps(H)>Ps(L)、Pc(H)>Pc(L)であるから、F(H)<F(L)、すなわち、低段圧縮部では、ベーンの先端が必要以上の力でピストンの外周部に押付けられて摺動損失が大きくなり機械効率が低下する。さらに、ベーンの先端とピストンの外周部の摩耗量が大きくなり、圧縮機の信頼性が低下する、という問題があった。   Here, since Ps (H)> Ps (L) and Pc (H)> Pc (L), F (H) <F (L), that is, in the low-stage compression portion, the tip of the vane is more than necessary. This force pushes against the outer periphery of the piston, increasing the sliding loss and lowering the mechanical efficiency. Furthermore, there is a problem that the wear amount of the tip of the vane and the outer peripheral portion of the piston is increased, and the reliability of the compressor is lowered.

また、上記の問題に対処するものとして、圧縮機筐体内を、低段圧縮部の吐出ガスで満たす、いわゆる圧縮機筐体内部中間圧型の圧縮機があるが、この場合、高段ベーンの背圧室を圧縮機筐体内と圧力的に区画する必要があり、構造が複雑となりコストが高くなる、という問題があった。   Further, as a countermeasure to the above problem, there is a so-called compressor casing internal intermediate pressure type compressor in which the inside of the compressor casing is filled with the discharge gas of the low stage compression section. In this case, the back of the high stage vane is used. There is a problem that the pressure chamber needs to be partitioned from the inside of the compressor housing in a pressure manner, and the structure is complicated and the cost is increased.

本発明は、上記に鑑みてなされたものであって、低段圧縮部の低段ベーンと低段ピストンとの摺動損失を抑えて機械効率を向上させるとともに両者の摩耗量を低減させ、かつ、構造が簡素で低コストの2段圧縮ロータリー圧縮機を得ることを目的とする。   The present invention has been made in view of the above, and suppresses the sliding loss between the low-stage vane and the low-stage piston of the low-stage compression portion, improves the mechanical efficiency, reduces the wear amount of both, and An object is to obtain a two-stage compression rotary compressor having a simple structure and low cost.

上述した課題を解決し、目的を達成するために、本発明は、円筒状の低段シリンダと、モータにより回転駆動される回転軸の低段偏芯部に保持され前記低段シリンダの低段シリンダ内壁に沿って該低段シリンダ内を公転し前記低段シリンダ内壁との間に低段作動室を形成する低段ピストンと、前記低段シリンダの低段ベーン溝内から前記低段作動室内に突出して前記低段ピストンに当接し該低段作動室を低段吸入室と低段圧縮室とに区画する低段ベーンと、を備えて成る低段圧縮部と、中間仕切板を介して前記低段圧縮部に積層され、円筒状の高段シリンダと、前記モータにより回転駆動される回転軸の高段偏芯部に保持され前記高段シリンダの高段シリンダ内壁に沿って該高段シリンダ内を公転し前記高段シリンダ内壁との間に高段作動室を形成する高段ピストンと、前記高段シリンダの高段ベーン溝内から前記高段作動室内に突出して前記高段ピストンに当接し該高段作動室を高段吸入室と高段圧縮室とに区画する高段ベーンと、を備えて成る高段圧縮部と、前記低段圧縮部及び高段圧縮部を収容する密閉された圧縮機筐体と、前記低段吸入室に連通する低段吸入孔を冷凍サイクルの低圧側に連通させる低圧連絡管と、前記低段圧縮室に連通する低段吐出孔と前記高段吸入室に連通する高段吸入孔とを連通させる中間連絡管と、前記高段圧縮室に連通する高段吐出孔を、前記圧縮機筐体内を介して前記冷凍サイクルの高圧側に連通させる吐出管と、前記圧縮機筐体内と前記低段ベーン溝及び高段ベーン溝の奥部とを連通する背圧導入路と、を備える2段圧縮ロータリー圧縮機において、前記低段ベーン及び低段ベーン溝の厚さを、前記高段ベーン及び高段ベーン溝の厚さより薄くしたことを特徴とする。   In order to solve the above-mentioned problems and achieve the object, the present invention provides a low-stage cylinder that is held by a cylindrical low-stage cylinder and a low-stage eccentric part of a rotary shaft that is driven to rotate by a motor. A low-stage piston that revolves in the low-stage cylinder along the cylinder inner wall and forms a low-stage working chamber with the inner wall of the low-stage cylinder; and the low-stage working chamber from within the low-stage vane groove of the low-stage cylinder A low-stage compression section that includes a low-stage vane that protrudes in contact with the low-stage piston and divides the low-stage working chamber into a low-stage suction chamber and a low-stage compression chamber, and an intermediate partition plate The high stage is laminated along the inner wall of the high stage cylinder, which is stacked on the low stage compression part and is held by a cylindrical high stage cylinder and a high stage eccentric part of a rotary shaft that is driven to rotate by the motor. A high-stage working chamber that revolves inside the cylinder and is between the inner wall of the high-stage cylinder A high-stage piston to be formed, protrudes from the high-stage vane groove of the high-stage cylinder into the high-stage working chamber, contacts the high-stage piston, and the high-stage working chamber becomes a high-stage suction chamber and a high-stage compression chamber. A high-stage compression section comprising a partitioning high-stage vane, a hermetically sealed compressor housing that houses the low-stage compression section and the high-stage compression section, and a low-stage suction communicating with the low-stage suction chamber A low pressure communication pipe that communicates a hole to the low pressure side of the refrigeration cycle, an intermediate communication pipe that communicates a low stage discharge hole that communicates with the low stage compression chamber and a high stage suction hole that communicates with the high stage suction chamber, A discharge pipe for communicating a high-stage discharge hole communicating with the high-stage compression chamber to a high-pressure side of the refrigeration cycle through the compressor housing, the compressor housing, the low-stage vane groove, and the high-stage vane groove A two-stage compression rotary compressor having a back pressure introduction path communicating with the inner part of There are, the thickness of the low-stage vanes and low-stage vane groove, characterized by being thinner than the thickness of the high-stage vanes and the high-stage vane groove.

本発明にかかる2段圧縮ロータリー圧縮機は、低段圧縮部の低段ベーンの厚さを、高段圧縮部の高段ベーンの厚さよりも薄くすることにより、低段ベーンの先端が低段ピストンの外周部に押付けられる力が必要以上に大きくなることを防止することができ、摺動損失が小さく機械効率が高く、また、構造が簡素で低コストである、という効果を奏する。   In the two-stage compression rotary compressor according to the present invention, the thickness of the low-stage vane of the low-stage compression section is made thinner than the thickness of the high-stage vane of the high-stage compression section, so that the tip of the low-stage vane has a low stage. It is possible to prevent the force pressed against the outer peripheral portion of the piston from becoming larger than necessary, and there are effects that the sliding loss is small, the mechanical efficiency is high, the structure is simple, and the cost is low.

また、低段圧縮部の低段吸入孔を大きくして吸入圧力損失を低減しようとする場合、低段シリンダの低段吸入孔と低段ベーン溝が干渉して低段吸入孔の大きさが制約されるが、低段ベーンを薄くすることにより、低段ベーン溝の幅(厚さ)を小さくすることができ、低段吸入孔をその分大きくすることができる。   Also, when trying to reduce the suction pressure loss by enlarging the low stage suction hole of the low stage compression section, the low stage suction hole of the low stage cylinder interferes with the low stage vane groove, and the size of the low stage suction hole is reduced. Although it is restricted, by reducing the thickness of the low stage vane, the width (thickness) of the low stage vane groove can be reduced, and the low stage suction hole can be increased accordingly.

以下に、本発明にかかる2段圧縮ロータリー圧縮機の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Below, the Example of the two-stage compression rotary compressor concerning this invention is described in detail based on drawing. Note that the present invention is not limited to the embodiments.

図1は、本発明にかかるロータリー圧縮機の実施例を示す縦断面図であり、図2は、低段圧縮部の横断面図であり、図3は、高段圧縮部の横断面図であり、図4は、図1のA−A線に沿う横断面図であり、図5は、低段端板の横断面図であり、図6は、図5のB−B線に沿う断面図である。   FIG. 1 is a longitudinal sectional view showing an embodiment of a rotary compressor according to the present invention, FIG. 2 is a transverse sectional view of a low stage compression section, and FIG. 3 is a transverse sectional view of a high stage compression section. 4 is a cross-sectional view taken along the line AA in FIG. 1, FIG. 5 is a cross-sectional view of the low-stage end plate, and FIG. 6 is a cross-sectional view taken along the line BB in FIG. FIG.

図1に示すように、実施例のロータリー圧縮機1は、密閉された円筒状の圧縮機筐体10の内部に、圧縮部12と、圧縮部12を駆動するモータ11と、を備えている。   As shown in FIG. 1, the rotary compressor 1 according to the embodiment includes a compression unit 12 and a motor 11 that drives the compression unit 12 inside a sealed cylindrical compressor housing 10. .

モータ11のステータ111は、圧縮機筐体10の内周面に焼きばめされて固定されている。モータ11のロータ112は、ステータ111の中央部に配置され、モータ11と圧縮部12とを機械的に接続する回転軸15に焼きばめされて固定されている。   The stator 111 of the motor 11 is fixed by being shrink-fitted on the inner peripheral surface of the compressor housing 10. The rotor 112 of the motor 11 is disposed at the center of the stator 111 and is fixed by being shrink-fitted to a rotating shaft 15 that mechanically connects the motor 11 and the compression unit 12.

圧縮部12は、低段圧縮部12Lと、低段圧縮部12Lに直列に接続され、低段圧縮部12Lの上側に積層されて設置された高段圧縮部12Hと、を備えて成る。図2に示すように、低段圧縮部12Lは、短円筒状の低段シリンダ121Lを備え、図3に示すように、高段圧縮部12Hは、短円筒状の高段シリンダ121Hを備えている。   The compression unit 12 includes a low-stage compression unit 12L and a high-stage compression unit 12H that is connected in series to the low-stage compression unit 12L and stacked and installed on the upper side of the low-stage compression unit 12L. As shown in FIG. 2, the low-stage compression section 12L includes a short cylindrical low-stage cylinder 121L, and as illustrated in FIG. 3, the high-stage compression section 12H includes a short cylindrical high-stage cylinder 121H. Yes.

低段シリンダ121L及び高段シリンダ121Hには、夫々モータ11と同心に、円筒形の低段、高段シリンダ内壁123L、123Hが形成されている。低段、高段シリンダ内壁123L、123H内には、低段、高段シリンダ内壁の径よりも小さい外径の円筒状の低段、高段ピストン125L、125Hが夫々配置され、低段、高段シリンダ内壁123L、123Hと、低段、高段ピストン125L、125Hとの間に、冷媒を吸入し圧縮して吐出する低段、高段作動室132L、132H(圧縮空間)が形成される。   The low-stage cylinder 121L and the high-stage cylinder 121H are formed with cylindrical low-stage and high-stage cylinder inner walls 123L and 123H concentrically with the motor 11, respectively. In the low-stage and high-stage cylinder inner walls 123L and 123H, cylindrical low-stage and high-stage pistons 125L and 125H having an outer diameter smaller than the diameter of the low-stage and high-stage cylinder inner walls are arranged, respectively. Low-stage and high-stage working chambers 132L and 132H (compression spaces) are formed between the stage cylinder inner walls 123L and 123H and the low-stage and high-stage pistons 125L and 125H.

低段、高段シリンダ121L、121Hには、低段、高段シリンダ内壁123L、123Hから径方向に、シリンダ高さ全域に亘る低段、高段ベーン溝128L、128Hが形成され、低段、高段ベーン溝128L、128H内に、夫々平板状の低段、高段ベーン127L、127Hが嵌合されている。   Low-stage and high-stage cylinders 121L and 121H are formed with low-stage and high-stage vane grooves 128L and 128H extending in the radial direction from the low-stage and high-stage cylinder inner walls 123L and 123H, respectively. Flat low stages and high stage vanes 127L and 127H are fitted in the high stage vane grooves 128L and 128H, respectively.

高段圧縮部12Hの高段作動室130Hの容積を低段圧縮部12Lの低段作動室130Lの容積より小さくするために、高段シリンダ121H、高段ピストン125H及び高段ベーン127Hは、夫々、軸方向の高さを、低段シリンダ121L、低段ピストン125L及び低段ベーン127Lよりも低くしている。   In order to make the volume of the high stage working chamber 130H of the high stage compression section 12H smaller than the volume of the low stage working chamber 130L of the low stage compression section 12L, the high stage cylinder 121H, the high stage piston 125H, and the high stage vane 127H are respectively provided. The height in the axial direction is lower than that of the low stage cylinder 121L, the low stage piston 125L, and the low stage vane 127L.

図示しないが、低段、高段ベーン溝128L、128Hの奥部には、低段、高段スプリングが配置されている。常時は、この低段、高段スプリングの反撥力により、低段、高段ベーン127L、127Hが、低段、高段ベーン溝128L、128H内から低段、高段作動室130L、130H内に突出し、その先端が、低段、高段ピストン125L、125Hの外周面に当接し、低段、高段ベーン127L、127Hにより、低段、高段作動室130L、130H(圧縮空間)が、低段、高段吸入室131L、131Hと、低段、高段圧縮室133L、133Hとに区画される。   Although not shown in the drawings, low and high springs are arranged in the back of the low and high vane grooves 128L and 128H. Normally, due to the repulsive force of the low and high stage springs, the low and high stage vanes 127L and 127H are moved from the low stage and high stage vane grooves 128L and 128H into the low and high stage working chambers 130L and 130H. Protruding and its tip abuts the outer peripheral surface of the low-stage and high-stage pistons 125L and 125H, and the low-stage and high-stage vanes 127L and 127H make the low-stage and high-stage working chambers 130L and 130H (compression space) low. The upper and lower suction chambers 131L and 131H are divided into the lower and higher compression chambers 133L and 133H.

また、低段、高段シリンダ121L、121Hには、低段、高段ベーン溝128L、128Hの奥部と圧縮機筐体10内とを連通して低段、高段ベーン127L、127Hに背圧をかける背圧導入路129L、129Hが形成されている。   Further, the low-stage and high-stage cylinders 121L and 121H are connected to the low-stage and high-stage vanes 127L and 127H by communicating the inner portions of the low-stage and high-stage vane grooves 128L and 128H with the interior of the compressor housing 10. Back pressure introduction paths 129L and 129H for applying pressure are formed.

本発明の特徴的な構成として、低段ベーン127L及び低段ベーン溝128Lの厚さtを、高段ベーン127H及び高段ベーン溝128Hの厚さtより薄くしている。低段ベーン127L及び低段ベーン溝128Hの厚さtは、高段ベーン127H及び高段ベーン溝128Hの厚さtの75%〜90%とするのがよい。 As a characteristic configuration of the present invention, the thickness t L of the low stage vane 127L and the low stage vane groove 128L is made thinner than the thickness t H of the high stage vane 127H and the high stage vane groove 128H. The thickness t L of the low stage vane 127L and the low stage vane groove 128H may be 75% to 90% of the thickness t H of the high stage vane 127H and the high stage vane groove 128H.

高段側圧縮部において、ベーンの先端がピストンの外周部に押付けられる力F(H)、及び、低段側圧縮部においてベーンの先端がピストンの外周部に押付けられる力F(L)は、補助的にベーンを押し付けるベーンスプリングの力を無視すると、図7の2段圧縮ロータリ圧縮機の圧縮室容積と圧縮室圧力の関係、及び、図8の低段側圧縮部及び高段側圧縮部のベーンにかかる圧力、に示すように、圧縮機筐体内圧力(密閉容器内圧力)すなわち高段側吐出圧力をPd(H)、高段側吸入室の圧力をPs(H)、高段側圧縮室の圧力をPc(H)、また、低段側吸入室の圧力をPs(L)、低段側圧縮室の圧力をPc(L)、ベーンの高さをh、ベーンの厚さをt、ベーンの先端がピストン外周と接するシールポイントから吸入室側の厚さをts、シールポイントから圧縮室側の厚さをtcとすれば、
F(H)=(Pd(H)×t−Ps(H)×ts−Pc(H)×tc)×h
F(L)=(Pd(H)×t−Ps(L)×ts−Pc(L)×tc)×h
となる。
In the high-stage compression section, the force F (H) that the tip of the vane is pressed against the outer periphery of the piston, and the force F (L) that the tip of the vane is pressed against the outer periphery of the piston in the low-stage compression section is If the force of the vane spring that presses the vane auxiliary is ignored, the relationship between the compression chamber volume and the compression chamber pressure of the two-stage compression rotary compressor in FIG. 7 and the low-stage compression section and the high-stage compression section in FIG. As shown in the pressure applied to the vane of the compressor, the internal pressure of the compressor casing (pressure in the sealed container), that is, the high-stage side discharge pressure is Pd (H), the high-stage side suction chamber pressure is Ps (H), and the high-stage side pressure is The pressure in the compression chamber is Pc (H), the pressure in the lower suction chamber is Ps (L), the pressure in the lower compression chamber is Pc (L), the vane height is h, and the vane thickness is t, the thickness on the suction chamber side from the seal point where the tip of the vane contacts the piston outer circumference s, when the thickness of the compression chamber side and tc from the sealing point,
F (H) = (Pd (H) × t−Ps (H) × ts−Pc (H) × tc) × h
F (L) = (Pd (H) × t−Ps (L) × ts−Pc (L) × tc) × h
It becomes.

ここで、Ps(H)>Ps(L)、Pc(H)>Pc(L)であるから、F(H)<F(L)となる。従って、低段、高段圧縮部12L、12Hのベーンの厚さt、tを同一にすると、低段圧縮部12lでは、低段ベーン127Lの先端が必要以上の力で低段ピストン125Lの外周部に押付けられて摺動損失が大きくなり機械効率が低下し、さらに、低段ベーン127Lの先端と低段ピストン125Lの外周部の摩耗量が大きくなり、圧縮機の信頼性が低下してしまう。 Here, since Ps (H)> Ps (L) and Pc (H)> Pc (L), F (H) <F (L). Accordingly, when the thicknesses t L and t H of the low stage and high stage compression parts 12L and 12H are made the same, the low stage compression part 12l has the tip of the low stage vane 127L at the low stage piston 125L with an excessive force. Is pushed against the outer periphery of the cylinder and the sliding loss is increased, the mechanical efficiency is reduced, and the wear amount of the outer end of the low stage vane 127L and the outer stage of the low stage piston 125L is increased, reducing the reliability of the compressor. End up.

本発明では、上述のように、低段ベーン127L及び低段ベーン溝128Hの厚さtを、高段ベーン127H及び高段ベーン溝128Hの厚さtの75%〜90%としているので、低段圧縮部12Lで、低段ベーン127Lの先端が必要以上の力で低段ピストン125Lの外周部に押付けられることはない。 In the present invention, as described above, the thickness t L of the low stage vane 127L and the low stage vane groove 128H is 75% to 90% of the thickness t H of the high stage vane 127H and the high stage vane groove 128H. In the low-stage compression portion 12L, the tip of the low-stage vane 127L is not pressed against the outer peripheral portion of the low-stage piston 125L with an excessive force.

吸入圧力と吐出圧力との差圧は、低段の方が小さいため、ベーンに作用する曲げモーメントは低段の方が小さいので、このことからも低段ベーン127Lを高段ベーン127Hよりも薄くすることができる。   Since the differential pressure between the suction pressure and the discharge pressure is smaller in the lower stage, the bending moment acting on the vanes is smaller in the lower stage. Therefore, the lower stage vane 127L is thinner than the higher stage vane 127H. can do.

一般的に、低圧側と高圧側の最大圧力差は、高段に比較して低段は1/2であり(R410Aの空調機では、圧力差が夫々最も大きくなる条件として、高段0.3MPa→4.3MPa(差圧4MPa)、低段1.5MPa→3.3MPa(差圧1.8MPa))、ベーンの曲げ撓み量はベーン厚さの3乗に反比例するので、低段偏芯部152Lの偏芯量と高段偏芯部152Hの偏芯量を同じにした場合、低段ベーン127Lの厚さは、高段ベーン127Hの厚さの(1/2)1/3≒0.8でよい。 In general, the maximum pressure difference between the low pressure side and the high pressure side is ½ at the low stage compared to the high stage (in the air conditioner of R410A, the condition that the pressure difference becomes the largest is the highest stage 0. 3MPa → 4.3MPa (differential pressure 4MPa), low stage 1.5MPa → 3.3MPa (differential pressure 1.8MPa)), and the bending deflection of the vane is inversely proportional to the cube of the vane thickness. When the eccentric amount of the portion 152L and the eccentric amount of the high-stage eccentric portion 152H are the same, the thickness of the low-stage vane 127L is (1/2) 1/3 ≈0 of the thickness of the high-stage vane 127H. .8 is sufficient.

低段、高段シリンダ121L、121Hには、低段、高段吸入室131L、131Hに冷媒を吸入するために、低段、高段吸入室131L、131Hに連通する低段、高段吸入孔135L、135Hが設けられている。低段ベーン溝128Hの厚さtを薄くした分の低段シリンダ内壁123Lのスペースを利用して、低段吸入孔135Lの孔径を、高段吸入孔135Hの孔径よりも大きくすれば、低段吸入孔135Lの冷媒の吸入抵抗を小さくすることができる。 The low-stage and high-stage cylinders 121L and 121H have low-stage and high-stage suction holes communicating with the low-stage and high-stage suction chambers 131L and 131H in order to suck the refrigerant into the low-stage and high-stage suction chambers 131L and 131H. 135L and 135H are provided. If the hole diameter of the low-stage intake hole 135L is made larger than the hole diameter of the high-stage intake hole 135H using the space of the low-stage cylinder inner wall 123L corresponding to the reduced thickness t L of the low-stage vane groove 128H, the low The refrigerant suction resistance of the stage suction hole 135L can be reduced.

また、低段シリンダ121Lと高段シリンダ121Hの間には、中間仕切板140が設置され、低段シリンダ121Lの低段作動室130Lと高段シリンダ121Hの高段作動室130Hとを区画している。低段シリンダ121Lの下側には、低段端板160Lが設置され、低段シリンダ121Lの低段作動室130Lの下部を閉塞している。また、高段シリンダ121Hの上側には、高段端板160Hが設置され、高段シリンダ121Hの高段作動室130Hの上部を閉塞している。   Further, an intermediate partition plate 140 is installed between the low-stage cylinder 121L and the high-stage cylinder 121H to partition the low-stage working chamber 130L of the low-stage cylinder 121L and the high-stage working chamber 130H of the high-stage cylinder 121H. Yes. A low-stage end plate 160L is installed below the low-stage cylinder 121L, and closes the lower part of the low-stage working chamber 130L of the low-stage cylinder 121L. A high stage end plate 160H is installed on the upper side of the high stage cylinder 121H, and closes the upper part of the high stage working chamber 130H of the high stage cylinder 121H.

低段端板160Lには、副軸受部161Lが形成され、副軸受部161Lに、回転軸15の副軸受支持部151が回転自在に支持されている。また、高段端板160Hには、主軸受部161Hが形成され、主軸受部161Hに、回転軸15の主軸受支持部153が回転自在に支持されている。   A sub-bearing portion 161L is formed on the low-stage end plate 160L, and a sub-bearing support portion 151 of the rotary shaft 15 is rotatably supported on the sub-bearing portion 161L. The high stage end plate 160H is formed with a main bearing portion 161H, and the main bearing support portion 153 of the rotary shaft 15 is rotatably supported by the main bearing portion 161H.

回転軸15は、互いに180°位相をずらして偏心させた低段偏芯部152Lと高段偏芯部152Hとを備え、低段偏芯部152Lは、低段圧縮部12Lの低段ピストン125Lを回転自在に保持し、高段偏芯部152Hは、高段圧縮部12Hの高段ピストン125Hを回転自在に保持している。低段偏芯部152Lの偏芯量と高段偏芯部152Hの偏芯量は、同一となっている。   The rotary shaft 15 includes a low-stage eccentric portion 152L and a high-stage eccentric portion 152H that are eccentric by shifting the phase by 180 °, and the low-stage eccentric portion 152L is a low-stage piston 125L of the low-stage compression portion 12L. The high-stage eccentric part 152H rotatably holds the high-stage piston 125H of the high-stage compression part 12H. The eccentric amount of the low-stage eccentric portion 152L and the eccentric amount of the high-stage eccentric portion 152H are the same.

回転軸15が回転すると、低段、高段ピストン125L、125Hが、低段、高段シリンダ内壁123L、123Hに沿って低段、高段シリンダ121L、121H内を公転し、これに追随して低段、高段ベーン127L、127Hが往復運動する。この低段、高段ピストン125L、125H及び低段、高段ベーン127L、127Hの運動により、低段、高段吸入室131L、131H及び低段、高段圧縮室133L、133Hの容積が連続的に変化し、圧縮部12は、連続的に冷媒を吸入し圧縮して吐出する。   When the rotary shaft 15 rotates, the low-stage and high-stage pistons 125L and 125H revolve in the low-stage and high-stage cylinders 121L and 121H along the low-stage and high-stage cylinder inner walls 123L and 123H. The low and high vanes 127L and 127H reciprocate. Due to the movement of the low-stage and high-stage pistons 125L and 125H and the low-stage and high-stage vanes 127L and 127H, the volumes of the low-stage and high-stage suction chambers 131L and 131H and the low-stage and high-stage compression chambers 133L and 133H are continuously increased. The compressor 12 continuously sucks, compresses and discharges the refrigerant.

低段端板160Lの下側には、低段マフラーカバー170Lが設置され、低段端板160Lとの間に低段マフラー室180Lを形成している。そして、低段圧縮部12Lの吐出部は、低段マフラー室180Lに開口している。すなわち、低段端板160Lには、低段シリンダ121Lの低段圧縮室133Lと低段マフラー室180Lとを連通する低段吐出孔190Lが設けられ、低段吐出孔190Lには、圧縮された冷媒の逆流を防止する低段吐出弁200Lが設置されている。   A low-stage muffler cover 170L is installed below the low-stage end plate 160L, and a low-stage muffler chamber 180L is formed between the low-stage end plate 160L. And the discharge part of the low stage compression part 12L is opened to the low stage muffler chamber 180L. That is, the low-stage end plate 160L is provided with a low-stage discharge hole 190L that connects the low-stage compression chamber 133L and the low-stage muffler chamber 180L of the low-stage cylinder 121L, and the low-stage discharge hole 190L is compressed. A low-stage discharge valve 200 </ b> L that prevents the refrigerant from flowing backward is installed.

低段吐出孔190Lの孔径を後述の高段吐出孔190Hの孔径よりも大きくすれば、高段圧縮部12Hよりも冷媒の体積流量が大きい低段圧縮部12Lの流量抵抗を小さくすることができる。   If the hole diameter of the low-stage discharge hole 190L is made larger than the hole diameter of the high-stage discharge hole 190H described later, the flow resistance of the low-stage compression section 12L having a larger volume flow rate of refrigerant than the high-stage compression section 12H can be reduced. .

図4及び図5に示すように、低段マフラー室180Lは、環状に連通された1つの室であり、低段圧縮部12Lの高圧側と高段圧縮部12Hの低圧側とを連通する中間連通路の一部である。低段マフラー室180Lは、吐出冷媒の圧力脈動を低減させる。   As shown in FIGS. 4 and 5, the low-stage muffler chamber 180L is an annularly communicated chamber, and is an intermediate that communicates the high-pressure side of the low-stage compression unit 12L and the low-pressure side of the high-stage compression unit 12H. It is a part of the communication path. The low stage muffler chamber 180L reduces the pressure pulsation of the discharged refrigerant.

また、図5及び図6に示すように、低段吐出弁200Lの上には、低段吐出弁200Lの撓み開弁量を制限するための低段吐出弁押さえ201Lが、低段吐出弁200Lとともにリベット203により固定されている。また、低段端板160Lの外周壁部には、低段マフラー室180L内の冷媒を外部へ吐出する低段マフラー吐出孔210Lが設けられている。低段マフラー吐出孔210Lは、圧縮部12の低段、高段吸入孔135L、135Hと圧縮機筐体10の周方向の同一位相位置に、径方向に設けられている。   Further, as shown in FIGS. 5 and 6, a low stage discharge valve presser 201L for limiting the amount of flexure opening of the low stage discharge valve 200L is provided on the low stage discharge valve 200L. At the same time, it is fixed by a rivet 203. Further, a low-stage muffler discharge hole 210L for discharging the refrigerant in the low-stage muffler chamber 180L to the outside is provided in the outer peripheral wall portion of the low-stage end plate 160L. The low-stage muffler discharge hole 210L is provided in the radial direction at the same phase position in the circumferential direction of the low-stage and high-stage suction holes 135L and 135H of the compression unit 12 and the compressor housing 10.

高段端板160Hの上側には、高段マフラーカバー170Hが設置され、高段端板160Hとの間に高段マフラー室180Hを形成している。高段端板160Hには、高段シリンダ121Hの高段圧縮室133Hと高段マフラー室180Hとを連通する高段吐出孔190Hが設けられ、高段吐出孔190Hには、圧縮された冷媒の逆流を防止する高段吐出弁200Hが設置されている。また、高段吐出弁200Hの上には、高段吐出弁200Hの撓み開弁量を制限するために、高段吐出弁押さえ201Hが、高段吐出弁200Hとともにリベットにより固定されている。高段マフラー室180Hは、吐出冷媒の圧力脈動を低減させる。   A high-stage muffler cover 170H is installed above the high-stage end plate 160H, and a high-stage muffler chamber 180H is formed between the high-stage end plate 160H. The high stage end plate 160H is provided with a high stage discharge hole 190H that connects the high stage compression chamber 133H and the high stage muffler chamber 180H of the high stage cylinder 121H, and the high stage discharge hole 190H contains the compressed refrigerant. A high-stage discharge valve 200H that prevents backflow is installed. Further, on the high-stage discharge valve 200H, a high-stage discharge valve presser 201H is fixed with a rivet together with the high-stage discharge valve 200H in order to limit the deflection opening amount of the high-stage discharge valve 200H. The high stage muffler chamber 180H reduces the pressure pulsation of the discharged refrigerant.

低段シリンダ121L、低段端板160L、低段マフラーカバー170L、高段シリンダ121H、高段端板160H、高段マフラーカバー170H及び中間仕切板140は、図示しないボルトにより一体に締結されている。ボルトにより一体に締結された圧縮部12のうち、高段端板160Hの外周部が、圧縮機筐体10にスポット溶接により固着され、圧縮部12を圧縮機筐体10に固定している。   The low-stage cylinder 121L, the low-stage end plate 160L, the low-stage muffler cover 170L, the high-stage cylinder 121H, the high-stage end plate 160H, the high-stage muffler cover 170H, and the intermediate partition plate 140 are integrally fastened by bolts (not shown). . Out of the compression part 12 fastened together by bolts, the outer peripheral part of the high-stage end plate 160H is fixed to the compressor casing 10 by spot welding, and the compression part 12 is fixed to the compressor casing 10.

図1に示すように、円筒状の圧縮機筐体10の外周壁には、軸方向に離間して下部から順に、第1、第2、第3連通孔101、102、103が、略同一周方向位置に設けられている。また、圧縮機筐体10の外側部には、独立した円筒状の密閉容器からなるアキュムレータ25が、アキュムホルダー251及びアキュムバンド253により保持されている。   As shown in FIG. 1, first, second, and third communication holes 101, 102, and 103 are substantially the same on the outer peripheral wall of the cylindrical compressor housing 10 in the axial direction and in order from the bottom. It is provided at a circumferential position. Further, an accumulator 25 made of an independent cylindrical sealed container is held by an accumulator holder 251 and an accumulator band 253 on the outer side of the compressor housing 10.

アキュムレータ25の天部中心には、冷凍サイクルの低圧側と接続するシステム接続管255が接続され、アキュムレータ25の底部に設けられた底部連通孔257には、一端がアキュムレータ25の内部上方まで延設され、他端が低段吸入管104の他端に接続される低圧連絡管31が接続されている。   A system connection pipe 255 connected to the low pressure side of the refrigeration cycle is connected to the center of the top of the accumulator 25, and one end of the bottom communication hole 257 provided at the bottom of the accumulator 25 extends to the upper part inside the accumulator 25. The low pressure communication pipe 31 whose other end is connected to the other end of the low stage suction pipe 104 is connected.

冷凍サイクルの低圧冷媒をアキュムレータ25を介して低段圧縮部12Lに導く低圧連絡管31は、第2連通孔102及び低段吸入管104を介して低段シリンダ121Lの低段吸入孔135Lに接続されている。   The low-pressure communication pipe 31 that guides the low-pressure refrigerant of the refrigeration cycle to the low-stage compression unit 12L via the accumulator 25 is connected to the low-stage suction hole 135L of the low-stage cylinder 121L via the second communication hole 102 and the low-stage suction pipe 104. Has been.

低段マフラー室180Lの低段吐出孔210Lには、第1連通孔101を通して低段吐出管105の一端が接続され、高段シリンダ121Hの高段吸入孔135Hには、第3連通孔103を通して高段吸入管106の一端が接続され、低段吐出管105の他端と高段吸入管106の他端とは、中間連絡管23により接続されている。低圧連絡管31と中間連絡管23とは、互いに干渉しないように曲げ形成されている。   One end of the low-stage discharge pipe 105 is connected to the low-stage discharge hole 210L of the low-stage muffler chamber 180L through the first communication hole 101, and the high-stage suction hole 135H of the high-stage cylinder 121H is connected to the low-stage discharge hole 210L through the third communication hole 103. One end of the high stage suction pipe 106 is connected, and the other end of the low stage discharge pipe 105 and the other end of the high stage suction pipe 106 are connected by an intermediate communication pipe 23. The low-pressure connecting pipe 31 and the intermediate connecting pipe 23 are bent so as not to interfere with each other.

高段圧縮部12Hの吐出部は、高段マフラー室180Hを介して圧縮機筐体10内に連通している。すなわち、高段端板160Hには、高段シリンダ121Hの高段圧縮室133Hと高段マフラー室180Hとを連通する高段吐出孔190Hが設けられ、高段吐出孔190Hには、圧縮された冷媒の逆流を防止する高段吐出弁200Hが設置されている。高段マフラー室180Hの吐出部は、圧縮機筐体10内に連通している。圧縮機筐体10の天部には、冷凍サイクルの高圧側と接続し高圧冷媒を冷凍サイクル側に吐出する吐出管107が接続されている。   The discharge part of the high stage compression unit 12H communicates with the compressor housing 10 via the high stage muffler chamber 180H. That is, the high-stage end plate 160H is provided with a high-stage discharge hole 190H that connects the high-stage compression chamber 133H and the high-stage muffler chamber 180H of the high-stage cylinder 121H, and the high-stage discharge hole 190H is compressed. A high-stage discharge valve 200H that prevents the reverse flow of the refrigerant is installed. The discharge part of the high stage muffler chamber 180 </ b> H communicates with the compressor housing 10. A discharge pipe 107 that is connected to the high pressure side of the refrigeration cycle and discharges high-pressure refrigerant to the refrigeration cycle side is connected to the top of the compressor housing 10.

圧縮機筐体10内には、およそ高段シリンダ121Hの高さまで潤滑油が封入されており、潤滑油は、回転軸15の下部に取付けられた図示しない羽根ポンプにより圧縮部12を循環し、摺動部品の潤滑及び微小隙間によって圧縮冷媒の圧縮空間を区画している箇所をシールしている。   Lubricating oil is sealed in the compressor casing 10 up to the height of the high-stage cylinder 121H, and the lubricating oil circulates through the compression unit 12 by a blade pump (not shown) attached to the lower part of the rotary shaft 15, A portion that partitions the compression space of the compressed refrigerant is sealed by lubrication of the sliding parts and a minute gap.

次に、以上説明した2段圧縮ロータリー圧縮機1の作用について説明する。2段圧縮ロータリー圧縮機1を作動させると、冷凍サイクルの低圧側からシステム接続管255を通ってアキュムレータ25内に流入した冷媒は、液冷媒がアキュムレータ25の下部に、ガス冷媒がアキュムレータ25の上部に分離される。   Next, the operation of the two-stage compression rotary compressor 1 described above will be described. When the two-stage compression rotary compressor 1 is operated, the refrigerant flowing into the accumulator 25 through the system connection pipe 255 from the low pressure side of the refrigeration cycle is liquid refrigerant at the lower part of the accumulator 25 and gas refrigerant at the upper part of the accumulator 25. Separated.

低段ピストン125Lが、低段シリンダ121L内を公転運動して低段吸入室131Lの容積が拡大すると、アキュムレータ25内のガス冷媒は、低圧連絡管31及び低段吸入管104を通って低段圧縮部12Lの低段吸入室131L内に吸入される。低段ピストン125Lが1回公転すると、低段吸入室131Lは、低段吸入孔135Lと遮断され、低段圧縮室133Lに切替わり、冷媒は圧縮される。   When the low-stage piston 125L revolves in the low-stage cylinder 121L and the volume of the low-stage suction chamber 131L is expanded, the gas refrigerant in the accumulator 25 passes through the low-pressure communication pipe 31 and the low-stage suction pipe 104 to form a low stage. The air is sucked into the lower suction chamber 131L of the compression unit 12L. When the low stage piston 125L revolves once, the low stage suction chamber 131L is cut off from the low stage suction hole 135L and switched to the low stage compression chamber 133L, and the refrigerant is compressed.

圧縮された低段圧縮室133L内の冷媒の圧力が、低段吐出孔190Lに設けられた低段吐出弁200Lの下流側の低段マフラー室180Lの圧力、すなわち、中間圧力に達すると、低段吐出弁200Lが開弁し、冷媒が低段マフラー室180Lに吐出され、低段マフラー室180Lで騒音の原因となる圧力脈動を低減させた後、中間連絡管23を通って高段圧縮部12Hの高段吸入室131Hに送られる。   When the pressure of the compressed refrigerant in the low-stage compression chamber 133L reaches the pressure of the low-stage muffler chamber 180L downstream of the low-stage discharge valve 200L provided in the low-stage discharge hole 190L, that is, the intermediate pressure, The stage discharge valve 200L is opened, the refrigerant is discharged into the low stage muffler chamber 180L, and after the pressure pulsation that causes noise in the low stage muffler chamber 180L is reduced, the high stage compression section passes through the intermediate connecting pipe 23. It is sent to the 12H high-stage suction chamber 131H.

高段圧縮部12Hの高段吸入室131Hに送られた冷媒は、低段圧縮部12Lと同様の作用により圧縮・吐出され、高段マフラー室180Hで圧力脈動を低減させた後、高圧冷媒となって圧縮機筐体10内に吐出される。その後、高圧冷媒は、モータ11のステータ111の図示しないコア切欠きや、コアと巻線の隙間を通ってモータ11の上部に送られ、吐出管107を通って冷凍サイクルの高圧側に吐出される。   The refrigerant sent to the high stage suction chamber 131H of the high stage compression section 12H is compressed and discharged by the same action as the low stage compression section 12L, and after reducing pressure pulsation in the high stage muffler chamber 180H, And discharged into the compressor housing 10. Thereafter, the high-pressure refrigerant is sent to the upper portion of the motor 11 through a notch of the stator 111 (not shown) of the motor 11 and a gap between the core and the winding, and is discharged to the high-pressure side of the refrigeration cycle through the discharge pipe 107. The

圧縮機筐体10内の高圧冷媒は、背圧導入路129L、129Hを通って低段、高段ベーン溝128L、128Hの奥部に送られ、低段、高段ベーン127L、127Hに背圧をかけるが、低段ベーン127Lの厚さtを、高段ベーン127Hの厚さtの75%〜90%としているので、低段圧縮部12Lで、低段ベーン127Lの先端が必要以上の力で低段ピストン125Lの外周部に押付けられることはない。 The high-pressure refrigerant in the compressor housing 10 passes through the back pressure introduction passages 129L and 129H and is sent to the back of the low and high stage vane grooves 128L and 128H, and back pressure is applied to the low and high stage vanes 127L and 127H. However, since the thickness t L of the low stage vane 127L is 75% to 90% of the thickness t H of the high stage vane 127H, the tip of the low stage vane 127L is more than necessary at the low stage compression portion 12L. Is not pressed against the outer peripheral portion of the low-stage piston 125L.

また、本発明は、冷凍サイクルの高圧(凝縮圧)と低圧(蒸発圧)の中間の圧力の冷媒を、インジェクション冷媒として高段シリンダ121Hに吸入できるように、インジェクション管を中間連絡管に接続した2段ロータリー圧縮機に適用してもよい。   Further, in the present invention, the injection pipe is connected to the intermediate connecting pipe so that the refrigerant having the intermediate pressure between the high pressure (condensation pressure) and the low pressure (evaporation pressure) of the refrigeration cycle can be sucked into the high stage cylinder 121H as the injection refrigerant. You may apply to a two-stage rotary compressor.

以上のように、本発明にかかる2段圧縮ロータリー圧縮機は、高効率で長期間の使用に有用である。   As described above, the two-stage compression rotary compressor according to the present invention is highly efficient and useful for long-term use.

本発明にかかるロータリー圧縮機の実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the Example of the rotary compressor concerning this invention. 低段圧縮部の横断面図である。It is a cross-sectional view of a low stage compression part. 高段圧縮部の横断面図である。It is a cross-sectional view of a high stage compression part. 図1−1のA−A線に沿う横断面図である。It is a cross-sectional view which follows the AA line of FIGS. 低段端板の横断面図である。It is a cross-sectional view of a low stage end plate. 図5のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 2段圧縮ロータリ圧縮機の圧縮室容積と圧縮室圧力の関係を示す図である。It is a figure which shows the relationship between the compression chamber volume and compression chamber pressure of a two-stage compression rotary compressor. 低段側圧縮部及び高段側圧縮部のベーンにかかる圧力を示す図である。It is a figure which shows the pressure concerning the vane of a low stage side compression part and a high stage side compression part.

符号の説明Explanation of symbols

1 2段圧縮ロータリー圧縮機(ロータリー圧縮機)
10 圧縮機筐体
11 モータ
12 圧縮部
15 回転軸
23 中間連絡管
25 アキュムレータ
31 低圧連絡管
101 第1連通孔
102 第2連通孔
103 第3連通孔
104 低段吸入管
105 低段吐出管
106 高段吸入管
107 吐出管
111 ステータ
112 ロータ
12L 低段圧縮部
12H 高段圧縮部
121L 低段シリンダ
121H 高段シリンダ
123L 低段シリンダ内壁
123H 高段シリンダ内壁
125L 低段ピストン
125H 高段ピストン
127L 低段ベーン
127H 高段ベーン
128L 低段ベーン溝
128H 高段ベーン溝
129L,129H 背圧導入路
130L 低段作動室
130H 高段作動室
131L 低段吸入室
131H 高段吸入室
133L 低段圧縮室
133H 高段圧縮室
135L 低段吸入孔
135H 高段吸入孔
140 中間仕切板
151 副軸受支持部
152L 低段偏芯部
152H 高段偏芯部
153 主軸受支持部
160L 低段端板
160H 高段端板
161L 副軸受部
161H 主軸受部
170L 低段マフラーカバー
170H 高段マフラーカバー
180L 低段マフラー室
180H 高段マフラー室
190L 低段吐出孔
190H 高段吐出孔
200L 低段吐出弁
200H 高段吐出弁
201L 低段吐出弁押さえ
201H 高段吐出弁押さえ
203 リベット
210L 低段マフラー吐出孔
251 アキュムホルダー
253 アキュムバンド
255 システム接続管
257 底部連通孔
1 Two-stage compression rotary compressor (rotary compressor)
DESCRIPTION OF SYMBOLS 10 Compressor housing | casing 11 Motor 12 Compression part 15 Rotating shaft 23 Intermediate connection pipe 25 Accumulator 31 Low pressure connection pipe 101 1st communication hole 102 2nd communication hole 103 3rd communication hole 104 Low stage suction pipe 105 Low stage discharge pipe 106 High Stage suction pipe 107 Discharge pipe 111 Stator 112 Rotor 12L Low stage compression part 12H High stage compression part 121L Low stage cylinder 121H High stage cylinder 123L Low stage cylinder inner wall 123H High stage cylinder inner wall 125L Low stage piston 125H High stage piston 127L Low stage vane 127H High stage vane 128L Low stage vane groove 128H High stage vane groove 129L, 129H Back pressure introduction path 130L Low stage working chamber 130H High stage working chamber 131L Low stage suction chamber 131H High stage suction chamber 133L Low stage compression chamber 133H High stage compression Chamber 135L Low stage suction hole 13 H High stage suction hole 140 Intermediate partition plate 151 Sub bearing support part 152L Low stage eccentric part 152H High stage eccentric part 153 Main bearing support part 160L Low stage end plate 160H High stage end plate 161L Sub bearing part 161H Main bearing part 170L Low-stage muffler cover 170H High-stage muffler cover 180L Low-stage muffler chamber 180H High-stage muffler chamber 190L Low-stage discharge hole 190H High-stage discharge hole 200L Low-stage discharge valve 200H High-stage discharge valve 201L Low-stage discharge valve press 201H High-stage discharge valve Presser 203 Rivet 210L Low stage muffler discharge hole 251 Accum holder 253 Accum band 255 System connection pipe 257 Bottom communication hole

Claims (5)

円筒状の低段シリンダと、モータにより回転駆動される回転軸の低段偏芯部に保持され前記低段シリンダの低段シリンダ内壁に沿って該低段シリンダ内を公転し前記低段シリンダ内壁との間に低段作動室を形成する低段ピストンと、前記低段シリンダの低段ベーン溝内から前記低段作動室内に突出して前記低段ピストンに当接し該低段作動室を低段吸入室と低段圧縮室とに区画する低段ベーンと、を備えて成る低段圧縮部と、
中間仕切板を介して前記低段圧縮部に積層され、円筒状の高段シリンダと、前記モータにより回転駆動される回転軸の高段偏芯部に保持され前記高段シリンダの高段シリンダ内壁に沿って該高段シリンダ内を公転し前記高段シリンダ内壁との間に高段作動室を形成する高段ピストンと、前記高段シリンダの高段ベーン溝内から前記高段作動室内に突出して前記高段ピストンに当接し該高段作動室を高段吸入室と高段圧縮室とに区画する高段ベーンと、を備えて成る高段圧縮部と、
前記低段圧縮部及び高段圧縮部を収容する密閉された圧縮機筐体と、
前記低段吸入室に連通する低段吸入孔を冷凍サイクルの低圧側に連通させる低圧連絡管と、
前記低段圧縮室に連通する低段吐出孔と前記高段吸入室に連通する高段吸入孔とを連通させる中間連絡管と、
前記高段圧縮室に連通する高段吐出孔を、前記圧縮機筐体内を介して前記冷凍サイクルの高圧側に連通させる吐出管と、
前記圧縮機筐体内と前記低段ベーン溝及び高段ベーン溝の奥部とを連通する背圧導入路と、
を備える2段圧縮ロータリー圧縮機において、
前記低段ベーン及び低段ベーン溝の厚さを、前記高段ベーン及び高段ベーン溝の厚さより薄くしたことを特徴とする2段圧縮ロータリー圧縮機。
A cylindrical low-stage cylinder and an inner wall of the low-stage cylinder that revolves around the low-stage cylinder inner wall of the low-stage cylinder held by a low-stage eccentric part of a rotary shaft that is driven to rotate by a motor. A low-stage piston that forms a low-stage working chamber between the low-stage piston, and a low-stage vane groove of the low-stage cylinder that protrudes into the low-stage working chamber and abuts against the low-stage piston to make the low-stage working chamber low A low-stage compression section comprising a low-stage vane that is divided into a suction chamber and a low-stage compression chamber;
A high-stage cylinder inner wall of the high-stage cylinder that is stacked on the low-stage compression section via an intermediate partition plate and is held by a cylindrical high-stage cylinder and a high-stage eccentric part of a rotary shaft that is driven to rotate by the motor. And a high stage piston that revolves in the high stage cylinder to form a high stage working chamber with the inner wall of the high stage cylinder, and projects into the high stage working chamber from within the high stage vane groove of the high stage cylinder. A high-stage compression portion comprising a high-stage vane that abuts the high-stage piston and divides the high-stage working chamber into a high-stage suction chamber and a high-stage compression chamber;
A hermetically sealed compressor housing that houses the low-stage compression section and the high-stage compression section;
A low-pressure communication pipe that communicates a low-stage suction hole communicating with the low-stage suction chamber to a low-pressure side of the refrigeration cycle;
An intermediate connecting pipe for communicating the low stage discharge hole communicating with the low stage compression chamber and the high stage suction hole communicating with the high stage suction chamber;
A discharge pipe that communicates a high-stage discharge hole communicating with the high-stage compression chamber to a high-pressure side of the refrigeration cycle through the compressor housing;
A back pressure introduction path that communicates the inside of the compressor housing with the back of the low-stage vane groove and the high-stage vane groove;
A two-stage compression rotary compressor comprising:
A two-stage compression rotary compressor, wherein the low-stage vane and the low-stage vane groove are thinner than the high-stage vane and the high-stage vane groove.
前記低段ベーン及び低段ベーン溝の厚さを、前記高段ベーン及び高段ベーン溝の厚さの75%〜90%としたことを特徴とする請求項1に記載の2段圧縮ロータリー圧縮機。   2. The two-stage compression rotary compression according to claim 1, wherein the thickness of the low stage vane and the low stage vane groove is 75% to 90% of the thickness of the high stage vane and the high stage vane groove. Machine. 前記低段吸入孔を前記高段吸入孔よりも大きくしたことを特徴とする請求項1又は2に記載の2段圧縮ロータリー圧縮機。   The two-stage compression rotary compressor according to claim 1 or 2, wherein the low-stage suction hole is made larger than the high-stage suction hole. 前記低段吐出孔を前記高段吐出孔よりも大きくしたことを特徴とする請求項1〜3のいずれか一つに記載の2段圧縮ロータリー圧縮機。   The two-stage compression rotary compressor according to any one of claims 1 to 3, wherein the low-stage discharge hole is made larger than the high-stage discharge hole. 前記低段偏芯部の偏芯量と前記高段偏芯部の偏芯量とを同一としたことを特徴とする請求項1〜4のいずれか一つに記載の2段圧縮ロータリー圧縮機。   5. The two-stage compression rotary compressor according to claim 1, wherein the eccentric amount of the low-stage eccentric portion and the eccentric amount of the high-stage eccentric portion are the same. .
JP2007292498A 2007-11-09 2007-11-09 Two-stage compression rotary compressor Pending JP2009115067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292498A JP2009115067A (en) 2007-11-09 2007-11-09 Two-stage compression rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292498A JP2009115067A (en) 2007-11-09 2007-11-09 Two-stage compression rotary compressor

Publications (1)

Publication Number Publication Date
JP2009115067A true JP2009115067A (en) 2009-05-28

Family

ID=40782456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292498A Pending JP2009115067A (en) 2007-11-09 2007-11-09 Two-stage compression rotary compressor

Country Status (1)

Country Link
JP (1) JP2009115067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159714A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Rotary two-stage compressor
KR101809862B1 (en) * 2014-01-31 2017-12-15 미쓰비시덴키 가부시키가이샤 Hermetic compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098079A (en) * 2000-09-27 2002-04-05 Sanyo Electric Co Ltd Internal intermediate pressure type multistage compression rotary compressor
JP2004027970A (en) * 2002-06-26 2004-01-29 Sanyo Electric Co Ltd Multistage compression type rotary compressor
JP2006105039A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Multiple cylinder compressor
JP2007170408A (en) * 2007-03-22 2007-07-05 Sanyo Electric Co Ltd Rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002098079A (en) * 2000-09-27 2002-04-05 Sanyo Electric Co Ltd Internal intermediate pressure type multistage compression rotary compressor
JP2004027970A (en) * 2002-06-26 2004-01-29 Sanyo Electric Co Ltd Multistage compression type rotary compressor
JP2006105039A (en) * 2004-10-06 2006-04-20 Matsushita Electric Ind Co Ltd Multiple cylinder compressor
JP2007170408A (en) * 2007-03-22 2007-07-05 Sanyo Electric Co Ltd Rotary compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159714A (en) * 2009-01-09 2010-07-22 Mitsubishi Electric Corp Rotary two-stage compressor
KR101809862B1 (en) * 2014-01-31 2017-12-15 미쓰비시덴키 가부시키가이샤 Hermetic compressor
US10006460B2 (en) 2014-01-31 2018-06-26 Mitsubishi Electric Corporation Hermetic compressor having enlarged suction inlet

Similar Documents

Publication Publication Date Title
JP4462352B2 (en) 2-stage compression rotary compressor
US20090180912A1 (en) Rotary compressor
JP6015055B2 (en) Rotary compressor
JP6070069B2 (en) Rotary compressor
JP2011032933A (en) Rotary compressor
EP2042740A2 (en) two-stage rotary compressor
WO2013005568A1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
EP2042741A2 (en) Two-stage compression rotary compressor
JP2013076337A (en) Rotary compressor
JP2009115067A (en) Two-stage compression rotary compressor
JP5201045B2 (en) 2-stage compression rotary compressor
JP6274041B2 (en) Rotary compressor
JP6331786B2 (en) Compressor
JP5998522B2 (en) Rotary compressor
JP2014234785A (en) Scroll compressor
JP6064726B2 (en) Rotary compressor
JP6064719B2 (en) Rotary compressor
JP2014070596A (en) Rotary compressor
JP2013245628A (en) Rotary compressor
JP2016130460A (en) Rotary compressor
JP2011214481A (en) Rotary compressor
JP2016089811A (en) Rotary compressor
JP2017008819A (en) Rotary compressor
JP6011647B2 (en) Rotary compressor
JP2013177857A (en) Small capacity rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090831

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206