JP2009077458A - Rotor laminated core for reluctance motor - Google Patents

Rotor laminated core for reluctance motor Download PDF

Info

Publication number
JP2009077458A
JP2009077458A JP2007241208A JP2007241208A JP2009077458A JP 2009077458 A JP2009077458 A JP 2009077458A JP 2007241208 A JP2007241208 A JP 2007241208A JP 2007241208 A JP2007241208 A JP 2007241208A JP 2009077458 A JP2009077458 A JP 2009077458A
Authority
JP
Japan
Prior art keywords
arc
laminated core
shaped slits
rotor
rotor laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007241208A
Other languages
Japanese (ja)
Inventor
Yusuke Hasuo
裕介 蓮尾
Yukio Matsunaga
幸雄 松永
Kazunori Ouchi
一紀 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tec Inc
Original Assignee
Mitsui High Tec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tec Inc filed Critical Mitsui High Tec Inc
Priority to JP2007241208A priority Critical patent/JP2009077458A/en
Publication of JP2009077458A publication Critical patent/JP2009077458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor laminated core for a reluctance motor which has a plurality of arc-shaped slits, in a concentric shape with a rotating shaft-hole side protruded, has laminated core pieces which are formed by arranging the plurality of arc-shaped slits at the circumference of a rotating shaft hole at intervals, is rotated by reluctance torque which is generated on the basis of a difference between a salient pole direction, where magnetic flux easily flows along the extension direction of the arc-shaped slits, and a non-salient pole direction where the magnetic flux is difficult to flow along the parallel arrangement direction of the arc-shaped slits, and can suppress to a minimum level the torque variations of rotor at the operation of the motor, without employing a multi-layer slit structure which is narrow in slit width and slit interval. <P>SOLUTION: This rotor laminated core for the reluctance motor is such that ends of the plurality of arc-shaped slits are formed at equal intervals along the entire periphery of the core pieces. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リラクタンスモータ用回転子積層鉄心に関し、詳しくは、回転軸孔側を凸とした複数の円弧状スリットを同心状に形成するとともに、複数の円弧状スリットを前記回転軸孔の周囲に間隔をおいて形成した鉄心片を積層して成る、リラクタンスモータ用回転子積層鉄心の細部構造に関するものである。     The present invention relates to a rotor laminated iron core for a reluctance motor, and more specifically, a plurality of arc-shaped slits convex on the rotation shaft hole side are formed concentrically, and a plurality of arc-shaped slits are formed around the rotation shaft hole. The present invention relates to a detailed structure of a rotor laminated iron core for a reluctance motor, which is formed by laminating iron core pieces formed at intervals.

例えば、各種工作機械や自動車等に搭載される駆動電動機としては、耐久性の向上や大出力化の要求から、従来のブラシ付きモータからブラシレスモータへの置き換えが進んでおり、上記ブラシレスモータの一態様として、多相交流によって進行波磁界を生じる固定子積層鉄心内において、突極型磁路を有する回転子積層鉄心が上記進行波磁界に同期して回転する原理のモータ、すなわちリラクタンスモータ(特にシンクロナスリラクタンスモータ)の提供が為されている(例えば、特許文献1参照)。     For example, as drive motors installed in various machine tools, automobiles, etc., replacement of conventional brushed motors with brushless motors is progressing due to demands for improved durability and higher output. As an aspect, in a stator laminated iron core that generates a traveling wave magnetic field by multiphase AC, a rotor laminated iron core having a salient pole type magnetic path rotates in synchronization with the traveling wave magnetic field, that is, a reluctance motor (particularly, Synchronous reluctance motors) have been provided (see, for example, Patent Document 1).

図7に示す如く、リラクタンスモータにおける回転子積層鉄心(リラクタンスモータ用回転子積層鉄心)Aは、所定枚数の鉄心片P、P…を積層し、これら鉄心片P、P…を一体化することによって構成されており、中央には回転軸孔Oが開口しているとともに、上記回転軸孔Oの周囲にはフラックスバリア(磁束障壁)としての円弧状スリットS、S…が形成されている。   As shown in FIG. 7, a rotor laminated core (rotor laminated core for a reluctance motor) A in a reluctance motor is formed by laminating a predetermined number of core pieces P, P... And integrating these core pieces P, P. A rotation shaft hole O is opened at the center, and arc-shaped slits S, S... As flux barriers (magnetic flux barriers) are formed around the rotation shaft hole O.

ここで、上記回転子積層鉄心Aにおいては、磁気的な突極方向の磁路と非突極方向の磁路とを形成するため、各々の鉄心片P、P…に、回転軸孔O側を凸とした複数の円弧状スリットS、S…が同心状に形成されており、これら同心状に形成された円弧状スリットS、S…のグループは、上記回転軸孔Oの周囲に間隔をおいて複数組形成されている。   Here, in the rotor laminated iron core A, a magnetic path in the magnetic salient pole direction and a magnetic path in the non-salient pole direction are formed, so that each iron core piece P, P. A plurality of arc-shaped slits S, S... That are convex are formed concentrically, and the group of arc-shaped slits S, S... Formed concentrically is spaced around the rotation shaft hole O. A plurality of sets are formed.

これにより、円弧状スリットS、S…の延設方向に沿って、磁束の流れ易い突極方向(d−d軸)の磁路が形成されるとともに、円弧状スリットS、S…の並設方向に沿って、磁束が流れ難い非突極方向(q−q軸)の磁路が形成され、上記回転子積層鉄心Aは、突極方向と非突極方向とのインダクタンスの差に基づいて生じるリラクタンストルクにより回転することとなる。
特開2001−258222号公報
Thereby, along the extending direction of the arc-shaped slits S, S..., A magnetic path in the salient pole direction (dd axis) where the magnetic flux easily flows is formed, and the arc-shaped slits S, S. A magnetic path in the non-salient pole direction (qq axis) in which magnetic flux hardly flows is formed along the direction, and the rotor laminated core A is based on the difference in inductance between the salient pole direction and the non-salient pole direction. It will rotate by the reluctance torque which arises.
JP 2001-258222 A

ところで、モータ稼働時における回転子のトルク変動を小さく抑えるには、回転子におけるロータリスリットの個数が多い程、回転子と固定子との相対位置が変わっても、磁気吸引/反発力が大きく変化することがなく、効果的であることに鑑みて、スリット幅およびスリット間隔の狭い多数の円弧状スリットを設けて成る多層スリットの採用が効果的である。     By the way, in order to suppress the torque fluctuation of the rotor when the motor is operating, as the number of rotary slits in the rotor increases, the magnetic attraction / repulsive force changes greatly even if the relative position between the rotor and the stator changes. In view of the fact that it is effective, it is effective to employ a multilayer slit provided with a large number of arc-shaped slits having a narrow slit width and slit interval.

しかし、上述した多層スリットの回転子は、剛性の低さ故に耐遠心力性が低いものとなるばかりでなく、上記回転子を製造する場合、スリット幅およびスリット間隔の狭い多数の円弧状スリットを、高透磁率材料(無方向性電磁鋼板や冷延鋼板)を金型で打ち抜いて鉄心片を形成するため、パンチやダイ等の金型刃物の摩耗が激しく、また寸法精度の低下を招いてしまう不都合があった。   However, the multi-layer slit rotor described above not only has low centrifugal force resistance due to its low rigidity, but when manufacturing the rotor, a large number of arc-shaped slits having a narrow slit width and slit interval are used. , High permeability materials (non-oriented electrical steel sheets and cold-rolled steel sheets) are punched with a mold to form iron core pieces, resulting in severe wear of mold knives such as punches and dies, and reduced dimensional accuracy. There was an inconvenience.

さらに、上記回転子の製造に際して、多数の円弧状スリットを形成することで、打抜き形成時の加工歪みが各所に発生することとなり、この加工歪みの増加に伴う電磁鋼板の特性劣化を抑えるには、打抜き後に焼鈍等の熱処理を必要とするために、製造工程の煩雑化や不用意なコストアップを招く不都合があった。   Furthermore, in the manufacture of the rotor, by forming a large number of arc-shaped slits, processing distortion at the time of punching formation occurs in various places, and in order to suppress the deterioration of the characteristics of the electrical steel sheet accompanying this increase in processing distortion. In addition, since heat treatment such as annealing is required after punching, there is a disadvantage in that the manufacturing process becomes complicated and the cost is inadvertently increased.

一方、上記不都合を軽減するべく、円弧状スリットの個数を減らした場合、図8に示す如く、曲率の等しい円弧状スリットS、S…を形成している回転子積層鉄心Aでは、個々の端部Se毎に隣合う端部Seとの中心角が相違することとなり、端部Se、Se…におけるピッチ(間隔)pa、pb、pc、pd、pe、およびピッチ(間隔)pf、pg、ph、pi、pjは、互いに等しいピッチ(間隔)とはならない。   On the other hand, when the number of arc-shaped slits is reduced in order to reduce the inconvenience, as shown in FIG. 8, in the rotor laminated core A forming the arc-shaped slits S, S. The central angle between the adjacent end portions Se differs for each portion Se, and the pitches (intervals) pa, pb, pc, pd, pe and the pitches (intervals) pf, pg, ph at the end portions Se, Se. , Pi, pj are not equal pitches (intervals).

このように、各円弧状スリットS、S…における端部Se、Se…が、等間隔に配置されていないことにより、上記回転子積層鉄心Aではモータ稼働時におけるトルク変動を招くこととなり、しかもトルク変動の程度を推測することが難しく、有効な対応を採ることが困難となる不都合があった。   As described above, the end portions Se, Se,... In the arc-shaped slits S, S,... Are not arranged at equal intervals, so that the rotor laminated core A causes torque fluctuation during motor operation, and It is difficult to estimate the degree of torque fluctuation, and it is difficult to take an effective countermeasure.

本発明は、上述した実状に鑑みて、スリット幅およびスリット間隔の狭い多層スリット構造を採用することなく、モータ稼働時における回転子のトルク変動を小さく抑えることの可能な、リラクタンスモータ用回転子積層鉄心の提供を目的とするものである。   In view of the above-described situation, the present invention provides a rotor stack for a reluctance motor that can suppress a torque fluctuation of the rotor when the motor is operating without adopting a multilayer slit structure having a narrow slit width and slit interval. The purpose is to provide an iron core.

上記目的を達成するべく、請求項1の発明に関わるリラクタンスモータ用回転子積層鉄心は、回転軸孔側を凸とした複数の円弧状スリットを同心状に形成するとともに、複数の円弧状スリットを回転軸孔の周囲に間隔をおいて形成した鉄心片を積層して成り、円弧状スリットの延設方向に沿って磁束が流れ易い突極方向と、円弧状スリットの並設方向に沿って磁束が流れ難い非突極方向とのインダクタンスの差に基づいて生じるリラクタンストルクにより回転するリラクタンスモータ用回転子積層鉄心において、複数の円弧状スリットの端部を鉄心片の全周に亘って等間隔に形成したことを特徴としている。     In order to achieve the above object, a rotor laminated iron core for a reluctance motor according to the invention of claim 1 is formed concentrically with a plurality of arc-shaped slits convex on the rotating shaft hole side, and a plurality of arc-shaped slits are formed. Stacked iron core pieces formed at intervals around the rotation shaft hole, and a magnetic flux along the salient pole direction in which the magnetic flux easily flows along the extending direction of the arc-shaped slit and the parallel direction of the arc-shaped slit. In a rotor laminated core for a reluctance motor that rotates due to a reluctance torque generated based on the difference in inductance from the non-salient direction in which the flow is difficult to flow, the ends of a plurality of arc-shaped slits are equally spaced over the entire circumference of the core piece It is characterized by the formation.

請求項1の発明に関わるリラクタンスモータ用回転子積層鉄心では、複数の円弧状スリットの端部を鉄心片の全周に亘って等間隔に形成したことにより、スリット幅およびスリット間隔の狭い多層スリット構造を採用することなく、言い換えれば、多層スリット構造を採用することに起因する、耐遠心力性の低下、打抜き形成時における金型刃物の摩耗や寸法精度の低下、電磁鋼板の特性劣化を抑える為の焼鈍に伴う製造工程の煩雑化やコストアップ等の不都合を招くことなく、モータ稼働時における回転子のトルク変動を小さく抑えることが可能となる。     In the rotor laminated core for a reluctance motor according to the first aspect of the present invention, a plurality of arc-shaped slits are formed at equal intervals over the entire circumference of the core piece, so that a multilayer slit with a narrow slit width and slit interval is formed. Without adopting the structure, in other words, reducing the centrifugal force resistance, wear of the tool blade during punching and dimensional accuracy, and deterioration of the properties of the electrical steel sheet due to the adoption of the multilayer slit structure Therefore, it is possible to suppress the torque fluctuation of the rotor when the motor is operating without causing inconveniences such as complicated manufacturing process and cost increase due to the annealing.

以下、実施例を示す図面に基づいて、本発明を詳細に説明する。
図1〜図4は、本発明に関わるリラクタンスモータ用回転子積層鉄心の第1実施例を示しており、この回転子積層鉄心(リラクタンスモータ用回転子積層鉄心)10は、所定枚数の鉄心片11、11…を積層し、これら鉄心片11、11…を一体化することによって構成され、その中央部には回転軸孔10Oが開口している。
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments.
1 to 4 show a first embodiment of a rotor laminated core for a reluctance motor according to the present invention, and this rotor laminated core (rotor laminated core for a reluctance motor) 10 has a predetermined number of core pieces. Are formed by laminating 11, 11... And integrating these iron core pieces 11, 11...

また、上記回転子積層鉄心10では、磁気的な突極方向の磁路と非突極方向の磁路とを形成するべく、各々の鉄心片11、11…に、回転軸孔11o側を凸とした複数の円弧状スリット11S、11S…が同心状に形成されており、これら同心状に形成された円弧状スリット11S、11S…は、鉄心片11の半径方向における間隔を変化させない態様で形成され、さらに円弧状スリット11S、11S…のグループは、上記回転軸孔11oの周囲に間隔をおいて複数組、実施例においては4組のグループが形成されている。   Further, in the rotor laminated core 10, the rotating shaft hole 11 o side is projected on each of the core pieces 11, 11... In order to form a magnetic path in the magnetic salient pole direction and a magnetic path in the non-salient pole direction. Are formed concentrically, and the concentric arc slits 11S, 11S,... Are formed in a manner that does not change the distance in the radial direction of the iron core piece 11. Further, a plurality of groups of arc-shaped slits 11S, 11S... Are formed around the rotation shaft hole 11o at intervals, and four groups are formed in the embodiment.

上記構成により、円弧状スリット11S、11S…の延設方向に沿って、磁束の流れ易い突極方向(d−d軸)の磁路が形成され、また円弧状スリット11S、11S…の並設方向に沿って、磁束が流れ難い非突極方向(q−q軸)の磁路が形成され、かくして上記回転子積層鉄心10は、突極方向と非突極方向とのインダクタンスの差に基づいて生じるリラクタンストルクにより回転することとなる。   With the above configuration, a magnetic path in the salient pole direction (dd axis) in which the magnetic flux easily flows is formed along the extending direction of the arc-shaped slits 11S, 11S, and the arc-shaped slits 11S, 11S,. A magnetic path in the non-salient pole direction (qq axis) in which the magnetic flux hardly flows is formed along the direction, and thus the rotor laminated core 10 is based on the difference in inductance between the salient pole direction and the non-salient pole direction. Rotation occurs due to reluctance torque generated.

なお、図1〜図4に示した実施例の回転子積層鉄心10は、上述した4組のグループ毎に5本の円弧状スリット11S、11S…を形成しているに留まり、スリット幅およびスリット間隔の狭い多数の円弧状スリットを設けた、いわゆる多層スリットを採用して成る回転子積層鉄心には相当するものではない。   In addition, the rotor laminated core 10 of the embodiment shown in FIGS. 1 to 4 is limited to forming the five arc-shaped slits 11S, 11S... This does not correspond to a rotor laminated iron core that employs a so-called multilayer slit provided with a large number of arc-shaped slits having a narrow interval.

ここで、上述した回転子積層鉄心10では、図2に示す如く、各円弧状スリット11S、11S…の端部11Se、11Se…において、互いに隣合う端部11Se同士の中心角は、全周に亘って等しく設定されており、具体的には後述する理由に基づき、中心角を9°(deg)に設定された態様で、各端部11Se、11Se…が配置形成されている。   Here, in the rotor laminated core 10 described above, as shown in FIG. 2, in the end portions 11Se, 11Se... Of each arc-shaped slit 11S, 11S. The end portions 11Se, 11Se,... Are arranged and formed in such a manner that the center angle is set to 9 ° (deg) based on the reason described later.

かくして、図3に示す如く各円弧状スリット11S、11S…の端部11Se、11Se…は、回転子積層鉄心10(鉄心片11)の全周に亘って、互いに同一のピッチp、p…で等間隔に配置形成されている。   Thus, as shown in FIG. 3, the end portions 11Se, 11Se,... Of the arc-shaped slits 11S, 11S,... Have the same pitches p, p ... over the entire circumference of the rotor laminated core 10 (iron core piece 11). They are arranged at regular intervals.

因みに、回転子積層鉄心10における各円弧状スリット11S、11S…の端部11Se、11Se…は、図4に想像線(二点鎖線)で示す如く、インダクションモータのロータリスロットRS、RS…と等価的に考えることができる。   Incidentally, end portions 11Se, 11Se... Of each arc-shaped slit 11S, 11S... In the rotor laminated core 10 are equivalent to rotary slots RS, RS... Of the induction motor as shown by imaginary lines (two-dot chain lines) in FIG. Can think about it.

したがって、本発明に関わるリラクタンスモータの回転子積層鉄心Aにおいて、モータ稼働時における回転子のトルク変動を小さく抑えるには、インダクションモータの設計時に使用される、下記1の式〜5の式、およびリラクタンスモータの設計時に使用される、下記6の式による回転子/固定子のスロット数の組合せ式を満足するよう、端部11Se、11Se…の形成個数を決定すると同時に、各端部11Se、11Se…を等間隔に配置形成している。   Therefore, in the rotor laminated core A of the reluctance motor according to the present invention, in order to suppress the torque fluctuation of the rotor when the motor is operating, the following formulas 1 to 5 used when designing the induction motor, and The number of formed end portions 11Se, 11Se,... Is determined so as to satisfy the rotor / stator slot number combination formula according to the following formula 6 used when designing the reluctance motor. At the same time, each end portion 11Se, 11Se is determined. Are arranged at equal intervals.

ここで、上記スロット数の不適当な組合せ式は、下記のとおりである。
1の式は、Zr≠Zs
2の式は、Zr≠Zs±極数
3の式は、Zr≠Zs±1
4の式は、Zr≠Zs+極数±1
5の式は、Zr≠Zs−極数±1
6の式は、Zr/極数=自然数(1,2,3,…)
(Zr:ロータのスリット端部の個数、Zs:ステータのスロット数)。
Here, an inappropriate combination formula of the number of slots is as follows.
The formula of 1 is Zr ≠ Zs
The formula of 2 is Zr ≠ Zs ± the number of poles The formula of 3 is Zr ≠ Zs ± 1
The equation of 4 is Zr ≠ Zs + the number of poles ± 1
The formula of 5 is Zr ≠ Zs−number of poles ± 1
Equation 6 is Zr / number of poles = natural number (1, 2, 3,...)
(Zr: number of slit end portions of rotor, Zs: number of slots of stator).

実施例における4極48スロットの場合を例に挙げると、円弧状スリット11Sにおける端部11Seの個数Zrを決定する場合、「回転子の端部11Seの個数Zr」と「固定子のスロット数Zs」との間で不適当な組合せによる値は以下の通りなので、40〜50の中でZrの採り得る値は、「40」、「41」、「46」、「50」となる。
Zr≠Zs=48
Zr≠Zs±極数=48±4=44,52
Zr≠Zs±1=48±1=47,49
Zr≠Zs+極数±1=48+4±1=51,53
Zr≠Zs−極数±1=48−4±1=43,45
ここで、Zrは極数4で割り切れる必要があるため、この中で採用可能な値は「40」であり、この結果、隣接する端部11Se、11Seの間隔は、360°/40=9°(deg)となる。
Taking the case of 4 poles and 48 slots in the embodiment as an example, when determining the number Zr of the end portions 11Se in the arc-shaped slit 11S, “the number Zr of the end portions 11Se of the rotor” and “the number of slots Zs of the stator”. Since the values due to an inappropriate combination with “” are as follows, the possible values of Zr among 40 to 50 are “40”, “41”, “46”, and “50”.
Zr ≠ Zs = 48
Zr ≠ Zs ± number of poles = 48 ± 4 = 44,52
Zr ≠ Zs ± 1 = 48 ± 1 = 47,49
Zr ≠ Zs + number of poles ± 1 = 48 + 4 ± 1 = 51,53
Zr ≠ Zs−number of poles ± 1 = 48−4 ± 1 = 43,45
Here, since Zr needs to be divisible by the number of poles 4, the value that can be adopted among them is “40”. As a result, the interval between the adjacent end portions 11Se and 11Se is 360 ° / 40 = 9 °. (deg).

上述した構成の回転子積層鉄心10によれば、複数の円弧状スリット11S、11S…の端部11Se、11Se…を、鉄心片11の全周に亘って等間隔に形成したことによって、モータ稼働時における回転子のトルク変動を小さく抑えることが可能となり、さらにモータの設計段階において、トルク変動の程度を予め推測することが可能となる効果も得られる。   According to the rotor laminated core 10 having the above-described configuration, the end portions 11Se, 11Se,... Of the plurality of arc-shaped slits 11S, 11S,. It is possible to reduce the torque fluctuation of the rotor at the time, and it is possible to obtain an effect that it is possible to estimate the degree of torque fluctuation in advance at the motor design stage.

また、上述した構成の回転子積層鉄心10では、スリット幅およびスリット間隔の狭い多層スリット構造を採用することなく、言い換えれば、多層スリット構造を採用することに起因する、剛性の低さ故の耐遠心力性の低下や、打抜き形成時における金型刃物の摩耗、および寸法精度の低下をも未然に防止することができる。   Further, in the rotor laminated core 10 having the above-described configuration, the multi-layer slit structure having a narrow slit width and slit interval is not adopted, in other words, the resistance due to low rigidity due to the adoption of the multi-layer slit structure. It is possible to prevent a decrease in centrifugal force, wear of the die cutter during punching, and a decrease in dimensional accuracy.

さらに、上述した構成の回転子積層鉄心10によれば、多層スリット構造を採用した場合における、加工歪みの増加に伴う電磁鋼板の特性劣化を抑える為の焼鈍に伴う製造工程の煩雑化や、コストアップ等の不都合をも未然に防止することが可能となる。   Furthermore, according to the rotor laminated core 10 having the above-described configuration, when the multilayer slit structure is adopted, the manufacturing process is complicated and the cost is reduced due to the annealing for suppressing the deterioration of the properties of the electrical steel sheet due to the increase in processing strain. It is possible to prevent inconveniences such as up.

図5は、本発明に関わるリラクタンスモータ用回転子積層鉄心の第2実施例を示しており、この回転子積層鉄心(リラクタンスモータ用回転子積層鉄心)20は、所定枚数の鉄心片21、21…を積層し、これら鉄心片21、21…を一体化することによって構成され、その中央部には回転軸孔20Oが開口している。   FIG. 5 shows a second embodiment of a rotor laminated core for a reluctance motor according to the present invention, and this rotor laminated core (rotor laminated core for a reluctance motor) 20 has a predetermined number of core pieces 21, 21. Are laminated and these iron core pieces 21, 21 ... are integrated, and a rotation shaft hole 20O is opened at the center.

また、上記回転子積層鉄心20では、各々の鉄心片21、21…に、回転軸孔21o側を凸とした複数の円弧状スリット21S、21S…が形成されており、これら円弧状スリット21S、21S…は、個々に曲率が相違しているとともに、鉄心片21の半径方向における間隔を変化させる態様で形成されている。   Further, in the rotor laminated core 20, a plurality of arc-shaped slits 21S, 21S... Having convex on the rotating shaft hole 21o side are formed in each of the core pieces 21, 21. 21S... Are formed in such a manner that the curvatures thereof are individually different and the interval in the radial direction of the iron core piece 21 is changed.

さらに、各円弧状スリット21S、21S…の端部21Se、21Se…は、互いに隣合う端部21Se同士の中心角が全周に亘って等しく設定されており、もって各々の端部21Se、21Se…は、回転子積層鉄心20(鉄心片21)の全周に亘って、互いに同一のピッチp、p…で等間隔に配置形成されている。   Further, the end portions 21Se, 21Se,... Of the arcuate slits 21S, 21S,... Are set so that the center angles of the adjacent end portions 21Se are set to be equal over the entire circumference, so that the end portions 21Se, 21Se,. Are arranged at equal intervals with the same pitch p, p... Over the entire circumference of the rotor laminated core 20 (iron core piece 21).

上述した回転子積層鉄心20の構成は、各円弧状スリット21S、21S…の平面形状およびレイアウト以外、第1実施例(図1〜図4)に示した回転子積層鉄心10と変わる所はない。   The configuration of the rotor laminated core 20 described above is the same as the rotor laminated core 10 shown in the first embodiment (FIGS. 1 to 4) except for the planar shape and layout of the arc-shaped slits 21S, 21S. .

もって、上述した構成の回転子積層鉄心20によれば、第1実施例の回転子積層鉄心10と同様に、複数の円弧状スリット21Sの端部21Se、21Se…を、鉄心片21の全周に亘って等間隔に形成したことにより、スリット幅およびスリット間隔の狭い多層スリット構造を採用することなく、言い換えれば、多層スリット構造を採用することに起因する、耐遠心力性の低下、打抜き形成時における金型刃物の摩耗や寸法精度の低下、電磁鋼板の特性劣化を抑える為の焼鈍に伴う製造工程の煩雑化やコストアップ等の不都合を招くことなく、モータ稼働時における回転子のトルク変動を小さく抑えることが可能となる。   Therefore, according to the rotor laminated core 20 having the above-described configuration, the end portions 21Se, 21Se,... By adopting a multilayer slit structure with a narrow slit width and slit interval, in other words, due to the adoption of the multilayer slit structure, the centrifugal force resistance is reduced and the punching is formed. Torque fluctuations of the rotor during motor operation without incurring inconveniences such as complication of the manufacturing process and cost increase due to annealing to suppress the deterioration of the characteristics of the magnetic steel sheet and deterioration of the dimensional accuracy of the die cutter Can be kept small.

図6は、本発明に関わるリラクタンスモータ用回転子積層鉄心の第3実施例を示しており、この回転子積層鉄心(リラクタンスモータ用回転子積層鉄心)30は、所定枚数の鉄心片31、31…を積層し、これら鉄心片31、31…を一体化することによって構成され、その中央部には回転軸孔30Oが開口している。   FIG. 6 shows a third embodiment of a rotor laminated core for a reluctance motor according to the present invention. This rotor laminated core (rotor laminated core for a reluctance motor) 30 has a predetermined number of core pieces 31, 31. Are laminated and these iron core pieces 31, 31 are integrated, and a rotation shaft hole 30O is opened at the center.

また、上記回転子積層鉄心30においては、各々の鉄心片31、31…に、回転軸孔31o側を凸とした複数の円弧状スリット31S、31S…が形成されており、これら円弧状スリット31S、31S…は、両方の端部31Se、31Seを尖らせた、略三日月形の平面形状を呈する態様で形成されている。   Further, in the rotor laminated core 30, a plurality of arc-shaped slits 31S, 31S... Having convex on the rotating shaft hole 31o side are formed in each of the core pieces 31, 31. , 31S... Are formed in such a manner that they have a substantially crescent-shaped planar shape with both end portions 31Se and 31Se sharpened.

さらに、各円弧状スリット31S、31S…の端部31Se、31Se…は、互いに隣合う端部31Se同士の中心角が全周に亘って等しく設定されており、もって各々の端部31Se、31Se…は、回転子積層鉄心30(鉄心片31)の全周に亘って、互いに同一のピッチp、p…で等間隔に配置形成されている。   Further, the end portions 31Se, 31Se,... Of the arc-shaped slits 31S, 31S,... Are set so that the center angles of the adjacent end portions 31Se are the same over the entire circumference, so that the end portions 31Se, 31Se,. Are arranged at equal intervals at the same pitch p, p... Over the entire circumference of the rotor laminated core 30 (iron core piece 31).

言い換えれば、上記回転子積層鉄心30は、各円弧状スリット31S、31S…の平面形状以外、第1実施例(図1〜図4)の回転子積層鉄心10と変わる所はない。   In other words, the rotor laminated core 30 is not different from the rotor laminated core 10 of the first embodiment (FIGS. 1 to 4) except for the planar shape of each arc-shaped slit 31S, 31S.

もって、上述した構成の回転子積層鉄心20によれば、第1実施例の回転子積層鉄心10と同様に、複数の円弧状スリット31Sの端部31Se、31Se…を、鉄心片31の全周に亘って等間隔に形成したことにより、スリット幅およびスリット間隔の狭い多層スリット構造を採用することなく、言い換えれば、多層スリット構造を採用することに起因する、耐遠心力性の低下、打抜き形成時における金型刃物の摩耗や寸法精度の低下、電磁鋼板の特性劣化を抑える為の焼鈍に伴う製造工程の煩雑化やコストアップ等の不都合を招くことなく、モータ稼働時における回転子のトルク変動を小さく抑えることが可能となる。   Therefore, according to the rotor laminated core 20 having the above-described configuration, the end portions 31Se, 31Se,... Of the plurality of arc-shaped slits 31S are arranged around the entire circumference of the core piece 31 in the same manner as the rotor laminated core 10 of the first embodiment. By adopting a multilayer slit structure with a narrow slit width and slit interval, in other words, due to the adoption of the multilayer slit structure, the centrifugal force resistance is reduced and the punching is formed. Torque fluctuations of the rotor during motor operation without incurring inconveniences such as complication of the manufacturing process and cost increase due to annealing to suppress the deterioration of the characteristics of the magnetic steel sheet and deterioration of the dimensional accuracy of the die cutter Can be kept small.

(a)および(b)は、本発明に関わるリラクタンスモータ用回転子積層鉄心の第1実施例を示す外観平面図および外観側面図。(a) And (b) is the external appearance top view and external appearance side view which show 1st Example of the rotor laminated iron core for reluctance motors concerning this invention. 図1のリラクタンスモータ用回転子積層鉄心を示す全体平面図。The whole top view which shows the rotor lamination | stacking iron core for reluctance motors of FIG. 図1のリラクタンスモータ用回転子積層鉄心を示す要部平面図。The principal part top view which shows the rotor lamination | stacking iron core for reluctance motors of FIG. 図1のリラクタンスモータ用回転子積層鉄心を示す要部平面図。The principal part top view which shows the rotor lamination | stacking iron core for reluctance motors of FIG. (a)および(b)は、本発明に関わるリラクタンスモータ用回転子積層鉄心の第2実施例を示す要部平面図。(a) And (b) is a principal part top view which shows 2nd Example of the rotor lamination | stacking iron core for reluctance motors concerning this invention. (a)および(b)は、本発明に関わるリラクタンスモータ用回転子積層鉄心の第3実施例を示す要部平面図。(a) And (b) is a principal part top view which shows 3rd Example of the rotor lamination | stacking iron core for reluctance motors concerning this invention. (a)および(b)は、従来のリラクタンスモータ用回転子積層鉄心の外観平面図および外観側面図。(a) And (b) is an external appearance top view and external appearance side view of the conventional rotor lamination | stacking iron core for reluctance motors. 従来のリラクタンスモータ用回転子積層鉄心の要部平面図。The principal part top view of the conventional rotor lamination | stacking iron core for reluctance motors.

符号の説明Explanation of symbols

10…リラクタンスモータ用回転子積層鉄心、
11…鉄心片、
11S…円弧状スリット、
11Se…端部、
20…リラクタンスモータ用回転子積層鉄心、
21…鉄心片、
21S…円弧状スリット、
21Se…端部、
30…リラクタンスモータ用回転子積層鉄心、
31…鉄心片、
31S…円弧状スリット、
31Se…端部。
10 ... Rotor laminated core for reluctance motor,
11 ... Iron core piece,
11S: Arc-shaped slit,
11Se ... end,
20 ... Rotor laminated core for reluctance motor,
21 ... Iron core piece,
21S ... arc-shaped slit,
21Se ... end,
30 ... Rotor laminated core for reluctance motor,
31 ... Iron core piece,
31S: Arc-shaped slit,
31Se ... end.

Claims (1)

回転軸孔側を凸とした複数の円弧状スリットを同心状に形成するとともに、前記複数の円弧状スリットを前記回転軸孔の周囲に間隔をおいて形成した鉄心片を積層して成り、前記円弧状スリットの延設方向に沿って磁束が流れ易い突極方向と、前記円弧状スリットの並設方向に沿って磁束が流れ難い非突極方向とのインダクタンスの差に基づいて生じるリラクタンストルクにより回転するリラクタンスモータ用回転子積層鉄心において、
前記複数の円弧状スリットの端部を前記鉄心片の全周に亘って等間隔に形成したことを特徴とするリラクタンスモータ用回転子積層鉄心。
A plurality of arc-shaped slits convex on the rotating shaft hole side are formed concentrically, and the plurality of arc-shaped slits are formed by laminating iron core pieces formed at intervals around the rotating shaft hole, Due to the reluctance torque generated based on the difference in inductance between the salient pole direction in which the magnetic flux easily flows along the extending direction of the arc-shaped slit and the non-salient pole direction in which the magnetic flux does not easily flow along the parallel direction of the arc-shaped slit. In the rotor laminated core for rotating reluctance motor,
A rotor laminated core for a reluctance motor, wherein ends of the plurality of arc-shaped slits are formed at equal intervals over the entire circumference of the core piece.
JP2007241208A 2007-09-18 2007-09-18 Rotor laminated core for reluctance motor Pending JP2009077458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241208A JP2009077458A (en) 2007-09-18 2007-09-18 Rotor laminated core for reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241208A JP2009077458A (en) 2007-09-18 2007-09-18 Rotor laminated core for reluctance motor

Publications (1)

Publication Number Publication Date
JP2009077458A true JP2009077458A (en) 2009-04-09

Family

ID=40611914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241208A Pending JP2009077458A (en) 2007-09-18 2007-09-18 Rotor laminated core for reluctance motor

Country Status (1)

Country Link
JP (1) JP2009077458A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177565A1 (en) * 2014-05-23 2015-11-26 Technelec Ltd Synchronous reluctance machine
WO2016139991A1 (en) * 2015-03-03 2016-09-09 三菱電機株式会社 Reluctance motor, and method for manufacturing rotor core used in reluctance motor
CN109997290A (en) * 2016-10-11 2019-07-09 东芝产业机器系统株式会社 Synchronous reluctance type rotating electric machine
CN110880818A (en) * 2018-09-05 2020-03-13 日本电产株式会社 Rotor and motor having the same
DE112019007071T5 (en) 2019-03-22 2021-12-16 Mitsubishi Electric Corporation SYNCHRONOUS RELUCTANCE MOTOR
CN113853724A (en) * 2019-05-22 2021-12-28 西门子股份公司 Four-pole synchronous reluctance motor
WO2022242901A1 (en) 2021-05-19 2022-11-24 Sew-Eurodrive Gmbh & Co. Kg Electric motor having rotor shaft and laminated core

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303357A (en) * 1994-05-02 1995-11-14 Okuma Mach Works Ltd Synchronous motor
JP2001136717A (en) * 1999-11-04 2001-05-18 Okuma Corp Reluctance motor
JP2001258222A (en) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp Reluctance motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303357A (en) * 1994-05-02 1995-11-14 Okuma Mach Works Ltd Synchronous motor
JP2001136717A (en) * 1999-11-04 2001-05-18 Okuma Corp Reluctance motor
JP2001258222A (en) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp Reluctance motor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106575891A (en) * 2014-05-23 2017-04-19 泰克尼莱克有限公司 Synchronous reluctance machine
JP2017517243A (en) * 2014-05-23 2017-06-22 テクネレック リミテッド Synchronous reluctance machine
US9917481B2 (en) 2014-05-23 2018-03-13 Technelec Ltd Synchronous reluctance machine
CN106575891B (en) * 2014-05-23 2018-10-09 泰克尼莱克有限公司 Synchronous reluctance machine
WO2015177565A1 (en) * 2014-05-23 2015-11-26 Technelec Ltd Synchronous reluctance machine
WO2016139991A1 (en) * 2015-03-03 2016-09-09 三菱電機株式会社 Reluctance motor, and method for manufacturing rotor core used in reluctance motor
JPWO2016139991A1 (en) * 2015-03-03 2017-06-08 三菱電機株式会社 Reluctance motor and method for manufacturing rotor core used in reluctance motor
CN107431393A (en) * 2015-03-03 2017-12-01 三菱电机株式会社 The manufacture method of reluctance motor and the rotor core used in reluctance motor
US10389193B2 (en) 2015-03-03 2019-08-20 Mitsubishi Electric Corporation Reluctance motor and manufacturing method for rotor core used in reluctance motor
CN109997290B (en) * 2016-10-11 2021-06-01 东芝产业机器系统株式会社 Synchronous reluctance type rotating electric machine
CN109997290A (en) * 2016-10-11 2019-07-09 东芝产业机器系统株式会社 Synchronous reluctance type rotating electric machine
US10778052B2 (en) 2016-10-11 2020-09-15 Toshiba Industrial Products And Systems Corporation Synchronous reluctance type rotary electric machine
CN110880818A (en) * 2018-09-05 2020-03-13 日本电产株式会社 Rotor and motor having the same
US11881746B2 (en) 2018-09-05 2024-01-23 Nidec Corporation Rotor and motor having rotor
DE112019007071T5 (en) 2019-03-22 2021-12-16 Mitsubishi Electric Corporation SYNCHRONOUS RELUCTANCE MOTOR
US11881749B2 (en) 2019-03-22 2024-01-23 Mitsubishi Electric Corporation Synchronous reluctance motor
CN113853724A (en) * 2019-05-22 2021-12-28 西门子股份公司 Four-pole synchronous reluctance motor
CN113853724B (en) * 2019-05-22 2024-04-09 西门子股份公司 Quadrupole synchronous reluctance motor
WO2022242901A1 (en) 2021-05-19 2022-11-24 Sew-Eurodrive Gmbh & Co. Kg Electric motor having rotor shaft and laminated core
DE102022001424A1 (en) 2021-05-19 2022-11-24 Sew-Eurodrive Gmbh & Co Kg Electric motor with rotor shaft and laminated core

Similar Documents

Publication Publication Date Title
CN210350875U (en) Motor rotor having asymmetric magnetic poles and motor using the same
JP2009077458A (en) Rotor laminated core for reluctance motor
JP5620759B2 (en) Electric machine
JP5231082B2 (en) Rotating electrical machine rotor
JP6279763B2 (en) Induction motor
JP2009273304A (en) Rotor of rotating electric machine, and rotating electric machine
JP5201899B2 (en) Rotor laminated core for reluctance motor
JP5660058B2 (en) Core block, stator, rotating electric machine, and manufacturing method of core block
JP5573742B2 (en) Manufacturing method of split core of stator core for rotating electrical machine
JP2011193689A (en) Method of manufacturing armature core
JP2006014575A (en) Stator structure of motor
JP5319159B2 (en) Basket type rotor
JP2011078210A (en) Stator core and method of manufacturing the same
JP5860760B2 (en) Brushless motor and method for manufacturing brushless motor
WO2018025428A1 (en) Stator, stator manufacturing method, axial gap motor, and electric pump
JP5039482B2 (en) Rotor laminated core for reluctance motor
JPWO2014002181A1 (en) Permanent magnet type rotating electric machine and manufacturing method thereof
JP2010068548A (en) Motor
JP6272550B2 (en) Reluctance motor and method for manufacturing rotor core used in reluctance motor
JP2006304567A (en) Method for manufacturing teeth, motor, rotor and method of manufacturing stator
JP2006025572A (en) Magnets-embedded motor
JP6814694B2 (en) Rotor core and synchronous reluctance motor
CN112534680A (en) Rotor for an electrical machine and electrical machine comprising said rotor
CN108233569B (en) Rotor and motor with same
JP5894036B2 (en) Brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100714

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016