JP2009074115A - Method for producing lead sulfate - Google Patents

Method for producing lead sulfate Download PDF

Info

Publication number
JP2009074115A
JP2009074115A JP2007241971A JP2007241971A JP2009074115A JP 2009074115 A JP2009074115 A JP 2009074115A JP 2007241971 A JP2007241971 A JP 2007241971A JP 2007241971 A JP2007241971 A JP 2007241971A JP 2009074115 A JP2009074115 A JP 2009074115A
Authority
JP
Japan
Prior art keywords
leaching
nitric acid
lead
solution
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007241971A
Other languages
Japanese (ja)
Inventor
Kosuke Inoguchi
康祐 井野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2007241971A priority Critical patent/JP2009074115A/en
Publication of JP2009074115A publication Critical patent/JP2009074115A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing lead sulfate where, from powder comprising lead, copper and tin such as dross generated in a lead refining stage, lead is recovered at a high recovery rate, so as to produce lead sulfate. <P>SOLUTION: While blowing oxygen or air into a nitric acid aqueous solution, powder comprising lead, copper and tin in metal form is added thereto, its pH is held to the range of 0.7 to 4.0, preferably of 1.5 to 3.5, temperature is held to 10 to 100°C, preferably to ≤50°C, oxidative leaching is performed, thereafter, it is subjected to solid-liquid separation, so as to be separated into a leaching residue comprising copper and tin and a leachate comprising lead, sulfuric acid is added to the leachate, so as to generate lead sulfate and to regenerate a nitric acid aqueous solution, subsequently, it is subjected to solid-liquid separation, the generated lead sulfate and the regenerated nitric acid aqueous solution are separated and recovered, and the regenerated nitric acid aqueous solution is used for leaching. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、硫酸鉛の製造方法に関し、特に、鉛精錬工程で発生したドロスなどの鉛と銅と錫を含む粉末から硫酸鉛を製造する方法に関する。   The present invention relates to a method for producing lead sulfate, and more particularly to a method for producing lead sulfate from a powder containing lead and copper and tin, such as dross generated in a lead refining process.

鉛製錬工程では、鉛(Pb)原料を溶解還元して粗鉛を製造する工程(還元炉内の工程)において、原料中に含まれる銅(Cu)や錫(Sn)なども還元されて粗鉛に混入する。このような不純物が混入した粗鉛は、還元炉から抽出された後、粗鉛の温度を下げて銅の溶解度を下げることによって、銅が析出(溶離)して粗鉛から取り除かれる。このとき、鉛中の錫の濃度によっては、銅と錫が金属間化合物を形成して析出する。この析出物は、粉末状で、一般にドロスと言われている。   In the lead smelting process, copper (Cu), tin (Sn), etc. contained in the raw material are also reduced in the process of dissolving and reducing lead (Pb) raw material to produce crude lead (step in the reduction furnace). Mixed with crude lead. After the crude lead mixed with such impurities is extracted from the reduction furnace, the temperature of the crude lead is lowered to lower the solubility of copper, whereby copper is precipitated (eluted) and removed from the crude lead. At this time, depending on the concentration of tin in the lead, copper and tin form an intermetallic compound and precipitate. This deposit is in the form of powder and is generally referred to as dross.

このようなドロスは、一般にCu10〜30%、Sn10〜30%、Pb30〜40%の品位であり、Pbは粗鉛(Sn、Sbなどを固溶したメタル)、CuはSnとの金属間化合物(主にCuSn)、SnはCuとの化合物やSnOの形態で存在している。 Such dross generally has a grade of Cu 10-30%, Sn 10-30%, and Pb 30-40%, Pb is crude lead (metal in which Sn, Sb, etc. are dissolved), and Cu is an intermetallic compound with Sn. (Mainly Cu 3 Sn), Sn exists in the form of a compound with Cu or SnO 2 .

このような鉛製錬工程で発生した銅や錫を含むドロスから銅を分離する方法として、ドロスとパイライト(硫化鉄)を混合して溶融還元し、マットと粗鉛に分離することによって、マット中に濃縮された銅を鉛から分離する方法が知られている。この方法では、鉛製錬工程で不純物となる錫が粗鉛中に多く分配されるため、鉛から錫を分離することができず、別途ハリス法や酸化などの方法で錫を分離する必要がある。   As a method for separating copper from dross containing copper and tin generated in such a lead smelting process, the dross and pyrite (iron sulfide) are mixed, melted and reduced, and separated into mat and crude lead. Methods are known for separating copper concentrated therein from lead. In this method, a large amount of tin, which is an impurity in the lead smelting process, is distributed in the crude lead, so it is not possible to separate tin from lead, and it is necessary to separate tin by a method such as the Harris method or oxidation. is there.

また、このようなドロスを硫酸溶液で浸出する方法も考えられるが、CuとSnが化合物を形成している場合には、特に浸出が困難であり、また、硫酸濃度150g/L、温度80℃程度で酸化浸出しても、Cu浸出率は70%程度であり、Snは酸化錫になって浸出されないため、鉛と錫を分離することができない。また、Cuを浸出した場合には、電解または置換によってCuを回収することができるが、電解の場合には設備負担が大きく、Feなどで置換する場合には硫酸鉄溶液の処理が必要になる。   A method of leaching such dross with a sulfuric acid solution is also conceivable. However, when Cu and Sn form a compound, the leaching is particularly difficult, and the sulfuric acid concentration is 150 g / L and the temperature is 80 ° C. Even if oxidative leaching is performed to the extent, the Cu leaching rate is about 70%, and Sn cannot be leached as tin oxide, so that lead and tin cannot be separated. In addition, when Cu is leached, Cu can be recovered by electrolysis or substitution. However, in the case of electrolysis, the equipment burden is large, and when replacing with Fe or the like, it is necessary to treat the iron sulfate solution. .

また、銅製錬工程において転炉で生成するダストの浸出で得られる鉛滓(鉛、錫およびビスマスを含む鉛滓)を炭酸化し、得られた炭酸化滓(鉛、錫およびビスマスを含む炭酸化滓)を硝酸に溶解し、その際、炭酸化滓を終点pH1〜3になるように追加添加し、鉛を含む硝酸溶解液と、錫とビスマスを含む硝酸溶解残渣を生成し、鉛を含む硝酸溶解液を硫酸化して鉛を含む精鉛滓を回収し、錫とビスマスを含む硝酸溶解残渣を塩酸溶解して錫を含む塩酸溶解残渣を錫原料とし、ビスマスを含む塩酸溶解液からビスマスを回収する方法が提案されている(例えば、特許文献1参照)。   Also, carbonation of lead soot (lead soot containing lead, tin and bismuth) obtained by leaching of dust generated in the converter in the copper smelting process, and carbonation soot obtained (carbonation containing lead, tin and bismuth) Ii) is dissolved in nitric acid, and at that time, carbonated soot is additionally added so as to have an end point of pH 1 to 3 to produce a nitric acid solution containing lead and a nitric acid solution residue containing tin and bismuth and containing lead. The nitric acid solution is sulphated to recover the fine lead slag containing lead, the nitric acid solution residue containing tin and bismuth is dissolved in hydrochloric acid, and the hydrochloric acid solution residue containing tin is used as a tin raw material. A method of collecting has been proposed (see, for example, Patent Document 1).

特開2000−109939号公報(段落番号0007−0008)Japanese Unexamined Patent Publication No. 2000-109939 (paragraph numbers 0007-0008)

上述したドロスを銅原料として既存の銅製錬設備(例えば転炉)に使用する場合には、Pbの含有量が多いので望ましくなく、Pbの回収率も極めて低い。また、特許文献1の方法では、鉛精錬工程で発生したドロスから高い回収率でPbを回収することができない。さらに、上述したドロスから安価且つ簡便な方法でPbのみを選択的に抽出し、鉛製錬工程の原料として望ましい形態で回収するとともに、CuとSnを分離回収して、CuとSnの回収に都合の良い中間製品にすることが望まれている。   When the above-described dross is used as a copper raw material in an existing copper smelting facility (for example, a converter), the Pb content is large, which is not desirable, and the Pb recovery rate is extremely low. Moreover, in the method of Patent Document 1, Pb cannot be recovered at a high recovery rate from dross generated in the lead refining process. Furthermore, only Pb is selectively extracted from the above dross by an inexpensive and simple method and recovered in a desirable form as a raw material for the lead smelting process, and Cu and Sn are separated and recovered to recover Cu and Sn. It is desired to make it a convenient intermediate product.

したがって、本発明は、このような従来の問題点に鑑み、鉛精錬工程で発生したドロスなどの鉛と銅と錫を含む粉末から安価且つ簡便な方法によって高回収率で鉛を回収して硫酸鉛を製造することができる、硫酸鉛の製造方法を提供することを目的とする。   Therefore, in view of such conventional problems, the present invention recovers lead from a powder containing lead and copper and tin, such as dross generated in the lead refining process, at a high recovery rate by a low-cost and simple method. It aims at providing the manufacturing method of lead sulfate which can manufacture lead.

本発明者らは、上記課題を解決するために鋭意研究した結果、鉛精錬工程で発生したドロスなどの鉛と銅と錫を含む粉末を硝酸水溶液中で酸化しながら浸出した後に固液分離して、銅と錫を含む浸出残渣と、鉛を含む浸出后液に分離し、この浸出后液に硫酸を添加して硫酸鉛を生成するとともに硝酸水溶液を再生した後に固液分離して、生成した硫酸鉛と再生された硝酸水溶液とを分離して回収することにより、鉛と銅と錫を含む粉末から安価且つ簡便な方法によって高回収率で鉛を回収して硫酸鉛を製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors conducted solid-liquid separation after leaching a powder containing lead and copper and tin such as dross generated in the lead refining process while oxidizing it in an aqueous nitric acid solution. And then separated into a leaching residue containing copper and tin and a post-leaching solution containing lead, and sulfuric acid is added to this post-leaching solution to produce lead sulfate, and a nitric acid aqueous solution is regenerated and then separated into solid and liquid. Separating lead sulfate and regenerated aqueous nitric acid solution to recover lead from a powder containing lead, copper and tin at a high recovery rate by an inexpensive and simple method to produce lead sulfate The present inventors have found that this can be done and have completed the present invention.

すなわち、本発明による硫酸鉛の製造方法は、鉛と銅と錫を含む粉末を硝酸水溶液中で酸化しながら浸出した後に固液分離して、銅と錫を含む浸出残渣と、鉛を含む浸出后液に分離し、この浸出后液に硫酸を添加して硫酸鉛を生成するとともに硝酸水溶液を再生した後に固液分離して、生成した硫酸鉛と再生された硝酸水溶液とを分離して回収することを特徴とする。   That is, the method for producing lead sulfate according to the present invention comprises leaching a powder containing lead, copper, and tin while oxidizing in an aqueous nitric acid solution, followed by solid-liquid separation, and a leaching residue containing copper and tin, and a leaching containing lead. Separated into post liquor, sulfuric acid was added to the liquid after leaching to produce lead sulfate, and after regenerating the nitric acid aqueous solution, solid-liquid separation was performed, and the produced lead sulfate and the regenerated nitric acid aqueous solution were separated and recovered. It is characterized by doing.

この硫酸鉛の製造方法において、再生された硝酸水溶液を浸出に使用するのが好ましく、硝酸水溶液中に酸素または空気を吹き込むことによって酸化を行うのが好ましい。また、鉛と銅と錫を含む粉末が、それぞれ金属形態の鉛、銅および錫を含む粉末であるのが好ましい。また、浸出の際に硝酸水溶液のpHを0.7〜4.0の範囲に保持するのが好ましく、1.5〜3.5の範囲に保持するのがさらに好ましい。さらに、浸出の際に硝酸水溶液の温度を10〜100℃の範囲に保持するのが好ましく、浸出の際に硝酸水溶液の温度を50℃以下に保持するのがさらに好ましい。   In this lead sulfate production method, it is preferable to use the regenerated aqueous nitric acid solution for leaching, and it is preferable to oxidize by blowing oxygen or air into the aqueous nitric acid solution. Moreover, it is preferable that the powder containing lead, copper, and tin is a powder containing lead, copper, and tin in metal form, respectively. Further, the pH of the aqueous nitric acid solution is preferably maintained in the range of 0.7 to 4.0 during leaching, and more preferably in the range of 1.5 to 3.5. Further, the temperature of the aqueous nitric acid solution is preferably maintained in the range of 10 to 100 ° C. during the leaching, and the temperature of the aqueous nitric acid solution is more preferably maintained at 50 ° C. or lower during the leaching.

本発明によれば、鉛精錬工程で発生したドロスなどの鉛と銅と錫を含む粉末から安価且つ簡便な方法によって高回収率で鉛を回収して硫酸鉛を製造することができる。また、硫酸鉛の製造の際に硝酸水溶液を再生して、硫酸鉛の製造に再利用することができる。   According to the present invention, lead sulfate can be produced by recovering lead at a high recovery rate from a powder containing lead such as dross generated in the lead refining process and copper and tin by an inexpensive and simple method. Further, the aqueous nitric acid solution can be regenerated during the production of lead sulfate and reused for the production of lead sulfate.

以下、図1を参照して、本発明による硫酸鉛の製造方法の実施の形態について説明する。   Hereinafter, an embodiment of a method for producing lead sulfate according to the present invention will be described with reference to FIG.

まず、鉛製錬の乾式精製工程などにおいて発生したSn、CuおよびPbを含むドロスを用意する。このドロスは、篩などによって分級して150μm以下にするのが好ましい。   First, a dross containing Sn, Cu, and Pb generated in a dry refining process of lead smelting is prepared. This dross is preferably classified to 150 μm or less by classification with a sieve or the like.

次に、硝酸水溶液(浸出元液)中に酸素または空気を吹き込み、撹拌しながらドロスを添加することにより、ドロスを酸化しながらPbを浸出する。この浸出では、硝酸の分解とCuの浸出を抑えるために、溶液のpHを好ましくは0.7〜4.0、さらに好ましくは1.5〜3.5に保持し、溶液の温度を好ましくは10〜100℃、さらに好ましくは15〜70℃、最も好ましくは50℃以下に保持する。なお、浸出の終点のpHを上記の範囲にしても、浸出初期においてフリー酸度が高い条件になっていれば、硝酸の分解とCuの溶出が起こるため、反応槽内のpHを常に上記の範囲に保持するのが好ましい。また、Snの一部は浸出されるが、酸化が進んで最終的にSnOとして沈殿し(Sn→Sn2+→Sn4+→SnO↓)、このとき、液中に溶出しているCuが置換反応によって固定される反応も起こる。 Next, oxygen or air is blown into an aqueous nitric acid solution (leaching source solution), and dross is added while stirring, thereby leaching Pb while oxidizing the dross. In this leaching, in order to suppress decomposition of nitric acid and Cu leaching, the pH of the solution is preferably maintained at 0.7 to 4.0, more preferably 1.5 to 3.5, and the temperature of the solution is preferably The temperature is maintained at 10 to 100 ° C, more preferably 15 to 70 ° C, and most preferably 50 ° C or less. Even if the pH of the leaching end point is in the above range, if the free acidity is high in the initial stage of leaching, the decomposition of nitric acid and the elution of Cu occur, so the pH in the reaction tank is always in the above range. Is preferably maintained. In addition, a part of Sn is leached, but oxidation proceeds and eventually precipitates as SnO 2 (Sn → Sn 2+ → Sn 4+ → SnO 2 ↓). At this time, Cu eluting in the liquid is removed. Reactions that are fixed by substitution reactions also occur.

次に、固液分離して浸出残渣(CuとSnを含む脱Pbドロス)と浸出后液(Pb浸出液)に分離する。   Next, it is separated into a leaching residue (Pb dross containing Cu and Sn) and a liquid after leaching (Pb leaching solution) by solid-liquid separation.

次に、浸出后液に硫酸を添加してPbを硫酸化した後に固液分離して、生成した硫酸鉛と再生された硝酸水溶液とを分離して回収することができる。この再生された硝酸水溶液は、上述した硝酸浸出に使用することができる。   Next, after leaching, sulfuric acid is added to the solution to sulphate Pb, followed by solid-liquid separation, and the produced lead sulfate and the regenerated nitric acid aqueous solution can be separated and recovered. This regenerated aqueous nitric acid solution can be used for the nitric acid leaching described above.

このように、鉛だけを選択的に浸出して固定することができるので、不純物の少ない鉛製錬原料を供給することもできる。また、回収した硝酸水溶液を上述したドロスを連続供給することによって反応槽内のpHを所定の範囲に保持してPbを浸出することができる。   Thus, since only lead can be selectively leached and fixed, a lead smelting raw material with less impurities can be supplied. Further, by continuously supplying the above-mentioned dross to the recovered aqueous nitric acid solution, the pH in the reaction vessel can be maintained within a predetermined range and Pb can be leached.

以下、本発明による硫酸鉛の製造方法の実施例について詳細に説明する。   Hereinafter, the Example of the manufacturing method of the lead sulfate by this invention is described in detail.

[実施例1]
まず、鉛製錬の乾式精製工程で発生したドロスを篩で分級して150μm以下のドロス(分級前のドロスの約70%の重量)を用意した。なお、分級後に得られたドロス70g中のSn、Cu、Pb、Sb、Inの重量(品位)は、表1に示すように、それぞれ16.43g(23.47%)、19.47g(27.82%)、25.36g(36.23%)、1.05g(1.50%)、0.39g(0.56%)であった。
[Example 1]
First, dross generated in the dry refining process of lead smelting was classified with a sieve to prepare dross of 150 μm or less (weight of about 70% of dross before classification). As shown in Table 1, the weight (quality) of Sn, Cu, Pb, Sb, and In in 70 g of dross obtained after classification was 16.43 g (23.47%) and 19.47 g (27, respectively). .82%), 25.36 g (36.23%), 1.05 g (1.50%), and 0.39 g (0.56%).

Figure 2009074115
Figure 2009074115

次に、水に硝酸を添加してNO 濃度22.88g/L(NO 16.02g)にした硝酸水溶液(浸出元液)700mL(pH0.7)中に、流量0.5L/分で酸素を吹き込み、ディスクタービンで攪拌して、上記のドロス70gを添加し、室温(15℃)で120分間浸出を行った後、固液分離した。なお、この浸出中に水分が蒸発して液量が減少するため、減少分の水を随時補充した。 Then adding nitric acid to water NO 3 - concentration 22.88g / L (NO 3 - 16.02g ) in the nitric acid aqueous solution (leach source solution) 700 mL (pH 0.7) in a flow rate 0.5 L / Oxygen was blown in for minutes, stirred with a disk turbine, 70 g of the dross was added, and leaching was performed for 120 minutes at room temperature (15 ° C.), followed by solid-liquid separation. In addition, since water | moisture content evaporated during this leaching and the amount of liquids decreased, the reduced amount of water was replenished at any time.

固液分離後に得られた浸出后液700mL(pH1.16)中に含まれるSn、Cu、Pb、Sb、In、NO の濃度(重量)は、表1に示すように、それぞれ0.00g/L(0.00g)、1.62g/L(1.13g)、34.04g/L(23.83g)、0.00g/L(0.00g)、0.03g/L(0.02g)、22.09g/L(15.46g)であり、浸出により0.56g(=16.02−15.46g)のNO のロスがあった。 As shown in Table 1, the concentrations (weights) of Sn, Cu, Pb, Sb, In, and NO 3 contained in 700 mL (pH 1.16) of the leached solution obtained after the solid-liquid separation were each 0. 00 g / L (0.00 g), 1.62 g / L (1.13 g), 34.04 g / L (23.83 g), 0.00 g / L (0.00 g), 0.03 g / L (0. 02g) and 22.09 g / L (15.46 g), and there was a loss of 0.56 g (= 16.02-15.46 g) of NO 3 due to leaching.

また、固液分離後に得られた浸出残渣46.83g中に含まれるSn、Cu、Pb、Sb、Inの重量(品位)は、表1に示すように、それぞれ16.43g(35.08%)、18.34g(39.17%)、1.53g(3.27%)、1.05g(2.24%)、0.37g(0.78%)であった。   Further, as shown in Table 1, the weight (quality) of Sn, Cu, Pb, Sb, and In contained in 46.83 g of the leaching residue obtained after the solid-liquid separation was 16.43 g (35.08%), respectively. ), 18.34 g (39.17%), 1.53 g (3.27%), 1.05 g (2.24%), and 0.37 g (0.78%).

したがって、表1に示すように、固液分離後のSn、Cu、Pb、Sb、Inの浸出后液と浸出残渣中の分配率は、それぞれ0.0%と100.0%、5.8%と94.2%、94.0%と6.0%、0.0%と100.0%、6.0%と94.0%であった。   Accordingly, as shown in Table 1, the distribution ratios in the leaching solution and the leaching residue of Sn, Cu, Pb, Sb, and In after solid-liquid separation are 0.0%, 100.0%, and 5.8, respectively. % And 94.2%, 94.0% and 6.0%, 0.0% and 100.0%, 6.0% and 94.0%.

次に、浸出后液に硫酸(SO 2−10.70g)11.9gを添加し、20℃で30分間攪拌した後、固液分離した。 Next, 11.9 g of sulfuric acid (SO 4 2− 10.70 g) was added to the solution after leaching, and the mixture was stirred at 20 ° C. for 30 minutes, and then separated into solid and liquid.

この固液分離後に得られた浸出后液710mL中に含まれるSn、Cu、Pb、Sb、In、NO 、SO 2−の濃度(重量)は、表2に示すように、それぞれ0.00g/L(0.00g)、1.52g/L(1.08g)、0.87g/L(0.62g)、0.00g/L(0.00g)、0.03g/L(0.02g)、22.09g/L(15.46g)、0.05g/L(0.04g)であり、浸出后液として硝酸水溶液が得られた。 As shown in Table 2, the concentrations (weights) of Sn, Cu, Pb, Sb, In, NO 3 , SO 4 2− contained in 710 mL of the leached solution obtained after the solid-liquid separation were 0 respectively. 0.000 g / L (0.00 g), 1.52 g / L (1.08 g), 0.87 g / L (0.62 g), 0.00 g / L (0.00 g), 0.03 g / L (0 0.02 g), 22.09 g / L (15.46 g), and 0.05 g / L (0.04 g), and an aqueous nitric acid solution was obtained as a solution after leaching.

また、固液分離後に得られた残渣(沈殿物)35.54g中に含まれるSn、Cu、Pb、Sb、Inの重量(品位)は、表2に示すように、それぞれ0.00g(0.00%)、0.05g(0.15%)、23.21g(65.30%)、0.00g(0.00%)、0.00g(0.00%)であり、残渣として硫酸鉛が得られた。   Further, as shown in Table 2, the weight (quality) of Sn, Cu, Pb, Sb, and In contained in 35.54 g of the residue (precipitate) obtained after the solid-liquid separation was 0.00 g (0 0.000), 0.05 g (0.15%), 23.21 g (65.30%), 0.00 g (0.00%), 0.00 g (0.00%), and sulfuric acid as a residue Lead was obtained.

Figure 2009074115
Figure 2009074115

このように、実施例1では、硝酸水溶液によるPb浸出率が94%と高く、Cu溶出量が1.13g(1.62g/L)と低く、硝酸分解量も0.56gと少なかった。また、この浸出后液に硫酸を添加することによって、不純物の少ない硫酸鉛からなる沈殿物と、硝酸水溶液を得ることができる。この硝酸水溶液は、再度ドロスの浸出に使用することができる。   Thus, in Example 1, the Pb leaching rate by the nitric acid aqueous solution was as high as 94%, the Cu elution amount was as low as 1.13 g (1.62 g / L), and the nitric acid decomposition amount was as small as 0.56 g. Further, by adding sulfuric acid to the solution after leaching, a precipitate composed of lead sulfate with few impurities and an aqueous nitric acid solution can be obtained. This aqueous nitric acid solution can be used again for dross leaching.

[比較例1]
実施例1と同様に、鉛製錬の乾式精製工程で発生したドロスを篩で分級して150μm以下のドロスを用意した。なお、分級後に得られたドロス70g中のSn、Cu、Pb、Sb、Inの重量(品位)は、表3に示すように、それぞれ16.81g(24.01%)、17.91g(25.58%)、19.22g(27.46%)、2.36g(3.37%)、0.30g(0.44%)であった。
[Comparative Example 1]
Similarly to Example 1, dross generated in the dry refining process of lead smelting was classified with a sieve to prepare dross of 150 μm or less. As shown in Table 3, the weight (quality) of Sn, Cu, Pb, Sb, and In in 70 g of dross obtained after classification was 16.81 g (24.01%) and 17.91 g (25 .58%), 19.22 g (27.46%), 2.36 g (3.37%), and 0.30 g (0.44%).

Figure 2009074115
Figure 2009074115

次に、水に硝酸を添加してNO 濃度105.02g/L(NO 73.51g)にした硝酸水溶液(浸出元液)700mL(pH−0.88)を70℃に加温し、その水溶液中に流量0.5L/分で酸素を吹き込み、ディスクタービンで攪拌して、上記のドロス70gを添加し、120分間浸出を行った後、固液分離した。なお、この浸出中に水分が蒸発して液量が減少するため、減少分の水を随時補充した。 Then adding nitric acid to water NO 3 - concentration 105.02g / L (NO 3 - 73.51g ) in the nitric acid aqueous solution (leach source liquid) 700mL (pH-0.88) warmed to 70 ° C. Then, oxygen was blown into the aqueous solution at a flow rate of 0.5 L / min, stirred by a disc turbine, 70 g of the dross was added, and leaching was performed for 120 minutes, followed by solid-liquid separation. In addition, since water | moisture content evaporated during this leaching and the amount of liquids decreased, the reduced amount of water was replenished at any time.

固液分離後に得られた浸出后液700mL(pH0.67)中に含まれるSn、Cu、Pb、Sb、In、NO の濃度(重量)は、表3に示すように、それぞれ0.00g/L(0.00g)、25.27g/L(17.69g)、26.23g/L(18.36g)、0.00g/L(0.00g)、0.05g/L(0.03g)、75.85g/L(53.10g)であり、浸出により20.41g(=73.51−53.10g)のNO のロスがあった。 As shown in Table 3, the concentrations (weights) of Sn, Cu, Pb, Sb, In, and NO 3 contained in 700 mL (pH 0.67) of the leached solution obtained after the solid-liquid separation were each set to 0. 00 g / L (0.00 g), 25.27 g / L (17.69 g), 26.23 g / L (18.36 g), 0.00 g / L (0.00 g), 0.05 g / L (0. 03 g) and 75.85 g / L (53.10 g), and there was a loss of 20.41 g (= 73.51-53.10 g) of NO 3 due to leaching.

また、固液分離後に得られた浸出残渣29.4g中に含まれるSn、Cu、Pb、Sb、Inの重量(品位)は、表3に示すように、それぞれ16.81g(57.18%)、0.22g(0.75%)、0.86g(2.93%)、2.36g(8.03%)、0.27g(0.93%)であった。   The weight (quality) of Sn, Cu, Pb, Sb, and In contained in 29.4 g of the leaching residue obtained after solid-liquid separation was 16.81 g (57.18%), as shown in Table 3. ), 0.22 g (0.75%), 0.86 g (2.93%), 2.36 g (8.03%), and 0.27 g (0.93%).

したがって、固液分離後のSn、Cu、Pb、Sb、Inの浸出后液と浸出残渣中の分配率は、表3に示すように、それぞれ0.0%と100.0%、98.8%と1.2%、95.5%と4.5%、0.0%と100.0%、10.6%と89.4であった。   Therefore, as shown in Table 3, the distribution ratios in the post-leaching solution of Sn, Cu, Pb, Sb, and In and the leaching residue after solid-liquid separation are 0.0%, 100.0%, and 98.8, respectively. % And 1.2%, 95.5% and 4.5%, 0.0% and 100.0%, 10.6% and 89.4.

このように、硝酸濃度と浸出温度を実施例1より高くした比較例1では、硝酸水溶液によるPb浸出率は95.5%であり、実施例1と同様に高かった。しかし、Cu溶出量は17.69g(25.27g/L)であり、実施例1と比べて非常に高く、また、硝酸分解量は20.41gであり、実施例1と比べて非常に多かった。   Thus, in Comparative Example 1 in which the nitric acid concentration and the leaching temperature were higher than in Example 1, the Pb leaching rate by the nitric acid aqueous solution was 95.5%, which was as high as in Example 1. However, the elution amount of Cu is 17.69 g (25.27 g / L), which is very high compared to Example 1, and the amount of nitric acid decomposition is 20.41 g, which is much higher than that of Example 1. It was.

[比較例2]
実施例1と同様に、鉛製錬の乾式精製工程で発生したドロスを篩で分級して150μm以下のドロスを用意した。なお、分級後に得られたドロス70g中のSn、Cu、Pb、Sb、Inの重量(品位)は、表4に示すように、それぞれ16.95g(24.21%)、20.24g(28.92%)、20.31g(29.01%)、2.54g(3.63%)、0.38g(0.55%)であった。
[Comparative Example 2]
Similarly to Example 1, dross generated in the dry refining process of lead smelting was classified with a sieve to prepare dross of 150 μm or less. As shown in Table 4, the weight (quality) of Sn, Cu, Pb, Sb, and In in 70 g of dross obtained after classification was 16.95 g (24.21%), 20.24 g (28 .92%), 20.31 g (29.01%), 2.54 g (3.63%), and 0.38 g (0.55%).

Figure 2009074115
Figure 2009074115

次に、水に硝酸を添加してNO 濃度14.26g/L(NO 9.98g)にした硝酸水溶液(浸出元液)700mL(pH0.54)を70℃に加温し、その水溶液中に流量0.5L/分で酸素を吹き込み、ディスクタービンで攪拌して、上記のドロス70gを添加し、120分間浸出を行った後、固液分離した。なお、この浸出中に水分が蒸発して液量が減少するため、減少分の水を随時補充した。 Then, water was added nitric acid NO 3 - concentration 14.26 g / L (NO 3 - 9.98 g) in the nitric acid aqueous solution (leach source solution) 700 mL of (PH0.54) was heated to 70 ° C., Oxygen was blown into the aqueous solution at a flow rate of 0.5 L / min, stirred with a disc turbine, 70 g of the dross was added, and leaching was performed for 120 minutes, followed by solid-liquid separation. In addition, since water | moisture content evaporated during this leaching and the amount of liquids decreased, the reduced amount of water was replenished at any time.

固液分離後に得られた浸出后液700mL(pH2.98)中に含まれるSn、Cu、Pb、Sb、In、NO の濃度(重量)は、表4に示すように、それぞれ0.00g/L(0.00g)、6.34g/L(4.44g)、27.02g/L(18.91g)、0.00g/L(0.00g)、0.00g/L(0.00g)、13.08g/L(9.16g)であり、浸出により0.82g(=9.98−9.16g)のNO のロスがあった。 As shown in Table 4, the concentrations (weights) of Sn, Cu, Pb, Sb, In, and NO 3 contained in 700 mL (pH 2.98) of the leached solution obtained after the solid-liquid separation were each set to be 0.00. 00 g / L (0.00 g), 6.34 g / L (4.44 g), 27.02 g / L (18.91 g), 0.00 g / L (0.00 g), 0.00 g / L (0. 200 g), was 13.08g / L (9.16g), NO 3 of 0.82g (= 9.98-9.16g) by leaching - there is a loss.

また、固液分離後に得られた浸出残渣43.37g中に含まれるSn、Cu、Pb、Sb、Inの重量(品位)は、表4に示すように、それぞれ16.95g(39.08%)、15.81g(36.44%)、1.39g(3.21%)、2.54g(5.86%)、0.38g(0.88%)であった。   Moreover, as shown in Table 4, the weight (quality) of Sn, Cu, Pb, Sb, and In contained in 43.37 g of the leaching residue obtained after the solid-liquid separation was 16.95 g (39.08%), respectively. ), 15.81 g (36.44%), 1.39 g (3.21%), 2.54 g (5.86%), and 0.38 g (0.88%).

したがって、固液分離後のSn、Cu、Pb、Sb、Inの浸出后液と浸出残渣中の分配率は、表4に示すように、それぞれ0.0%と100.0%、21.9%と78.1%、93.1%と6.9%、0.0%と100.0%、0.3%と99.7%であった。   Therefore, as shown in Table 4, the distribution ratios in the post-leaching solution of Sn, Cu, Pb, Sb, and In and the leaching residue after solid-liquid separation are 0.0%, 100.0%, and 21.9, respectively. % And 78.1%, 93.1% and 6.9%, 0.0% and 100.0%, 0.3% and 99.7%.

このように、硝酸濃度を比較例1より低くした比較例2では、硝酸水溶液によるPb浸出率は93.1%であり、実施例1や比較例2と同様に高かった。しかし、Cu溶出量は4.44g(6.34g/L)であり、比較例1より低かったが、実施例1よりも高かった。また、硝酸分解量は0.82gであり、実施例1より多かったが、比較例1よりも大幅に減少していた。   Thus, in Comparative Example 2 in which the nitric acid concentration was lower than that in Comparative Example 1, the Pb leaching rate with the nitric acid aqueous solution was 93.1%, which was high as in Example 1 and Comparative Example 2. However, the elution amount of Cu was 4.44 g (6.34 g / L), which was lower than that of Comparative Example 1 but higher than that of Example 1. Further, the decomposition amount of nitric acid was 0.82 g, which was larger than that of Example 1, but was significantly reduced as compared with Comparative Example 1.

[実施例2]
実施例1と同様の方法により表5に示すドロス(Sn25.3%、Cu23.2%、Pb36.8%、Sb3.5%、In0.4%)を用意するとともに、実施例1と同様の方法により再生された表5に示す硝酸水溶液(Sn0.00g/L、Cu0.23g/L、Pb0.45g/L、Sb0.00g/L、In0.02g/L、NO 23.31g/L)を浸出元液として使用し、図2に示す浸出試験装置によって以下のようなドロスの浸出試験を行った。
[Example 2]
The dross (Sn 25.3%, Cu 23.2%, Pb 36.8%, Sb 3.5%, In 0.4%) shown in Table 5 was prepared in the same manner as in Example 1, and the same as in Example 1. nitric acid solution (Sn0.00g / L shown in Table 5, which is reproduced by the method, Cu0.23g / L, Pb0.45g / L , Sb0.00g / L, In0.02g / L, NO 3 - 23.31g / L ) Was used as a brewing source solution, and the following dross leaching test was conducted using the leaching test apparatus shown in FIG.

Figure 2009074115
Figure 2009074115

なお、図2に示す浸出試験装置は、反応槽10と、この反応槽10を加熱するコンロ12と、浸出元液を収容する浸出元液タンク14と、この浸出元液タンク14から反応槽10内に浸出元液を定量供給するためのベリスタポンプ16と、反応槽10内にドロスを添加するためのスクリューフィーダ18と、このスクリューフィーダ18内のドロスの重量を測定する天秤20と、反応槽10内の溶液を撹拌するためのディスクタービン22と、反応槽10内の溶液の温度を測定する温度計24と、反応槽10内の溶液の電位を測定する電位計26と、反応槽10内の溶液のpHを測定するpHメータ28とを備えている。   The leaching test apparatus shown in FIG. 2 includes a reaction tank 10, a stove 12 that heats the reaction tank 10, a brewing source liquid tank 14 that contains the leaching source liquid, and the leaching source liquid tank 14 to the reaction tank 10. A verista pump 16 for quantitatively supplying the brewing source liquid, a screw feeder 18 for adding dross into the reaction tank 10, a balance 20 for measuring the weight of the dross in the screw feeder 18, and a reaction tank A disk turbine 22 for stirring the solution in the reactor 10, a thermometer 24 for measuring the temperature of the solution in the reactor 10, an electrometer 26 for measuring the potential of the solution in the reactor 10, and the reactor 10 And a pH meter 28 for measuring the pH of the solution.

まず、ベリスタポンプ16よって反応槽10内に浸出元液(硝酸水溶液)を供給速度1100mL/hで定量供給し、反応槽10内の溶液のpHが2以下になったときにスクリューフィーダ18によって反応槽10内に供給速度147g/hでドロスを供給して、反応槽10内のpHをほぼ1.9〜2.5の範囲、温度を35℃に保持し、反応槽10内に酸化剤として空気を吹き込んで、連続反応で浸出試験を行った。なお、反応槽10内の液量が約2.5Lに保持されるようにし、滞留時間が約2.3時間になるように浸出元液を連続供給した。   First, the brewing source solution (nitric acid aqueous solution) is quantitatively supplied into the reaction vessel 10 by the verista pump 16 at a supply rate of 1100 mL / h, and the reaction is carried out by the screw feeder 18 when the pH of the solution in the reaction vessel 10 becomes 2 or less. Dross is supplied into the tank 10 at a supply rate of 147 g / h, the pH in the reaction tank 10 is maintained in the range of approximately 1.9 to 2.5, and the temperature is maintained at 35 ° C., and the reaction tank 10 is used as an oxidizing agent. The leaching test was conducted with continuous reaction by blowing air. The amount of liquid in the reaction tank 10 was maintained at about 2.5 L, and the brewing source liquid was continuously supplied so that the residence time was about 2.3 hours.

この浸出試験開始から3時間後から4時間後までの間に反応槽10から排出された浸出后液1100mL中のSn、Cu、Pb、Sb、In、NO の濃度は、表5に示すように、それぞれ0.00g/L、0.01g/L、41.14g/L、0.01g/L、0.02g/L、23.14g/Lであり、浸出残渣87.12g中のSn、Cu、Pb、Sb、Inの品位は、表5に示すように、それぞれ42.1%、36.9%、3.2%、5.0%、0.4%であった。 Table 5 shows the concentrations of Sn, Cu, Pb, Sb, In, and NO 3 in 1100 mL of the leaching solution discharged from the reaction vessel 10 between 3 hours and 4 hours after the start of the leaching test. Thus, it is 0.00g / L, 0.01g / L, 41.14g / L, 0.01g / L, 0.02g / L, 23.14g / L, respectively, and Sn in the leach residue 87.12g As shown in Table 5, the grades of Cu, Pb, Sb, and In were 42.1%, 36.9%, 3.2%, 5.0%, and 0.4%, respectively.

なお、連続試験のため厳密なバランスを取ることはできないが、浸出残渣のPb品位は3%程度まで低下し、Pb浸出率は約95%になった。また、浸出元液中のCu濃度に対して、浸出后液中のCu濃度の方が低下しており、Cuより卑なPbやSnによってセメンテーションされたことがわかる。   Although a strict balance could not be obtained because of the continuous test, the Pb quality of the leaching residue was reduced to about 3%, and the Pb leaching rate was about 95%. Moreover, it can be seen that the Cu concentration in the solution after leaching is lower than the Cu concentration in the leaching source solution, and cemented by Pb or Sn which is lower than Cu.

[実施例3]
実施例1と同様の方法により表6に示すドロス(Sn25.3%、Cu23.2%、Pb36.8%、Sb3.5%、In0.4%)を用意するとともに、実施例1と同様の方法により再生された表6に示す硝酸水溶液(Sn0.00g/L、Cu0.05g/L、Pb0.46g/L、Sb0.01g/L、In0.00g/L、NO 58.59g/L)を浸出元液として使用し、反応槽10内への浸出元液(硝酸水溶液)の供給速度を1230mL/hとし、ドロスの供給速度を351g/hとし、酸化剤として酸素を使用し、反応槽10内に連続供給される浸出元液の滞留時間を約2.0時間とした以外は、実施例2と同様の方法によりドロスの浸出試験を行った。
[Example 3]
The dross (Sn 25.3%, Cu 23.2%, Pb 36.8%, Sb 3.5%, In 0.4%) shown in Table 6 was prepared in the same manner as in Example 1, and the same as in Example 1. nitric acid solution (Sn0.00g / L shown in Table 6, which are reproduced by the method, Cu0.05g / L, Pb0.46g / L , Sb0.01g / L, In0.00g / L, NO 3 - 58.59g / L ) As the leaching source solution, the brewing source solution (nitric acid aqueous solution) supply rate into the reaction tank 10 is 1230 mL / h, the dross supply rate is 351 g / h, and oxygen is used as the oxidant. A dross leaching test was conducted in the same manner as in Example 2 except that the residence time of the brewing source liquid continuously supplied into the tank 10 was about 2.0 hours.

Figure 2009074115
Figure 2009074115

この浸出試験開始から3時間後から4時間後までの間に反応槽10から排出された浸出后液2300mL中のSn、Cu、Pb、Sb、In、NO の濃度は、表6に示すように、それぞれ0.00g/L、0.39g/L、92.10g/L、0.01g/L、0.01g/L、58.16g/Lであり、浸出残渣207.7g中のSn、Cu、Pb、Sb、Inの品位は、表6に示すように、それぞれ42.0%、34.0%、2.9%、5.2%、0.4%であった。 Table 6 shows the concentrations of Sn, Cu, Pb, Sb, In, and NO 3 in 2300 mL of the leaching solution discharged from the reaction tank 10 between 3 hours and 4 hours after the start of the leaching test. Thus, it is 0.00g / L, 0.39g / L, 92.10g / L, 0.01g / L, 0.01g / L, 58.16g / L, respectively, and Sn in the leach residue 207.7g. As shown in Table 6, the grades of Cu, Pb, Sb, and In were 42.0%, 34.0%, 2.9%, 5.2%, and 0.4%, respectively.

Pbを硝酸で浸出して浸出液から硝酸水溶液を再生する場合、パルプ濃度PDを高くしてもPbを浸出することは可能であるが、パルプ濃度PDを高くすると、再生される硝酸水溶液の濃度も高くなる。例えば、浸出后液のPb濃度が100g/L程度になるような条件で浸出して得られた浸出后液に、硫酸を添加して再生した硝酸水溶液中のNO の濃度は、60g/L程度になる。このような硝酸水溶液を使用してバッチ式でドロスの浸出を行うと、初期の酸濃度が高く、硝酸の分解やCuの溶出を招くことになって都合が悪い。このような不都合を解消するためにも、実施例2のように反応槽10内のpHを所定の範囲に保持するように、浸出元液とドロスの供給量を制御しながら反応させる必要がある。 When Pb is leached with nitric acid and the aqueous nitric acid solution is regenerated from the leachate, it is possible to leach Pb even if the pulp concentration PD is increased. Get higher. For example, the concentration of NO 3 in a nitric acid aqueous solution regenerated by adding sulfuric acid to a solution after leaching obtained by leaching under conditions such that the Pb concentration of the solution after leaching is about 100 g / L is 60 g / L. It becomes about L. When dross leaching is carried out batchwise using such an aqueous nitric acid solution, the initial acid concentration is high, which causes the decomposition of nitric acid and the elution of Cu, which is not convenient. In order to eliminate such inconvenience, it is necessary to carry out the reaction while controlling the supply amounts of the brewing source liquid and the dross so that the pH in the reaction vessel 10 is maintained within a predetermined range as in the second embodiment. .

実施例3では、このように初期の酸濃度を高くしているが、実施例2と同様にPb浸出率が高く、硝酸分解量とCu溶出量のいずれもわずかであった。また、供給する浸出元液の酸濃度を高くしているので、単位容積、単位時間での処理量を増加させることができた。   In Example 3, the initial acid concentration was thus increased, but the Pb leaching rate was high as in Example 2, and both the nitric acid decomposition amount and the Cu elution amount were slight. Moreover, since the acid concentration of the leaching source liquid to be supplied was increased, the processing amount per unit volume and unit time could be increased.

[実施例4]
鉛製錬の乾式精製工程で発生したドロスを篩で分級して得られた150μm以下のドロス(Sn18.55%、Cu30.75%、Pb38.45%、Sb3.34%、In0.25%)50gを水500mLに添加し、酸素を吹き込みながら攪拌し、それぞれpHが0.5、1.0、2.0および3になるように硝酸水溶液を添加して、35℃で30分間浸出を行った。同様に、それぞれpHが0.5、1.0、1.5、2.0および3.5になるように硝酸水溶液を添加して、70℃で30分間浸出を行った。35℃で浸出した場合の浸出率を表7に示し、70℃で浸出した場合の浸出率を表8に示す。また、35℃および70℃で浸出した場合のPb浸出率とCu浸出率を図3に示し、Sn浸出率とIn浸出率を図4に示す。
[Example 4]
Dross of 150 μm or less obtained by classifying dross generated in the dry refining process of lead smelting with a sieve (Sn 18.55%, Cu 30.75%, Pb 38.45%, Sb 3.34%, In 0.25%) Add 50 g to 500 mL of water, stir while blowing oxygen, add aqueous nitric acid so that the pH is 0.5, 1.0, 2.0 and 3, respectively, and perform leaching at 35 ° C. for 30 minutes It was. Similarly, an aqueous nitric acid solution was added so that the pH was 0.5, 1.0, 1.5, 2.0, and 3.5, respectively, and leaching was performed at 70 ° C. for 30 minutes. Table 7 shows the leaching rate when leaching at 35 ° C., and Table 8 shows the leaching rate when leaching at 70 ° C. Further, FIG. 3 shows the Pb leaching rate and Cu leaching rate when leaching at 35 ° C. and 70 ° C., and FIG. 4 shows the Sn leaching rate and In leaching rate.

Figure 2009074115
Figure 2009074115

Figure 2009074115
Figure 2009074115

表7、表8および図3に示すように、35℃で浸出した場合と70℃で浸出した場合のいずれもpH0.5〜3.5でPb浸出率が十分に高かった。また、35℃で浸出した場合には、H1.0〜3.5でCu浸出率が十分に低く、70℃で浸出した場合にはpH1.5〜3.5でCu浸出率が十分に低かった。これらの結果から、Pb浸出率を高く且つCu浸出率を低くするためには、35℃で浸出する場合にはpHを1.0〜3.5にするのが好ましく、70℃で浸出する場合にはpHを1.5〜3.5にするのが好ましいことがわかる。なお、表7、表8および図4に示すように、35℃で浸出した場合と70℃で浸出した場合のいずれも、pH2.0〜3.5でSn浸出率が低かった。   As shown in Tables 7 and 8 and FIG. 3, the Pb leaching rate was sufficiently high at pH 0.5 to 3.5 in both cases of leaching at 35 ° C. and leaching at 70 ° C. Further, when leaching at 35 ° C., the Cu leaching rate is sufficiently low at H 1.0 to 3.5, and when leaching at 70 ° C., the Cu leaching rate is sufficiently low at pH 1.5 to 3.5. It was. From these results, in order to increase the Pb leaching rate and lower the Cu leaching rate, it is preferable to adjust the pH to 1.0 to 3.5 when leaching at 35 ° C., and when leaching at 70 ° C. It is understood that the pH is preferably 1.5 to 3.5. In addition, as shown in Table 7, Table 8, and FIG. 4, the Sn leaching rate was low at pH 2.0 to 3.5 in both cases of leaching at 35 ° C. and leaching at 70 ° C.

本発明による硫酸鉛の製造方法の実施の形態を示す工程図である。It is process drawing which shows embodiment of the manufacturing method of lead sulfate by this invention. 実施例2において使用した浸出試験装置を概略的に示す図である。It is a figure which shows roughly the leaching test apparatus used in Example 2. FIG. 実施例4において35℃および70℃で浸出した場合のPb浸出率とCu浸出率を示すグラフである。It is a graph which shows the Pb leaching rate at the time of leaching at 35 degreeC and 70 degreeC in Example 4, and Cu leaching rate. 実施例4において35℃および70℃で浸出した場合のSn浸出率とIn浸出率を示すグラフである。It is a graph which shows Sn leaching rate at the time of leaching at 35 degreeC and 70 degreeC in Example 4, and In leaching rate.

符号の説明Explanation of symbols

10 反応槽
12 コンロ
14 浸出元液タンク
16 ベリスタポンプ
18 スクリューフィーダ
20 天秤
22 ディスクタービン
24 温度計
26 電位計
28 pHメータ
DESCRIPTION OF SYMBOLS 10 Reaction tank 12 Stove 14 Leaching source liquid tank 16 Verista pump 18 Screw feeder 20 Balance 22 Disc turbine 24 Thermometer 26 Electrometer 28 pH meter

Claims (8)

鉛と銅と錫を含む粉末を硝酸水溶液中で酸化しながら浸出した後に固液分離して、銅と錫を含む浸出残渣と、鉛を含む浸出后液に分離し、この浸出后液に硫酸を添加して硫酸鉛を生成するとともに硝酸水溶液を再生した後に固液分離して、生成した硫酸鉛と再生された硝酸水溶液とを分離して回収することを特徴とする、硫酸鉛の製造方法。 The powder containing lead, copper and tin is leached while oxidizing in an aqueous nitric acid solution, and then separated into solid and liquid, and separated into a leaching residue containing copper and tin and a leaching solution containing lead. To produce lead sulfate and regenerate the nitric acid aqueous solution, then separate the solid and liquid, and separate and recover the produced lead sulfate and the regenerated nitric acid aqueous solution. . 前記再生された硝酸水溶液を前記浸出に使用することを特徴とする、請求項1に記載の硫酸鉛の製造方法。 The method for producing lead sulfate according to claim 1, wherein the regenerated aqueous nitric acid solution is used for the leaching. 前記酸化が、前記硝酸水溶液中に酸素または空気を吹き込むことによって行われることを特徴とする、請求項1または2に記載の硫酸鉛の製造方法。 The method for producing lead sulfate according to claim 1 or 2, wherein the oxidation is performed by blowing oxygen or air into the aqueous nitric acid solution. 前記鉛と銅と錫を含む粉末が、それぞれ金属形態の鉛、銅および錫を含む粉末であることを特徴とする、請求項1乃至3のいずれかに記載の硫酸鉛の製造方法。 The method for producing lead sulfate according to any one of claims 1 to 3, wherein the powder containing lead, copper, and tin is a powder containing lead in a metal form, copper, and tin, respectively. 前記浸出の際に前記硝酸水溶液のpHを0.7〜4.0の範囲に保持することを特徴とする、請求項1乃至4のいずれかに記載の硫酸鉛の製造方法。 The method for producing lead sulfate according to any one of claims 1 to 4, wherein the pH of the aqueous nitric acid solution is maintained in the range of 0.7 to 4.0 during the leaching. 前記浸出の際に前記硝酸水溶液のpHを1.5〜3.5の範囲に保持することを特徴とする、請求項1乃至4のいずれかに記載の硫酸鉛の製造方法。 The method for producing lead sulfate according to any one of claims 1 to 4, wherein the pH of the aqueous nitric acid solution is maintained in the range of 1.5 to 3.5 during the leaching. 前記浸出の際に前記硝酸水溶液の温度を10〜100℃の範囲に保持することを特徴とする、請求項1乃至6のいずれかに記載の硫酸鉛の製造方法。 The method for producing lead sulfate according to any one of claims 1 to 6, wherein the temperature of the aqueous nitric acid solution is maintained in the range of 10 to 100 ° C during the leaching. 前記浸出の際に前記硝酸水溶液の温度を50℃以下に保持することを特徴とする、請求項7に記載の硫酸鉛の製造方法。
The method for producing lead sulfate according to claim 7, wherein the temperature of the aqueous nitric acid solution is maintained at 50 ° C. or lower during the leaching.
JP2007241971A 2007-09-19 2007-09-19 Method for producing lead sulfate Pending JP2009074115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007241971A JP2009074115A (en) 2007-09-19 2007-09-19 Method for producing lead sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241971A JP2009074115A (en) 2007-09-19 2007-09-19 Method for producing lead sulfate

Publications (1)

Publication Number Publication Date
JP2009074115A true JP2009074115A (en) 2009-04-09

Family

ID=40609377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241971A Pending JP2009074115A (en) 2007-09-19 2007-09-19 Method for producing lead sulfate

Country Status (1)

Country Link
JP (1) JP2009074115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427152B (en) * 2010-12-29 2014-02-21 Hitachi Metals Ltd Quenching method for mold

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198623A (en) * 1975-02-26 1976-08-31 Gandonamaridorosuno donamaribunrikaishuho
JPS52114502A (en) * 1976-03-24 1977-09-26 Nippon Solex Kk Method of recovering metals by fractionation
JPS63270418A (en) * 1987-04-27 1988-11-08 Tanaka Kikinzoku Kogyo Kk Method for dissolving metal kind by nitric acid
JP2005264227A (en) * 2004-03-18 2005-09-29 Sumitomo Metal Mining Co Ltd Method for leaching sediment in copper electrolysis
JP2005264252A (en) * 2004-03-19 2005-09-29 Dowa Mining Co Ltd TREATMENT METHOD FOR SUBSTANCE CONTAINING Sn, Pb AND Cu
JP2006045588A (en) * 2004-07-30 2006-02-16 Dowa Mining Co Ltd METHOD FOR RECOVERING Sn FROM Sn-CONTAINING RAW MATERIAL

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198623A (en) * 1975-02-26 1976-08-31 Gandonamaridorosuno donamaribunrikaishuho
JPS52114502A (en) * 1976-03-24 1977-09-26 Nippon Solex Kk Method of recovering metals by fractionation
JPS63270418A (en) * 1987-04-27 1988-11-08 Tanaka Kikinzoku Kogyo Kk Method for dissolving metal kind by nitric acid
JP2005264227A (en) * 2004-03-18 2005-09-29 Sumitomo Metal Mining Co Ltd Method for leaching sediment in copper electrolysis
JP2005264252A (en) * 2004-03-19 2005-09-29 Dowa Mining Co Ltd TREATMENT METHOD FOR SUBSTANCE CONTAINING Sn, Pb AND Cu
JP2006045588A (en) * 2004-07-30 2006-02-16 Dowa Mining Co Ltd METHOD FOR RECOVERING Sn FROM Sn-CONTAINING RAW MATERIAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427152B (en) * 2010-12-29 2014-02-21 Hitachi Metals Ltd Quenching method for mold

Similar Documents

Publication Publication Date Title
JP5334592B2 (en) Rare metal recovery method in zinc leaching process
CA2639165C (en) Method for recovering metal from ore
FI125027B (en) Method of metal recycling from materials containing them
JP2009235525A (en) Method for leaching out gold
CN111606308A (en) Method for efficiently separating and recycling tellurium from copper anode slime copper separation slag
JP6139990B2 (en) Arsenic solution treatment method
JPS5952218B2 (en) Method for recovering gold from copper electrolytic slime
JP4962078B2 (en) Nickel sulfide chlorine leaching method
CN114134330A (en) Method for recovering cadmium from high-cadmium smoke dust
JP2009097076A (en) Method for recovering valuable material from metal sulfide containing noble metal
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
CN109022812B (en) Method for recovering refined bismuth and refined copper from high-copper bismuth slag
JP2024526497A (en) Method for treating by-products of zinc hydrometallurgy process with reduced carbon emissions
JP2009074115A (en) Method for producing lead sulfate
CN108048651B (en) A kind of method of the complicated high silver ore of synthetical recovery
JP2014062303A (en) Method of oxidative neutralizing treatment of aqueous nickel chloride solution
JP2009074128A (en) Method for recovering tin
EP2417274B1 (en) Method of refining copper bullion comprising antimony and/or arsenic
JP4904836B2 (en) Leaching method of copper sulfide ores containing chalcopyrite
CN114214522A (en) Wet treatment process for refined copper slag
CN106381398A (en) Method for recovering indium from indium-contained soot
JPS63312991A (en) Control of amount of zinc powder in removal of impurities from zinc sulfate solution
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte
CN111549234A (en) Method and system for dechlorinating zinc hydrometallurgy copper slag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130531