JP2009067158A - Vehicular aerodynamic structure - Google Patents

Vehicular aerodynamic structure Download PDF

Info

Publication number
JP2009067158A
JP2009067158A JP2007235930A JP2007235930A JP2009067158A JP 2009067158 A JP2009067158 A JP 2009067158A JP 2007235930 A JP2007235930 A JP 2007235930A JP 2007235930 A JP2007235930 A JP 2007235930A JP 2009067158 A JP2009067158 A JP 2009067158A
Authority
JP
Japan
Prior art keywords
vehicle
wheel
air flow
aerodynamic
vehicle width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007235930A
Other languages
Japanese (ja)
Other versions
JP4333788B2 (en
Inventor
Munehiro Hirano
宗弘 平野
Original Assignee
Toyota Motor Corp
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, トヨタ自動車株式会社 filed Critical Toyota Motor Corp
Priority to JP2007235930A priority Critical patent/JP4333788B2/en
Publication of JP2009067158A publication Critical patent/JP2009067158A/en
Application granted granted Critical
Publication of JP4333788B2 publication Critical patent/JP4333788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/16Mud-guards or wings; Wheel cover panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • B62D35/02Streamlining the undersurfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/02Stabilising vehicle bodies without controlling suspension arrangements by aerodynamic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S180/00Motor vehicles
    • Y10S180/903Airstream reactive vehicle or vehicle structure

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a vehicular aerodynamic structure capable of effectively straightening a wheel house. <P>SOLUTION: This vehicular aerodynamic structure 10 comprises an airflow collision wall 24 extending in a vehicle width direction and directed to a bottom side in a vehicle upward and downward direction on a rear side of a vehicle forward and backward direction beyond a front wheel 15 in a wheel house 14, an airflow guide wall 22 extending downward in the vehicle upward and downward direction from a rear end of the vehicle forward and backward direction of the airflow collision wall 24, and another airflow guide wall 22 extending upward in the vehicle upward and downward direction from a front end of the vehicle forward and backward direction of the airflow collision wall 24. A convex side ridgeline Rf formed by a front end of the airflow collision wall 24 and the airflow guide wall 22 gradually changes in a projection height in the vehicle forward and backward direction relative to a convex side ridgeline Rr formed by a rear end of the airflow collision wall 24 and the airflow guide wall 22. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ホイールハウス内の空気流を整流するための車両用空力構造に関する。   The present invention relates to an aerodynamic structure for a vehicle for rectifying an air flow in a wheel house.
自動車のホイールハウス内における車輪に対する前側又は車幅方向内側にバッフルを固定して構成された空力スタビライザが知られている(例えば、特許文献1参照)。
特表2003−528772号公報 英国特許出願公開第2265785号明細書
An aerodynamic stabilizer is known that is configured with a baffle fixed to a front side or a vehicle width direction inner side with respect to a wheel in an automobile wheel house (for example, see Patent Document 1).
Special table 2003-528772 gazette British Patent Application No. 2265785
しかしながら、上記の如き従来の技術では、ホイールハウスからバッフルが突出しているので、車輪との干渉を避ける等の種々の制約があり、十分な整流効果を得ることが困難であった。   However, in the conventional techniques as described above, since the baffle protrudes from the wheel house, there are various restrictions such as avoiding interference with the wheels, and it is difficult to obtain a sufficient rectifying effect.
本発明は、上記事実を考慮して、ホイールハウス内を効果的に整流することができる車両用空力構造を得ることが目的である。   An object of the present invention is to obtain a vehicle aerodynamic structure capable of effectively rectifying the inside of a wheel house in consideration of the above fact.
請求項1記載の発明に係る車両用空力構造は、ホイールハウス内における車輪の回転軸心よりも車体前後方向の後側に、車幅方向に延在されると共に車体上下方向の下側を向く空気流衝突壁と、該空気流衝突壁の車体前後方向の後端部から車体上下方向の下向きに延設された下壁と、前記空気流衝突壁の車体前後方向の前端部から車体上下方向の上向きに延設された上壁とが設けられており、かつ、前記空気流衝突壁と前記上壁とで成す角部は、車幅方向の少なくとも一部において、前記空気流衝突壁と前記下壁とで成す角部に対する車体前後方向の突出高さが車幅方向に沿って徐変されている。   The aerodynamic structure for a vehicle according to the first aspect of the present invention extends in the vehicle width direction rearward of the rotational axis of the wheel in the wheel house, extends in the vehicle width direction, and faces downward in the vehicle vertical direction. An air flow collision wall, a lower wall extending downward in the vehicle body vertical direction from a rear end portion of the air flow collision wall in the vehicle longitudinal direction, and a vehicle body vertical direction from the front end portion of the air flow collision wall in the vehicle longitudinal direction An upper wall extending upward, and a corner formed by the air flow collision wall and the upper wall is at least partially in the vehicle width direction, and the air flow collision wall and the The projecting height in the longitudinal direction of the vehicle body with respect to the corner formed by the lower wall is gradually changed along the vehicle width direction.
請求項1記載の車両用空力構造が適用された車両では、車輪の回転に伴って該車輪の後方からホイールハウス内への空気流が生じる。この空気流の一部は、空気流衝突壁に衝突する。これにより、空気流衝突壁と下壁とで形成される凹(溝)状部分の廻りで圧力が上昇し、ホイールハウスへの空気流入が抑制される。また、空気流衝突壁が車輪の回転中心よりも後方に位置するので、車輪回転に伴うホイールハウスへの空気流入が上流(入口)側にて抑制され、ホイールハウスに流入した空気が側方から排出されることが抑制される。   In the vehicle to which the aerodynamic structure for a vehicle according to claim 1 is applied, an air flow from behind the wheel into the wheel house is generated as the wheel rotates. A part of this air flow collides with the air flow collision wall. Thereby, a pressure rises around the concave (groove) -shaped portion formed by the air flow collision wall and the lower wall, and air inflow to the wheel house is suppressed. In addition, since the air flow collision wall is located behind the center of rotation of the wheel, air inflow to the wheel house due to wheel rotation is suppressed on the upstream (inlet) side, and air flowing into the wheel house from the side Emission is suppressed.
そして、上記の如く空気流衝突壁を有する車両用空力構造では、空気流衝突壁と上壁との角部が車輪側に凸の凸部なり、回転する車輪に巻き上げられる石等が衝突しやすいが、本車両用空力構造では、上記凸部の突出高さが車幅方向に沿って徐変されているので、上記石等による損傷(ダメージ)を軽減させることができる。すなわち、例えば突出高さの低い部分において、上記石等の衝突に対する強度が増したり、石等の衝突確率を減らしたりする構造にすることができる。   In the aerodynamic structure for a vehicle having the airflow collision wall as described above, the corners of the airflow collision wall and the upper wall are convex on the wheel side, and stones and the like that are wound up on the rotating wheel easily collide. However, in the aerodynamic structure for a vehicle, since the protruding height of the convex portion is gradually changed along the vehicle width direction, damage (damage) due to the stone or the like can be reduced. That is, for example, in a portion where the protrusion height is low, it is possible to have a structure in which the strength against the collision of the stone or the like increases or the collision probability of the stone or the like decreases.
このように、請求項1記載の車両用空力構造では、ホイールハウス内を効果的に整流することができる。   Thus, in the vehicle aerodynamic structure according to the first aspect, the inside of the wheel house can be rectified effectively.
請求項2記載の発明に係る車両用空力構造は、請求項1記載の車両用空力構造において、前記空気流衝突壁は、前記ホイールハウスは、車幅方向の内側部分が車幅方向外側部分よりも車体前後方向の後側に位置するように形成されており、前記空気流衝突壁と前記上壁とで成す角部は、車幅方向の内端を含む該車幅方向の少なくとも一部において、前記突出高さが車幅方向の内側ほど小さくなるように徐変されている。   The aerodynamic structure for a vehicle according to a second aspect of the present invention is the aerodynamic structure for a vehicle according to the first aspect, wherein the airflow collision wall has an inner portion in the vehicle width direction than an outer portion in the vehicle width direction. Is formed so as to be located on the rear side in the longitudinal direction of the vehicle body, and the corner portion formed by the air flow collision wall and the upper wall is at least part of the vehicle width direction including the inner end in the vehicle width direction. The protrusion height is gradually changed so as to become smaller toward the inner side in the vehicle width direction.
請求項2記載の車両用空力構造では、例えば車輪の包絡線との関係上、ホイールハウスは車幅方向外側部分よりも内側部分のほうが車体前後方向の後方に位置している。このため、ホイールハウスの車幅方向内端では、空気流衝突壁、上壁(及びこれらの角部を車幅は方向内側から覆う内側壁)で頂部が形成された場合においても、本車両用空力構造では、この頂部形成されなくなるか、又は頂部の突出高さが低くなるので、該頂部の損傷(ダメージ)を軽減することができる。   In the vehicle aerodynamic structure according to the second aspect, for example, in relation to the envelope of the wheel, the inner portion of the wheel house is located rearward in the vehicle longitudinal direction than the outer portion in the vehicle width direction. For this reason, even if the top of the wheel house is formed by the airflow collision wall and the upper wall (and the inner wall that covers these corners from the inner side in the direction) at the inner end in the vehicle width direction of the wheel house, In the aerodynamic structure, the top portion is not formed, or the protrusion height of the top portion is lowered, so that damage (damage) of the top portion can be reduced.
請求項3記載の発明に係る車両用空力構造は、請求項2記載の車両用空力構造において、前記空気流衝突壁と前記上壁とで成す角部は、前記空気流衝突壁の車幅方向の内端を含む該車幅方向の少なくとも一部において、車体前後方向の前端部又は後端部が車幅方向に対し傾斜されることで、前記突出高さが車幅方向の内側ほど小さくなるように徐変されている。   The aerodynamic structure for a vehicle according to a third aspect of the present invention is the aerodynamic structure for a vehicle according to the second aspect, wherein a corner portion formed by the air flow collision wall and the upper wall is a vehicle width direction of the air flow collision wall. In at least a part of the vehicle width direction including the inner end of the vehicle, the front end portion or the rear end portion in the vehicle body front-rear direction is inclined with respect to the vehicle width direction, so that the protruding height becomes smaller toward the inner side in the vehicle width direction. Has been gradually changed.
請求項3記載の車両用空力構造では、衝突壁と上壁との角部の突出高さが連続的に徐変されるので、徐変構造の途中に角部(段部)等が形成されることがない。   In the vehicle aerodynamic structure according to the third aspect, since the protruding height of the corner portion of the collision wall and the upper wall is gradually changed continuously, a corner portion (step portion) or the like is formed in the middle of the gradually changing structure. There is nothing to do.
以上説明したように本発明に係る車両用空力構造は、ホイールハウス内を効果的に整流することができるという優れた効果を有する。   As described above, the aerodynamic structure for a vehicle according to the present invention has an excellent effect that the inside of the wheel house can be rectified effectively.
本発明の実施形態に係る車両用空力構造10について、図1乃至図5に基づいて説明する。なお、各図に適宜記す矢印FR、矢印UP、矢印IN、及び矢印OUTは、それぞれ車両用空力構造10が適用された自動車Sの前方向(進行方向)、上方向、車幅方向内側、及び外側を示しており、以下単に上下前後及び車幅方向の内外を示す場合は上記各矢印方向に対応している。また、この実施形態では、車両用空力構造10は、左右の前輪15、後輪16にそれぞれ適用されるが、各車両用空力構造10は基本的に同様(左右の場合は対称)に構成されるので、以下、主に前輪用の左右一方の車両用空力構造10について説明することとする。   A vehicle aerodynamic structure 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5. It should be noted that arrow FR, arrow UP, arrow IN, and arrow OUT that are appropriately described in each figure are the forward direction (traveling direction), the upward direction, the inner side in the vehicle width direction of the automobile S to which the vehicle aerodynamic structure 10 is applied, and The outer side is shown, and in the case of simply showing up and down, front and rear, and inside and outside in the vehicle width direction, these correspond to the directions of the arrows. In this embodiment, the vehicle aerodynamic structure 10 is applied to each of the left and right front wheels 15 and the rear wheels 16, but each vehicle aerodynamic structure 10 is basically configured similarly (symmetric in the case of the left and right). Therefore, hereinafter, the left and right vehicle aerodynamic structures 10 for front wheels will be mainly described.
図2には、車両用空力構造10が適用された自動車Sの前部が、車幅方向内側から見た模式的な側断面図にて示されている。また、図3には、自動車Sの前部が、模式的な平面断面図にて示されている。これらの図に示される如く、自動車Sは、その車体を構成するフロントフェンダパネル12を備えており、フロントフェンダパネル12には、前輪15の転舵を許容するために側面視で下向きに開口する略半円弧状に形成されたホイールアーチ12Aが形成されている。図示は省略するが、フロントフェンダパネル12の内側にはフェンダエプロンが結合されており、フェンダエプロンにはホイールハウスインナが設けられている。これにより、自動車Sの前部には、前輪15が転舵可能に配設されるホイールハウス14が形成されている。   In FIG. 2, the front portion of the automobile S to which the vehicle aerodynamic structure 10 is applied is shown in a schematic side sectional view as seen from the inner side in the vehicle width direction. Further, in FIG. 3, the front portion of the automobile S is shown in a schematic plan sectional view. As shown in these drawings, the automobile S is provided with a front fender panel 12 constituting the vehicle body, and the front fender panel 12 opens downward in a side view so as to allow the front wheel 15 to be steered. A wheel arch 12A having a substantially semicircular arc shape is formed. Although not shown, a fender apron is coupled to the inside of the front fender panel 12, and a wheel house inner is provided on the fender apron. Thereby, a wheel house 14 in which the front wheels 15 are disposed so as to be steerable is formed in the front portion of the automobile S.
また、ホイールハウス14の内側には、側面視でホイールアーチ12Aに対応しかつ該ホイールアーチ12Aよりも若干大径の略円弧状形成されると共に、平面視で前輪15を覆い隠す略矩形状に形成されたフェンダライナ18が配設されている。したがって、フェンダライナ18は、側面視でホイールアーチ12Aから露出しないようにホイールハウス14内に収容されている。このフェンダライナ18は、前輪15の略上半分を前方、上方、後方から覆い、泥や小石などがフェンダエプロン(ホイールハウスインナ)等に当たることを防止するようになっている。フェンダライナ18は、例えば、樹脂成形(インジェクション成形やバキューム成形)にて形成された樹脂製とされたり、不織布を基材又は表皮材とした構成とされる。   The wheel house 14 is formed in a substantially rectangular shape corresponding to the wheel arch 12A in a side view and having a slightly larger diameter than the wheel arch 12A and covering the front wheel 15 in a plan view. A formed fender liner 18 is disposed. Therefore, the fender liner 18 is accommodated in the wheel house 14 so as not to be exposed from the wheel arch 12A in a side view. The fender liner 18 covers substantially the upper half of the front wheel 15 from the front, upper, and rear, and prevents mud and pebbles from hitting the fender apron (wheel house inner) and the like. The fender liner 18 is made of, for example, a resin formed by resin molding (injection molding or vacuum molding), or a nonwoven fabric is used as a base material or a skin material.
そして、車両用空力構造10を構成するフェンダライナ18は、側面視で前輪15側に開口する凹状部(溝部)20を有する。この実施形態では、凹状部20は、フェンダライナ18における前輪15の後側に位置する部分(前輪15と車体上下方向にオーバラップする部分)に設けられている。より具体的には、図2に示される如く、フェンダライナ18における前輪15の回転軸線RCよりも後方部分のうち、前輪15の回転軸線RCを通る水平線HLとの間に角θ(−α°<θ<90°)を成す仮想直線IL1が交差する部分Cよりも後下方の領域A内の一部又は全部に亘って、凹状部20が設けられるようになっている。   And the fender liner 18 which comprises the aerodynamic structure 10 for vehicles has the recessed part (groove part) 20 opened to the front-wheel 15 side by side view. In this embodiment, the recessed portion 20 is provided at a portion of the fender liner 18 positioned on the rear side of the front wheel 15 (a portion overlapping the front wheel 15 in the vehicle body vertical direction). More specifically, as shown in FIG. 2, the angle θ (−α °) between the fender liner 18 and the horizontal line HL passing through the rotation axis RC of the front wheel 15 in the rear portion of the rotation axis RC of the front wheel 15. The concave portion 20 is provided over part or all of the region A below and below the portion C where the virtual straight line IL1 forming <θ <90 °) intersects.
角θは、凹状部20の設置範囲の上限側では、50°以下とすることすることが好ましく、40°以下とすることが一層好ましく、この実施形態では、30°程度とされている。また、凹状部20の設置範囲の下限側を規定する角度αは、前輪15の回転軸線RCからホイールハウス14の後下端部を結ぶ仮想直線IL2とHLとの成す角とされている。ホイールハウス14の後下端部は、例えばフェンダライナ18の後下端とすることができる。   The angle θ is preferably set to 50 ° or less on the upper limit side of the installation range of the concave portion 20, more preferably set to 40 ° or less, and in this embodiment, the angle θ is set to about 30 °. In addition, the angle α that defines the lower limit side of the installation range of the concave portion 20 is an angle formed by an imaginary straight line IL2 and HL connecting the rotational axis RC of the front wheel 15 and the rear lower end portion of the wheel house 14. The rear lower end portion of the wheel house 14 can be, for example, the rear lower end of the fender liner 18.
図1及び図2に示される如く、凹状部20は、上記の通り前輪15側に向けて開口しており、該開口部20Aにおいてフェンダライナ18(ホイールハウス14)の周方向に沿う幅が最大となる側面視略三角形状を成している。より具体的には、凹状部20は、開口部20Aの下縁20Bから略上方に向けて延びる空気流案内壁22と、空気流案内壁22の後上端22Aから開口部20Aの上縁20Cに向けて延びる空気流衝突壁24とを有し構成されている。   As shown in FIGS. 1 and 2, the concave portion 20 opens toward the front wheel 15 as described above, and the width along the circumferential direction of the fender liner 18 (wheel house 14) is the maximum at the opening 20A. It has a substantially triangular shape in side view. More specifically, the recessed portion 20 extends from the lower edge 20B of the opening 20A substantially upward, and from the rear upper end 22A of the air flow guide wall 22 to the upper edge 20C of the opening 20A. And an air flow impingement wall 24 extending in the direction.
空気流衝突壁24は、空気流案内壁22に対し側面の長さ(三角形の辺の長さ)が小とされている。これにより、図1に示される如く空気流案内壁22は、前輪15の回転(自動車Sを前進させる方向である矢印R方向の回転)に伴って生じる空気流F(前輪15の接線方向に略沿った空気流)を、凹状部20内に案内するよう該空気流Fに略沿った方向に延在している。一方、空気流衝突壁24は、空気流Fに向かうように延在しており、凹状部20に流入した空気流Fが衝突するようになっている。   The air flow collision wall 24 has a smaller side length (triangular side length) than the air flow guide wall 22. Thereby, as shown in FIG. 1, the air flow guide wall 22 is substantially in the tangential direction of the front wheel 15 that is generated along with the rotation of the front wheel 15 (rotation in the direction of arrow R that is the direction in which the automobile S is advanced). Along the air flow F so as to be guided into the concave portion 20. On the other hand, the airflow collision wall 24 extends toward the airflow F so that the airflow F flowing into the concave portion 20 collides with it.
以上により、車両用空力構造10では、凹状部20によって空気流Fの一部が塞き止められて該凹状部20内の圧力が上昇し、これに伴い凹状部20の開口部20Aと前輪15との間の圧力が上昇する構成とされている。この圧力上昇によって車両用空力構造10では、空気流Fのホイールハウス14内への流入を抑制するようになっている。   As described above, in the vehicle aerodynamic structure 10, a part of the air flow F is blocked by the concave portion 20, and the pressure in the concave portion 20 increases, and accordingly, the opening 20 </ b> A of the concave portion 20 and the front wheel 15. The pressure between the two is increased. Due to this pressure increase, in the aerodynamic structure 10 for a vehicle, the inflow of the air flow F into the wheel house 14 is suppressed.
また、図1乃至3に示される如く、フェンダライナ18には、複数(この実施形態では2つ)の凹状部20が該フェンダライナ18の周方向に並列して設けられている。この実施形態では、フェンダライナ18の周方向に隣接する凹状部20は、開口部20Aの下縁20B、上縁20Cが略一致している。すなわち、複数の凹状部20は、フェンダライナ18の周方向に連続的に断面視三角形状の凸凹(波状)を成すように形成されている。複数の凹状部20のうち、最も後下方に位置する凹状部20は、フェンダライナ18の後下端部18Aに位置している。   As shown in FIGS. 1 to 3, the fender liner 18 is provided with a plurality (two in this embodiment) of concave portions 20 in parallel in the circumferential direction of the fender liner 18. In this embodiment, the concave part 20 adjacent to the circumferential direction of the fender liner 18 has the lower edge 20B and the upper edge 20C of the opening 20A substantially coincident with each other. That is, the plurality of concave portions 20 are formed so as to continuously form a triangular shape in the circumferential direction of the fender liner 18. Of the plurality of concave portions 20, the concave portion 20 located at the lowermost rear side is located at the rear lower end portion 18 </ b> A of the fender liner 18.
したがって、この実施形態では、最も後下方に位置する凹状部20を構成する空気流衝突壁24に対し、該最も後下方に位置する凹状部20の空気流案内壁22が本発明の下壁に相当すると共に、上側の凹状部20の空気流案内壁22が本発明の上壁に相当する。一方、上側の凹状部20を構成する空気流衝突壁24に対しては、該上側の凹状部20の空気流案内壁22が本発明の下壁に相当すると共に、該空気流衝突壁24の前端(開口部20Aの上縁20C)に連続するフェンダライナ18の一般面を成す一般壁部28が本発明の上壁に相当する。   Therefore, in this embodiment, the air flow guide wall 22 of the concave portion 20 positioned at the rearmost lower side is the lower wall of the present invention with respect to the air flow collision wall 24 constituting the concave portion 20 positioned at the lowermost rearward position. In addition, the air flow guide wall 22 of the upper concave portion 20 corresponds to the upper wall of the present invention. On the other hand, with respect to the air flow collision wall 24 constituting the upper concave portion 20, the air flow guide wall 22 of the upper concave portion 20 corresponds to the lower wall of the present invention, and A general wall portion 28 that forms a general surface of the fender liner 18 continuing to the front end (the upper edge 20C of the opening 20A) corresponds to the upper wall of the present invention.
また、図1及び図3に示される如く、各凹状部20は、車幅方向に沿って延在されており、該車幅方向の外端は側壁26にて封止されている。この実施形態では、凹状部20は、中立位置(姿勢)に位置する前輪15に対し車幅方向の全幅に亘りオーバラップするように形成されている。   Further, as shown in FIGS. 1 and 3, each concave portion 20 extends along the vehicle width direction, and an outer end in the vehicle width direction is sealed with a side wall 26. In this embodiment, the recessed portion 20 is formed so as to overlap the entire width in the vehicle width direction with respect to the front wheel 15 located in the neutral position (posture).
一方、各凹状部20の車幅方向内端は、該車幅方向内向きに開口された開放端とされている。図3に示される如く、フェンダライナ18(ホイールハウス14)は、タイヤ包絡線Etとの関係上、車幅方向の内端18Bが外端18Cに対し車体前後方向の後側に位置している。タイヤ包絡線Etは、前輪15の転舵、バウンスを含む車体に対する全ての相対変位の軌跡のうち最も外側(車体近接側)の軌跡を示している。このタイヤ包絡線Etは、フェンダライナ18の車幅方向内端の近傍で最も車体前後方向の後側のピークEpを有するので、フェンダライナ18の後部は、図3に示される如く、車幅方向の内端18Bが外端18Cに対し車体前後方向の後側に位置するように、その内面が車幅方向(基準線W参照)に対し傾斜されている。   On the other hand, the inner end in the vehicle width direction of each concave portion 20 is an open end opened inward in the vehicle width direction. As shown in FIG. 3, in the fender liner 18 (wheel house 14), the inner end 18B in the vehicle width direction is located on the rear side in the vehicle longitudinal direction with respect to the outer end 18C in relation to the tire envelope Et. . The tire envelope Et indicates the outermost (vehicle body proximity side) trajectory of all relative displacement trajectories including the steering and bounce of the front wheels 15. Since the tire envelope Et has a peak Ep at the rearmost side in the vehicle longitudinal direction in the vicinity of the inner end in the vehicle width direction of the fender liner 18, the rear portion of the fender liner 18 is arranged in the vehicle width direction as shown in FIG. The inner surface is inclined with respect to the vehicle width direction (see the reference line W) so that the inner end 18B is located on the rear side in the vehicle longitudinal direction with respect to the outer end 18C.
そして、車両用空力構造10では、同じ凹状部20を構成する空気流衝突壁24(下壁)と空気流案内壁22との角部である凹側稜線Rrと、空気流衝突壁24と上側の凹状部20の空気流案内壁22(上壁)又は一般壁部28との角部である凸側稜線Rfとの距離(図4に示す突出高さH)は、図1及び図3に示される如く、車幅方向に沿って徐変されている。以下、具体的に説明する。   In the aerodynamic structure 10 for a vehicle, the concave ridge line Rr that is a corner portion between the air flow collision wall 24 (lower wall) and the air flow guide wall 22 constituting the same concave portion 20, the air flow collision wall 24, and the upper side The distance (the protrusion height H shown in FIG. 4) from the convex ridgeline Rf that is a corner of the concave portion 20 with the air flow guide wall 22 (upper wall) or the general wall portion 28 is shown in FIGS. As shown, it is gradually changed along the vehicle width direction. This will be specifically described below.
図3に示される如く、車両用空力構造10では、凹側稜線Rrは、車幅方向(基準線W)に略沿って形成されており、凸側稜線Rf(上縁20C)は、車幅方向内端Rfiが車幅方向外端Rfoに対し車体前後方向の後側に位置するように、車幅方向(基準線W)に対し傾斜されている。この実施形態では、車幅方向内端Rfiは、凹側稜線Rrに略一致するように、空気流衝突壁24が平面視で略三角形状に形成されている。   As shown in FIG. 3, in the vehicle aerodynamic structure 10, the concave ridgeline Rr is formed substantially along the vehicle width direction (reference line W), and the convex ridgeline Rf (upper edge 20C) The direction inner end Rfi is inclined with respect to the vehicle width direction (reference line W) so as to be located on the rear side in the vehicle longitudinal direction with respect to the vehicle width direction outer end Rfo. In this embodiment, the air flow collision wall 24 is formed in a substantially triangular shape in plan view so that the vehicle width direction inner end Rfi substantially coincides with the concave ridgeline Rr.
この実施形態では、フェンダライナ18は、前輪15側を向いて周縁部を形成するフランジ30を備えており、フランジ30と凹状部20の車幅方向内端との間には、わずかな段差(3mm以下の段差)Bが形成されている。段差Bは、凹状部20の車幅方向内端が、フランジ30における凹状部20よりも車幅方向内側に位置する部分よりも前輪15側に突出する方向に形成されている。   In this embodiment, the fender liner 18 includes a flange 30 that faces the front wheel 15 and forms a peripheral edge. A slight step (between the flange 30 and the inner end of the concave portion 20 in the vehicle width direction). A step B) of 3 mm or less is formed. The step B is formed in a direction in which the inner end in the vehicle width direction of the concave portion 20 protrudes toward the front wheel 15 from the portion of the flange 30 located on the inner side in the vehicle width direction than the concave portion 20.
また、図1及び図2に示される如く、車両用空力構造10は、前輪15側に開口するようにフェンダライナ18に設けられた周方向溝としてのガイド溝34を備えている。ガイド溝34は、凹状部20(のうち最も上前方に位置するもの)よりも車体前後方向の前側を基端34Aとし、フェンダライナ18の周方向に沿って長手とされて、該フェンダライナ18の前下端部18Dの近傍部分が終端34Bとされている。ガイド溝34は、凹状部20とは非連通とされている。   As shown in FIGS. 1 and 2, the vehicle aerodynamic structure 10 includes a guide groove 34 as a circumferential groove provided in the fender liner 18 so as to open to the front wheel 15 side. The guide groove 34 has a front end 34A in the front-rear direction of the vehicle body relative to the concave portion 20 (which is located at the top and front), and is elongated along the circumferential direction of the fender liner 18. The vicinity of the front lower end 18D is the end 34B. The guide groove 34 is not in communication with the recessed portion 20.
このガイド溝34は、基端34A、終端34Bにおける溝底がそれぞれテーパしてフェンダライナ18の一般面を成す一般壁部28(凹状部20、ガイド溝34の開口面)に滑らかに連続しており、凹状部20(ホイールハウス14)の周方向に沿った空気流がスムースに流入出するようになっている。図1に示される如く、この実施形態では、車幅方向に並列した複数(2本)のガイド溝34が設けられている。これらのガイド溝34は、フェンダライナ18の内周に沿って後方から前方に向かう空気流を、基端34Aから流入させて終端34Bから排出されるように案内する構成とされている。換言すれば、各ガイド溝34における車幅方向に対向する一対の壁34Cが、車幅方向に向かう空気流が生じることを防止する構成とされている。なお、以上では、2本のガイド溝34が設けられた例を示したが、ガイド溝34は、1本だけ設けられても良く、3本以上設けられても良い。   The guide groove 34 is smoothly and continuously connected to a general wall portion 28 (concave portion 20, opening surface of the guide groove 34) that forms a general surface of the fender liner 18 by tapering the groove bottoms at the base end 34A and the terminal end 34B. Thus, the air flow along the circumferential direction of the concave portion 20 (wheel house 14) flows in and out smoothly. As shown in FIG. 1, in this embodiment, a plurality (two) of guide grooves 34 arranged in parallel in the vehicle width direction are provided. These guide grooves 34 are configured to guide an air flow from the rear to the front along the inner circumference of the fender liner 18 so that the air flows from the base end 34A and is discharged from the terminal end 34B. In other words, the pair of walls 34 </ b> C facing each other in the vehicle width direction in each guide groove 34 is configured to prevent an air flow toward the vehicle width direction from being generated. In addition, although the example in which the two guide grooves 34 were provided was shown above, only one guide groove 34 may be provided, or three or more guide grooves 34 may be provided.
後輪16用の車両用空力構造10について補足すると、図5(A)に示される如く、自動車Sでは、リヤフェンダパネル36のホイールアーチ36Aの内側にホイールハウス14が形成されており、該ホイールハウス14内に後輪16が配置されている。後輪16用の車両用空力構造10は、転舵輪ではない(又は転舵角が小さい)後輪16のタイヤ包絡線Etが転舵輪である前輪15のタイヤ包絡線Etと異なる以外は、基本的に前輪15のための車両用空力構造10と同様に構成されている。すなわち、後輪16用の車両用空力構造10は、該後輪16を覆うリヤホールハウスライナ(以下の説明では、前輪15用と区別することなく、フェンダライナ18という)に凹状部20、ガイド溝34を形成することで構成されている。   Supplementing the vehicle aerodynamic structure 10 for the rear wheels 16, as shown in FIG. 5A, in the automobile S, the wheel house 14 is formed inside the wheel arch 36A of the rear fender panel 36. A rear wheel 16 is disposed in the interior 14. The vehicle aerodynamic structure 10 for the rear wheel 16 is basically the same except that the tire envelope Et of the rear wheel 16 that is not a steered wheel (or has a small steered angle) is different from the tire envelope Et of the front wheel 15 that is a steered wheel. Specifically, the vehicle aerodynamic structure 10 for the front wheel 15 is configured. That is, the vehicle aerodynamic structure 10 for the rear wheel 16 includes a concave portion 20 and a guide on a rear hole house liner (hereinafter referred to as a fender liner 18 without distinction from the front wheel 15) that covers the rear wheel 16. The groove 34 is formed.
また、図6乃至図8に示される如く、車両用空力構造10は、前輪15、後輪16の前方にそれぞれ配置され、車幅方向に延在するスパッツ32を備えている。スパッツ32は、自動車Sの走行に伴う走行風がホイールハウス14内に流入することを防止する構成とされている。車両用空力構造10は、スパッツ32を備えない構成としても良い。   Further, as shown in FIGS. 6 to 8, the aerodynamic structure 10 for a vehicle includes spats 32 that are respectively disposed in front of the front wheels 15 and the rear wheels 16 and extend in the vehicle width direction. The spats 32 are configured to prevent a traveling wind accompanying the traveling of the automobile S from flowing into the wheel house 14. The vehicle aerodynamic structure 10 may be configured without the spats 32.
次に、本実施形態の作用を説明する。   Next, the operation of this embodiment will be described.
上記構成の車両用空力構造10が適用された自動車Sでは、自動車Sの走行に伴って前輪15が矢印R方向に回転すると、この前輪15の回転に引きずられるようにして、前輪15の後方からホイールハウス14に略上向きに流入する空気流Fが生じる。この空気流Fの一部は、空気流案内壁22に案内されて凹状部20に流入し、空気流衝突壁24に衝突する。このため、空気流Fの一部が塞き止められて凹状部20内の圧力が上昇し、この圧力上昇範囲が凹状部20と前輪15との間の空間まで及ぶ。これにより、車両用空力構造10では、前輪15の後方からホイールハウス14内への空気の流入抵抗が増大し、該ホイールハウス14への空気の流入が抑制される。   In the automobile S to which the vehicle aerodynamic structure 10 having the above configuration is applied, when the front wheel 15 rotates in the arrow R direction as the automobile S travels, the front wheel 15 is dragged by the rotation of the front wheel 15 from behind. An air flow F flows into the wheel house 14 substantially upward. A part of the air flow F is guided by the air flow guide wall 22 and flows into the concave portion 20 and collides with the air flow collision wall 24. For this reason, a part of the air flow F is blocked and the pressure in the concave portion 20 rises, and this pressure increase range extends to the space between the concave portion 20 and the front wheel 15. Thereby, in the aerodynamic structure 10 for vehicles, the inflow resistance of the air into the wheel house 14 from the back of the front wheel 15 increases, and the inflow of the air into the wheel house 14 is suppressed.
同様に、車両用空力構造10が適用された自動車Sでは、後輪16の回転によって空気流の一部が空気流衝突壁24で塞き止められることで生じる凹状部20廻りの圧力上昇によって、ホイールハウス14内への空気の流入抵抗が増大し、該ホイールハウス14への空気の流入が抑制される。   Similarly, in the automobile S to which the vehicle aerodynamic structure 10 is applied, due to the pressure increase around the concave portion 20 caused by part of the airflow being blocked by the airflow collision wall 24 due to the rotation of the rear wheel 16, The inflow resistance of air into the wheel house 14 increases, and the inflow of air into the wheel house 14 is suppressed.
また、空気流Fの他の一部は、凹状部20の設置領域を超えてホイールハウス14内に流入する。この空気流Fの少なくとも一部は、遠心力で外周側を流れようとしてガイド溝34に流入し、該ガイド溝34に案内されて終端34B側から排出される。   Further, another part of the air flow F flows into the wheel house 14 beyond the installation region of the concave portion 20. At least a part of the air flow F flows into the guide groove 34 in an attempt to flow on the outer peripheral side by centrifugal force, is guided by the guide groove 34, and is discharged from the end 34B side.
このように、実施形態に係る車両用空力構造10では、凹状部20がホイールハウス14への空気流入を抑制するため、自動車Sのフロア下からホイールハウス14に流入しようとする空気流Fが弱く、該ホイールハウス14の周辺の空気流の乱れが防止(整流)される。具体的には、図5(A)に示される如く、フロア下の空気流Ffが乱されることが防止されて、フロア下ではスムースな空気流Ffが得られる。   As described above, in the vehicle aerodynamic structure 10 according to the embodiment, the concave portion 20 suppresses the air inflow to the wheel house 14, and thus the air flow F about to flow into the wheel house 14 from under the floor of the automobile S is weak. The turbulence of the air flow around the wheel house 14 is prevented (rectified). Specifically, as shown in FIG. 5A, the air flow Ff under the floor is prevented from being disturbed, and a smooth air flow Ff is obtained under the floor.
また、ホイールハウス14への流入空気量が減少して該ホイールハウス14の側方から排出される空気量も減少する。特に、ホイールハウス14に空気流Fが流入する最上流部である後下縁部14Aに凹状部20が配設されているため、換言すれば、最上流部で空気流Fを塞き止めるため、ホイールハウス14の側方から排出される空気量をより減少させることができる。これらにより、自動車Sでは、側面に沿う空気流Fsが乱されることが防止されて、側面ではスムースな空気流Fsが得られる。   Further, the amount of air flowing into the wheel house 14 is reduced, and the amount of air discharged from the side of the wheel house 14 is also reduced. In particular, since the concave portion 20 is disposed at the rear lower edge portion 14A, which is the most upstream portion where the airflow F flows into the wheel house 14, in other words, to block the airflow F at the most upstream portion. The amount of air discharged from the side of the wheel house 14 can be further reduced. Thus, in the automobile S, the air flow Fs along the side surface is prevented from being disturbed, and a smooth air flow Fs is obtained on the side surface.
以上により、車両用空力構造10が適用された自動車Sでは、凹状部20の作用によって、空気抵抗(CD値)の低減、操縦安定性の向上、風切り音の低減、スプラッシュ(前輪15、後輪16による路面からの水の巻き上げ)の低減等を図ることができる。   As described above, in the automobile S to which the vehicle aerodynamic structure 10 is applied, the action of the concave portion 20 reduces air resistance (CD value), improves steering stability, reduces wind noise, and splash (front wheel 15, rear wheel). 16 or the like can be reduced.
また、車両用空力構造10では、凹状部20の前方にガイド溝34が設けられているため、ホイールハウス14の内側、及び側方の空気流が整流される。具体的には、ガイド溝34によってホイールハウス14内の空気流Fが前輪15、後輪16の回転方向に沿って(平行に)流れるため、ホイールハウス14内での空気流の乱れ(前輪15、後輪16への空気力の付与)が防止される。また、ホイールハウス14の側方すなわちホイールアーチ12A、36Aを経由した空気排出が抑制されるので、自動車Sでは、スムースな空気流Fsが得られる。   Further, in the vehicle aerodynamic structure 10, since the guide groove 34 is provided in front of the concave portion 20, the air flow inside and the side of the wheel house 14 is rectified. Specifically, since the air flow F in the wheel house 14 flows along (in parallel with) the rotation direction of the front wheels 15 and the rear wheels 16 by the guide grooves 34, the air flow in the wheel house 14 is disturbed (front wheels 15). Application of aerodynamic force to the rear wheel 16 is prevented. Further, since the air discharge via the side of the wheel house 14, that is, the wheel arches 12A and 36A is suppressed, in the automobile S, a smooth air flow Fs is obtained.
このため、車両用空力構造10が適用された自動車Sでは、ガイド溝34の作用によっても空気抵抗の低減、操縦安定性の向上、風切り音の低減、スプラッシュの低減等を図ることができる。したがって、前輪15、後輪16のそれぞれに車両用空力構造10が設けられた自動車Sでは、図5(A)に示される如く、車体の前部、後部の何れにおいても、側面及びフロア下で乱れの原因となる吹き出しのないスムースな空気流Ff、Fsが得られ、これらの流れが車体の後方でスムースに合流する(矢印Fj参照)。   For this reason, in the automobile S to which the vehicle aerodynamic structure 10 is applied, it is possible to reduce air resistance, improve steering stability, reduce wind noise, reduce splash, and the like by the action of the guide groove 34. Therefore, in the automobile S in which the vehicle aerodynamic structure 10 is provided on each of the front wheels 15 and the rear wheels 16, as shown in FIG. Smooth air flows Ff and Fs that do not cause a turbulence are obtained, and these flows smoothly merge at the rear of the vehicle body (see arrow Fj).
図5(B)に示す比較例との比較で補足すると、車両用空力構造10を備えない比較例200では、前輪15、後輪16の回転に伴ってホイールハウス14内に空気流Fが生じ、この流入が前輪15、後輪16の直後方(ホイールハウス14への空気流発生部)でフロア下の空気流Ffの乱れを生じさせる。また、ホイールハウス14内に流入した空気流Fは、ホイールアーチ12Aを経由して車体側方に排出され(矢印Fi参照)、空気流Fsの乱れを生じさせる。これらに起因して、車体の後方で合流するFjにも乱れを生じる。   Complementing the comparison with the comparative example shown in FIG. 5B, in the comparative example 200 not including the vehicle aerodynamic structure 10, an air flow F is generated in the wheel house 14 as the front wheel 15 and the rear wheel 16 rotate. This inflow causes turbulence of the air flow Ff below the floor immediately after the front wheels 15 and the rear wheels 16 (air flow generation portion to the wheel house 14). Further, the air flow F flowing into the wheel house 14 is discharged to the side of the vehicle body via the wheel arch 12A (see arrow Fi), and the air flow Fs is disturbed. As a result, the Fj that merges behind the vehicle body is also disturbed.
これに対して、車両用空力構造10が適用された自動車Sでは、上記の如く前輪15、後輪16の後方からホイールハウス14への空気流入が凹状部20によって抑制されると共に、該ホイールハウス14内に流入した空気流がガイド溝34にて整流されるので、上記の通り、空気抵抗の低減、操縦安定性の向上、風切り音の低減、スプラッシュの低減等を実現することができた。   On the other hand, in the automobile S to which the vehicle aerodynamic structure 10 is applied, air inflow from the rear of the front wheel 15 and the rear wheel 16 to the wheel house 14 is suppressed by the concave portion 20 as described above, and the wheel house. Since the air flow that has flowed into 14 is rectified by the guide groove 34, as described above, reduction of air resistance, improvement of steering stability, reduction of wind noise, reduction of splash, and the like could be realized.
特に、車両用空力構造10では、複数の凹状部20が連続的に設けられているため、前輪15、後輪16の後方からホイールハウス14への空気流入を一層効果的に抑制することができる。すなわち、凹状部20の車体内部側への突出量を抑えたコンパクトな構成で、十分な整流効果を得ることができる。また、ガイド溝34が凹状部20と非連通とされているので、凹状部20からガイド溝34に空気が流れて凹状部20の圧力が低下してしまうことがなく、ホイールハウス14への空気流Fの流入抑制効果と、ホイールハウス14に流入した空気流Fの整流効果とを効果的に両立することができる。   In particular, in the vehicle aerodynamic structure 10, since the plurality of concave portions 20 are continuously provided, air inflow from the rear of the front wheels 15 and the rear wheels 16 to the wheel house 14 can be more effectively suppressed. . That is, a sufficient rectifying effect can be obtained with a compact configuration in which the amount of protrusion of the concave portion 20 toward the inside of the vehicle body is suppressed. Further, since the guide groove 34 is not in communication with the concave portion 20, air does not flow from the concave portion 20 to the guide groove 34 and the pressure of the concave portion 20 does not decrease, and the air to the wheel house 14 does not decrease. The inflow suppression effect of the flow F and the rectification effect of the air flow F flowing into the wheel house 14 can be effectively made compatible.
また、車両用空力構造10では、凹状部20、ガイド溝34がフェンダライナ18の一般壁部28に対し凹んで位置するため、前輪15、後輪16との干渉が問題となることがない。したがって、前輪15、後輪16との干渉防止のために寸法形状や配置等について制約を受けることがなく、空力上の要求性能に基づいて凹状部20、ガイド溝34を設計することができる。   Further, in the vehicle aerodynamic structure 10, since the concave portion 20 and the guide groove 34 are positioned so as to be recessed with respect to the general wall portion 28 of the fender liner 18, interference with the front wheel 15 and the rear wheel 16 does not become a problem. Therefore, the concave portion 20 and the guide groove 34 can be designed based on the required performance in aerodynamics without any restrictions on the size, shape, arrangement, and the like in order to prevent interference with the front wheel 15 and the rear wheel 16.
そして、車両用空力構造10では、凸側稜線Rfの凹側稜線Rrに対する突出高さHが車幅方向構内端に向け徐減されているので、前輪15、後輪16が巻き上げる飛び石等による損傷を受け難い。この点を図8に示す比較例との比較で説明する。   In the aerodynamic structure 10 for a vehicle, the protrusion height H of the convex ridge line Rf with respect to the concave ridge line Rr is gradually reduced toward the inner end in the vehicle width direction. It is difficult to receive. This point will be described in comparison with a comparative example shown in FIG.
図8に示される比較例に係る車両用空力構造100では、フェンダライナ101は、空気流案内壁102と空気流衝突壁104とから成る凹状部106を有している。空気流衝突壁104と上側の凹状部106の空気流案内壁102又は一般壁部28との角部である凸側稜線Rfcは、車幅方向に略沿って延在している(図3の想像線も参照)。そして、フェンダライナ101は、タイヤ包絡線Etとの関係上、車幅方向内端が外端に対し車体前後方向の後側に位置する構造であるので、例えば側壁26に対向して凸側稜線Rfcよりも前方に突出する側壁を車幅方向内端に設けることができない。このため、車両用空力構造100では、空気流衝突壁104と、上側の凹状部106の空気流案内壁102又は一般壁部28と、フランジ30とを繋ぐ側壁(車両用空力構造10の段差Bに相当)との3面から成る頂部Pが形成されている。この頂部Pは、飛び石、砂、氷等により損傷を受けやすい。   In the vehicle aerodynamic structure 100 according to the comparative example shown in FIG. 8, the fender liner 101 has a concave portion 106 including an air flow guide wall 102 and an air flow collision wall 104. A convex ridgeline Rfc that is a corner between the airflow collision wall 104 and the airflow guide wall 102 or the general wall portion 28 of the upper concave portion 106 extends substantially along the vehicle width direction (see FIG. 3). See also imaginary line). Since the fender liner 101 has a structure in which the inner end in the vehicle width direction is located on the rear side in the vehicle longitudinal direction with respect to the outer end in relation to the tire envelope Et, for example, the convex ridge line facing the side wall 26. Side walls protruding forward from Rfc cannot be provided at the inner end in the vehicle width direction. For this reason, in the vehicle aerodynamic structure 100, the airflow collision wall 104, the airflow guide wall 102 or the general wall portion 28 of the upper concave portion 106, and the side wall (step B of the vehicle aerodynamic structure 10) are connected. 3), the top portion P is formed. This top portion P is easily damaged by stepping stones, sand, ice and the like.
例えば、フェンダライナ18を樹脂のバキューム成形にて形成する場合、頂部Pはフェンダライナ18の薄肉部として形成されやすく、飛び石等が衝突すると穴開き等が生じることが懸念される。また例えば、フェンダライナ18を樹脂の射出成形にて形成する場合、頂部Pを厚肉に形成することが可能であるが、飛び石による傷つきで表面が白化し見栄えが悪化することが懸念される。さらに例えば、防音性能を得るために腐食を基材又は表皮材としてフェンダライナ18を形成する場合、頂部Pへの飛び石等による打撃によって表面の毛羽立ちによる見栄えの悪化や、穴開きによる防音性能の低下が懸念される。またさらに例えば、フェンダライナ18を金属材にて構成したり、フェンダライナ18に代えて車体の板金部分に凹状部20を形成したりする場合、頂部Pへの飛び石等による打撃によって塗装(対チップ塗装や防錆塗装を含む)が剥がれ、金属の露出(雰囲気暴露)部分に錆が生じすることが懸念される。   For example, when the fender liner 18 is formed by resin vacuum molding, the top portion P is easily formed as a thin portion of the fender liner 18, and there is a concern that a hole or the like may be formed when a stepping stone or the like collides. In addition, for example, when the fender liner 18 is formed by resin injection molding, the top portion P can be formed thick, but there is a concern that the surface may be whitened due to scratching by a stepping stone and the appearance may deteriorate. Further, for example, when the fender liner 18 is formed using corrosion as a base material or skin material in order to obtain soundproof performance, the appearance of the surface P is deteriorated due to flicking to the top portion P or the soundproof performance is lowered due to perforations. Is concerned. Furthermore, for example, when the fender liner 18 is made of a metal material, or when the concave portion 20 is formed in the sheet metal portion of the vehicle body in place of the fender liner 18, it is painted by striking the top portion P with a stepping stone or the like (to the chip). There is concern that rust will occur on the exposed (atmosphere exposed) part of the metal.
これに対して、車両用空力構造10では、上記の通り凸側稜線Rfの凹側稜線Rrに対する突出高さHが車幅方向構内端に向け徐減されているので、上記の通り各種損傷(ダメージ)を受けやすい頂部Pが形成されず、又は頂部Pの突出高さが小さくなるため、飛び石等による損傷を受けることが抑制される。換言すれば、車両用空力構造10は、頂部Pが形成されず、又は頂部Pの突出高さが小さくなる構成により、飛び石等の衝突に対する強度(耐性)が増し、又は、飛び石等の衝突確率が減じられる。なお、飛び石によりフェンダライナ18が受ける損傷は、飛び石の径が3mm程度である場合に最大になるとの知見に基づき、車両用空力構造10では、頂部P又は段差Bが形成される構成において、該頂部P、段差Bの凹側稜線Rrに対する突出高さを3mm以内とすることが望ましい。   On the other hand, in the vehicle aerodynamic structure 10, the protrusion height H of the convex ridge line Rf with respect to the concave ridge line Rr is gradually reduced toward the vehicle width direction inner end as described above. The top portion P that is susceptible to damage) is not formed, or the protruding height of the top portion P is reduced, so that damage due to stepping stones or the like is suppressed. In other words, the aerodynamic structure 10 for a vehicle has a structure in which the top portion P is not formed or the protrusion height of the top portion P is reduced, so that the strength (resistance) against the collision of the stepping stones increases, or the collision probability of the stepping stones or the like Is reduced. Based on the knowledge that the damage to the fender liner 18 due to the stepping stone is maximized when the diameter of the stepping stone is about 3 mm, in the vehicle aerodynamic structure 10, It is desirable that the protrusion height of the top portion P and the step B with respect to the concave side ridge line Rr is within 3 mm.
なお、上記した実施形態では、凸側稜線Rfが凹側稜線Rrに対し全体として直線的に傾斜されて該凸側稜線Rfの凹側稜線Rrに対する突出高さHが徐変される例を示したが、本発明はこれに限定されず、例えば、図6、図7に示される如き変形例に係る構成としても良い。   In the above-described embodiment, an example is shown in which the convex ridge line Rf is linearly inclined as a whole with respect to the concave ridge line Rr, and the protrusion height H of the convex ridge line Rf with respect to the concave ridge line Rr is gradually changed. However, the present invention is not limited to this, and for example, a configuration according to a modified example as shown in FIGS.
図6に示される変形例に係る車両用空力構造40では、凸側稜線Rfの車幅方向外側の一部は車幅方向に略沿って延在しており、凸側稜線Rfの車幅方向の内側部分が凹側稜線Rrに対し傾斜される(突出高さHが徐変される)ことで、頂部Pが形成されない、又は頂部Pの突出高さが小さい構成が実現されている。   In the vehicle aerodynamic structure 40 according to the modified example shown in FIG. 6, a part of the convex side ridge line Rf outside in the vehicle width direction extends substantially along the vehicle width direction, and the convex side ridge line Rf extends in the vehicle width direction. The inner portion is inclined with respect to the concave ridge line Rr (the projection height H is gradually changed), so that the configuration in which the top portion P is not formed or the projection height of the top portion P is small is realized.
図7に示される変形例に係る車両用空力構造50では、凸側稜線Rfの車幅方向外側の一部は車幅方向に略沿って(車両用空力構造100の凸側稜線Rfcと同程度に傾斜して)延在しており、凹側稜線Rrが車幅方向(凸側稜線Rf)に対し傾斜されることで、突出高さHが徐変される構成が実現されている。この構成によっても、頂部Pが形成されない、又は頂部Pの突出高さが小さい構成が実現される。   In the vehicle aerodynamic structure 50 according to the modification shown in FIG. 7, a part of the convex side ridge line Rf outside in the vehicle width direction is substantially along the vehicle width direction (similar to the convex side ridge line Rfc of the vehicle aerodynamic structure 100). And the concave ridge line Rr is inclined with respect to the vehicle width direction (convex ridge line Rf), so that the protrusion height H is gradually changed. This configuration also realizes a configuration in which the top portion P is not formed or the projection height of the top portion P is small.
また、上記した実施形態では、凹状部20が2つ設けられた例を示したが、本発明はこれに限定されず、例えば、要求される空力性能等に応じて1つ又は3つ以上の凹状部20を有する構成とすることができる。   In the above-described embodiment, an example in which two concave portions 20 are provided has been described. However, the present invention is not limited to this, and, for example, one or three or more depending on required aerodynamic performance or the like. It can be set as the structure which has the recessed part 20. FIG.
さらに、上記した実施形態では、車両用空力構造10がガイド溝34を有する例を示したが、本発明はこれに限定されず、例えば、ガイド溝34を有しない構成としても良い。   Furthermore, in the above-described embodiment, an example in which the aerodynamic structure 10 for a vehicle has the guide groove 34 is shown, but the present invention is not limited to this, and for example, a configuration without the guide groove 34 may be adopted.
またさらに、上記した実施形態では、凹状部20がホイールハウス14の後下縁部14Aに配設された例を示したが、本発明はこれに限定されず、例えば、凹状部20は、前輪15、後輪16の回転軸線RCに対し車体前後方向の後側の如何なる部分に配置しても良い。   Furthermore, in the above-described embodiment, the example in which the concave portion 20 is disposed on the rear lower edge portion 14A of the wheel house 14 has been shown. However, the present invention is not limited to this example. 15. It may be arranged at any part on the rear side in the vehicle longitudinal direction with respect to the rotational axis RC of the rear wheel 16.
本発明の実施形態に係る車両用空力構造の一部を拡大して示す斜視図である。1 is an enlarged perspective view showing a part of a vehicle aerodynamic structure according to an embodiment of the present invention. 本発明の実施形態に係る車両用空力構造の概略全体構成を模式的に示す側断面図である。1 is a side cross-sectional view schematically showing a schematic overall configuration of a vehicle aerodynamic structure according to an embodiment of the present invention. 図1の3−3線に沿った平面断面図である。FIG. 3 is a plan sectional view taken along line 3-3 in FIG. 1. 本発明の実施形態に係る車両用空力構造の一部を拡大して示す側断面図である。It is a sectional side view which expands and shows a part of vehicle aerodynamic structure which concerns on embodiment of this invention. (A)は、本発明の第1及び第2の実施形態に係る車両用空力構造が適用された自動車の斜視図、(B)は比較例に係る自動車の斜視図である。(A) is a perspective view of the automobile to which the aerodynamic structure for a vehicle according to the first and second embodiments of the present invention is applied, and (B) is a perspective view of the automobile according to a comparative example. 本発明の実施形態の第1変形例に係る車両用空力構造を示す図3に対応する平面断面図である。It is a plane sectional view corresponding to Drawing 3 showing the aerodynamic structure for vehicles concerning the 1st modification of an embodiment of the present invention. 本発明の実施形態の第2変形例に係る車両用空力構造を示す図3に対応する平面断面図である。It is a plane sectional view corresponding to Drawing 3 showing the aerodynamic structure for vehicles concerning the 2nd modification of an embodiment of the present invention. 本発明の第実施形態との比較例に係る車両用空力構造を示す斜視図である。It is a perspective view which shows the aerodynamic structure for vehicles which concerns on the comparative example with 1st Embodiment of this invention.
符号の説明Explanation of symbols
10 車両用空力構造
14 ホイールハウス
15 前輪(車輪)
16 後輪(車輪)
22 空気流案内壁(下壁、上壁)
24 空気流衝突壁
40・50 車両用空力構造
Rf 凸側稜線(空気流衝突壁と上壁とで成す角部)
Rfc 凸側稜線(空気流衝突壁と下壁とで成す角部)
10 Vehicle aerodynamic structure 14 Wheel house 15 Front wheel
16 Rear wheel
22 Air flow guide wall (lower wall, upper wall)
24 Airflow collision wall 40/50 Aerodynamic structure for vehicle Rf Convex ridgeline (corner formed by airflow collision wall and upper wall)
Rfc Convex ridgeline (corner formed by airflow collision wall and lower wall)

Claims (3)

  1. ホイールハウス内における車輪の回転軸心よりも車体前後方向の後側に、車幅方向に延在されると共に車体上下方向の下側を向く空気流衝突壁と、該空気流衝突壁の車体前後方向の後端部から車体上下方向の下向きに延設された下壁と、前記空気流衝突壁の車体前後方向の前端部から車体上下方向の上向きに延設された上壁とが設けられており、
    かつ、前記空気流衝突壁と前記上壁とで成す角部は、車幅方向の少なくとも一部において、前記空気流衝突壁と前記下壁とで成す角部に対する車体前後方向の突出高さが車幅方向に沿って徐変されている車両用空力構造。
    An air flow collision wall extending in the vehicle width direction and rearward in the vehicle longitudinal direction from the rotational axis of the wheel in the wheel house and facing the vehicle body vertical direction, and the vehicle body front and rear of the air flow collision wall A lower wall that extends downward from the rear end of the vehicle body in the vertical direction of the vehicle body and an upper wall that extends upward from the front end portion of the airflow collision wall in the vehicle longitudinal direction. And
    In addition, the corner portion formed by the air flow collision wall and the upper wall has a protrusion height in the vehicle front-rear direction with respect to the corner portion formed by the air flow collision wall and the lower wall in at least a part of the vehicle width direction. An aerodynamic structure for vehicles that is gradually changed along the vehicle width direction.
  2. 前記ホイールハウスは、車幅方向の内側部分が車幅方向外側部分よりも車体前後方向の後側に位置するように形成されており、
    前記空気流衝突壁と前記上壁とで成す角部は、車幅方向の内端を含む該車幅方向の少なくとも一部において、前記突出高さが車幅方向の内側ほど小さくなるように徐変されている請求項1記載の車両用空力構造。
    The wheel house is formed such that the inner part in the vehicle width direction is located on the rear side in the vehicle longitudinal direction than the outer part in the vehicle width direction,
    The corner portion formed by the air flow collision wall and the upper wall gradually decreases so that the protruding height becomes smaller toward the inner side in the vehicle width direction at least in a part of the vehicle width direction including the inner end in the vehicle width direction. The aerodynamic structure for a vehicle according to claim 1, which is modified.
  3. 前記空気流衝突壁と前記上壁とで成す角部は、前記空気流衝突壁の車幅方向の内端を含む該車幅方向の少なくとも一部において、車体前後方向の前端部又は後端部が車幅方向に対し傾斜されることで、前記突出高さが車幅方向の内側ほど小さくなるように徐変されている請求項2記載の車両用空力構造。   The corner portion formed by the air flow collision wall and the upper wall has a front end portion or a rear end portion in the vehicle body front-rear direction in at least a part of the air flow collision wall including the inner end in the vehicle width direction. The vehicle aerodynamic structure according to claim 2, wherein the protrusion height is gradually changed so as to become smaller toward the inner side in the vehicle width direction by being inclined with respect to the vehicle width direction.
JP2007235930A 2007-09-11 2007-09-11 Aerodynamic structure for vehicles Active JP4333788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235930A JP4333788B2 (en) 2007-09-11 2007-09-11 Aerodynamic structure for vehicles

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2007235930A JP4333788B2 (en) 2007-09-11 2007-09-11 Aerodynamic structure for vehicles
RU2010114281/11A RU2423278C1 (en) 2007-09-11 2008-08-18 Aerodynamic structure for transport facility
KR1020107007758A KR101068923B1 (en) 2007-09-11 2008-08-18 Automotive Aerodynamic Structure
BRPI0816720-6A BRPI0816720B1 (en) 2007-09-11 2008-08-18 Aerodynamic structure for vehicle
PCT/JP2008/064688 WO2009034814A1 (en) 2007-09-11 2008-08-18 Aerodynamic structure for vehicle
AU2008298470A AU2008298470B2 (en) 2007-09-11 2008-08-18 Aerodynamic structure for vehicle
CN2008801066348A CN101801769B (en) 2007-09-11 2008-08-18 Aerodynamic structure for vehicle

Publications (2)

Publication Number Publication Date
JP2009067158A true JP2009067158A (en) 2009-04-02
JP4333788B2 JP4333788B2 (en) 2009-09-16

Family

ID=40451823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235930A Active JP4333788B2 (en) 2007-09-11 2007-09-11 Aerodynamic structure for vehicles

Country Status (7)

Country Link
JP (1) JP4333788B2 (en)
KR (1) KR101068923B1 (en)
CN (1) CN101801769B (en)
AU (1) AU2008298470B2 (en)
BR (1) BRPI0816720B1 (en)
RU (1) RU2423278C1 (en)
WO (1) WO2009034814A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192695A1 (en) * 2013-05-27 2014-12-04 横浜ゴム株式会社 Air resistance reduction structure for vehicle and vehicle
JP2016185787A (en) * 2015-03-27 2016-10-27 富士重工業株式会社 Inner peripheral surface structure for vehicle wheel house
US10023241B2 (en) 2015-09-10 2018-07-17 Toyota Jidosha Kabushiki Kaisha Air flow adjusting structure for vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229204B1 (en) 2007-09-11 2009-02-25 トヨタ自動車株式会社 Aerodynamic structure for vehicles
CN102602459A (en) * 2012-04-01 2012-07-25 常熟南师大发展研究院有限公司 Rear retaining plate of wheel
CN103072640A (en) * 2013-01-21 2013-05-01 朱晓义 Automobile with reduced lifting power
GB2510898A (en) * 2013-02-19 2014-08-20 Nissan Motor Mfg Uk Ltd Wheel guard for a vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6410443U (en) 1987-07-10 1989-01-19
GB2265875A (en) 1992-04-02 1993-10-13 Richard John Hodgson Mud flap
FI96292C (en) * 1993-05-27 1996-06-10 Parton Oy Ab Device for reducing splashes from vehicle tires
JPH08216929A (en) * 1995-02-14 1996-08-27 Mitsubishi Motors Corp Wheel house cover structure
KR19980047458U (en) * 1996-12-28 1998-09-25 추호석 Wheel House Structure for Vehicle
JP4559012B2 (en) * 2000-03-30 2010-10-06 イヴァン ブルールハルト Aerodynamic stabilizer for automobile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192695A1 (en) * 2013-05-27 2014-12-04 横浜ゴム株式会社 Air resistance reduction structure for vehicle and vehicle
JP2014227145A (en) * 2013-05-27 2014-12-08 横浜ゴム株式会社 Air resistance reduction structure for vehicle and vehicle
US9663154B2 (en) 2013-05-27 2017-05-30 The Yokohama Rubber Co., Ltd. Resistance reduction structure for vehicle and vehicle
JP2016185787A (en) * 2015-03-27 2016-10-27 富士重工業株式会社 Inner peripheral surface structure for vehicle wheel house
US10023241B2 (en) 2015-09-10 2018-07-17 Toyota Jidosha Kabushiki Kaisha Air flow adjusting structure for vehicle

Also Published As

Publication number Publication date
KR101068923B1 (en) 2011-09-29
KR20100057681A (en) 2010-05-31
CN101801769B (en) 2012-01-04
JP4333788B2 (en) 2009-09-16
AU2008298470A1 (en) 2009-03-19
RU2423278C1 (en) 2011-07-10
WO2009034814A1 (en) 2009-03-19
BRPI0816720B1 (en) 2019-08-20
BRPI0816720A2 (en) 2015-02-24
CN101801769A (en) 2010-08-11
AU2008298470B2 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
JP4333788B2 (en) Aerodynamic structure for vehicles
JP4229204B1 (en) Aerodynamic structure for vehicles
JP4229206B1 (en) Aerodynamic structure for vehicles
JP6288016B2 (en) Rectification structure for vehicles
EP2006194B1 (en) Aerodynamic structure for vehicle
WO2011126086A1 (en) Vehicle underfloor structure
WO2011126085A1 (en) Front underfloor structure of vehicle
JP2012086657A (en) Front structure of motor vehicle
JPH10305784A (en) Car body front structure
JP5012474B2 (en) Aerodynamic structure for vehicles
JP2021066233A (en) Understructure of vehicle
JP2013180653A (en) Vehicle rear structure

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090615

R151 Written notification of patent or utility model registration

Ref document number: 4333788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120703

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130703

Year of fee payment: 4