JP2009057593A - Substrate treatment apparatus - Google Patents

Substrate treatment apparatus Download PDF

Info

Publication number
JP2009057593A
JP2009057593A JP2007225137A JP2007225137A JP2009057593A JP 2009057593 A JP2009057593 A JP 2009057593A JP 2007225137 A JP2007225137 A JP 2007225137A JP 2007225137 A JP2007225137 A JP 2007225137A JP 2009057593 A JP2009057593 A JP 2009057593A
Authority
JP
Japan
Prior art keywords
plating
substrate
processing
tank
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007225137A
Other languages
Japanese (ja)
Inventor
Akira Suzaki
明 須崎
Keiichi Kurashina
敬一 倉科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2007225137A priority Critical patent/JP2009057593A/en
Publication of JP2009057593A publication Critical patent/JP2009057593A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance processing capability as an apparatus by employing batch processing with high productivity and further to make it possible to form plated films with uniform thickness with good selectability when using the apparatus as an electroless plating apparatus. <P>SOLUTION: The substrate treatment apparatus has a processing tank 10 for holding a processing liquid, a substrate holder 16 for holding a plurality of substrates W and immersing the same in the processing liquid Q in the processing tank 10, a temperature control section 52 for controlling the temperature of the processing liquid Q in the processing tank 10, a processing liquid circulation system 40, 42, 44 for circulating the processing liquid Q in the processing tank 10, and rotating mechanisms 26, 28, 30, 32 for rotating the substrate holder 16 in the processing liquid Q in the processing tank 10 while holding the plurality of the substrates W. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は基板処理装置に係り、特に生産性の高いバッチ処理を採用しながら、半導体ウエハ等の基板の表面に均一な膜厚の導電膜を成膜できるようにした無電解めっき装置やめっき前処理装置に使用して最適な基板処理装置に関する。   The present invention relates to a substrate processing apparatus, and in particular, an electroless plating apparatus and a pre-plating apparatus that can form a conductive film with a uniform film thickness on the surface of a substrate such as a semiconductor wafer while adopting batch processing with high productivity. The present invention relates to an optimum substrate processing apparatus used for a processing apparatus.

半導体デバイスには、小型化、高速化、低消費電力化、及び高機能化といった様々な面での性能向上が求められており、それに向けて半導体デバイスの微細化や材料の見直し、新規素子構造の導入、アーキテクチャの変更などが幅広く検討されている。例えば、材料の見直しとしては、ゲート絶縁膜のhigh−k化、配線材料のアルミニウムから銅への変更、層間絶縁膜のlow−k化などが実施されている。更に、SOI(Silicon On Insulator)構造の採用やマルチコア化、並列処理化や低消費電力モードへの動作切替え、非シリコン基板の採用など、ハード、ソフト両面から工夫が行われている。   Semiconductor devices are required to improve performance in various aspects such as miniaturization, high speed, low power consumption, and high functionality. To that end, semiconductor devices have been miniaturized, materials have been reviewed, and new element structures have been developed. The introduction and architecture changes are widely studied. For example, as a review of materials, a high-k gate insulating film, a change of wiring material from aluminum to copper, a low-k interlayer insulating film, and the like have been implemented. Furthermore, various measures are taken from both hardware and software aspects, such as adopting an SOI (Silicon On Insulator) structure, multi-core, parallel processing, switching to a low power consumption mode, and employing a non-silicon substrate.

一方、半導体デバイスの内部構造だけでなく、複数の半導体デバイスを組合せることで、システムとしての小型化、高速化を図る方法も検討されている。例えばSIP(System In Package)やMCM(Multi Chip Module)といった、パッケージレベルでの性能の向上がその例である。   On the other hand, not only the internal structure of a semiconductor device but also a method for reducing the size and speeding up the system by combining a plurality of semiconductor devices has been studied. For example, improvement in performance at the package level, such as SIP (System In Package) and MCM (Multi Chip Module).

1つの半導体パッケージの中に複数の半導体デバイスを組み込む技術が1990年代後半にDRAMの容量拡大を目的として実用化された当初は、半導体パッケージ内に半導体チップを2枚重ねし、リードフレームにそれぞれの半導体チップの電極をワイヤボンディングする形式であり、実質的に2つの半導体チップが1つの半導体パッケージに入っただけの構造であった。しかしその後、種類の異なった半導体チップを同一面上に並べた面実装型MCM、さらに実装面積を小型化するために半導体チップを重ね合わせた積層型MCMへと発展している。   When the technology for incorporating a plurality of semiconductor devices into one semiconductor package was put into practical use in the latter half of the 1990s for the purpose of expanding the capacity of DRAM, two semiconductor chips were stacked in the semiconductor package, This is a form in which the electrodes of the semiconductor chip are wire-bonded, and the structure is such that substantially two semiconductor chips are contained in one semiconductor package. However, since then, it has been developed into a surface mount type MCM in which different types of semiconductor chips are arranged on the same surface, and a stacked type MCM in which semiconductor chips are stacked in order to reduce the mounting area.

半導体パッケージ内部の電気的な接続を考えた場合、複数の半導体チップを1つの半導体パッケージ内に収めると、半導体チップの数の増加に従い、半導体チップ間、及び半導体チップと基板(リードフレームやインターポーザ)間を電気的に接続するための配線の数が飛躍的に増大する。古くから半導体パッケージ内の配線には、金線を使用したワイヤボンディングが使用されてきたが、半導体パッケージ内の配線数が増加するに伴い、金線を通す物理的な空間を確保するのが難しくなっている。そこで半導体チップの表面にめっき法によりバンプを形成し、インターポーザに面実装する方法や、シリコン基板に貫通孔を開け、その中にめっき法で配線を形成して基板どうしを相互に接続する方法が開発されている。   When considering the electrical connection inside the semiconductor package, when a plurality of semiconductor chips are housed in one semiconductor package, the number of semiconductor chips increases between the semiconductor chips and between the semiconductor chips and the substrate (lead frame or interposer). The number of wirings for electrically connecting them increases dramatically. Wire bonding using gold wires has been used for wiring in semiconductor packages for a long time, but as the number of wires in semiconductor packages increases, it is difficult to secure a physical space through which gold wires can pass. It has become. Therefore, bumps are formed on the surface of the semiconductor chip by plating and surface-mounted on the interposer, or through holes are formed in the silicon substrate and wiring is formed in the silicon substrate by plating to connect the substrates to each other. Has been developed.

ワイヤボンディングを使わずに接続を行うこれらの方法には、電解めっき法や無電解めっき法が多く使用される。半導体分野では、電解めっき法は、バンプ形成や銅配線の形成に既に広く使用されており、今後も様々な応用が期待される。一方、無電解めっき法についても、めっきする下地の材質により反応性が変化することを利用して、選択的にめっきを行うことを目的に広く検討されている。例えば、半導体基板の表面に金属と絶縁膜が混在している場合、金属の表面にのみ無電解めっきでめっき膜を形成することが可能であり、パターン形成のためのリソグラフィ工程やエッチング工程を省略できる。しかし、これまでのところ、無電解めっきは、銅配線上の拡散防止膜の形成やバンプ形成に一部実用化されているものの、多くは開発段階であるのが現状である。   Electrolytic plating and electroless plating are often used for these methods of connecting without using wire bonding. In the semiconductor field, electrolytic plating has already been widely used for bump formation and copper wiring formation, and various applications are expected in the future. On the other hand, the electroless plating method has been widely studied for the purpose of performing selective plating by utilizing the fact that the reactivity changes depending on the material of the base to be plated. For example, when a metal and an insulating film are mixed on the surface of a semiconductor substrate, it is possible to form a plating film by electroless plating only on the surface of the metal, eliminating the lithography process and etching process for pattern formation it can. However, so far, although electroless plating has been partly put into practical use for formation of a diffusion prevention film on a copper wiring and bump formation, many are in the development stage at present.

半導体基板上に無電解めっきを行う場合の問題点としては、めっき膜厚の均一性や選択性などが挙げられる。また、無電解めっきは、電解めっきと比べて一般に成膜速度が遅いため、製造コストの面から枚葉処理よりもバッチ処理の方が有利である。これまで無電解めっき法は、キャリア治具に半導体ウエハを入れて固定し、半導体ウエハをキャリア治具ごとめっき液中に浸漬させる方法が広く採られてきた。一方、めっき膜厚の均一性は、無電解めっきが化学反応によることから、めっき液濃度、めっき液温度の分布が大きく影響するので、めっき膜厚の面内均一性が重要な工程では、一般に枚葉処理が行なわれている。これは、従来用いられていたキャリア治具では、めっき液の流れやめっき液温分布を均一に抑制するのが難しいためで、結果として、製造コストを重視すると、めっき膜厚や膜質に面内分布が発生してしまっていた。   Problems when performing electroless plating on a semiconductor substrate include uniformity of plating film thickness and selectivity. In addition, since electroless plating generally has a slower film formation rate than electrolytic plating, batch processing is more advantageous than single wafer processing in terms of manufacturing cost. Until now, the electroless plating method has been widely adopted in which a semiconductor wafer is put in a carrier jig and fixed, and the semiconductor wafer is immersed in a plating solution together with the carrier jig. On the other hand, the uniformity of plating film thickness is greatly affected by the distribution of plating solution concentration and plating solution temperature because electroless plating is a chemical reaction. Single wafer processing is performed. This is because it is difficult to uniformly suppress the flow of plating solution and the distribution of plating solution temperature with carrier jigs that have been used in the past. As a result, when manufacturing costs are emphasized, the plating film thickness and film quality are in-plane. Distribution had occurred.

半導体デバイス製造用の無電解めっき装置は、半導体ウエハ等の基板を保持する基板カセットに基板を複数枚固定し、基板を基板カセットごとめっき液に浸漬するバッチ処理と、基板を1枚ずつめっき液に浸漬し、必要に応じて、めっき液の循環や撹拌を行う枚葉処理とがある。   An electroless plating apparatus for manufacturing semiconductor devices includes a batch process in which a plurality of substrates are fixed to a substrate cassette holding a substrate such as a semiconductor wafer, and the substrate is immersed in a plating solution together with the substrate cassette, and a substrate is plated one by one. And single-wafer processing where the plating solution is circulated and stirred as necessary.

従来のバッチ処理では、めっき液は、めっき中に固定された基板表面に沿って一定方向に流れるため、基板表面に成膜されるめっき膜には、めっき液の流れ方向に依存した膜厚及び膜質分布が生じてしまう。また、枚葉処理においては、基板毎に適当なめっき液の撹拌が行えるため、成膜されるめっき膜の膜厚及び膜質分布を大幅に改善できる一方で、必要なめっき膜の膜厚が厚くなると処理時間が長くなってしまい、装置の処理能力に限界があった。   In the conventional batch processing, the plating solution flows in a certain direction along the substrate surface fixed during plating. Therefore, the plating film formed on the substrate surface has a film thickness depending on the flow direction of the plating solution and Film quality distribution will occur. In addition, in the single wafer processing, since the appropriate plating solution can be stirred for each substrate, the film thickness and film quality distribution of the deposited film can be greatly improved, while the necessary plating film thickness is increased. Then, the processing time becomes long, and the processing capacity of the apparatus is limited.

本発明は上記事情に鑑みて為されたもので、生産性の高いバッチ処理を採用して装置としての処理能力を高め、しかも無電解めっき装置も適用した場合に、均一な膜厚のめっき膜を選択性よく形成できるようにした基板処理装置を提供することを目的とする。   The present invention has been made in view of the above circumstances. When a highly productive batch process is adopted to increase the processing capability as an apparatus, and an electroless plating apparatus is also applied, a plating film having a uniform film thickness is obtained. An object of the present invention is to provide a substrate processing apparatus capable of forming the film with high selectivity.

請求項1に記載の発明は、処理液を保持する処理槽と、複数枚の基板を保持して前記処理槽内の処理液中に浸漬させる基板ホルダと、前記処理槽内の処理液の温度を制御する温度制御部と、前記処理槽内の処理液を循環させる処理液循環系と、前記基板ホルダを、複数枚の基板を保持したまま前記処理槽内の処理液中で回転させる回転機構を有することを特徴とする基板処理装置である。   The invention according to claim 1 is a treatment tank that holds a treatment liquid, a substrate holder that holds a plurality of substrates and is immersed in the treatment liquid in the treatment tank, and the temperature of the treatment liquid in the treatment tank. A temperature control unit that controls the processing liquid, a processing liquid circulation system that circulates the processing liquid in the processing tank, and a rotation mechanism that rotates the substrate holder in the processing liquid in the processing tank while holding a plurality of substrates. It is a substrate processing apparatus characterized by having.

このように、複数枚の基板を基板ホルダで保持し処理槽内の処理液に浸漬させて処理を行う、バッチ処理方式を採用して、装置としての処理能力を高め、この処理中に、基板ホルダで保持した基板を基板ホルダと共に回転させることで、例えば無電解めっき装置に適用した場合に、基板表面に、めっき液の流れの方向に依存しない、膜厚及び膜質の面内均一性に優れためっき膜を選択性よく成膜することができる。   In this way, a batch processing method is adopted in which a plurality of substrates are held by a substrate holder and immersed in a processing solution in a processing tank to perform processing, thereby increasing the processing capability as an apparatus. By rotating the substrate held by the holder together with the substrate holder, for example, when applied to an electroless plating apparatus, the substrate surface has excellent in-plane uniformity of film thickness and film quality independent of the direction of the plating solution flow. The plated film can be formed with high selectivity.

請求項2に記載の発明は、前記処理液循環系は、前記基板ホルダで保持して前記処理槽内の処理液に浸漬させた基板に向かって処理液を噴出する処理液噴出機構を有することを特徴とする請求項1記載の基板処理装置である。   According to a second aspect of the present invention, the processing liquid circulation system has a processing liquid ejection mechanism that ejects the processing liquid toward a substrate held by the substrate holder and immersed in the processing liquid in the processing tank. The substrate processing apparatus according to claim 1.

このように、基板ホルダで保持して処理槽内の処理液に浸漬させた基板に向かって処理液を噴出することで、処理液が基板表面に沿って互いに平行に流れるようにして、例えば無電解めっき装置に適用した場合に、成膜されるめっき膜の膜厚及び膜質の面内均一性を更に向上させることができる。   In this way, the processing liquid is ejected toward the substrate held by the substrate holder and immersed in the processing liquid in the processing tank, so that the processing liquid flows parallel to each other along the substrate surface. When applied to an electroplating apparatus, the in-plane uniformity of the film thickness and film quality of the plated film to be formed can be further improved.

請求項3に記載の発明は、前記回転機構の動力源として、前記処理液循環系によって前記処理槽内に導入される処理液の液流を使用することを特徴とする請求項1または2記載の基板処理装置である。   The invention according to claim 3 is characterized in that a liquid flow of the processing liquid introduced into the processing tank by the processing liquid circulation system is used as a power source of the rotating mechanism. This is a substrate processing apparatus.

これにより、モータ等の動力源を使用することなく、回転機構を回転させることができる。この場合、回転機構を高速で回転させることができず、また、処理を開始した初期に回転機構の回転が安定しない問題があるが、例えば無電解めっき装置に適用した場合、実際の無電解めっきにおけるめっき膜の成長速度は、一般に数10nm/min〜数100nm/min程度と比較的遅いため、めっき膜の膜厚や膜質への影響は小さい。   Thereby, the rotation mechanism can be rotated without using a power source such as a motor. In this case, there is a problem that the rotation mechanism cannot be rotated at a high speed, and the rotation of the rotation mechanism is not stable at an early stage of processing, but for example, when applied to an electroless plating apparatus, the actual electroless plating is performed. In general, the growth rate of the plating film is relatively slow, such as about several tens of nm / min to several hundreds of nm / min, so that the influence on the film thickness and film quality of the plating film is small.

請求項4に記載の発明は、基板処理装置は、処理液としてめっき液を使用する無電解めっき装置であることを特徴とする請求項1乃至3のいずれかに記載の基板処理装置である。
請求項5に記載の発明は、基板処理装置は、無電解めっきに先立って、基板表面に触媒を付与するめっき前処理装置であることを特徴とする請求項1乃至3のいずれかに記載の基板処理装置である。
A fourth aspect of the present invention is the substrate processing apparatus according to any one of the first to third aspects, wherein the substrate processing apparatus is an electroless plating apparatus that uses a plating solution as a processing solution.
According to a fifth aspect of the present invention, the substrate processing apparatus is a plating pretreatment apparatus that applies a catalyst to the substrate surface prior to electroless plating. A substrate processing apparatus.

本発明によれば、複数枚の基板を同時に処理するバッチ処理を採用して、装置としての生産能力を高め、しかも、例えば無電解めっき装置に適用した場合に、基板表面に、めっき液の流れ方向に依存することなく、膜厚及び膜質の面内均一性を改善しためっき膜を成膜することができる。   According to the present invention, batch processing for simultaneously processing a plurality of substrates is adopted to increase the production capacity as an apparatus, and when applied to, for example, an electroless plating apparatus, the flow of the plating solution on the substrate surface A plating film with improved in-plane uniformity of film thickness and film quality can be formed without depending on the direction.

以下、本発明の実施の形態を図面を参照して説明する。なお、以下の例において、同一または相当する部材には同一符号を付して、重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following examples, the same or corresponding members are denoted by the same reference numerals, and redundant description is omitted.

図1は、無電解めっき装置に適用した、本発明の実施の形態の基板処理装置の要部を示す縦断正面図で、図2は、図1の縦断側面図である。この例では、処理液としてめっき液を使用し、めっき液(処理液)中に基板を浸漬させることで基板表面にめっき膜を成膜する、無電解めっき装置に適用しているが、処理液として、めっき液に代えて触媒付与液を使用し、触媒付与液(処理液)中に基板を浸漬させることで、基板表面に触媒付与処理(めっき前処理)を行うめっき前処理装置に適用することもできる。   1 is a longitudinal front view showing a main part of a substrate processing apparatus according to an embodiment of the present invention applied to an electroless plating apparatus, and FIG. 2 is a longitudinal side view of FIG. In this example, a plating solution is used as a processing solution, and the plating solution is applied to an electroless plating apparatus that forms a plating film on the substrate surface by immersing the substrate in the plating solution (processing solution). As described above, a catalyst application liquid is used in place of the plating liquid, and the substrate is immersed in the catalyst application liquid (treatment liquid), thereby applying to a pretreatment apparatus for plating that performs a catalyst application process (pre-plating process) on the substrate surface. You can also.

この無電解めっき装置(基板処理装置)は、内部に処理液としてのめっき液Qを保持するめっき槽(処理槽)10と、搬送アーム12に把持されて搬送される門形の支持枠14と、複数枚の半導体ウエハ等の基板Wを垂直に立てた状態で保持して、複数枚の基板Wをめっき槽10内のめっき液Qに同時に浸漬させる基板ホルダ16を備えている。支持枠14は、横方向に延びるケース本体18と、該ケース本体18の両側端に下方に向けて連結した一対の側ケース20を有しており、これらのケース本体18及び側ケース20は、防水されて密閉されている。基板ホルダ16は、側ケース20の下端に、軸受を介して、回転自在に支承されている。これにより、支持枠14及び基板ホルダ16は、支持枠14が搬送アーム12に把持されて搬送アーム12と一体に搬送される。   The electroless plating apparatus (substrate processing apparatus) includes a plating tank (processing tank) 10 that holds a plating solution Q as a processing solution therein, and a portal support frame 14 that is held and transferred by a transfer arm 12. A substrate holder 16 for holding a plurality of substrates W such as semiconductor wafers in a vertically standing state and simultaneously immersing the plurality of substrates W in the plating solution Q in the plating tank 10 is provided. The support frame 14 includes a case main body 18 extending in the lateral direction, and a pair of side cases 20 connected downward to both side ends of the case main body 18. The case main body 18 and the side case 20 include: Waterproof and sealed. The substrate holder 16 is rotatably supported at the lower end of the side case 20 via a bearing. Thereby, the support frame 14 and the substrate holder 16 are transported integrally with the transport arm 12 with the support frame 14 being held by the transport arm 12.

基板ホルダ16は、円板状の一対の側板22と、該一対の側板22間を繋ぐ3本の支持棒24を備えており、この支持棒24の長さ方向に沿った所定の位置には、基板Wの外周部を嵌入させて基板Wを保持する溝が形成されている。そして、3本の支持棒24の内、1本の支持棒24は着脱自在で、1本の支持棒24を外した状態で、基板ホルダ16の所定の位置に基板Wを順次セットし、しかる後、外しておいて支持棒24を取付けることで、複数の基板Wを基板ホルダ16に固定(保持)するようになっている。なお、この例では、基板ホルダ16で8枚の基板Wを同時に保持するようにしているが、8枚に限ることなく、必要に応じて基板の保持枚数を増減してもよいことは勿論である。   The substrate holder 16 includes a pair of disk-shaped side plates 22 and three support rods 24 that connect the pair of side plates 22. A predetermined position along the length direction of the support rods 24 is provided at the substrate holder 16. A groove for holding the substrate W by inserting the outer periphery of the substrate W is formed. Of the three support rods 24, one support rod 24 is detachable. With the one support rod 24 removed, the substrates W are sequentially set at predetermined positions of the substrate holder 16, and accordingly. After that, the plurality of substrates W are fixed (held) to the substrate holder 16 by removing and attaching the support rods 24. In this example, eight substrates W are simultaneously held by the substrate holder 16. However, the number of substrates held is not limited to eight and may be increased or decreased as necessary. is there.

基板ホルダ16の一方の端部には従動プーリ26が、支持枠14のケース本体18内に収容された回転モータ28の出力軸には駆動プーリ30がそれぞれ固定され、この従動プーリ26と駆動プーリ30との間に駆動ベルト32が掛け渡されている。これによって、回転モータ28の駆動に伴って、駆動ベルト32を介して動力が伝達されて基板ホルダ16が回転する、回転機構が構成されている。回転モータ28の制御は、搬送アーム12に内蔵したモータ接点12a,12aを通して、回転モータ28に供給する電力を調整することで行う。   A driven pulley 26 is fixed to one end of the substrate holder 16, and a driving pulley 30 is fixed to an output shaft of a rotary motor 28 housed in the case body 18 of the support frame 14. A drive belt 32 is stretched between the belt 30 and the belt 30. As a result, a rotation mechanism is configured in which power is transmitted through the drive belt 32 and the substrate holder 16 rotates as the rotation motor 28 is driven. The rotation motor 28 is controlled by adjusting the power supplied to the rotation motor 28 through the motor contacts 12a, 12a built in the transport arm 12.

従動プーリ26、駆動プーリ30及び駆動ベルト32からなる回転機構は、支持枠14の一方の側ケース20の内部に収納されている。また、回転モータ28は、前述のように、支持枠14のケース本体18内に収納されている。このように、従動プーリ26、駆動プーリ30及び駆動ベルト32(回転機構)を密閉され防水された側ケース20内に、回転モータ28を密閉され防水されたケース本体18内にそれぞれ収めることで、めっき槽10内のめっき液Qから基板ホルダ16を引き上げる時に結晶が発生したり、めっき槽10内のめっき液Qの濃度が変動したりするのを防止することができる。   A rotating mechanism including the driven pulley 26, the driving pulley 30, and the driving belt 32 is accommodated in the one side case 20 of the support frame 14. Further, the rotary motor 28 is accommodated in the case body 18 of the support frame 14 as described above. In this way, the driven pulley 26, the drive pulley 30, and the drive belt 32 (rotation mechanism) are housed in the sealed and waterproof side case 20, and the rotary motor 28 is housed in the sealed and waterproof case body 18, respectively. When the substrate holder 16 is pulled up from the plating solution Q in the plating tank 10, it is possible to prevent crystals from being generated and the concentration of the plating solution Q in the plating tank 10 from fluctuating.

めっき槽10の周囲には、めっき槽10の周壁をオーバフローしためっき液Qを溜める循環槽40が配置され、この循環槽40内に溜められためっき液Qは、循環ポンプ42の駆動に伴って、めっき槽10の内部に戻って循環する。これによって、めっき液循環系が構成されている。   Around the plating tank 10, a circulation tank 40 for storing the plating solution Q overflowing the peripheral wall of the plating tank 10 is disposed. The plating solution Q stored in the circulation tank 40 is driven by the circulation pump 42. Circulate back to the inside of the plating tank 10. This constitutes a plating solution circulation system.

この例では、めっき槽10の底部に、長さ方向に沿った所定の位置に多数のめっき液噴出口を有する複数のめっき液噴出管44が平行に配置されている。このめっき液噴出管44はめっき液噴出機構を構成する。これにより、循環ポンプ42から吐き出されためっき液は、複数枚の基板Wを保持した基板ホルダ16をめっき槽10内に配置した時、めっき液噴出管(めっき液噴出機構)44のめっき液噴出口から基板Wの表面に平行なめっき液の流れを発生させるようにめっき槽10内に噴出される。   In this example, a plurality of plating solution ejection pipes 44 having a large number of plating solution ejection ports at predetermined positions along the length direction are arranged in parallel at the bottom of the plating tank 10. The plating solution ejection pipe 44 constitutes a plating solution ejection mechanism. Thereby, the plating solution discharged from the circulation pump 42 is ejected from the plating solution ejection pipe (plating solution ejection mechanism) 44 when the substrate holder 16 holding the plurality of substrates W is disposed in the plating tank 10. It is ejected into the plating tank 10 so as to generate a flow of the plating solution parallel to the surface of the substrate W from the outlet.

めっき槽10の上方には、めっき槽10の上方を覆って、めっき槽10内のめっき液Qの温度低下と蒸発による液組成の変動を抑制する蓋体46が配置され、この蓋体46は、循環槽40の上端にヒンジ48を介して開閉自在に取付けられている。蓋体46は、基板ホルダ16を搬送アーム12によりめっき槽10内に出し入れする際に、搬送アーム12の動作と連動して開閉するようになっている。   Above the plating tank 10, a lid 46 that covers the upper part of the plating tank 10 and suppresses a change in the liquid composition due to a temperature drop and evaporation of the plating solution Q in the plating tank 10 is disposed. It is attached to the upper end of the circulation tank 40 through a hinge 48 so as to be freely opened and closed. The lid 46 opens and closes in conjunction with the operation of the transfer arm 12 when the substrate holder 16 is taken in and out of the plating tank 10 by the transfer arm 12.

めっき槽10と循環槽40には、これらの内部に溜まっためっき液Qの温度を測定する熱電対50a,50bがそれぞれ設置されている。この熱電対50a,50bからの出力信号は、温度制御部52に入力され、この温度制御部52からの出力信号により、循環槽40内に設置したヒータ54が制御され、これによって、めっき液温度が一定に保持される。   The plating tank 10 and the circulation tank 40 are provided with thermocouples 50a and 50b for measuring the temperature of the plating solution Q accumulated therein. The output signals from the thermocouples 50a and 50b are input to the temperature control unit 52, and the heater 54 installed in the circulation tank 40 is controlled by the output signal from the temperature control unit 52, whereby the plating solution temperature. Is held constant.

めっき槽10には、図2に示すように、めっき液分析・補給装置56が付設され、めっき槽10内のめっき液Qは、めっき液分析・補給装置56に送られ、ここでめっき液Qの各成分の濃度やpH等が分析された後、必要なめっき液成分が補給されて循環槽40に戻される。   As shown in FIG. 2, the plating tank 10 is provided with a plating solution analysis / replenishment device 56, and the plating solution Q in the plating tank 10 is sent to the plating solution analysis / replenishment device 56, where the plating solution Q After the concentration, pH and the like of each component are analyzed, necessary plating solution components are replenished and returned to the circulation tank 40.

以上の構成により、基板ホルダ16に保持された複数枚の基板Wを、基板ホルダ16ごとめっき槽10内のめっき液Qに浸漬させて基板Wの表面にめっきを行う。つまり、基板ホルダ16の内部に複数枚の基板Wを保持した後、基板ホルダ16を回転自在に支承する支持枠14を搬送アーム12で把持してめっき槽10の直上方まで搬送する。次に、搬送アーム12を下降させて、基板ホルダ16で保持した基板Wをめっき槽10内のめっき液Qに浸漬させる。この搬送アーム12の下降に伴って、基板ホルダ16の通過を阻害しないように、蓋体46が開閉する。   With the above configuration, the plurality of substrates W held by the substrate holder 16 are immersed in the plating solution Q in the plating tank 10 together with the substrate holder 16 to plate the surface of the substrate W. That is, after holding a plurality of substrates W inside the substrate holder 16, the support frame 14 that rotatably supports the substrate holder 16 is gripped by the transfer arm 12 and transferred to the position directly above the plating tank 10. Next, the transfer arm 12 is lowered, and the substrate W held by the substrate holder 16 is immersed in the plating solution Q in the plating tank 10. As the transfer arm 12 descends, the lid 46 opens and closes so as not to hinder the passage of the substrate holder 16.

このめっき時に、循環ポンプ42を駆動して、めっき液Qをめっき槽10と循環槽40との間を循環させながら、めっき液Qの液温を、温度制御部52により一定に保持する。同時に、回転モータ28を駆動して、基板ホルダ16を回転させて、基板ホルダ16で保持した複数の基板Wをめっき槽10内のめっき液Q中で鉛直方向に回転させる。これにより、バッチ処理方式を採用して、装置としての処理能力を高め、このめっき処理中に、基板ホルダ16で保持した基板Wを基板ホルダ16と共に回転させることで、基板表面に、めっき液の流れの方向に依存しない、膜厚及び膜質の面内均一性に優れためっき膜を選択性よく成膜することができる。   During the plating, the circulating pump 42 is driven to circulate the plating solution Q between the plating tank 10 and the circulation tank 40, and the temperature of the plating solution Q is kept constant by the temperature control unit 52. At the same time, the rotation motor 28 is driven to rotate the substrate holder 16 to rotate the plurality of substrates W held by the substrate holder 16 in the vertical direction in the plating solution Q in the plating tank 10. Accordingly, the batch processing method is adopted to increase the processing capability as an apparatus, and the substrate W held by the substrate holder 16 is rotated together with the substrate holder 16 during the plating process, so that the plating solution is applied to the substrate surface. A plating film excellent in in-plane uniformity of film thickness and film quality that does not depend on the flow direction can be formed with high selectivity.

特に、この例では、めっき槽10の底部に配置しためっき液噴出管44のめっき液噴出口からめっき槽10内にめっき液を噴出させてめっき液を循環させることで、基板Wの表面に平行なめっき液の流れを発生させて、基板表面に成膜されるめっき膜の膜厚及び膜質の面内均一性をより高めることができる。   In particular, in this example, the plating solution is ejected from the plating solution outlet of the plating solution ejection pipe 44 disposed at the bottom of the plating vessel 10 into the plating vessel 10 to circulate the plating solution, thereby being parallel to the surface of the substrate W. It is possible to increase the in-plane uniformity of the film thickness and film quality of the plating film formed on the substrate surface by generating a proper flow of the plating solution.

図3及び図4は、電解めっき装置に適用した、本発明の他の実施の形態の基板処理装置を示す。この無電解めっき装置(基板処理装置)の図1及び図2に示す無電解めっき装置と異なる点は、回転モータから基板ホルダへの動力伝達手段として、駆動ベルトの代わりにリンクを用いている点にある。   3 and 4 show a substrate processing apparatus according to another embodiment of the present invention applied to an electrolytic plating apparatus. This electroless plating apparatus (substrate processing apparatus) is different from the electroless plating apparatus shown in FIGS. 1 and 2 in that a link is used instead of a drive belt as power transmission means from the rotary motor to the substrate holder. It is in.

つまり、この例の無電解めっき装置は、回転モータ28を別置きとして支持枠14の側方に配置し、この回転モータ28の駆動軸に固定した、小径の駆動ギア60と、支持枠14のケース本体18に回転自在に支承した、大径の被動ギア62とを互いに噛合せている。また、基板ホルダ16の回転軸16aを、一方の側ケース20の側方まで延出させ、この回転軸16aの端部に回転板64を固定している。そして、被動ギア62の中心から偏心した位置にリンク66の一端を、回転板64の中心から偏心した位置にリンク66の他端を、それぞれ回転自在に連結して、被動ギア62、回転板64及びリンク66で回転機構(平行運動機構)を構成し、これによって、被動ギア62の回転に伴って、回転機構(平行運動機構)を介して、基板ホルダ16の回転軸16aが回転するようにしている。   In other words, the electroless plating apparatus of this example has a small-diameter drive gear 60 that is disposed on the side of the support frame 14 separately from the rotary motor 28 and fixed to the drive shaft of the rotary motor 28, and the support frame 14. A large-diameter driven gear 62 rotatably supported on the case body 18 is meshed with each other. Further, the rotating shaft 16a of the substrate holder 16 is extended to the side of the one side case 20, and the rotating plate 64 is fixed to the end of the rotating shaft 16a. Then, one end of the link 66 is rotatably connected to a position eccentric from the center of the driven gear 62 and the other end of the link 66 is rotatably connected to a position eccentric from the center of the rotating plate 64. The link 66 constitutes a rotation mechanism (parallel movement mechanism), and as the driven gear 62 rotates, the rotation shaft 16a of the substrate holder 16 rotates via the rotation mechanism (parallel movement mechanism). ing.

この例にあっては、回転モータ28を、基板ホルダ16側ではなく、めっき槽10側に固定できるため、基板ホルダ16の軽量化が可能になり、搬送アーム12への負荷を軽減することができる。さらに、駆動系を密閉しないで済むため、メンテナンス性にも優れている。また、リンク66による動力の伝達により、めっき槽10内のめっき液Qが回転モータ28の付近まで引き上げられるのを比較的簡単に防止することができるといったメリットがある。   In this example, since the rotary motor 28 can be fixed not to the substrate holder 16 side but to the plating tank 10 side, the substrate holder 16 can be reduced in weight and the load on the transfer arm 12 can be reduced. it can. Furthermore, since it is not necessary to seal the drive system, it is excellent in maintainability. Further, there is an advantage that it is possible to relatively easily prevent the plating solution Q in the plating tank 10 from being pulled up to the vicinity of the rotary motor 28 by the transmission of power by the link 66.

図5及び図6は、無電解めっき装置に適用した、本発明の更に他の実施の形態の基板処理装置を示す。この例の無電解めっき装置(基板処理装置)の図1及び図2に示す無電解めっき装置と異なる点は、回転モータ及びその動力伝達手段を備えることなく、めっき液Qの流れにより基板ホルダ16を回転させるようにしている点にある。   5 and 6 show a substrate processing apparatus according to still another embodiment of the present invention applied to an electroless plating apparatus. The electroless plating apparatus (substrate processing apparatus) of this example is different from the electroless plating apparatus shown in FIGS. 1 and 2 in that the substrate holder 16 is provided by the flow of the plating solution Q without providing a rotary motor and its power transmission means. It is in the point which is trying to rotate.

つまり、この例の無電解めっき装置は、基板ホルダ16として、側板22の側方に、周縁部に複数の羽根68aを有する羽根車68を取付けたものを使用し、更に、めっき液噴出管44のめっき液噴出口から噴出されるめっき液の流れの一部が羽根車68の羽根68aに直接当たるようにして、回転機構を構成している。これによって、循環ポンプ42の駆動に伴って、めっき液噴出管44のめっき液噴出口からめっき液が噴出されると、このめっき液の流れの一部が羽根車68の羽根68aに直接当たって基板ホルダ16が回転する。この例においては、めっき液噴出管44のめっき液噴出口から噴出されるめっき液の流量及び流速で基板ホルダ16の回転速度を調整することができる。   That is, the electroless plating apparatus of this example uses a substrate holder 16 in which an impeller 68 having a plurality of blades 68 a is attached to the side of the side plate 22, and a plating solution ejection pipe 44. The rotating mechanism is configured such that a part of the flow of the plating solution ejected from the plating solution ejection port directly contacts the blade 68 a of the impeller 68. As a result, when the plating solution is ejected from the plating solution ejection port of the plating solution ejection pipe 44 as the circulation pump 42 is driven, a part of the flow of this plating solution directly strikes the blade 68 a of the impeller 68. The substrate holder 16 rotates. In this example, the rotational speed of the substrate holder 16 can be adjusted by the flow rate and flow rate of the plating solution ejected from the plating solution ejection port of the plating solution ejection pipe 44.

この例にあっては、前述の各例における無電解めっき装置に比べて、基板ホルダ16の高い回転速度が得にくく、めっき初期時に基板ホルダ16の回転が安定しない問題がある。しかし、実際の無電解めっきでは、めっき膜の成長速度は、数10nm/min〜数100nm/min程度と比較的遅いため、基板表面に成膜されるめっき膜の膜厚及び膜質への影響は比較的小さい。   In this example, it is difficult to obtain a high rotation speed of the substrate holder 16 as compared with the electroless plating apparatus in the above-described examples, and there is a problem that the rotation of the substrate holder 16 is not stable at the initial stage of plating. However, in actual electroless plating, the growth rate of the plating film is relatively slow, on the order of several tens of nm / min to several hundreds of nm / min. Therefore, the influence on the film thickness and film quality of the plating film formed on the substrate surface is not affected. Relatively small.

図7は、例えば、図1及び図2に示す構成の基板処理装置(無電解めっき装置)を使用した基板処理システムの平面配置図を示す。この基板処理システムは、例えば、半導体ウエハ等の基板Wのアルミニウム配線上に、ジンケート処理(亜鉛触媒化処理)、無電解Niめっき、及び無電解Auめっきを順次行うようにしている。なお、図1及び図2に示す基板処理装置(無電解めっき装置)の代わりに、図3及び図4、または図5及び図6に示す基板処理装置(無電解めっき装置)を適用してもよいことは勿論である。   FIG. 7 is a plan layout view of a substrate processing system using, for example, the substrate processing apparatus (electroless plating apparatus) having the configuration shown in FIGS. 1 and 2. In this substrate processing system, for example, zincate processing (zinc catalyst conversion processing), electroless Ni plating, and electroless Au plating are sequentially performed on aluminum wiring of a substrate W such as a semiconductor wafer. Note that the substrate processing apparatus (electroless plating apparatus) shown in FIGS. 3 and 4 or FIGS. 5 and 6 may be applied instead of the substrate processing apparatus (electroless plating apparatus) shown in FIGS. Of course it is good.

この基板処理システムは、基板Wを基板カセットに入れた状態でセットするロード/アンロードポート70と装置フレーム72を有している。装置フレーム72の内部には、基板カセット内の基板Wを基板ホルダ16に移送する移送部74と、Zn処理槽76と、Niめっき槽78と、Auめっき槽80と、3つのリンス槽82a,82b,82cと、ドライ(乾燥)槽84と、基板ホルダ16を一時的にストックするバッファ槽86が配置されている。更に、装置フレーム72内に位置して、ロード/アンロードポート70と移送部74との間に搬送ロボット88が配置されている。   This substrate processing system has a load / unload port 70 and an apparatus frame 72 for setting the substrate W in a state of being placed in a substrate cassette. Inside the apparatus frame 72, a transfer unit 74 for transferring the substrate W in the substrate cassette to the substrate holder 16, a Zn treatment tank 76, a Ni plating tank 78, an Au plating tank 80, three rinse tanks 82a, 82b and 82c, a dry (drying) tank 84, and a buffer tank 86 for temporarily storing the substrate holder 16 are disposed. Further, a transfer robot 88 is disposed between the load / unload port 70 and the transfer unit 74 located in the apparatus frame 72.

なお、図7では、基板ホルダ16のみを図示しているが、図1及び図2に示すように、基板ホルダ16は、支持枠14で回転自在に支承されて搬送アーム12で搬送され、Zn処理槽76との間で本発明の基板処理装置としてのジンケート処理装置(めっき前処理装置)が、Niめっき槽78との間で本発明の基板処理装置としての無電解Niめっき装置が、Auめっき槽80との間で本発明の基板処理装置としての無電解Auめっき装置が構成されるようになっている。   In FIG. 7, only the substrate holder 16 is illustrated, but as shown in FIGS. 1 and 2, the substrate holder 16 is rotatably supported by the support frame 14 and is transported by the transport arm 12. A zincate processing apparatus (pre-plating processing apparatus) as a substrate processing apparatus of the present invention between the processing tank 76 and an electroless Ni plating apparatus as a substrate processing apparatus of the present invention between the Ni plating tank 78 and Au An electroless Au plating apparatus as a substrate processing apparatus of the present invention is configured with the plating tank 80.

次に、この基板処理システムによる基板処理について説明する。
基板Wを基板カセットに入れた形でロード/アンロードポート70にセットする。搬送用ロボット88は、ロード/アンロードポート70にセットした基板カセットから基板Wを受取って、移送部74に位置する基板ホルダ16の内部に移送し、これによって、基板Wを基板ホルダ16の所定の位置にセットする。この操作を、基板ホルダ16で保持する基板Wの枚数だけ繰返す。この時、めっき液中で基板の裏面からの異物が隣の基板の表面に転写するのを防ぐため、表面の方向が交互になるように、基板Wを基板ホルダ16にセットすることが望ましい。更に、基板ホルダ16の両端に位置する基板は、他の基板と比較して、めっき液の流れの分布に差ができやすい。このため、必要に応じて、表面がSiOやSiNで覆われたダミーウエハを基板ホルダ16にセットすることが好ましい。基板Wを基板ホルダ16にセットし終わったら、基板Wの端部を押さえて基板Wを固定し、しかる後、搬送アーム12(図1及び図2参照)により基板ホルダ16を移動する。
Next, substrate processing by this substrate processing system will be described.
The substrate W is set in the load / unload port 70 in the form of being placed in the substrate cassette. The transfer robot 88 receives the substrate W from the substrate cassette set in the load / unload port 70 and transfers the substrate W to the inside of the substrate holder 16 located in the transfer unit 74. Set to the position. This operation is repeated for the number of substrates W held by the substrate holder 16. At this time, in order to prevent the foreign matter from the back surface of the substrate from being transferred to the surface of the adjacent substrate in the plating solution, it is desirable to set the substrate W on the substrate holder 16 so that the directions of the front surface are alternated. Further, the substrates positioned at both ends of the substrate holder 16 are likely to have a difference in the distribution of the plating solution flow compared to other substrates. For this reason, it is preferable to set a dummy wafer whose surface is covered with SiO 2 or SiN on the substrate holder 16 as necessary. When the substrate W is set on the substrate holder 16, the end of the substrate W is pressed to fix the substrate W, and then the substrate holder 16 is moved by the transfer arm 12 (see FIGS. 1 and 2).

先ず、基板ホルダ16をZn処理槽76に移動させ、基板ホルダ16で保持した複数の基板WをZn処理槽76内の処理液中に所定時間浸漬させてジンケート処理(亜鉛触媒化処理)を行う。Zn処理槽76内では、回転モータ28(図1及び図2参照)を駆動して基板ホルダ16を回転させて、該基板ホルダ16で保持した基板Wを同時に回転させ、これによって、処理液の撹拌を行う。ジンケート処理後、搬送アーム12により基板ホルダ16をリンス槽82aに移動させ、基板ホルダ16で保持した基板Wをリンス槽82a内のリンス液(純水)に所定時間浸漬させてリンス(水洗)を行う。この時、必要に応じて、基板ホルダ16をリンス液中で回転させる。   First, the substrate holder 16 is moved to the Zn treatment tank 76, and a plurality of substrates W held by the substrate holder 16 are immersed in a treatment liquid in the Zn treatment tank 76 for a predetermined time to perform a zincate treatment (zinc catalyst treatment). . In the Zn treatment tank 76, the rotation motor 28 (see FIGS. 1 and 2) is driven to rotate the substrate holder 16, and the substrate W held by the substrate holder 16 is simultaneously rotated. Stir. After the zincate treatment, the substrate holder 16 is moved to the rinsing tank 82a by the transfer arm 12, and the substrate W held by the substrate holder 16 is immersed in the rinsing liquid (pure water) in the rinsing tank 82a for a predetermined time to perform rinsing (water washing). Do. At this time, the substrate holder 16 is rotated in the rinse liquid as necessary.

更に、基板ホルダ16をNiめっき槽78に移動させ、前述とほぼ同様にして、基板ホルダ16を回転させながら、基板ホルダ16で保持した基板Wの表面に無電解Niめっきを所定時間行って、アルミニウム配線上にNiめっき膜を成膜する。そして、基板ホルダ16をリンス槽80bに移動させて基板Wをリンスする。次に、基板ホルダ16をAuめっき槽80に移動させ、前述とほぼ同様にして、基板ホルダ16を回転させながら、基板ホルダ16で保持した基板Wの表面に無電解Auめっきを所定時間行って、Niめっき膜上にAuめっき膜を成膜する。そして、基板ホルダ16をリンス槽80cに移動させて基板Wをリンスする。これにより、アルミニウム配線上に、無電解Niめっき及び無電解Auめっきを処置した基板(半導体ウエハ)を得る。   Further, the substrate holder 16 is moved to the Ni plating tank 78, and in substantially the same manner as described above, electroless Ni plating is performed on the surface of the substrate W held by the substrate holder 16 for a predetermined time while rotating the substrate holder 16. A Ni plating film is formed on the aluminum wiring. Then, the substrate holder 16 is moved to the rinse tank 80b to rinse the substrate W. Next, the substrate holder 16 is moved to the Au plating tank 80, and electroless Au plating is performed on the surface of the substrate W held by the substrate holder 16 for a predetermined time while rotating the substrate holder 16 in substantially the same manner as described above. Then, an Au plating film is formed on the Ni plating film. Then, the substrate holder 16 is moved to the rinse tank 80c to rinse the substrate W. Thereby, the board | substrate (semiconductor wafer) which processed the electroless Ni plating and the electroless Au plating on the aluminum wiring is obtained.

めっき終了後、基板ホルダ16をドライ槽84に移動させる。ドライ槽84では基板Wを基板ホルダ16ごと加熱したIPA(Isopropyl Alcohol)に浸漬させて水分とIPAを置換したのち、加熱雰囲気で基板WをIPAから引き上げて基板Wを乾燥させる。そして、基板ホルダ16を移送部74に移送し、基板ホルダ16で保持した乾燥後の基板Wを搬送ロボット88により基板カセットの元の位置に戻す。   After the completion of plating, the substrate holder 16 is moved to the dry bath 84. In the dry bath 84, the substrate W is immersed in IPA (Isopropyl Alcohol) heated together with the substrate holder 16 to replace moisture and IPA, and then the substrate W is pulled up from the IPA in a heated atmosphere to dry the substrate W. Then, the substrate holder 16 is transferred to the transfer unit 74, and the dried substrate W held by the substrate holder 16 is returned to the original position of the substrate cassette by the transfer robot 88.

バッファ槽86は、各槽の処理時間の差を吸収するために一時的に基板ホルダ16をストックする槽で、設置場所や設置位置は、それぞれのめっき及び洗浄処理時間のバランスに応じて決定される。更に、各めっき層の膜厚バランスにより、めっき槽の数を増やし、複数の基板ホルダを同時に処理することで、装置全体の処理能力を向上させることができる。   The buffer tank 86 is a tank that temporarily stocks the substrate holder 16 in order to absorb the difference in processing time of each tank, and the installation location and the installation position are determined according to the balance of the plating and cleaning processing time. The Furthermore, the processing capacity of the entire apparatus can be improved by increasing the number of plating tanks and processing a plurality of substrate holders simultaneously by balancing the thickness of each plating layer.

半導体ウエハを面方向に回転できるウエハホルダを準備し、PVD-AL-Cu(膜厚800nm)付きシリコンウエハに対して、ジンケート処理及び無電解Niめっきを行った。この処理に際して、処理液噴出口から処理液を噴出させて、処理液の上方への流れを作り、ウエハを回転させながら、ジンケート処理、次に無電解Niめっきを行って、ウエハのパッド上にNiめっき膜を成膜した。ジンケート処理には、奥野製薬工業製のサブスターAZを、無電解Niめっきには奥野製薬工業製のICPニコロンGMを用い、ジンケート処理は室温で、無電解Niめっきは80℃でそれぞれ行い、Niめっき膜の膜厚が5μmとなるようにめっき時間を調節した。   A wafer holder capable of rotating the semiconductor wafer in the surface direction was prepared, and zincate treatment and electroless Ni plating were performed on the silicon wafer with PVD-AL-Cu (film thickness 800 nm). In this process, the processing liquid is ejected from the processing liquid jet port to create an upward flow of the processing liquid, and while rotating the wafer, a zincate process and then an electroless Ni plating are performed on the wafer pad. A Ni plating film was formed. Substar AZ manufactured by Okuno Pharmaceutical Co., Ltd. is used for the zincate treatment, ICP Nicolon GM manufactured by Okuno Pharmaceutical Co., Ltd. is used for the electroless Ni plating, the zincate treatment is performed at room temperature, and the electroless Ni plating is performed at 80 ° C. The plating time was adjusted so that the thickness of the plating film was 5 μm.

比較例として、実施例と同じ条件で、ウエハを回転させることなく、ジンケート処理および無電解Niめっきを行って、ウエハのパッド上にNiめっき膜を成膜した。   As a comparative example, a nickel plating film was formed on a pad of the wafer by performing zincate treatment and electroless Ni plating without rotating the wafer under the same conditions as in the example.

実施例及び比較例によってパッド表面に成膜されたNiめっき膜の外観と膜厚分布を測定した結果、めっき槽中でウエハの回転を行わなかった比較例の場合、めっき膜の表面にめっき液の流れに起因する縦方向の模様が観察されたが、めっき槽中でウエハを回転させた実施例の場合では、めっき膜の表面にめっき液の流れに起因する縦方向の模様は観察されず、無電解めっき中にウエハを回転することによる効果が確認できた。   As a result of measuring the appearance and film thickness distribution of the Ni plating film formed on the pad surface according to the example and the comparative example, in the case of the comparative example in which the wafer was not rotated in the plating tank, the plating solution was applied to the surface of the plating film. In the case of the example in which the wafer was rotated in the plating tank, the vertical pattern due to the flow of the plating solution was not observed on the surface of the plating film. The effect of rotating the wafer during electroless plating was confirmed.

無電解めっき装置に適用した、本発明の実施の形態の基板処理装置を示す縦断正面図である。It is a vertical front view which shows the substrate processing apparatus of embodiment of this invention applied to the electroless-plating apparatus. 無電解めっき装置に適用した、本発明の実施の形態の基板処理装置を示す縦断側面図である。It is a vertical side view which shows the substrate processing apparatus of embodiment of this invention applied to the electroless-plating apparatus. 無電解めっき装置に適用した、本発明の他の実施の形態の基板処理装置を示す縦断正面図である。It is a vertical front view which shows the substrate processing apparatus of other embodiment of this invention applied to the electroless-plating apparatus. 無電解めっき装置に適用した、本発明の他の実施の形態の基板処理装置を示す縦断側面図である。It is a vertical side view which shows the substrate processing apparatus of other embodiment of this invention applied to the electroless-plating apparatus. 無電解めっき装置に適用した、本発明の更に他の実施の形態の基板処理装置を示す縦断正面図である。It is a vertical front view which shows the substrate processing apparatus of further another embodiment of this invention applied to the electroless-plating apparatus. 無電解めっき装置に適用した、本発明の更に他の実施の形態の基板処理装置を示す縦断側面図である。It is a vertical side view which shows the substrate processing apparatus of further another embodiment of this invention applied to the electroless-plating apparatus. 基板処理システムの一例を示す平面配置図である。It is a plane arrangement view showing an example of a substrate processing system.

符号の説明Explanation of symbols

10 めっき槽(処理槽)
12 搬送アーム
14 支持枠
16 基板ホルダ
18 ケース本体
20 側ケース
22 側板
24 支持棒
26 従動プーリ
28 回転モータ
30 駆動プーリ
32 駆動ベルト(回転機構)
40 循環槽
42 循環ポンプ
44 めっき液噴出管(めっき液噴出機構)
46 蓋体
50a,50b 熱電対
52 温度制御部
54 ヒータ
56 めっき液分析・補給装置
60 駆動ギア
62 被動ギア
64 回転板
66 リンク
68 羽根車
70 ロード/アンロードポート
72 装置フレーム
74 移送部
76 Zn処理槽
78 Niめっき槽
80 Auめっき槽
84 ドライ槽
86 バッファ槽
10 Plating tank (treatment tank)
12 transport arm 14 support frame 16 substrate holder 18 case body 20 side case 22 side plate 24 support rod 26 driven pulley 28 rotation motor 30 drive pulley 32 drive belt (rotation mechanism)
40 Circulating tank 42 Circulating pump 44 Plating solution ejection pipe (Plating solution ejection mechanism)
46 Lids 50a, 50b Thermocouple 52 Temperature controller 54 Heater 56 Plating solution analysis / replenishment device 60 Drive gear 62 Driven gear 64 Rotating plate 66 Link 68 Impeller 70 Load / unload port 72 Device frame 74 Transfer unit 76 Zn treatment Tank 78 Ni plating tank 80 Au plating tank 84 Dry tank 86 Buffer tank

Claims (5)

処理液を保持する処理槽と、
複数枚の基板を保持して前記処理槽内の処理液中に浸漬させる基板ホルダと、
前記処理槽内の処理液の温度を制御する温度制御部と、
前記処理槽内の処理液を循環させる処理液循環系と、
前記基板ホルダを、複数枚の基板を保持したまま前記処理槽内の処理液中で回転させる回転機構を有することを特徴とする基板処理装置。
A treatment tank for holding a treatment liquid;
A substrate holder for holding a plurality of substrates and immersing them in the processing liquid in the processing tank;
A temperature controller for controlling the temperature of the treatment liquid in the treatment tank;
A treatment liquid circulation system for circulating the treatment liquid in the treatment tank;
A substrate processing apparatus, comprising: a rotation mechanism for rotating the substrate holder in the processing liquid in the processing tank while holding a plurality of substrates.
前記処理液循環系は、前記基板ホルダで保持して前記処理槽内の処理液に浸漬させた基板に向かって処理液を噴出する処理液噴出機構を有することを特徴とする請求項1記載の基板処理装置。   2. The processing liquid circulation system according to claim 1, wherein the processing liquid circulation system includes a processing liquid ejection mechanism that ejects the processing liquid toward a substrate held by the substrate holder and immersed in the processing liquid in the processing tank. Substrate processing equipment. 前記回転機構の動力源として、前記処理液循環系によって前記処理槽内に導入される処理液の液流を使用することを特徴とする請求項1または2記載の基板処理装置。   3. The substrate processing apparatus according to claim 1, wherein a liquid flow of a processing liquid introduced into the processing tank by the processing liquid circulation system is used as a power source for the rotation mechanism. 基板処理装置は、処理液としてめっき液を使用する無電解めっき装置であることを特徴とする請求項1乃至3のいずれかに記載の基板処理装置。   The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is an electroless plating apparatus that uses a plating solution as a processing solution. 基板処理装置は、無電解めっきに先立って、基板表面に触媒を付与するめっき前処理装置であることを特徴とする請求項1乃至3のいずれかに記載の基板処理装置。   The substrate processing apparatus according to any one of claims 1 to 3, wherein the substrate processing apparatus is a plating pretreatment apparatus that applies a catalyst to the substrate surface prior to electroless plating.
JP2007225137A 2007-08-31 2007-08-31 Substrate treatment apparatus Pending JP2009057593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007225137A JP2009057593A (en) 2007-08-31 2007-08-31 Substrate treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007225137A JP2009057593A (en) 2007-08-31 2007-08-31 Substrate treatment apparatus

Publications (1)

Publication Number Publication Date
JP2009057593A true JP2009057593A (en) 2009-03-19

Family

ID=40553609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007225137A Pending JP2009057593A (en) 2007-08-31 2007-08-31 Substrate treatment apparatus

Country Status (1)

Country Link
JP (1) JP2009057593A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104118A (en) * 2011-11-16 2013-05-30 Ebara Corp Electroless plating apparatus
TWI485286B (en) * 2011-11-16 2015-05-21 Ebara Corp Electroless plating and electroless plating
CN110197799A (en) * 2018-02-26 2019-09-03 三菱电机株式会社 The manufacturing method of semiconductor manufacturing apparatus and semiconductor device
JP2019206729A (en) * 2018-05-28 2019-12-05 三菱電機株式会社 Apparatus and method for manufacturing semiconductor device
US11752518B2 (en) * 2021-06-03 2023-09-12 Sst Systems, Inc. Robot-centered coating system with multiple curing workstations

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104118A (en) * 2011-11-16 2013-05-30 Ebara Corp Electroless plating apparatus
TWI485286B (en) * 2011-11-16 2015-05-21 Ebara Corp Electroless plating and electroless plating
US9293364B2 (en) 2011-11-16 2016-03-22 Ebara Corporation Electroless plating apparatus and electroless plating method
CN110197799A (en) * 2018-02-26 2019-09-03 三菱电机株式会社 The manufacturing method of semiconductor manufacturing apparatus and semiconductor device
JP2019206729A (en) * 2018-05-28 2019-12-05 三菱電機株式会社 Apparatus and method for manufacturing semiconductor device
US11752518B2 (en) * 2021-06-03 2023-09-12 Sst Systems, Inc. Robot-centered coating system with multiple curing workstations

Similar Documents

Publication Publication Date Title
US8784636B2 (en) Plating apparatus and plating method
TWI591705B (en) Apparatus for substrate processing
JP5175871B2 (en) Plating equipment
JP5134339B2 (en) Manufacturing method of semiconductor integrated circuit device
WO2020092244A1 (en) Electrodeposition of nanotwinned copper structures
JP4624738B2 (en) Plating equipment
JP2009057593A (en) Substrate treatment apparatus
JP5281831B2 (en) Method for forming conductive material structure
US20050217574A1 (en) Fixture and method for uniform electroless metal deposition on integrated circuit bond pads
US9412713B2 (en) Treatment method of electrodeposited copper for wafer-level-packaging process flow
TW201443298A (en) Method for forming conductive structure, and plating apparatus and plating method
JP2011026708A (en) Plating apparatus
KR101506042B1 (en) Apparatus and method for substrate electroless plating
JP2004300462A (en) Plating method and plating apparatus
JPWO2019163531A1 (en) Multi-layer wiring formation method and storage medium
JP2006152415A (en) Plating apparatus and plating method
KR101916361B1 (en) Apparatus for plate substrate
JP2006225715A (en) Plating apparatus and plating method
US20230077737A1 (en) Diffusion layers in metal interconnects
KR102031817B1 (en) Machine suitable for plating a cavity of a semi-conductive or conductive substrate such as a through via structure
JP2005002443A (en) Plating method and apparatus
JP2013168679A (en) Conductive material structure formation method
TW202133297A (en) Substrate liquid processing method and substrate liquid processing device
JP2003286598A (en) Apparatus and process for solution treatment
JP2013104120A (en) Electroless plating apparatus