JP2009020090A - Abnormality diagnosis apparatus and abnormality diagnosis method - Google Patents

Abnormality diagnosis apparatus and abnormality diagnosis method Download PDF

Info

Publication number
JP2009020090A
JP2009020090A JP2008045019A JP2008045019A JP2009020090A JP 2009020090 A JP2009020090 A JP 2009020090A JP 2008045019 A JP2008045019 A JP 2008045019A JP 2008045019 A JP2008045019 A JP 2008045019A JP 2009020090 A JP2009020090 A JP 2009020090A
Authority
JP
Japan
Prior art keywords
abnormality
frequency
abnormality diagnosis
threshold value
abnormal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008045019A
Other languages
Japanese (ja)
Other versions
JP5146008B2 (en
JP2009020090A5 (en
Inventor
Takanori Miyasaka
孝範 宮坂
Yasuyuki Muto
泰之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008045019A priority Critical patent/JP5146008B2/en
Publication of JP2009020090A publication Critical patent/JP2009020090A/en
Publication of JP2009020090A5 publication Critical patent/JP2009020090A5/ja
Application granted granted Critical
Publication of JP5146008B2 publication Critical patent/JP5146008B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately diagnose existence of abnormalities and specify the part of the abnormalities, in rotation components and sliding components that are incorporated in a machinery and equipment. <P>SOLUTION: Vibration generated during operation from a rolling bearing 11 of the machine facility 10 is detected by an acceleration sensor 12, is transmitted to a signal processor 21 and is converted into a digital signal, and then the level of a frequency spectrum is determined by performing envelope analysis and frequency analysis. Abnormal frequency of the vibration resulting from the abnormal part of the rolling bearing 11 is calculated, based on a predetermined relational expression, and the level of the frequency spectrum corresponding to the abnormal frequency is extracted. The extracted level of the frequency spectrum is compared and collated with a threshold which is set individually for each of the frequency of the fundamental wave and the harmonics of the abnormal frequency, and by determining each magnitude, thereby diagnosing the existence of the abnormality and the abnormal part. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、機械設備で使用される回転部品或いは摺動部品の異常を診断する異常診断装置、及び異常診断方法に関し、特に、機械設備を分解することなく、異常の有無の診断と、この異常に該当する、回転部或いは摺動部の部位の特定とを行う、異常診断装置、及び異常診断方法に関する。   The present invention relates to an abnormality diagnosis apparatus and abnormality diagnosis method for diagnosing abnormality of rotating parts or sliding parts used in mechanical equipment, and in particular, diagnosis of presence / absence of abnormality without disassembling the mechanical equipment and the abnormality. The present invention relates to an abnormality diagnosis device and an abnormality diagnosis method that identify a rotating part or a sliding part corresponding to the above.

鉄道車両や工作機械、風車等の機械設備には、転がり軸受等の回転部品やボールねじ、リニアガイド等の摺動部品が多く装備されて使用されている。これら回転部品や摺動部品を長時間使用することにより摩耗や損傷が発生すると、その回転部品や摺動部品のスムーズな回転、摺動が阻害され、異常音を発生するだけでなく、寿命の低下を来たして破損に至り、機械設備の故障、事故を招くおそれがある。このため従来は、機械設備を一定期間使用した後に摩耗や損傷等、異常の有無を検査していた。   In rolling stock, machine tools, windmills, and other mechanical equipment, many rotating parts such as rolling bearings and sliding parts such as ball screws and linear guides are used. If wear or damage occurs due to the use of these rotating parts and sliding parts for a long time, smooth rotation and sliding of the rotating parts and sliding parts will be hindered, and not only will abnormal noise be generated, There is a risk of damage resulting from a decline, resulting in failure of machinery or accidents. For this reason, conventionally, after using a mechanical equipment for a certain period, it was inspected for abnormalities such as wear and damage.

この検査は、機械設備の回転部品や摺動部品が組み込まれた部位、或いは機械設備全体を分解することにより行われ、回転部品或いは摺動部品に発生した損傷や摩耗は、作業者の目視による検査によって発見される。そして、検査で発見される主な欠陥(異常)としては、軸受の場合、異物の噛み込み等によって生ずる圧痕、転がり疲れによる剥離、その他の摩耗等、歯車の場合には、歯部の欠損や摩耗等、車輪の場合には、フラット等の摩耗があり、いずれの場合も新品にはない凹凸や摩耗等が発見されれば、新品に交換される。即ち、検査の結果、摩耗や損傷等の異常が発見された場合は、当該部品を新品に交換して、機械設備の故障や事故を未然に防止していた。   This inspection is performed by disassembling the part of the machine equipment where the rotating parts and sliding parts are incorporated, or the entire machine equipment, and damage and wear occurring on the rotating parts or sliding parts are visually observed by the operator. Discovered by inspection. The main defects (abnormalities) discovered by inspection include indentations caused by foreign matter biting, peeling due to rolling fatigue, other wear, etc., in the case of gears, tooth defects, In the case of a wheel such as wear, there is flat wear or the like, and in any case, if irregularities or wear that are not found in a new article are found, it is replaced with a new one. That is, if abnormalities such as wear and damage are found as a result of the inspection, the parts are replaced with new ones to prevent machine equipment failures and accidents.

しかしながら、機械設備の一部、又は全体を分解し、作業者の目視によって行う検査方法では、機械設備から回転部品や摺動部品を取り外す作業と、検査が終了した回転部品や摺動部品を再び機械設備に組み込む作業に多大な労力がかかり、機械設備の保守コストが嵩むという問題があった。   However, in the inspection method in which a part or the whole of the mechanical equipment is disassembled and visually checked by the operator, the work for removing the rotating parts and sliding parts from the mechanical equipment and the rotating parts and sliding parts that have been inspected are again performed. There has been a problem that a large amount of labor is required for the work to be incorporated into the mechanical equipment, and the maintenance cost of the mechanical equipment increases.

また、組立て直す際に検査前にはなかった打痕を回転体や摺動部材につけてしまう等、検査自体が回転体や摺動部材の欠陥を生む原因となる可龍性があった。また、限られた時間内で多数の軸受を目視で検査するため、欠陥を見落とす可能性が残るという問題もあった。さらに、この欠陥の程度の判断も個人差があり実質的には欠陥がなくても部品交換が行なわれるため、無駄なコストがかかることにもなる。   Further, when reassembling, the inspection itself has a possibility of causing defects in the rotating body and the sliding member, such as attaching a dent to the rotating body and the sliding member that was not present before the inspection. Further, since a large number of bearings are visually inspected within a limited time, there is a problem that a possibility of overlooking a defect remains. Further, the determination of the degree of this defect also varies from person to person, and parts are exchanged even if there is virtually no defect, resulting in unnecessary costs.

このような問題を解決するために、従来、機械設備の実稼動状態で回転部品や摺動部品の異常診断を行う異常診断装置、又は異常診断方法が種々提案されている。
例えば、加速度センサにより測定した転がり軸受の振動加速度信号にFFT(高速フーリエ変換)処理を行って振動発生周波数成分の信号を抽出し、軸受の形式及び使用年数に基づいて予め設定したしきい値と比較することで、異常の有無を診断する異常診断装置があった(例えば、特許文献1、2参照)。
In order to solve such a problem, conventionally, various abnormality diagnosis apparatuses or abnormality diagnosis methods for performing abnormality diagnosis of rotating parts and sliding parts in an actual operating state of mechanical equipment have been proposed.
For example, the vibration acceleration signal of a rolling bearing measured by an acceleration sensor is subjected to FFT (Fast Fourier Transform) processing to extract a vibration generation frequency component signal, and a threshold value set in advance based on the type and age of the bearing There is an abnormality diagnosis device that diagnoses the presence or absence of an abnormality by comparing (see, for example, Patent Documents 1 and 2).

特開2002−22617号公報JP 2002-22617 A 特許第3846560号公報Japanese Patent No. 3846560

しかしながら、このような従来の異常診断装置においては、しきい値が一意、即ち所定の一定値として単一に設定されているため、例えば転がり軸受等の回転部品に損傷等の異常が存在する場合には、十分な診断精度が得られないという問題があった。
例えば、転がり軸受の外輪に検出手段として加速度センサを付設した場合、ある異常部位から発生される、欠陥に起因する振動(異常振動)は、その伝達経路の差異により異なり、より具体的には、その異常振動は、外輪にその異常が存在した場合と比較して、内輪又はボールに存在した場合の方が、小さくなる傾向にある。加えて、内輪が回転する場合には、回転軸が内輪と嵌合しているため、転がり軸受においては、その異常振動が減衰しやすい傾向にある。
However, in such a conventional abnormality diagnosis device, the threshold value is unique, that is, a single value is set as a predetermined constant value, and therefore there is an abnormality such as damage in a rotating part such as a rolling bearing. However, there was a problem that sufficient diagnostic accuracy could not be obtained.
For example, when an acceleration sensor is attached to the outer ring of a rolling bearing as a detecting means, vibration caused by a defect (abnormal vibration) generated from a certain abnormal part varies depending on the difference in the transmission path, and more specifically, The abnormal vibration tends to be smaller when the abnormality exists in the inner ring or the ball than when the abnormality exists in the outer ring. In addition, when the inner ring rotates, the rotating shaft is fitted with the inner ring, so that abnormal vibration tends to be attenuated in the rolling bearing.

このように、異常部位それぞれにおいて、同じ大きさの異常振動を示す場合であっても、その部位により測定される信号のレベルが異なり、一意のしきい値を用いて異常の有無の診断及び異常の部位の特定を行うと、部位ごとに異なる診断結果が出力してしまい、異常が発生したとしても、この異常が検知されないおそれがあり、この結果、機械設備の安定した稼働が妨げられてしまう可能性がある。   In this way, even if each abnormal part shows the same magnitude of abnormal vibration, the level of the signal measured varies depending on the part, and a unique threshold is used to diagnose and detect abnormalities. If the part is specified, a different diagnosis result is output for each part, and even if an abnormality occurs, this abnormality may not be detected. As a result, stable operation of the mechanical equipment is hindered. there is a possibility.

加えて、前述した特許文献等に記載の異常診断装置では、周辺ノイズ等の影響で診断精度が悪くなり、誤診断を基に異常警報を発する等、安定稼動が妨げられる問題があった。   In addition, the abnormality diagnosis apparatus described in the above-mentioned patent documents has a problem in that stable operation is hindered, for example, the diagnosis accuracy deteriorates due to the influence of ambient noise and the like, and an abnormality alarm is issued based on a false diagnosis.

本発明は、前述の事情に鑑みてなされたものであり、その目的は、機械設備に組み込まれた回転部品や摺動部品に対し、異常の有無の診断及び異常の部位の特定を精度良く行うことができる異常診断装置、及び異常診断方法を提供することにある。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to accurately diagnose the presence / absence of an abnormality and to identify an abnormal part with respect to rotating parts and sliding parts incorporated in mechanical equipment. It is an object of the present invention to provide an abnormality diagnosis apparatus and abnormality diagnosis method.

前述した目的を達成するために、本発明に係る異常診断装置は下記を構成としている
(1) 機械設備の回転部或いは摺動部から発生する信号を検出手段により検出し、この検出結果をエンベロープ分析及び周波数分析を行って実測データの周波数成分を求めると共に、前記回転部或いは前記摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値との比較照合を行うことにより、異常の有無の診断と、当該異常に該当する、前記回転部或いは前記摺動部の部位の特定と、を行う異常診断装置であって、
前記しきい値は、前記異常周波数の、基本波及び高調波の周波数ごとに個別に設定されている
ことを特徴とする異常診断装置。
(2) 前記しきい値は、前記回転部の回転速度或いは前記摺動部の移動速度に基づいて設定されている
ことを特徴とする上記(1)の異常診断装置。
(3) 機械設備の回転部或いは摺動部から発生する信号を検出手段により検出し、この検出結果をエンベロープ分析及び周波数分析を行って実測データの周波数成分を求めると共に、前記回転部或いは前記摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値との比較照合を行うことにより、異常の有無の診断と、当該異常に該当する、前記回転部或いは前記摺動部の部位の特定とを行う異常診断装置であって、
前記しきい値は、当該部位ごとに個別に設定されている
ことを特徴とする異常診断装置。
(4) 前記しきい値は、前記部位と前記検出手段との間の、前記信号の伝達距離又は伝達経路に基づいて個別にそれぞれ設定されている
ことを特徴とする上記(3)の異常診断装置。
(5) 前記しきい値は、前記回転部或いは前記摺動部の所定の部位のしきい値が他の所定の部位のしきい値を基準にして、設定されている
ことを特徴とする上記(1)〜(4)のいずれか1つの異常診断装置。
(6) 前記診断及び前記特定の結果を伝送するための伝送手段を更に備える
ことを特徴とする上記(1)〜(5)のいずれか1つの異常診断装置。
(7) 前記エンベロープ分析と、前記周波数分析と、前記比較照合と、の少なくともいずれかの処理をマイクロコンピュータのプログラムにより実行する
ことを特徴とする上記(1)〜(6)のいずれか1つの異常診断装置。
(8) 上記(1)〜(7)のいずれか1つの異常診断装置が適用された鉄道車両用軸受装置。
(9) 上記(1)〜(7)のいずれか1つの異常診断装置が適用された風車用軸受装置。
(10) 上記(1)〜(7)のいずれか1つの異常診断装置が適用された工作機械主軸用軸受装置。
In order to achieve the above-described object, the abnormality diagnosis apparatus according to the present invention is configured as follows. (1) A signal generated from a rotating part or a sliding part of mechanical equipment is detected by a detecting means, and the detection result is enveloped. Analysis and frequency analysis are performed to obtain the frequency component of the actual measurement data, and the abnormal frequency of vibration caused by the abnormality of the rotating part or the sliding part is calculated based on a predetermined relational expression to correspond to the abnormal frequency By extracting the frequency component of the actually measured data and comparing and comparing the extracted frequency component with a threshold value, it is possible to diagnose whether there is an abnormality and the rotating part or the sliding part corresponding to the abnormality. An abnormality diagnosis device that performs the identification of the site of
The abnormality diagnosis apparatus, wherein the threshold value is set individually for each frequency of a fundamental wave and a harmonic wave of the abnormal frequency.
(2) The abnormality diagnosis device according to (1), wherein the threshold value is set based on a rotational speed of the rotating part or a moving speed of the sliding part.
(3) The signal generated from the rotating part or sliding part of the mechanical equipment is detected by the detecting means, and the detection result is subjected to envelope analysis and frequency analysis to obtain the frequency component of the measured data, and the rotating part or the sliding part is obtained. An abnormal frequency of vibration caused by an abnormality of the moving part is calculated based on a predetermined relational expression, a frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and the extracted frequency component and a threshold value By performing comparison and collation, an abnormality diagnosis apparatus that performs diagnosis of presence / absence of abnormality and identification of a part of the rotating part or the sliding part corresponding to the abnormality,
The abnormality diagnosis apparatus, wherein the threshold value is set individually for each part.
(4) The abnormality diagnosis according to (3), wherein the threshold is individually set based on a transmission distance or a transmission path of the signal between the part and the detection means. apparatus.
(5) The threshold value is set such that a threshold value of a predetermined part of the rotating part or the sliding part is set with reference to a threshold value of another predetermined part. The abnormality diagnosis device according to any one of (1) to (4).
(6) The abnormality diagnosis apparatus according to any one of (1) to (5), further including transmission means for transmitting the diagnosis and the specific result.
(7) The process according to any one of (1) to (6), wherein at least one of the envelope analysis, the frequency analysis, and the comparison and collation is executed by a microcomputer program. Abnormality diagnosis device.
(8) A railcar bearing device to which any one of the abnormality diagnosis devices according to the above (1) to (7) is applied.
(9) A bearing device for a wind turbine to which any one of the abnormality diagnosis devices according to (1) to (7) is applied.
(10) A machine tool spindle bearing device to which any one of the abnormality diagnosis devices (1) to (7) is applied.

上記(1)の異常診断装置によれば、減速機や電動機或いは風車や鉄道車両等の機械設備に組み込まれた回転部或いは摺動部から運転中に生じる例えば音、振動、超音波(AE)、歪み等の物理量(信号)には、回転部や摺動部を含む機械設備に欠陥又は異常がある場合に、この欠陥又は異常を示す周波数成分が含まれている。このため、これらの物理量を検出して、電気信号に変換後、エンベロープ分析及び周波数分析を行い、実測データの周波数成分を求めると共に、回転部或いは摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値とを比較照合する。この際、しきい値は、異常周波数の基本波及び高調波の周波数ごとに個別に設定されるので、周辺ノイズの影響を受けにくくして、異常の有無の診断及び異常の部位の特定の精度を向上させることができる。
また、上記(2)の異常診断装置によれば、基本波及び高調波ごとにしきい値を設定する際には、回転部の回転速度或いは摺動部の移動速度に基づいて設定されることになる。即ち、例えばこれら速度に連動してこのしきい値が増減されて、異常の有無の診断及び異常の部位の特定が行われることになるので、実回転速度や移動速度の変化、或いは鉄道車両における車輪の摩耗の影響による変化等に対応することが可能となり、異常の有無の診断及び異常の部位の特定の精度を向上させることができる。
上記(3)に記載の異常診断装置によれば、機械設備に組み込まれた回転部或いは摺動部から発生する物理量を検出して、電気信号に変換後、エンベロープ分析及び周波数分析を行い、実測データの周波数成分を求めると共に、回転部或いは摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値とを比較照合する。この際、しきい値は、回転部或いは摺動部の部位ごとに個別に設定されているので、異常の有無の診断及び異常の部位の特定を精度良く行うことができる。
上記(4)の異常診断装置のように、部位ごとにしきい値を設定する際には、その部位と検出手段との間の、信号の伝達距離又は伝達経路に基づいて個別にそれぞれ設定されているとよい。これにより、部位の配置による信号の減衰等の影響が考慮されて、異常の有無の診断及び異常の部位の特定をより精度よく行うことができる。
上記(5)の異常診断装置のように、回転部或いは摺動部の所定の部位のしきい値の設定を他の所定の部位のしきい値を基準にして行うとよい。これにより、異常の有無の診断及び異常の部位の特定をより精度よく行うことができる。
上記(6)の異常診断装置によれば、診断及び特定の結果を伝送する伝送手段を備えるので、その結果を、例えばデータ処理装置へ伝送してデータ処理を行うことができ、複数の機械設備、或いは機械設備の複数の回転部或いは摺動部の異常の有無の診断及び異常の部位の特定を実稼働状態で精度良く、且つ同時に診断することが可能になる。
上記(7)の異常診断装置によれば、前記エンベロープ分析と、前記周波数分析と、前記比較照合と、の少なくともいずれかの処理をマイクロコンピュータのプログラムにより実行するので、装置を簡素化、小型化かつ安価に構成することができる。
上記(8)の異常診断装置のように、本発明に係る異常診断装置を鉄道車両用軸受装置に適用することにより、鉄道車両の安全稼動に寄与することができる。
上記(9)の異常診断装置のように、本発明に係る異常診断装置を風車用軸受装置に適用することにより、風車の安全稼動に寄与することができる。
上記(10)の異常診断のように、本発明に係る異常診断装置を工作機械主軸用軸受装置に適用することにより、工作機械の安全稼動に寄与することができる。
According to the abnormality diagnosis apparatus of the above (1), for example, sound, vibration, ultrasonic wave (AE) generated during operation from a rotating part or a sliding part incorporated in a mechanical device such as a speed reducer, an electric motor, a windmill, or a railway vehicle. The physical quantity (signal) such as distortion includes a frequency component indicating this defect or abnormality when there is a defect or abnormality in the mechanical equipment including the rotating part or the sliding part. For this reason, after detecting these physical quantities and converting them into electrical signals, envelope analysis and frequency analysis are performed to determine the frequency component of the measured data, and the abnormal frequency of vibration caused by abnormalities in the rotating part or sliding part is determined. Calculation is performed based on a predetermined relational expression, the frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and the extracted frequency component is compared with the threshold value. At this time, the threshold value is individually set for each of the fundamental frequency and the harmonic frequency of the abnormal frequency, so that it is difficult to be influenced by the surrounding noise, diagnosis of presence / absence of abnormality, and specific accuracy of the abnormal part Can be improved.
Further, according to the abnormality diagnosis device of (2) above, when setting the threshold value for each fundamental wave and higher harmonic wave, the threshold value is set based on the rotational speed of the rotating part or the moving speed of the sliding part. Become. That is, for example, this threshold value is increased or decreased in conjunction with these speeds, and the presence or absence of abnormality and the identification of the abnormal part are performed. It is possible to cope with changes due to the influence of wheel wear, and it is possible to improve the accuracy of diagnosis of presence / absence of abnormality and identification of an abnormal part.
According to the abnormality diagnosis apparatus described in (3) above, the physical quantity generated from the rotating part or sliding part incorporated in the mechanical equipment is detected, converted into an electrical signal, and then subjected to envelope analysis and frequency analysis, and actual measurement While calculating the frequency component of the data, the abnormal frequency of the vibration caused by the abnormality of the rotating part or the sliding part is calculated based on a predetermined relational expression, and the frequency component of the measured data corresponding to the abnormal frequency is extracted. Then, the extracted frequency component is compared with the threshold value. At this time, since the threshold value is individually set for each part of the rotating part or the sliding part, it is possible to accurately diagnose whether there is an abnormality and to identify the abnormal part.
When the threshold value is set for each part as in the abnormality diagnosis device of (4) above, it is individually set based on the transmission distance or transmission path of the signal between the part and the detection means. It is good to be. Thereby, the influence of signal attenuation or the like due to the arrangement of the parts is taken into consideration, so that the presence / absence of abnormality and the identification of the abnormal part can be performed with higher accuracy.
As in the abnormality diagnosis device of (5) above, the threshold value of a predetermined part of the rotating part or the sliding part may be set based on the threshold value of another predetermined part. Thereby, diagnosis of the presence or absence of abnormality and specification of the site | part of abnormality can be performed more accurately.
According to the abnormality diagnosis device of (6) above, since the transmission means for transmitting the diagnosis and the specific result is provided, the result can be transmitted to, for example, a data processing device, and data processing can be performed. Alternatively, it is possible to diagnose the presence / absence of an abnormality in a plurality of rotating parts or sliding parts of a mechanical facility and to specify an abnormal part with high accuracy and simultaneously in an actual operation state.
According to the abnormality diagnosis apparatus of (7) above, since at least one of the envelope analysis, the frequency analysis, and the comparison and collation is executed by a microcomputer program, the apparatus is simplified and miniaturized. And it can be configured at low cost.
By applying the abnormality diagnosis device according to the present invention to the railway vehicle bearing device as in the abnormality diagnosis device of (8) above, it is possible to contribute to the safe operation of the railway vehicle.
By applying the abnormality diagnosis device according to the present invention to the wind turbine bearing device as in the abnormality diagnosis device of (9) above, it is possible to contribute to safe operation of the wind turbine.
By applying the abnormality diagnosis device according to the present invention to the machine tool spindle bearing device as in the abnormality diagnosis of (10) above, it is possible to contribute to the safe operation of the machine tool.

また、前述した目的を達成するために、本発明に係る異常診断方法は、下記を構成としている。
(11) 機械設備の回転部或いは摺動部から発生する信号を検出手段により検出し、この検出結果をエンベロープ分析及び周波数分析を行って実測データの周波数成分を求めると共に、前記回転部或いは前記摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値との比較照合を行うことにより、異常の有無の診断と、当該異常に該当する、前記回転部或いは前記摺動部の部位の特定と、を行う異常診断方法であって、
前記しきい値は、前記異常周波数の、基本波及び高調波の周波数ごとに個別に設定される
ことを特徴とする異常診断方法。
(12) 前記しきい値は、前記回転部の回転速度或いは前記摺動部の移動速度に基づいて設定されている
ことを特徴とする上記(11)の異常診断方法。
(13) 機械設備の回転部或いは摺動部から発生する信号を検出手段により検出し、この検出結果をエンベロープ分析及び周波数分析を行って実測データの周波数成分を求めると共に、前記回転部或いは前記摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値との比較照合を行うことにより、異常の有無の診断と、当該異常に該当する、前記回転部或いは前記摺動部の部位の特定と、を行う異常診断方法であって、
前記しきい値は、当該部位ごとに個別に設定されている
ことを特徴とする異常診断方法。
(14) 前記しきい値は、前記部位と前記検出手段との間の、前記信号の伝達距離又は伝達経路に基づいて個別にそれぞれ設定されている
ことを特徴とする上記(13)の異常診断方法。
In order to achieve the above-described object, the abnormality diagnosis method according to the present invention is configured as follows.
(11) A signal generated from the rotating part or sliding part of the mechanical equipment is detected by the detecting means, and the detection result is subjected to envelope analysis and frequency analysis to obtain the frequency component of the actual measurement data. An abnormal frequency of vibration caused by an abnormality of the moving part is calculated based on a predetermined relational expression, a frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and the extracted frequency component and a threshold value By performing comparison and collation, an abnormality diagnosis method for performing diagnosis of presence / absence of abnormality and specifying a part of the rotating part or the sliding part corresponding to the abnormality,
The abnormality diagnosis method, wherein the threshold value is individually set for each frequency of a fundamental wave and a harmonic wave of the abnormal frequency.
(12) The abnormality diagnosis method according to (11), wherein the threshold value is set based on a rotational speed of the rotating part or a moving speed of the sliding part.
(13) The signal generated from the rotating part or sliding part of the mechanical equipment is detected by the detecting means, and the detection result is subjected to envelope analysis and frequency analysis to obtain the frequency component of the measured data, and the rotating part or the sliding part is obtained. An abnormal frequency of vibration caused by an abnormality of the moving part is calculated based on a predetermined relational expression, a frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and the extracted frequency component and a threshold value By performing comparison and collation, an abnormality diagnosis method for performing diagnosis of presence / absence of abnormality and specifying a part of the rotating part or the sliding part corresponding to the abnormality,
The abnormality diagnosis method, wherein the threshold is individually set for each part.
(14) The abnormality diagnosis according to (13), wherein the threshold is individually set based on a transmission distance or a transmission path of the signal between the part and the detection unit. Method.

上記(11)の異常診断方法によれば、減速機や電動機或いは風車や鉄道車両等の機械設備に組み込まれた回転部或いは摺動部から運転中に生じる例えば音、振動、超音波(AE)、歪み等の物理量(信号)には、回転部や摺動部を含む機械設備に欠陥又は異常がある場合に、この欠陥又は異常を示す周波数成分が含まれている。このため、これらの物理量を検出して、電気信号に変換後、エンベロープ分析及び周波数分析を行い、実測データの周波数成分を求めると共に、回転部或いは摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値とを比較照合する。この際、しきい値は、異常周波数の基本波及び高調波の周波数ごとに個別に設定されるので、周辺ノイズの影響を受けにくくして、異常の有無の診断及び異常の部位の特定の精度を向上させることができる。
上記(12)の異常診断方法によれば、基本波及び高調波ごとにしきい値を設定する際には、回転部の回転速度或いは摺動部の移動速度に基づいて設定されることになる。即ち、例えばこれら速度に連動してこのしきい値が増減されて、異常の有無の診断及び異常の部位の特定が行われることになるので、実回転速度や移動速度の変化、或いは鉄道車両における車輪の摩耗の影響による変化等に対応することが可能となり、異常の有無の診断及び異常の部位の特定の精度を向上させることができる。
上記(13)の異常診断方法によれば、機械設備に組み込まれた回転部或いは摺動部から発生する物理量を検出して、電気信号に変換後、エンベロープ分析及び周波数分析を行い、実測データの周波数成分を求めると共に、回転部或いは摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値とを比較照合する。この際、しきい値は、回転部或いは摺動部の部位ごとに個別に設定されているので、異常の有無の診断及び異常の部位の特定を精度良く行うことができる。
上記(14)の異常診断方法のように、部位ごとにしきい値を設定する際には、その部位と検出手段との信号の間の、伝達距離又は伝達経路に基づいて個別にそれぞれ設定されているとよい。これにより、部位の配置による信号の減衰等の影響等が考慮されて、異常の有無の診断及び異常の部位の特定をより精度よく行うことができる。
According to the abnormality diagnosis method of (11) above, for example, sound, vibration, ultrasonic (AE) generated during operation from a rotating part or a sliding part incorporated in a mechanical equipment such as a speed reducer, an electric motor, a windmill, or a railway vehicle. The physical quantity (signal) such as distortion includes a frequency component indicating this defect or abnormality when there is a defect or abnormality in the mechanical equipment including the rotating part or the sliding part. For this reason, after detecting these physical quantities and converting them into electrical signals, envelope analysis and frequency analysis are performed to determine the frequency component of the measured data, and the abnormal frequency of vibration caused by abnormalities in the rotating part or sliding part is determined. Calculation is performed based on a predetermined relational expression, the frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and the extracted frequency component is compared with the threshold value. At this time, the threshold value is individually set for each of the fundamental frequency and the harmonic frequency of the abnormal frequency, so that it is difficult to be influenced by the surrounding noise, diagnosis of presence / absence of abnormality, and specific accuracy of the abnormal part Can be improved.
According to the abnormality diagnosis method of (12) above, when the threshold value is set for each fundamental wave and harmonic wave, it is set based on the rotational speed of the rotating part or the moving speed of the sliding part. That is, for example, this threshold value is increased or decreased in conjunction with these speeds, and the presence or absence of abnormality and the identification of the abnormal part are performed. It is possible to cope with changes due to the influence of wheel wear, and it is possible to improve the accuracy of diagnosis of presence / absence of abnormality and identification of an abnormal part.
According to the abnormality diagnosis method of (13) above, a physical quantity generated from a rotating part or a sliding part incorporated in a mechanical facility is detected, converted into an electrical signal, envelope analysis and frequency analysis are performed, While obtaining the frequency component, calculating the abnormal frequency of the vibration caused by the abnormality of the rotating part or the sliding part based on a predetermined relational expression, and extracting the frequency component of the actual measurement data corresponding to the abnormal frequency, The extracted frequency component is compared with the threshold value. At this time, since the threshold value is individually set for each part of the rotating part or the sliding part, it is possible to accurately diagnose whether there is an abnormality and to identify the abnormal part.
When the threshold value is set for each part as in the abnormality diagnosis method of (14) above, it is individually set based on the transmission distance or transmission path between the signal of the part and the detection means. It is good to be. Thereby, the influence of signal attenuation or the like due to the arrangement of the parts is taken into consideration, so that it is possible to more accurately diagnose whether there is an abnormality and to identify the abnormal part.

本発明によれば、機械設備に組み込まれた回転部品や摺動部品に対し、異常の有無の診断及び異常の部位の特定を精度良く行うことができる異常診断装置、及び異常診断方法を提供することができる。   According to the present invention, there are provided an abnormality diagnosis device and an abnormality diagnosis method capable of accurately diagnosing the presence / absence of an abnormality and specifying an abnormal part with respect to rotating parts and sliding parts incorporated in mechanical equipment. be able to.

以下、本発明に係る異常診断装置及び異常診断方法の好適な実施形態について、図面を参照しながら説明する。
図1は、本発明の実施形態に係る異常診断装置の概略構成を示すブロック図である。
Hereinafter, preferred embodiments of an abnormality diagnosis apparatus and an abnormality diagnosis method according to the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of an abnormality diagnosis apparatus according to an embodiment of the present invention.

図1に示すように、本実施形態の異常診断装置1は、減速機や電動機或いは風車や鉄道車両等の機械設備10に組み込まれた回転部品である転がり軸受11の異常を診断するものであり、転がり軸受11から発生する振動(信号)を検出する加速度センサ(検出手段)12と、この加速度センサ12で検出した信号を、データ伝送手段(伝送手段)13を介して受信し、信号処理を行って転がり軸受11の異常の有無の診断及び異常の部位の特定を行う信号処理器21及び機械設備10を駆動制御する制御装置22からなる制御器20と、モニタや警報機等からなる出力装置30を備えている。
なお、制御器20は、マイクロコンピュータ(ICチップ、CPU、MPU、DSP等)により構成されている。このため、後述する各処理をこのマイクロコンピュータのプログラムにより実行することができるので、装置を簡素化、小型化かつ安価に構成することができる。
As shown in FIG. 1, the abnormality diagnosis device 1 according to the present embodiment diagnoses an abnormality in a rolling bearing 11 that is a rotating part incorporated in a mechanical equipment 10 such as a speed reducer, an electric motor, a windmill, or a railway vehicle. An acceleration sensor (detection means) 12 that detects vibration (signal) generated from the rolling bearing 11 and a signal detected by the acceleration sensor 12 are received via a data transmission means (transmission means) 13 to perform signal processing. A controller 20 comprising a signal processor 21 and a control device 22 for driving and controlling the mechanical equipment 10 and an output device comprising a monitor, an alarm device, etc. 30.
The controller 20 is composed of a microcomputer (IC chip, CPU, MPU, DSP, etc.). For this reason, each process to be described later can be executed by the program of the microcomputer, so that the apparatus can be simplified, downsized, and inexpensively configured.

転がり軸受11は、機械設備10の回転軸14に外嵌される内輪111と、ハウジング等に内嵌される外輪112と、内輪111及び外輪112との間で転動可能に配置された複数の転動体113と、転動体113を転動自在に保持する不図示の保持器を有する。   The rolling bearing 11 includes a plurality of inner rings 111 that are externally fitted to the rotating shaft 14 of the mechanical equipment 10, an outer ring 112 that is internally fitted to a housing or the like, and a plurality of rolling rings arranged between the inner ring 111 and the outer ring 112. The rolling element 113 and a retainer (not shown) that holds the rolling element 113 so as to freely roll are provided.

ここで、図2は、本実施形態に係る機械設備の一例である鉄道車両用軸受装置40の要部構成を示す断面図であり、前述した異常診断装置1の適用の一例を示すものとして図示している。
図2に示すように、車軸44が、転がり軸受11としての複列円錐ころ軸受41を介して鉄道車両用台車の一部を構成する軸受箱45に回転自在に支承されると共に、2個の加速度センサ12、12が軸受箱45のラジアル荷重の負荷側領域に固定されている。この加速度センサ12、12により振動を検出し、検出した信号を前述の信号処理器21で処理することで、複列円錐ころ軸受41の異常診断を行う。
Here, FIG. 2 is a cross-sectional view showing a main configuration of a railway vehicle bearing device 40 which is an example of the mechanical equipment according to the present embodiment, and shows an example of application of the abnormality diagnosis device 1 described above. Show.
As shown in FIG. 2, the axle 44 is rotatably supported by a bearing box 45 constituting a part of a railway vehicle carriage via a double-row tapered roller bearing 41 as a rolling bearing 11, and The acceleration sensors 12 and 12 are fixed to the load side region of the bearing housing 45 where the radial load is applied. The acceleration sensors 12 and 12 detect vibration, and the detected signal is processed by the signal processor 21 described above, so that the abnormality of the double row tapered roller bearing 41 is diagnosed.

このように、加速度センサ12をラジアル荷重の負荷側領域に固定するのは、内輪411又は外輪412の軸受軌道面に損傷が発生した場合、この損傷部を転動体413が通過する際に生じる衝突力が無負荷側よりも負荷側の方が大きいので、感度の良い振動検出が可能になるからである。   In this way, the acceleration sensor 12 is fixed to the load side region of the radial load when the bearing raceway surface of the inner ring 411 or the outer ring 412 is damaged, and the collision that occurs when the rolling element 413 passes through the damaged portion. This is because the force is greater on the load side than on the no-load side, so that highly sensitive vibration detection is possible.

加速度センサ12の固定方法には、ボルト固定、接着、ボルト固定と接着の併用、及び樹脂材による埋め込み等がある。
なお、ボルト固定の場合には、回り止め機能を備えるようにしてもよい。また、加速度センサ12を樹脂材によって軸受箱45に埋め込む場合は、防水性及び耐衝撃性が向上するので、加速度センサ12自体の信頼性が向上することになって好適である。
Methods for fixing the acceleration sensor 12 include bolt fixing, bonding, combined use of bolt fixing and bonding, and embedding with a resin material.
In addition, in the case of bolt fixation, you may make it provide a rotation stop function. Further, when the acceleration sensor 12 is embedded in the bearing box 45 with a resin material, the waterproofness and impact resistance are improved, which is preferable because the reliability of the acceleration sensor 12 itself is improved.

なお、本実施形態では、振動を検出するセンサとして加速度センサ12を例示したが、振動を検出できる他のセンサ、例えば、AE(Acoustic Emission)センサ、超音波センサ、ショックパルスセンサ等が使用可能であり、また、加速度、速度、歪み、応力、変位等を検出することで、等価的に振動を検出して電気信号に変換することができるものも適宜使用することができる。
なお、以下、センサにより検出される物理量が振動であるとして説明を行うが、これに限らず、その他種々のセンサを用いることで、音、超音波(AE)、歪み等の物理量を検出することができ、これら物理量によっても同じく異常診断が可能である。
In the present embodiment, the acceleration sensor 12 is exemplified as a sensor for detecting vibration. However, other sensors capable of detecting vibration, for example, an AE (Acoustic Emission) sensor, an ultrasonic sensor, a shock pulse sensor, and the like can be used. In addition, by detecting acceleration, speed, strain, stress, displacement, etc., it is possible to appropriately use one that can detect vibration equivalently and convert it into an electrical signal.
In the following description, the physical quantity detected by the sensor is assumed to be vibration. However, the present invention is not limited to this, and other various sensors are used to detect physical quantities such as sound, ultrasound (AE), and distortion. Abnormality diagnosis can also be performed using these physical quantities.

また、センサを周辺ノイズが多いことが予想される機械設備10に取り付ける際には、絶縁型を使用する方が周辺ノイズの影響を抑制できて好適である。さらに、センサとして圧電素子等の振動検出素子を使用する場合は、この素子を樹脂で一体成型する構成とすることができる。   Further, when the sensor is attached to the mechanical equipment 10 that is expected to have a lot of ambient noise, it is preferable to use an insulating type because the influence of the ambient noise can be suppressed. Further, when a vibration detection element such as a piezoelectric element is used as the sensor, the element can be integrally molded with resin.

また、機械設備10から発生する振動を検出する加速度センサ12は、機械設備10の温度を検出する温度センサや回転速度センサが単一の筐体内に収容される一体型センサであってもよい。この場合、一体型センサは、例えば軸受箱45の平坦部に固定されることが好ましい。温度センサは、温度がある規定値になると、バイメタルの接点が離れるか、接点が溶断することで導通しなくなる方式の温度ヒューズであってもよい。これにより、ある規定値以上の温度が検出されると、温度ヒューズが導通しなくなるので、温度センサによっても異常を検出して、2系統により異常診断を行うことができて、より確かな異常診断を行うことができる。   Further, the acceleration sensor 12 that detects vibrations generated from the mechanical equipment 10 may be an integrated sensor in which a temperature sensor or a rotation speed sensor that detects the temperature of the mechanical equipment 10 is housed in a single casing. In this case, the integrated sensor is preferably fixed to a flat portion of the bearing housing 45, for example. The temperature sensor may be a temperature fuse of a type in which, when the temperature reaches a certain specified value, the bimetal contact is separated or the contact is blown to cause no conduction. As a result, if a temperature above a certain specified value is detected, the thermal fuse will not be conducted. Therefore, the abnormality can be detected by the temperature sensor and the abnormality diagnosis can be performed by two systems. It can be performed.

図3は、本実施形態に係る信号処理器21の主要な機能構成を示すブロック図である。
図3に示すように、信号処理器21は、データ収集・分配部211、回転分析部212、フィルタ処理部213、振動分析部214、比較判定部215及び内部メモリ216を有して構成される。
なお、この信号処理器21は、前述した通りマイクロコンピュータで構成されており、即ち、このマイクロコンピュータ内に記録保持されたプログラムが実行されることにより、データ収集・分配部211等の各処理部は以下のような各処理を実行することになる。
FIG. 3 is a block diagram showing a main functional configuration of the signal processor 21 according to the present embodiment.
As shown in FIG. 3, the signal processor 21 includes a data collection / distribution unit 211, a rotation analysis unit 212, a filter processing unit 213, a vibration analysis unit 214, a comparison determination unit 215, and an internal memory 216. .
The signal processor 21 is composed of a microcomputer as described above, that is, each processing unit such as the data collection / distribution unit 211 is executed by executing a program recorded and held in the microcomputer. Performs the following processes.

データ収集・分配部211は、加速度センサ12から送られる信号をA/D変換器によってデジタル信号に変換するとともに、回転速度に関する信号も同時に収集して一時的に蓄積し、信号の種類に応じて回転分析部212、フィルタ処理部213のいずれかに振り分ける。
なお、A/D変換器を加速度センサ12に一体化される構成とし、前述のデータ伝送手段13を介してデジタル信号を受信するようにしてもよい。
The data collection / distribution unit 211 converts a signal sent from the acceleration sensor 12 into a digital signal by an A / D converter, and simultaneously collects and temporarily accumulates a signal related to the rotation speed according to the type of the signal. This is distributed to either the rotation analysis unit 212 or the filter processing unit 213.
The A / D converter may be integrated with the acceleration sensor 12, and a digital signal may be received via the data transmission unit 13 described above.

回転分析部212は、不図示の回転速度検出手段から出力される信号を基にして内輪111の回転速度を算出し、算出した回転速度を比較判定部215に出力する。
なお、回転速度検出手段が、内輪111に取り付けられたエンコーダと、外輪112に取り付けられた磁石または磁気検出素子と、により構成される場合は、出力信号がエンコーダの形状と回転速度に応じたパルス信号となる。このため、回転分析部212は、エンコーダの形状に応じた所定の変換関数、又は変換テーブルを有し、パルス信号から内輪111の回転速度を算出する。
The rotation analysis unit 212 calculates the rotation speed of the inner ring 111 based on a signal output from a rotation speed detection unit (not shown), and outputs the calculated rotation speed to the comparison determination unit 215.
When the rotational speed detecting means is composed of an encoder attached to the inner ring 111 and a magnet or magnetic detection element attached to the outer ring 112, the output signal is a pulse corresponding to the shape and rotational speed of the encoder. Signal. Therefore, the rotation analysis unit 212 has a predetermined conversion function or conversion table corresponding to the shape of the encoder, and calculates the rotation speed of the inner ring 111 from the pulse signal.

フィルタ処理部213は、バンドパスフィルタの機能を有し、加速度センサ12の出力信号から、転がり軸受11、歯車、車輪等の固有振動数に対応する周波数帯域のみを抽出し、それ以外の不要な周波数帯域を除去する。この固有振動数は、インパルハンマ等を用いた打撃法により被測定物を加振し、被測定物に取付けた振動検出器、又は打撃により発生した音響を周波数分析することにより容易に求めることができる。
なお、被測定物が転がり軸受11の場合には、内輪111、外輪112、転動体113、軸受箱等のいずれかに起因する固有振動数が与えられることになる。一般的に、機械部品の固有振動数は複数存在し、固有振動数における振幅レベルは高くなるので測定の感度がよい。
The filter processing unit 213 has a band-pass filter function, extracts only the frequency band corresponding to the natural frequency of the rolling bearing 11, gears, wheels, etc. from the output signal of the acceleration sensor 12, and other unnecessary processing. Remove frequency band. This natural frequency can be easily obtained by exciting the object to be measured by an impact method using an impal hammer or the like, and analyzing the frequency of the vibration detector attached to the object to be measured or the sound generated by the impact. it can.
When the object to be measured is the rolling bearing 11, a natural frequency due to any of the inner ring 111, the outer ring 112, the rolling element 113, the bearing box, and the like is given. In general, there are a plurality of natural frequencies of mechanical parts, and the amplitude level at the natural frequency is high, so the sensitivity of measurement is good.

振動分析部214は、加速度センサ12からの出力信号(実測データ)を基にして、転がり軸受11から発生した振動信号の周波数分析を行う。この振動分析部214は、振動信号の周波数スペクトルを算出するFFT演算部であり、FFTアルゴリズム及びエンベロープ分析に基づいて振動信号の周波数スペクトルを算出する。算出された周波数スペクトルは、スペクトルデータとして比較判定部215に出力される。
なお、振動分析部214は、FFTを行う前処理として、絶対値化処理やエンベロープ処理を行い、異常の診断に必要な周波数成分のみに変換してもよい。また、必要に応じて、エンベロープ処理後のエンベロープデータも併せて比較判定部215に出力する。
The vibration analysis unit 214 performs frequency analysis of the vibration signal generated from the rolling bearing 11 based on the output signal (measured data) from the acceleration sensor 12. The vibration analysis unit 214 is an FFT calculation unit that calculates the frequency spectrum of the vibration signal, and calculates the frequency spectrum of the vibration signal based on the FFT algorithm and envelope analysis. The calculated frequency spectrum is output to the comparison determination unit 215 as spectrum data.
Note that the vibration analysis unit 214 may perform absolute value processing and envelope processing as preprocessing for performing FFT, and convert only to frequency components necessary for abnormality diagnosis. Further, the envelope data after the envelope processing is also output to the comparison determination unit 215 as necessary.

比較判定部215は、図4に示す所定の関係式を用いて、転がり軸受11の部位ごとの異常周波数を予め計算し、計算した異常周波数に対応するスペクトルデータのレベルを抽出して、しきい値と比較照合する。
なお、本実施形態における比較判定部215は、スペクトルデータから基準値を算出し、この基準値に基づいてしきい値を算出する。ここで、基準値としては、所定の周波数範囲のスペクトルデータ、例えば直流成分等のノイズの影響を小さくするために、得られた周波数範囲から複数のスペクトルレベル、例えば上位10個と下位10個を除いたものを用いて算出した実効値とすることができる。
また、異常周波数の算出は、以前に同様の診断を行っている場合は、内部メモリ216に記憶しておいた過去のデータを用いてもよい。
The comparison determination unit 215 calculates the abnormal frequency for each part of the rolling bearing 11 in advance using the predetermined relational expression shown in FIG. 4, extracts the level of the spectrum data corresponding to the calculated abnormal frequency, and sets the threshold. Compare with value.
In addition, the comparison determination unit 215 in the present embodiment calculates a reference value from the spectrum data, and calculates a threshold value based on this reference value. Here, as the reference value, in order to reduce the influence of noise such as spectrum data in a predetermined frequency range, for example, DC component, a plurality of spectrum levels, for example, the upper 10 and the lower 10 are obtained from the obtained frequency range. It can be an effective value calculated using the excluded one.
In addition, the abnormal frequency may be calculated by using past data stored in the internal memory 216 if a similar diagnosis has been performed previously.

ここで、抽出したスペクトルデータのレベルとの比較照合に用いるしきい値は、異常周波数の基本波、及び高調波の各周波数ごと、さらには診断対象となる転がり軸受11の部位ごと(即ち、内輪111、外輪112、転動体113、保持器ごと)に個別に設定して行う。例えば、基本波に対するしきい値Cxは、Cx=実効値+δ、第2高調波に対するしきい値Cxは、Cx=Cx×α、さらに第n高調波に対するしきい値Cxは、Cx=Cxn−1×αで算出することができる。さらに、このしきい値Cxを、検出対象となる転がり軸受11の部位ごとに個別に設定する。
ここで、αは任意の実数、nは2以上の自然数であり、Xは転がり軸受11の部位、即ち内輪111、外輪112、転動体113、保持器それぞれを示す識別子である。
なお、しきい値Cxの設定は、それぞれ、実用性を考慮して、例えば第4高調波(i=4)程度までとするのがよい。
Here, the threshold value used for comparison with the level of the extracted spectrum data is the fundamental frequency of the abnormal frequency and each frequency of the harmonic, and further, for each part of the rolling bearing 11 to be diagnosed (that is, the inner ring). 111, outer ring 112, rolling element 113, and cage). For example, the threshold Cx 1 for the fundamental wave is Cx 1 = effective value + δ, the threshold Cx 2 for the second harmonic is Cx 2 = Cx 1 × α, and the threshold Cx n for the nth harmonic. Can be calculated by Cx n = Cx n-1 × α. Furthermore, this threshold Cx 1, set separately for each region of the rolling bearing 11 to be detected.
Here, α is an arbitrary real number, n is a natural number of 2 or more, and X is an identifier indicating a part of the rolling bearing 11, that is, the inner ring 111, the outer ring 112, the rolling element 113, and the cage.
Note that the threshold value Cx i is preferably set to about the fourth harmonic (i = 4), for example, in consideration of practicality.

また、基本波及び高調波ごとにしきい値を設定する際には、回転速度検出手段により検出した回転速度に連動して増減させるとよく、これにより実回転速度による変化等に対応することが可能となり、異常の有無の診断及び異常の部位の特定の精度を向上させることができる。   Also, when setting the threshold value for each fundamental wave and harmonic, it is better to increase or decrease in conjunction with the rotation speed detected by the rotation speed detection means, so that it is possible to cope with changes due to the actual rotation speed, etc. Thus, it is possible to improve the diagnosis of the presence / absence of abnormality and the identification accuracy of the abnormal part.

また、転がり軸受11の部位ごとにしきい値を設定する際には、その部位、即ち内輪111、外輪112、転動体113、保持器それぞれと加速度センサ12との間の、振動信号の伝達距離又は伝達経路に基づいて個別に設定されているとよく、これにより、これら部位の配置による信号の減衰等が考慮されて、異常の有無の診断及び異常の部位の特定をより精度よく行うことができる。
なお、この部位ごとに設定されるしきい値は、振動の伝達距離又は伝達経路に限らず、部位ごとにインパルスハンマ等を用いた打撃試験により予め測定した振動応答のレベル差に応じて各部位が一定の関係{例えば、Ci=Co×p=Cb×q、ただし、Ciは内輪のしきい値、Coは外輪のしきい値、Cbは転動体のしきい値であり、p、qは定数である。}を有するように設定してもよい。
Further, when setting the threshold value for each part of the rolling bearing 11, the transmission distance of the vibration signal between the part, that is, the inner ring 111, the outer ring 112, the rolling element 113, the cage, and the acceleration sensor 12 or It is preferable that the setting is made individually based on the transmission path, so that the attenuation of the signal due to the arrangement of these parts is taken into consideration, and the presence / absence of abnormality and the identification of the abnormal part can be performed with higher accuracy. .
Note that the threshold value set for each part is not limited to the transmission distance or transmission path of vibration, but for each part according to the level difference of vibration response measured in advance by an impact test using an impulse hammer or the like for each part. Is a constant relationship {eg, Ci = Co × p = Cb × q, where Ci is the inner ring threshold, Co is the outer ring threshold, Cb is the rolling element threshold, and p and q are It is a constant. } May be set.

このようにして判定された転がり軸受11の診断結果は、内部メモリ216に記憶すると共に、機械設備10の動作を制御する制御装置22へ出力され、診断結果に応じた制御信号をフィードバックする。さらに、有線又はネットワークを考慮した無線を利用したデータ伝送手段31により出力装置30に送る。   The diagnosis result of the rolling bearing 11 determined in this way is stored in the internal memory 216 and is output to the control device 22 that controls the operation of the mechanical equipment 10 to feed back a control signal corresponding to the diagnosis result. Further, the data is transmitted to the output device 30 by the data transmission means 31 using wireless considering the wired or network.

内部メモリ216は、例えばメモリ又はHDD等により構成され、異常周波数の算出に用いる各回転部品の設計諸元データと、比較判定部215により判定された転がり軸受11の異常の有無の診断及び異常の部位特定に関する各データを記憶する。   The internal memory 216 is constituted by, for example, a memory or an HDD, and the design specification data of each rotating part used for calculation of the abnormal frequency, diagnosis of presence / absence of the abnormality of the rolling bearing 11 determined by the comparison determination unit 215, and abnormality detection Each piece of data relating to site identification is stored.

出力装置30は、転がり軸受11の診断結果をモニタ等にリアルタイムで表示する。また、異常が検出された場合に、ライトやブザー等の警報機を用いて使用者に異常であることの喚起を促すようにしてもよい。   The output device 30 displays the diagnosis result of the rolling bearing 11 on a monitor or the like in real time. In addition, when an abnormality is detected, an alarm device such as a light or a buzzer may be used to prompt the user to be informed of the abnormality.

次に、このように構成された異常診断装置1の動作について説明する。
図5は、異常診断装置1の動作手順を説明するためのフローチャートである。
Next, the operation of the abnormality diagnosis apparatus 1 configured as described above will be described.
FIG. 5 is a flowchart for explaining an operation procedure of the abnormality diagnosis apparatus 1.

まず、ステップS101において、加速度センサ12により転がり軸受11から発生する振動が検出され、この検出された振動信号は、データ伝送手段13を介して信号処理器12のデータ収集・分配部211に入力される。   First, in step S101, the vibration generated from the rolling bearing 11 is detected by the acceleration sensor 12, and the detected vibration signal is input to the data collection / distribution unit 211 of the signal processor 12 via the data transmission means 13. The

データ収集・分配部211は、入力されたアナログの振動信号を必要に応じて増幅し、A/D変換器によりデジタル信号に変換する(即ち、ステップS102)。   The data collection / distribution unit 211 amplifies the input analog vibration signal as necessary, and converts it into a digital signal by an A / D converter (ie, step S102).

次に、フィルタ処理部213は、フィルタ帯域を選定し(即ち、ステップS103)、回転部品の固有振動数に対応した所定の周波数帯域のみを抽出するためのフィルタ処理を行う(即ち、ステップS104)。   Next, the filter processing unit 213 selects a filter band (ie, step S103), and performs a filter process for extracting only a predetermined frequency band corresponding to the natural frequency of the rotating component (ie, step S104). .

そして、ステップS105では、振動分析部214は、フィルタ処理が行われた後のデジタル信号に対してエンベロープ処理を施し、FFTアルゴリズムによりエンベロープ処理後のデジタル信号の周波数スペクトルを求める等の周波数分析を行い、実測データの周波数成分を求める(ステップS106)。また、必要によりエンベロープ処理後に絶対値化処理を行う。   In step S105, the vibration analysis unit 214 performs envelope processing on the digital signal after the filter processing is performed, and performs frequency analysis such as obtaining a frequency spectrum of the digital signal after the envelope processing by the FFT algorithm. Then, the frequency component of the actually measured data is obtained (step S106). If necessary, absolute value processing is performed after envelope processing.

一方、図4に示す所定の関係式を用い、検出された回転速度に基づいて各回転部品の異常に起因して発生する異常周波数を計算して(即ち、ステップS107)、求めた異常周波数に対応した各回転部品の周波数成分のレベルを基本波から第n高調波にわたってそれぞれ抽出する(即ち、ステップS108)。つまり、転がり軸受11の異常周波数成分には、軸受傷成分Sx、即ち、内輪傷成分Si、外輪傷成分So、転動体傷成分Sb及び保持器成分Scがあり、この周波数成分それぞれのレベルについて基本波から第n高調波にわたって抽出することになる。   On the other hand, using the predetermined relational expression shown in FIG. 4, the abnormal frequency generated due to the abnormality of each rotating component is calculated based on the detected rotational speed (ie, step S107), and the obtained abnormal frequency is calculated. The level of the frequency component of each corresponding rotating component is extracted from the fundamental wave to the nth harmonic (ie, step S108). That is, the abnormal frequency components of the rolling bearing 11 include the bearing flaw component Sx, that is, the inner ring flaw component Si, the outer ring flaw component So, the rolling element flaw component Sb, and the cage component Sc. It will be extracted from the wave over the nth harmonic.

一方、ステップS107、S108と並行して、振動分析部214で得られた周波数スペクトルから異常の診断に用いる基準値Cxを求め、この基準値に基づいてしきい値Cxi(i=2、…n)を算出する(ステップS109)。このとき、このしきい値は、前述のとおり、基本波及びn次高調波の各周波数ごと、且つ、転がり軸受11の部位ごとに個別に設定されている。 On the other hand, step S107, S108 in parallel with, obtains a reference value Cx 1 for use in the diagnosis of abnormality from the frequency spectrum obtained by the vibration analysis unit 214, the threshold Cx i (i = 2 based on the reference value, ... N) is calculated (step S109). At this time, as described above, this threshold value is individually set for each frequency of the fundamental wave and the nth harmonic and for each part of the rolling bearing 11.

ステップS110では、ステップS108で抽出した各回転部品の周波数スペクトルのレベルを、ステップS109で計算したしきい値Cxi(i=1、2、…n)とそれぞれ比較し、大きいものがあるか否かを判定する。   In step S110, the level of the frequency spectrum of each rotating component extracted in step S108 is compared with the threshold value Cxi (i = 1, 2,... N) calculated in step S109, and whether or not there is a large one. Determine.

この判定の結果、抽出された各回転部品の周波数スペクトルのレベルが全てしきい値よりも小さい場合は、転がり軸受11の各部位に異常はないと判断する(ステップS111)。   As a result of this determination, if all the extracted frequency spectrum levels of the rotating parts are smaller than the threshold value, it is determined that there is no abnormality in each part of the rolling bearing 11 (step S111).

一方、ステップS110の手順において、転がり軸受11の内輪111、外輪112、転動体113及び保持器の少なくともいずれかの周波数スペクトルレベルがしきい値より大きければ、この該当する部位に異常があると判断する(ステップS112)。   On the other hand, in the procedure of step S110, if the frequency spectrum level of at least one of the inner ring 111, the outer ring 112, the rolling element 113, and the cage of the rolling bearing 11 is greater than a threshold value, it is determined that there is an abnormality in the corresponding part. (Step S112).

このような手順を経て、回転部品である転がり軸受11における異常の有無の診断と、異常の部位の特定を行うことができる。   Through such a procedure, it is possible to diagnose whether there is an abnormality in the rolling bearing 11 that is a rotating part and to identify an abnormal part.

このように実施された診断の結果は、機械設備10の動作を制御する制御装置22へ出力し、診断結果に応じた制御信号をフィードバックする。さらに、有線またはネットワークを考慮した無線を利用したデータ伝送手段31によって出力装置30に送る。(ステップS113)。   The result of the diagnosis performed in this way is output to the control device 22 that controls the operation of the machine facility 10 and a control signal corresponding to the diagnosis result is fed back. Further, the data is transmitted to the output device 30 by the data transmission means 31 using the wireless considering the wired or network. (Step S113).

次に、本発明に係る実施形態の異常診断装置1を用いた場合の診断結果の精度を確認するため、以下の2つの試験を行った。
(実施例1)
まず、本発明に係る実施形態の異常診断装置1に関し、異常周波数の、基本波及び高調波の周波数ごとにしきい値を個別に設定することについての効果を確かめるため、第1の試験を行った。なお、本試験では、この効果の評価をより客観的に行うため、部位ごとにはしきい値を設定せず、部位間においてはそのしきい値を一定にして行った。
本試験では、円錐ころ軸受の外輪(O)の軌道面に人工的に欠陥を付して、円錐ころ軸受の内輪において200min−1の回転速度で回転中に周辺ノイズが入ったときのハウジングの振動に対しエンベロープ処理を施して周波数分析を行った。このときの試験結果を図6(A)に示す。
Next, in order to confirm the accuracy of the diagnosis result when the abnormality diagnosis apparatus 1 according to the embodiment of the present invention was used, the following two tests were performed.
(Example 1)
First, with respect to the abnormality diagnosis apparatus 1 according to the embodiment of the present invention, a first test was performed in order to confirm the effect of individually setting a threshold value for each frequency of a fundamental wave and a harmonic wave of an abnormal frequency. . In this test, in order to evaluate this effect more objectively, a threshold value was not set for each part, and the threshold value was made constant between parts.
In this test, when the outer ring (O) of the tapered roller bearing has an artificial defect on the raceway surface and peripheral noise enters during rotation at a rotational speed of 200 min −1 in the inner ring of the tapered roller bearing, Frequency analysis was performed by applying envelope treatment to vibration. The test results at this time are shown in FIG.

ここで、実線は実測した振動データに基づくエンベロープ処理が施された周波数スペクトル、点線はしきい値Co、1点鎖線は回転速度200min−1に基づく外輪損傷に起因した、基本波から第4高調波までの異常振動発生周波数(f〜f)である。ここで、基本波に対するしきい値Coは、Co=基準値=実効値+6dB、第2高調波に対するしきい値Co=Cx×0.7、第n高調波に対するしきい値Co=Con−1×0.7で算出することができる。
なお、実用性を考慮して、しきい値Coは、第4高調波までの設定とした。なお、Cの添え字「o」は、外輪を意味している。
Here, the solid line is a frequency spectrum subjected to envelope processing based on actually measured vibration data, the dotted line is the threshold value Co i , and the one-dot chain line is the fourth wave from the fundamental wave caused by the outer ring damage based on the rotational speed 200 min −1 . It is the abnormal vibration generation frequency (f 1 to f 4 ) up to the harmonic. Here, the threshold value Co 1 for the fundamental wave is as follows: Co 1 = reference value = effective value + 6 dB, threshold value for the second harmonic Co 2 = Cx 1 × 0.7, threshold value Co for the nth harmonic. n = Con n-1 × 0.7.
In consideration of practicality, the threshold value Co i is set up to the fourth harmonic. The subscript “o” of C means an outer ring.

この結果、しきい値Coを超えるピークが外輪損傷に起因した周波数成分と一致していることから、円錐ころ軸受の外輪が損傷していると診断することができる。 As a result, since the peak exceeding the threshold value C o i coincides with the frequency component resulting from the outer ring damage, it can be diagnosed that the outer ring of the tapered roller bearing is damaged.

一方、図6(B)には、しきい値を基本波及び高調波の周波数ごとに設定せずに一定に設定されている、従来の異常診断方法を用いた場合が示されている。この場合、基本波以外の高調波については、外輪損傷に起因した周波数成分がしきい値を超えていないため、外輪に異常なしと判断されて誤診断を起こしてしまう虞があり、適切な異常診断ではないといえる。   On the other hand, FIG. 6B shows a case where a conventional abnormality diagnosis method is used in which the threshold value is not set for each frequency of the fundamental wave and the harmonic wave but is set to be constant. In this case, for harmonics other than the fundamental wave, the frequency component resulting from damage to the outer ring does not exceed the threshold value. It can be said that it is not a diagnosis.

したがって、この試験により、しきい値を、異常周波数の基本波及び高調波の周波数ごとに個別に設定することにより、周辺ノイズの影響を受けにくくして、異常の有無の診断及び異常の部位の特定の精度を向上させることができることがわかる。   Therefore, by this test, the threshold value is individually set for each of the fundamental frequency and the harmonic frequency of the abnormal frequency, thereby making it less susceptible to the influence of ambient noise, diagnosing whether there is an abnormality, It can be seen that the specific accuracy can be improved.

(実施例2)
次に、本発明に係る実施形態の異常診断装置1に関し、部位ごとにしきい値を設定することについての効果を確かめるため、第2の試験を行った。なお、本試験では、この効果の評価をより客観的に行うため、異常周波数の、基本波及び高調波の周波数ごとにはしきい値を設定せず、基本波と高調波間においてはそのしきい値を一定にして行った。
図7は、転がり軸受の外輪の軌道面に人工的に欠陥を付した玉軸受の内輪を1500min−1の回転速度で回転した際のハウジングの振動に対してエンベロープ処理を施し、周波数分析を行ったデータを示す図である。
(Example 2)
Next, with respect to the abnormality diagnosis apparatus 1 according to the embodiment of the present invention, a second test was performed in order to confirm the effect of setting a threshold value for each part. In this test, in order to evaluate this effect more objectively, no threshold is set for each of the fundamental and harmonic frequencies of the abnormal frequency, and the threshold between the fundamental and harmonics is not set. The value was kept constant.
FIG. 7 shows the frequency analysis by applying envelope processing to the vibration of the housing when the inner ring of the ball bearing with an artificial defect on the raceway surface of the outer ring of the rolling bearing is rotated at a rotational speed of 1500 min −1. FIG.

図7に示すように、実線は実測した実測データに基づくエンベロープ処理が施された周波数スペクトル、点線はしきい値(=実効値+6dB)、一点鎖線は回転速度1500min−1に基づく外輪損傷に起因する周波数成分f〜fを示している。 As shown in FIG. 7, the solid line is a frequency spectrum subjected to envelope processing based on actually measured data, the dotted line is a threshold value (= effective value + 6 dB), and the alternate long and short dash line is caused by outer ring damage based on a rotational speed of 1500 min −1. Frequency components f 1 to f 3 to be performed are shown.

この結果により、しきい値を超えるピークが外輪の損傷に起因する周波数成分と一致しているので、玉軸受の外輪が損傷していると診断することができる。   As a result, since the peak exceeding the threshold value coincides with the frequency component resulting from the damage of the outer ring, it can be diagnosed that the outer ring of the ball bearing is damaged.

一方、図8は、転動体(玉)の表面に人工的に欠陥を付した転がり軸受の内輪を1500min−1の回転速度で回転した際の軸受箱の振動に対してエンベロープ処理を施し、周波数分析を行ったデータを示す図である。 On the other hand, FIG. 8 shows an envelope process for the vibration of the bearing box when the inner ring of a rolling bearing having an artificial defect on the surface of the rolling element (ball) is rotated at a rotational speed of 1500 min −1. It is a figure which shows the data which analyzed.

図8に示すように、実線は実測した振動データに基づくエンベロープ処理が施された周波数スペクトルであり、点線で示すしきい値を外輪の場合と同様に実効値+6dBとすると、玉の損傷に起因する周波数成分がしきい値を超えていないため、異常がないと判断してしまうおそれがある。しかしながら、玉の損傷を判断するために部位ごとに設定されたしきい値(=実効値+4dB)を用いて判断すると、玉が損傷していると判断することができる。   As shown in FIG. 8, the solid line is a frequency spectrum that has been subjected to envelope processing based on the actually measured vibration data. Since the frequency component to be processed does not exceed the threshold value, there is a possibility that it is determined that there is no abnormality. However, if it is determined using a threshold value (= effective value + 4 dB) set for each part in order to determine damage of the ball, it can be determined that the ball is damaged.

この結果により、しきい値を転がり軸受の部位ごとに個別に設定するので、異常の有無の診断及び異常の部位の特定を精度良く行うことができることがわかる。   From this result, it can be seen that since the threshold value is individually set for each part of the rolling bearing, the presence / absence of abnormality and the identification of the part of abnormality can be accurately performed.

以上説明したように、このような本発明の実施形態に係る異常診断装置及び異常診断方法によれば、機械設備10の転がり軸受11から運転中に発生する振動を検出して電気信号に変換し、エンベロープ分析及び周波数分析を行って周波数スペクトルのレベルを求めると共に、転がり軸受11の異常部位に起因する振動の周波数を所定の関係式に基づいて算出して、算出した異常周波数に対応する周波数スペクトルのレベルを抽出して、所定のしきい値とを比較照合する。これにより、機械設備10を分解することなく異常の有無を診断することができ、機械設備10の分解や組立にかかる手間を軽減することが可能となる。   As described above, according to the abnormality diagnosis apparatus and the abnormality diagnosis method according to the embodiment of the present invention, vibration generated during operation from the rolling bearing 11 of the mechanical equipment 10 is detected and converted into an electric signal. The frequency spectrum corresponding to the calculated abnormal frequency is calculated by calculating the level of the frequency spectrum by performing envelope analysis and frequency analysis, and calculating the frequency of vibration caused by the abnormal part of the rolling bearing 11 based on a predetermined relational expression. Are extracted and compared with a predetermined threshold value. Thereby, the presence or absence of abnormality can be diagnosed without disassembling the mechanical equipment 10, and it becomes possible to reduce the effort concerning disassembly and assembly of the mechanical equipment 10.

また、比較照合に用いるしきい値を、異常周波数の基本波及び高調波の周波数ごとに個別に設定して異常の有無の診断及び異常の部位の特定を行うので、周辺ノイズの影響を受けにくくして、異常の有無の診断及び異常の部位の特定の精度を向上させることができる。   In addition, the threshold value used for comparison and verification is set individually for each fundamental frequency and harmonic frequency of the abnormal frequency to diagnose the presence or absence of an abnormality and identify the part of the abnormality, making it less susceptible to ambient noise. Thus, it is possible to improve the accuracy of diagnosis of the presence / absence of an abnormality and identification of an abnormal part.

さらに、比較照合に用いるしきい値を、転がり軸受11の部位ごとに個別に設定して異常の有無の診断及び異常の部位の特定を行うので、異常の有無の診断及び異常の部位の特定を精度良く行うことができる。   Furthermore, since the threshold value used for comparison and collation is individually set for each part of the rolling bearing 11 to diagnose the presence / absence of abnormality and to identify the abnormal part, diagnosis of presence / absence of abnormality and identification of the abnormal part are performed. It can be performed with high accuracy.

また、転がり軸受11の所定の部位のしきい値の設定を他の部位のしきい値を基準に行うとよい。これにより、異常の有無の診断及び異常の部位の特定をより精度よく行うことができる。   Moreover, it is good to set the threshold value of the predetermined part of the rolling bearing 11 on the basis of the threshold value of another part. Thereby, diagnosis of the presence or absence of abnormality and specification of the site | part of abnormality can be performed more accurately.

また、本実施形態によれば、診断及び特定の結果を伝送するデータ伝送手段13を備えるので、その結果を信号処理器21へ伝送してデータ処理を行うことができ、複数の機械設備10、或いは機械設備10の複数の転がり軸受11の異常の有無の診断及び異常の部位の特定を実稼働状態で精度良く、且つ同時に診断することが可能になる。   Moreover, according to this embodiment, since the data transmission means 13 which transmits a diagnosis and a specific result is provided, the result can be transmitted to the signal processor 21, and data processing can be performed. Alternatively, it is possible to diagnose the presence / absence of abnormality of the plurality of rolling bearings 11 of the mechanical equipment 10 and the identification of the abnormal part with high accuracy and at the same time in the actual operation state.

なお、本発明の異常診断装置は、前述した実施形態に限定されるものでなく、適宜な変形、改良等が可能である。例えば、前述した実施形態においては、異常診断装置1を機械設備10の一つである鉄道車両用の転がり軸受11に適用した例について説明したが、この他、風車用軸受装置や、工作機械用軸受装置にも同様に適用することができるのはいうまでもない。   The abnormality diagnosis apparatus of the present invention is not limited to the above-described embodiment, and appropriate modifications and improvements can be made. For example, in the above-described embodiment, the example in which the abnormality diagnosis device 1 is applied to the rolling bearing 11 for a railway vehicle, which is one of the mechanical facilities 10, has been described. Needless to say, the present invention can be similarly applied to a bearing device.

また、前述した実施形態において、回転或いは摺動する部品として転がり軸受11を例示したが、本発明の異常診断装置及び異常診断方法は、損傷によって周期的な振動を発生する、例えば、歯車、車軸、ボールねじ等の回転部品や、リニアガイド、リニアボールベアリング等の摺動部品にも同様に適用可能である。   In the above-described embodiment, the rolling bearing 11 is exemplified as the rotating or sliding component. However, the abnormality diagnosis device and abnormality diagnosis method of the present invention generate periodic vibration due to damage, for example, a gear, an axle. The present invention can be similarly applied to rotating parts such as ball screws and sliding parts such as linear guides and linear ball bearings.

また、図9に示すように、制御器20にマイクロコンピュータ等を用いることにより、機械設備10に信号処理器21を内蔵することができ、ユニット化を図って小型化が可能となる。制御器20は、例えば軸受装置に内蔵してもよく、機械設備10内に設置するようにしてもよい。また、機械設備10にセンサ12等を複数個設けることもできる。   Also, as shown in FIG. 9, by using a microcomputer or the like for the controller 20, a signal processor 21 can be built in the mechanical equipment 10, and the unit can be made compact and downsized. The controller 20 may be incorporated in the bearing device, for example, or may be installed in the machine facility 10. In addition, a plurality of sensors 12 and the like can be provided in the mechanical facility 10.

さらに、前述した実施形態においては、しきい値を(実効値+α)dBとして説明したが、これに限るものではなく、例えば、実効値+βdB等の式に基づいて算出することもできる。ここで、α、βは任意の実数である。また、実効値の代わりに、任意の時間における実測スペクトルデータの平均値やピーク値を用いてもよい。   Furthermore, in the above-described embodiment, the threshold value is described as (effective value + α) dB. However, the threshold value is not limited to this, and can be calculated based on an equation such as effective value + β dB. Here, α and β are arbitrary real numbers. Further, instead of the effective value, an average value or a peak value of actually measured spectrum data at an arbitrary time may be used.

本発明の実施形態に係る異常診断装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the abnormality diagnosis apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る鉄道車両用軸受装置の要部構成を示す断面図である。It is sectional drawing which shows the principal part structure of the bearing apparatus for rail vehicles which concerns on embodiment of this invention. 本発明の実施形態に係る信号処理器の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the signal processor which concerns on embodiment of this invention. 本発明の実施形態に係る転がり軸受の傷の部位と、傷に起因して発生する振動周波数の関係を示す表である。It is a table | surface which shows the relationship between the site | part of the damage | wound of the rolling bearing which concerns on embodiment of this invention, and the vibration frequency which arises resulting from a damage | wound. 本発明の実施形態に係る異常診断装置の動作手順を説明するためのフローチャートである。It is a flowchart for demonstrating the operation | movement procedure of the abnormality diagnosis apparatus which concerns on embodiment of this invention. (A)本発明にかかる異常診断装置及び異常診断方法を適用した実施例1を示すグラフ、(B)は従来の異常診断方法を示すグラフである。(A) The graph which shows Example 1 to which the abnormality diagnosis apparatus and abnormality diagnosis method concerning this invention are applied, (B) is a graph which shows the conventional abnormality diagnosis method. 本発明の実施形態に係る異常診断装置及び異常診断方法を適用した実施例2のデータを示す図である。It is a figure which shows the data of Example 2 which applied the abnormality diagnosis apparatus and abnormality diagnosis method which concern on embodiment of this invention. 本発明の実施形態に係る異常診断装置及び異常診断方法を適用した実施例2の別のデータを示す図である。It is a figure which shows another data of Example 2 which applied the abnormality diagnostic apparatus and abnormality diagnostic method which concern on embodiment of this invention. 本発明に係る異常診断装置の変形例の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the modification of the abnormality diagnosis apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 異常診断装置
10 機械設備
11 転がり軸受(回転部)
12 加速度センサ(検出手段)
20 制御器
21 信号処理器
212 回転分析部
213 フィルタ処理部
214 振動分析部
215 比較判定部
22 制御装置
31 データ伝送手段(伝送手段)
1 Abnormality diagnosis device 10 Mechanical equipment 11 Rolling bearing (rotating part)
12 Acceleration sensor (detection means)
DESCRIPTION OF SYMBOLS 20 Controller 21 Signal processor 212 Rotation analysis part 213 Filter processing part 214 Vibration analysis part 215 Comparison determination part 22 Control apparatus 31 Data transmission means (transmission means)

Claims (14)

機械設備の回転部或いは摺動部から発生する信号を検出手段により検出し、この検出結果をエンベロープ分析及び周波数分析を行って実測データの周波数成分を求めると共に、前記回転部或いは前記摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値との比較照合を行うことにより、異常の有無の診断と、当該異常に該当する、前記回転部或いは前記摺動部の部位の特定と、を行う異常診断装置であって、
前記しきい値は、前記異常周波数の、基本波及び高調波の周波数ごとに個別に設定されている
ことを特徴とする異常診断装置。
The signal generated from the rotating part or sliding part of the mechanical equipment is detected by the detection means, and the detection result is subjected to envelope analysis and frequency analysis to obtain the frequency component of the measured data, and the rotation part or sliding part An abnormal frequency of vibration caused by an abnormality is calculated based on a predetermined relational expression, a frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and comparison and verification between the extracted frequency component and a threshold value are performed. An abnormality diagnosis device that performs diagnosis of presence / absence of an abnormality and identification of a part of the rotating part or the sliding part corresponding to the abnormality,
The abnormality diagnosis apparatus, wherein the threshold value is set individually for each frequency of a fundamental wave and a harmonic wave of the abnormal frequency.
前記しきい値は、前記回転部の回転速度或いは前記摺動部の移動速度に基づいて設定されている
ことを特徴とする請求項1に記載の異常診断装置。
The abnormality diagnosis apparatus according to claim 1, wherein the threshold value is set based on a rotation speed of the rotating part or a moving speed of the sliding part.
機械設備の回転部或いは摺動部から発生する信号を検出手段により検出し、この検出結果をエンベロープ分析及び周波数分析を行って実測データの周波数成分を求めると共に、前記回転部或いは前記摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値との比較照合を行うことにより、異常の有無の診断と、当該異常に該当する、前記回転部或いは前記摺動部の部位の特定とを行う異常診断装置であって、
前記しきい値は、当該部位ごとに個別に設定されている
ことを特徴とする異常診断装置。
The signal generated from the rotating part or sliding part of the mechanical equipment is detected by the detection means, and the detection result is subjected to envelope analysis and frequency analysis to obtain the frequency component of the measured data, and the rotation part or sliding part An abnormal frequency of vibration caused by an abnormality is calculated based on a predetermined relational expression, a frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and comparison and verification between the extracted frequency component and a threshold value are performed. An abnormality diagnosis device that performs diagnosis of presence / absence of abnormality and identification of a part of the rotating part or the sliding part corresponding to the abnormality,
The abnormality diagnosis apparatus, wherein the threshold value is set individually for each part.
前記しきい値は、前記部位と前記検出手段との間の、前記信号の伝達距離又は伝達経路に基づいて個別にそれぞれ設定されている
ことを特徴とする請求項3に記載の異常診断装置。
The abnormality diagnosis apparatus according to claim 3, wherein the threshold is individually set based on a transmission distance or a transmission path of the signal between the part and the detection unit.
前記しきい値は、前記回転部或いは前記摺動部の所定の部位のしきい値が他の所定の部位のしきい値を基準にして、設定されている
ことを特徴とする請求項1〜4のいずれか1つに記載の異常診断装置。
The threshold value is set such that a threshold value of a predetermined part of the rotating part or the sliding part is set based on a threshold value of another predetermined part. 5. The abnormality diagnosis device according to any one of 4 above.
前記診断及び前記特定の結果を伝送するための伝送手段を更に備える
ことを特徴とする請求項1〜5のいずれか1つに記載の異常診断装置。
6. The abnormality diagnosis apparatus according to claim 1, further comprising a transmission unit for transmitting the diagnosis and the specific result.
前記エンベロープ分析と、前記周波数分析と、前記比較照合と、の少なくともいずれかの処理をマイクロコンピュータのプログラムにより実行する
ことを特徴とする請求項1〜6のいずれか1つに記載の異常診断装置。
The abnormality diagnosis apparatus according to claim 1, wherein at least one of the envelope analysis, the frequency analysis, and the comparison and collation is executed by a program of a microcomputer. .
請求項1〜7のいずれか1つに記載の異常診断装置が適用された鉄道車両用軸受装置。   A bearing device for a railway vehicle to which the abnormality diagnosis device according to any one of claims 1 to 7 is applied. 請求項1〜7のいずれか1つに記載の異常診断装置が適用された風車用軸受装置。   A bearing device for a wind turbine to which the abnormality diagnosis device according to any one of claims 1 to 7 is applied. 請求項1〜7のいずれか1つに記載の異常診断装置が適用された工作機械主軸用軸受装置。   A bearing device for a machine tool main spindle to which the abnormality diagnosis device according to any one of claims 1 to 7 is applied. 機械設備の回転部或いは摺動部から発生する信号を検出手段により検出し、この検出結果をエンベロープ分析及び周波数分析を行って実測データの周波数成分を求めると共に、前記回転部或いは前記摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値との比較照合を行うことにより、異常の有無の診断と、当該異常に該当する、前記回転部或いは前記摺動部の部位の特定と、を行う異常診断方法であって、
前記しきい値は、前記異常周波数の、基本波及び高調波の周波数ごとに個別に設定される
ことを特徴とする異常診断方法。
The signal generated from the rotating part or sliding part of the mechanical equipment is detected by the detection means, and the detection result is subjected to envelope analysis and frequency analysis to obtain the frequency component of the measured data, and the rotation part or sliding part An abnormal frequency of vibration caused by an abnormality is calculated based on a predetermined relational expression, a frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and comparison and verification between the extracted frequency component and a threshold value are performed. An abnormality diagnosis method for performing diagnosis of presence / absence of abnormality and identification of a part of the rotating part or the sliding part corresponding to the abnormality,
The abnormality diagnosis method, wherein the threshold value is individually set for each frequency of a fundamental wave and a harmonic wave of the abnormal frequency.
前記しきい値は、前記回転部の回転速度或いは前記摺動部の移動速度に基づいて設定されている
ことを特徴とする請求項11に記載の異常診断方法。
The abnormality diagnosis method according to claim 11, wherein the threshold is set based on a rotational speed of the rotating part or a moving speed of the sliding part.
機械設備の回転部或いは摺動部から発生する信号を検出手段により検出し、この検出結果をエンベロープ分析及び周波数分析を行って実測データの周波数成分を求めると共に、前記回転部或いは前記摺動部の異常に起因する振動の異常周波数を所定の関係式に基づいて算出して、当該異常周波数に対応した前記実測データの周波数成分を抽出し、この抽出された周波数成分としきい値との比較照合を行うことにより、異常の有無の診断と、当該異常に該当する、前記回転部或いは前記摺動部の部位の特定と、を行う異常診断方法であって、
前記しきい値は、当該部位ごとに個別に設定されている
ことを特徴とする異常診断方法。
The signal generated from the rotating part or sliding part of the mechanical equipment is detected by the detection means, and the detection result is subjected to envelope analysis and frequency analysis to obtain the frequency component of the measured data, and the rotation part or sliding part An abnormal frequency of vibration caused by an abnormality is calculated based on a predetermined relational expression, a frequency component of the actual measurement data corresponding to the abnormal frequency is extracted, and comparison and verification between the extracted frequency component and a threshold value are performed. An abnormality diagnosis method for performing diagnosis of presence / absence of abnormality and identification of a part of the rotating part or the sliding part corresponding to the abnormality,
The abnormality diagnosis method, wherein the threshold is individually set for each part.
前記しきい値は、前記部位と前記検出手段との間の、前記信号の伝達距離又は伝達経路に基づいて個別にそれぞれ設定されている
ことを特徴とする請求項13に記載の異常診断方法。
The abnormality diagnosis method according to claim 13, wherein the threshold is individually set based on a transmission distance or a transmission path of the signal between the part and the detection unit.
JP2008045019A 2007-06-11 2008-02-26 Abnormality diagnosis apparatus and abnormality diagnosis method Active JP5146008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008045019A JP5146008B2 (en) 2007-06-11 2008-02-26 Abnormality diagnosis apparatus and abnormality diagnosis method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007153964 2007-06-11
JP2007153964 2007-06-11
JP2008045019A JP5146008B2 (en) 2007-06-11 2008-02-26 Abnormality diagnosis apparatus and abnormality diagnosis method

Publications (3)

Publication Number Publication Date
JP2009020090A true JP2009020090A (en) 2009-01-29
JP2009020090A5 JP2009020090A5 (en) 2011-01-20
JP5146008B2 JP5146008B2 (en) 2013-02-20

Family

ID=40359843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045019A Active JP5146008B2 (en) 2007-06-11 2008-02-26 Abnormality diagnosis apparatus and abnormality diagnosis method

Country Status (1)

Country Link
JP (1) JP5146008B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181334A (en) * 2009-02-06 2010-08-19 Okuma Corp Method and device for evaluating rotational accuracy
CN101819093A (en) * 2010-03-31 2010-09-01 桂林电子科技大学 Fault diagnosis device for spindle bearing of roadheader cutting head and use method thereof
WO2012011534A1 (en) * 2010-07-21 2012-01-26 日立建機株式会社 Method for detecting damage of bearing
CN102713539A (en) * 2009-11-30 2012-10-03 斯奈克玛 Method and device for monitoring torsional vibrations of a rotary shaft of a turbine engine
CN102834701A (en) * 2010-03-03 2012-12-19 旭化成工程株式会社 Method and apparatus for diagnosing bushing
JP2013029484A (en) * 2011-07-29 2013-02-07 Toshiba Corp Rotary machine state monitor, rotary machine state monitoring method and rotary machine state monitoring program
KR101378164B1 (en) * 2013-05-16 2014-03-27 (주)피씨엠솔루션 Roller bearing of rotator apparatus under water for remotely detecting trouble
KR101507929B1 (en) 2013-09-03 2015-04-07 자동차부품연구원 Monitoring system for hub bearing of vehicle and monitoring method
JP2016061752A (en) * 2014-09-22 2016-04-25 日本精工株式会社 Determination diagnostic device
DE102016216304A1 (en) 2015-09-07 2017-03-09 Okuma Corporation Bearing diagnostic device for a machine tool
US20170106487A1 (en) * 2015-10-19 2017-04-20 Okuma Corporation Main spindle failure detection device for machine tool and method of detecting main spindle failure
KR101731439B1 (en) * 2015-10-05 2017-05-02 (주) 디노솔루션 Magnetic fluid seal and abnormal condition judging method of semiconductor processing based on the same
JP2017101954A (en) * 2015-11-30 2017-06-08 日本精工株式会社 Mechanical facility evaluation method
GB2551112A (en) * 2016-05-25 2017-12-13 Ge Aviat Systems Ltd Aircraft component monitoring system
WO2018020618A1 (en) * 2016-07-27 2018-02-01 富士通株式会社 Abnormality detection program, abnormality detection device, and abnormality detection method
KR101827116B1 (en) * 2016-05-20 2018-02-07 케이티엠엔지니어링(주) An Apparatus for Detecting a Wheel and a Bearing
CN106124200B (en) * 2016-06-29 2018-07-03 潍坊学院 A kind of ELMD of rotating machinery and smooth iteration envelope Analysis Method
CN108279103A (en) * 2018-01-25 2018-07-13 华电电力科学研究院有限公司 A kind of online checking system and check method of overall machine vibration monitoring system
WO2018190216A1 (en) 2017-04-13 2018-10-18 Ntn株式会社 State monitoring device, state monitoring system, and state monitoring method
WO2018229836A1 (en) * 2017-06-12 2018-12-20 株式会社日立製作所 Bearing diagnosis device
JP2019036076A (en) * 2017-08-11 2019-03-07 株式会社ジェイテクト Analyzer of production facility
JP2019045202A (en) * 2017-08-30 2019-03-22 公益財団法人鉄道総合技術研究所 Bearing inspection device and bearing inspection program
CN109612727A (en) * 2018-12-12 2019-04-12 中车株洲电机有限公司 High-power electric locomotive traction motor bearing on-line vibration detection device
JP2019095346A (en) * 2017-11-24 2019-06-20 オークマ株式会社 Abnormality diagnosis method and abnormality diagnosis device of feed shaft
WO2019167171A1 (en) * 2018-02-28 2019-09-06 日産自動車株式会社 Abnormality detecting device and abnormality detecting method
EP3647891A1 (en) * 2018-10-31 2020-05-06 Nikken Kosakusho Works, Ltd. Feed shaft and worm gear abnormality determination system
WO2020166363A1 (en) 2019-02-15 2020-08-20 株式会社Kelk Thermoelectric power generation device and vibration detection system
CN112775719A (en) * 2019-11-07 2021-05-11 大隈株式会社 Method and device for diagnosing abnormality of feed shaft device
KR20210110379A (en) 2019-02-15 2021-09-07 가부시키가이샤 케르쿠 Thermoelectric generator and vibration detection system
WO2022054483A1 (en) 2020-09-11 2022-03-17 不動技研工業株式会社 Abnormality determination method for wind power generation device. abnormality determination system for wind power generation device, and abnormality determination program for wind power generation device
US11300949B2 (en) 2017-08-11 2022-04-12 Jtekt Corporation Data processing device of production equipment
JPWO2022085425A1 (en) * 2020-10-21 2022-04-28
DE102022100362A1 (en) 2021-01-13 2022-07-14 Kelk Ltd. Analysis device, analysis system and analysis method
US11441940B2 (en) 2017-04-13 2022-09-13 Ntn Corporation Condition monitoring apparatus, condition monitoring system, and condition monitoring method
US11460005B2 (en) 2016-03-17 2022-10-04 Ntn Corporation Condition monitoring system and wind turbine generation apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693198B2 (en) 2016-03-18 2020-05-13 株式会社Ihi Abnormality determination device and abnormality determination method
CN106017924B (en) * 2016-08-03 2018-06-12 南京理工大学 Ball screw assembly, reliability accelerated test appraisal procedure
CN106017923B (en) * 2016-08-03 2018-07-31 南京理工大学 Ball screw assembly, reliability accelerated test method
JP6496061B1 (en) * 2018-03-30 2019-04-03 オークマ株式会社 Method and apparatus for diagnosing abnormality of rolling bearing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221161A (en) * 1997-02-10 1998-08-21 Nippon Densan Corp Method and apparatus for inspecting vibration
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2006234786A (en) * 2005-01-26 2006-09-07 Nsk Ltd Abnormality diagnostic device and abnormality diagnostic method for mechanical facility

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221161A (en) * 1997-02-10 1998-08-21 Nippon Densan Corp Method and apparatus for inspecting vibration
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2006234786A (en) * 2005-01-26 2006-09-07 Nsk Ltd Abnormality diagnostic device and abnormality diagnostic method for mechanical facility

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181334A (en) * 2009-02-06 2010-08-19 Okuma Corp Method and device for evaluating rotational accuracy
CN102713539A (en) * 2009-11-30 2012-10-03 斯奈克玛 Method and device for monitoring torsional vibrations of a rotary shaft of a turbine engine
US9097575B2 (en) 2009-11-30 2015-08-04 Snecma Method and device for monitoring torsional vibrations of a rotary shaft of a turbine engine
US9588015B2 (en) 2010-03-03 2017-03-07 Asahi Kasei Engineering Corporation Diagnostic method and diagnostic device for a slide bearing
CN102834701A (en) * 2010-03-03 2012-12-19 旭化成工程株式会社 Method and apparatus for diagnosing bushing
CN101819093A (en) * 2010-03-31 2010-09-01 桂林电子科技大学 Fault diagnosis device for spindle bearing of roadheader cutting head and use method thereof
WO2012011534A1 (en) * 2010-07-21 2012-01-26 日立建機株式会社 Method for detecting damage of bearing
CN103026085A (en) * 2010-07-21 2013-04-03 日立建机株式会社 Method for detecting damage of bearing
JP2012026481A (en) * 2010-07-21 2012-02-09 Hitachi Constr Mach Co Ltd Method for detecting damage of bearing
JP2013029484A (en) * 2011-07-29 2013-02-07 Toshiba Corp Rotary machine state monitor, rotary machine state monitoring method and rotary machine state monitoring program
KR101378164B1 (en) * 2013-05-16 2014-03-27 (주)피씨엠솔루션 Roller bearing of rotator apparatus under water for remotely detecting trouble
KR101507929B1 (en) 2013-09-03 2015-04-07 자동차부품연구원 Monitoring system for hub bearing of vehicle and monitoring method
JP2016061752A (en) * 2014-09-22 2016-04-25 日本精工株式会社 Determination diagnostic device
DE102016216304A1 (en) 2015-09-07 2017-03-09 Okuma Corporation Bearing diagnostic device for a machine tool
KR20170029387A (en) 2015-09-07 2017-03-15 오쿠마 가부시키가이샤 Bearing diagnostic device for machine tool
JP2017053649A (en) * 2015-09-07 2017-03-16 オークマ株式会社 Bearing diagnostic device of machine tool
US9933333B2 (en) 2015-09-07 2018-04-03 Okuma Corporation Bearing diagnostic device for machine tool
KR101731439B1 (en) * 2015-10-05 2017-05-02 (주) 디노솔루션 Magnetic fluid seal and abnormal condition judging method of semiconductor processing based on the same
US20170106487A1 (en) * 2015-10-19 2017-04-20 Okuma Corporation Main spindle failure detection device for machine tool and method of detecting main spindle failure
US10081088B2 (en) 2015-10-19 2018-09-25 Okuma Corporation Main spindle failure detection device for machine tool and method of detecting main spindle failure
DE102016220497A1 (en) 2015-10-19 2017-04-20 Okuma Corporation Main spindle error detecting device for a machine tool and method for detecting a main spindle error
JP2017101954A (en) * 2015-11-30 2017-06-08 日本精工株式会社 Mechanical facility evaluation method
US11460005B2 (en) 2016-03-17 2022-10-04 Ntn Corporation Condition monitoring system and wind turbine generation apparatus
KR101827116B1 (en) * 2016-05-20 2018-02-07 케이티엠엔지니어링(주) An Apparatus for Detecting a Wheel and a Bearing
GB2551112B (en) * 2016-05-25 2020-04-15 Ge Aviat Systems Ltd Aircraft component monitoring system
GB2551112A (en) * 2016-05-25 2017-12-13 Ge Aviat Systems Ltd Aircraft component monitoring system
US11161624B2 (en) 2016-05-25 2021-11-02 Ge Aviation Systems Limited Aircraft component monitoring system
CN106124200B (en) * 2016-06-29 2018-07-03 潍坊学院 A kind of ELMD of rotating machinery and smooth iteration envelope Analysis Method
WO2018020618A1 (en) * 2016-07-27 2018-02-01 富士通株式会社 Abnormality detection program, abnormality detection device, and abnormality detection method
JPWO2018020618A1 (en) * 2016-07-27 2019-04-11 富士通株式会社 Abnormality detection program, abnormality detection device, and abnormality detection method
EP4245992A2 (en) 2017-04-13 2023-09-20 NTN Corporation State monitoring device, state monitoring system, and state monitoring method
WO2018190216A1 (en) 2017-04-13 2018-10-18 Ntn株式会社 State monitoring device, state monitoring system, and state monitoring method
EP4234927A2 (en) 2017-04-13 2023-08-30 NTN Corporation State monitoring device, state monitoring system, and state monitoring method
US11441940B2 (en) 2017-04-13 2022-09-13 Ntn Corporation Condition monitoring apparatus, condition monitoring system, and condition monitoring method
WO2018229836A1 (en) * 2017-06-12 2018-12-20 株式会社日立製作所 Bearing diagnosis device
US11300949B2 (en) 2017-08-11 2022-04-12 Jtekt Corporation Data processing device of production equipment
JP7035368B2 (en) 2017-08-11 2022-03-15 株式会社ジェイテクト Analysis equipment for production equipment
JP2019036076A (en) * 2017-08-11 2019-03-07 株式会社ジェイテクト Analyzer of production facility
JP2019045202A (en) * 2017-08-30 2019-03-22 公益財団法人鉄道総合技術研究所 Bearing inspection device and bearing inspection program
JP2019095346A (en) * 2017-11-24 2019-06-20 オークマ株式会社 Abnormality diagnosis method and abnormality diagnosis device of feed shaft
JP7000135B2 (en) 2017-11-24 2022-01-19 オークマ株式会社 Feed shaft abnormality diagnosis method and abnormality diagnosis device
CN108279103A (en) * 2018-01-25 2018-07-13 华电电力科学研究院有限公司 A kind of online checking system and check method of overall machine vibration monitoring system
CN108279103B (en) * 2018-01-25 2023-06-09 华电电力科学研究院有限公司 Online checking system and method for rotary machine vibration monitoring system
CN111819042A (en) * 2018-02-28 2020-10-23 日产自动车株式会社 Abnormality detection device and abnormality detection method
WO2019167171A1 (en) * 2018-02-28 2019-09-06 日産自動車株式会社 Abnormality detecting device and abnormality detecting method
US11112767B2 (en) 2018-10-31 2021-09-07 Nikken Kosakusho Works, Ltd. Feed shaft and worm gear abnormality determination system
JP2020071633A (en) * 2018-10-31 2020-05-07 株式会社日研工作所 Feed shaft and warm gear abnormality determining system
EP3647891A1 (en) * 2018-10-31 2020-05-06 Nikken Kosakusho Works, Ltd. Feed shaft and worm gear abnormality determination system
CN109612727A (en) * 2018-12-12 2019-04-12 中车株洲电机有限公司 High-power electric locomotive traction motor bearing on-line vibration detection device
KR20210110379A (en) 2019-02-15 2021-09-07 가부시키가이샤 케르쿠 Thermoelectric generator and vibration detection system
WO2020166363A1 (en) 2019-02-15 2020-08-20 株式会社Kelk Thermoelectric power generation device and vibration detection system
CN112775719A (en) * 2019-11-07 2021-05-11 大隈株式会社 Method and device for diagnosing abnormality of feed shaft device
WO2022054483A1 (en) 2020-09-11 2022-03-17 不動技研工業株式会社 Abnormality determination method for wind power generation device. abnormality determination system for wind power generation device, and abnormality determination program for wind power generation device
JPWO2022085425A1 (en) * 2020-10-21 2022-04-28
JP7276617B2 (en) 2020-10-21 2023-05-18 住友電気工業株式会社 MOTOR MONITORING DEVICE, MOTOR MONITORING METHOD, AND COMPUTER PROGRAM
DE102022100362A1 (en) 2021-01-13 2022-07-14 Kelk Ltd. Analysis device, analysis system and analysis method
US11906471B2 (en) 2021-01-13 2024-02-20 Kelk Ltd. Vibration analysis device, vibration analysis system, and vibration analysis method

Also Published As

Publication number Publication date
JP5146008B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5146008B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP4935165B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP4581860B2 (en) Machine equipment abnormality diagnosis apparatus and abnormality diagnosis method
JP6714806B2 (en) Status monitoring device and status monitoring method
JP3944744B2 (en) Abnormality diagnosis device and rolling bearing device having the same
US7860663B2 (en) Abnormality diagnosing apparatus and abnormality diagnosing method
JP2006234785A (en) Abnormality diagnosis device and abnormality diagnosis method for mechanical equipment
JP2017219469A (en) State monitoring device and state monitoring method
JP7013787B2 (en) Condition monitoring device, condition monitoring method, and condition monitoring system for wind turbines for wind power generation
JP6508017B2 (en) Evaluation method of machinery and equipment
JP2006077938A (en) Abnormality diagnosing device
JP4929810B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP2008292288A (en) Bearing diagnostic device for reduction gear
WO2004027370A1 (en) Method and device for monitoring status of mechanical equipment and abnormality diagnosing device
JP2006105956A (en) Abnormality diagnostic apparatus
JP2018179735A (en) Abnormality diagnostic method and abnormality diagnostic device for rotary component
JP2018155494A (en) Bearing abnormality diagnosis system and bearing abnormality diagnosis method
JP3871054B2 (en) Machine equipment condition monitoring method and apparatus
JP4730166B2 (en) Machine equipment abnormality diagnosis apparatus and abnormality diagnosis method
JP2004233284A (en) Diagnostic device and diagnostic method of rolling bearing unit
JP6714844B2 (en) Abnormality diagnosis method
JP4529602B2 (en) Abnormality diagnosis apparatus and abnormality diagnosis method
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
WO2018088564A1 (en) Bearing abnormality diagnostic method and diagnostic system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5146008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3