JP2009018367A - Convex surface grinder and convex surface grinding method - Google Patents

Convex surface grinder and convex surface grinding method Download PDF

Info

Publication number
JP2009018367A
JP2009018367A JP2007181900A JP2007181900A JP2009018367A JP 2009018367 A JP2009018367 A JP 2009018367A JP 2007181900 A JP2007181900 A JP 2007181900A JP 2007181900 A JP2007181900 A JP 2007181900A JP 2009018367 A JP2009018367 A JP 2009018367A
Authority
JP
Japan
Prior art keywords
work
workpiece
tool
grinding
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007181900A
Other languages
Japanese (ja)
Inventor
Yasuhisa Tomita
泰央 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007181900A priority Critical patent/JP2009018367A/en
Publication of JP2009018367A publication Critical patent/JP2009018367A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a convex surface grinder and a convex surface grinding method capable of completely automating on-board measurement, shortening on-board measurement time, and contributing to improvement in production efficiency. <P>SOLUTION: After completing grinding, a work sensor 49 is brought into contact with a work W2. The dimension of the ground work W2 is measured according to a signal detected by the work sensor 49. The work sensor 49 is installed on a rotary table 33 at a predetermined position where it is not interfered with the work W2 during grinding of the work and where the work W2 is not interfered with a tool T2 during measurement of the work. After the grinding, a work support means 39 and a tool support means 48 are moved relative to each other for automatically moving both or either of the work sensor 49 and the work W2. Consequently, the dimension of the ground work W2 is measured according to the signal detected by the work sensor 49 by bringing the work sensor 49 and the work W2 into contact with each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金型、レンズ等のワークの端面の点対偶凸曲面を研削し、研削後にワークの研削後寸法を計測する計測機能を備えている凸曲面研削装置及び凸曲面研削方法に関する。   The present invention relates to a convex curved surface grinding apparatus and a convex curved surface grinding method having a measurement function of grinding a point-to-even convex curved surface of a workpiece, such as a mold or a lens, and measuring a post-grinding dimension of the workpiece after grinding.

光学素子は成形により形成され量産されている。レンズ成形金型は、超精密切削法及び研削加工法を用いて所望する形状精度と表面粗さに加工される。非球面レンズ生産におけるプレス成形金型は、成形システムの高安定・低コスト化の要望から、レンズに相対する金型面数の低減から、分離金型(筒型とR2凸型)を一体にした形状の金型にシフトしている。特に、非球面部を中心部に有する点対偶凸曲面を成形できる光学素子用の成形金型が望まれている。   Optical elements are formed by mass production. The lens molding die is processed to a desired shape accuracy and surface roughness using an ultra-precise cutting method and a grinding method. For press molding dies in aspherical lens production, separation molds (cylindrical mold and R2 convex mold) are integrated in order to reduce the number of mold faces facing the lens in order to achieve high stability and low cost of the molding system. It has shifted to the mold of the shape. In particular, there is a demand for a molding die for an optical element that can mold a point-to-even convex curved surface having an aspherical surface at the center.

レンズ成形金型の研削加工方法としては、例えば、特許文献1の研削加工方法が提案されている。   As a grinding method of the lens molding die, for example, the grinding method of Patent Document 1 has been proposed.

他方、従来において、R2凸型の研削には、図5〜図7に示す凸曲面研削装置が用いられる。図5を参照して構成を説明する。凸曲面研削装置10は、定盤(図示しない)上に設けられたZ軸スライドテーブル11に、Z軸方向に沿った回転軸心のC軸12の回りに例えば矢印13の方向に回転自在であるワーク回転軸14にワーク支持手段15を備え、該ワーク支持手段15によりワークW1を支持し、また定盤(図示しない)上に設けられたX軸スライドテーブル16に回動テーブル17を備え、該回動テーブル17上に、回転軸心18がワーク回転軸14のC軸12を通るX−Z平面と同一平面内を旋回するツール回転軸19を設け、該ツール回転軸19にツール支持手段20を備え、ツール支持手段20によりツールT1を支持して該ツールT1の先端面周縁の研磨刃先を回動テーブル17の回転軸心のB軸21に一致させてなる。   On the other hand, conventionally, a convex curved surface grinding apparatus shown in FIGS. 5 to 7 is used for R2 convex grinding. The configuration will be described with reference to FIG. The convex curved surface grinding apparatus 10 is rotatable on a Z-axis slide table 11 provided on a surface plate (not shown), for example, in the direction of an arrow 13 around the C-axis 12 of the rotation axis along the Z-axis direction. A work rotation shaft 14 is provided with a work support means 15, the work support means 15 supports the work W1, and an X-axis slide table 16 provided on a surface plate (not shown) is provided with a rotation table 17. A tool rotation shaft 19 is provided on the rotation table 17 so that the rotation axis 18 rotates in the same plane as the XZ plane passing through the C axis 12 of the workpiece rotation shaft 14. Tool support means is provided on the tool rotation shaft 19. 20, the tool T 1 is supported by the tool support means 20, and the polishing blade edge at the peripheral edge of the tool T 1 is made to coincide with the B axis 21 of the rotation axis of the rotary table 17.

さらに、この凸曲面研削装置10は、ワークW1の研削途中及び研削終了時の寸法を測定するために、手動操作式のプローブ22aを有するワーク測定手段22をX軸スライドテーブル16の側面に備えている。   Further, the convex curved surface grinding apparatus 10 includes a workpiece measuring means 22 having a manually operated probe 22a on the side surface of the X-axis slide table 16 in order to measure dimensions during and after the grinding of the workpiece W1. Yes.

この凸曲面研削装置10によれば、ワーク回転軸14とツール回転軸19とをそれぞれ回転させ、ワークT1の先端面をB軸21に一致するツールT1の先端面周縁の研磨刃先に当接し、Z軸スライドテーブル11のZ軸スライドとX軸スライドテーブル16のX軸スライドと回動テーブル17の回動とを相対的に動作させることにより、ツールT1のワークW1に対する相対的な運行行程を図6(a)→(b)→(c)→(d)→(e)に示すように、ツールT1を連続して移動・揺動して研削する。図6(a)は、研磨直前のツールT1とワークW1の位置関係を示す。図6(b)は、研磨開始時の状態を示す。図6(c),(d)は、研磨途中の状態を示す。図6(d)は、研磨終了時の状態を示す。図6(b)は、研磨開始時に状態を示す。
このように、ツールT1をワークW1の端面に精密仕上げ切削加工された点対偶凸曲面に対して精密に倣わせて、非球面レンズ形状に研削し、点対偶凸曲面に対して研削する。
According to the convex curved surface grinding apparatus 10, the workpiece rotating shaft 14 and the tool rotating shaft 19 are rotated, and the tip surface of the workpiece T 1 is brought into contact with the polishing edge of the tip surface peripheral edge of the tool T 1 coinciding with the B axis 21. By relatively operating the Z-axis slide of the Z-axis slide table 11, the X-axis slide of the X-axis slide table 16, and the rotation of the rotation table 17, the relative travel of the tool T1 with respect to the workpiece W1 is illustrated. 6 (a) → (b) → (c) → (d) → (e), the tool T1 is continuously moved and rocked for grinding. FIG. 6A shows the positional relationship between the tool T1 and the workpiece W1 immediately before polishing. FIG. 6B shows a state at the start of polishing. 6C and 6D show a state during the polishing. FIG. 6D shows a state at the end of polishing. FIG. 6B shows the state at the start of polishing.
As described above, the tool T1 is precisely grounded on the point-to-even convex curved surface that has been precisely finished and cut on the end face of the work W1, and is ground to an aspheric lens shape, and is ground on the point-to-even convex curved surface.

研磨終了後は、図7に示すように、Z軸スライドテーブル11とX軸スライドテーブル16と相対的に二次元移動して計測を行う。この場合、ワークW1を、ツールT1から例えば寸法aだけ離れさせ、次いで、寸法bだけ移動し、ワーク測定手段22のプローブ22aと対向させ、ワーク測定手段22を22’の点線位置から手動で接近する方向に移動してプローブ22aをワークW1に接触可能な位置とし、その後に、図8に示すように、Z軸スライドテーブル11とX軸スライドテーブル16と相対的に二次元移動し、ワークW1のプローブ22aに対する相対的な運行行程を図8(a)→(b)→(c)→(d)→(e)に示すように、連続して移動し計測を行う。このとき、プローブ22aの接触圧力を検出して、該接触圧力が一定となるように、ツールT1をワークW1の研削加工された点対偶凸曲面に対して精密に倣わせる。
特開2002−346893号公報
After the polishing, as shown in FIG. 7, the measurement is performed by two-dimensionally moving the Z-axis slide table 11 and the X-axis slide table 16 relatively. In this case, the workpiece W1 is moved away from the tool T1 by, for example, the dimension a, then moved by the dimension b, and is opposed to the probe 22a of the workpiece measuring means 22, and the workpiece measuring means 22 is manually approached from the dotted line position 22 ′. The probe 22a is brought into a position where it can come into contact with the workpiece W1, and then, as shown in FIG. 8, the Z-axis slide table 11 and the X-axis slide table 16 are relatively two-dimensionally moved, and the workpiece W1 is moved. As shown in FIGS. 8 (a) → (b) → (c) → (d) → (e), the relative travel with respect to the probe 22a is continuously moved and measured. At this time, the contact pressure of the probe 22a is detected, and the tool T1 is precisely copied with respect to the point-to-even convex curved surface of the workpiece W1 so that the contact pressure becomes constant.
JP 2002-346893 A

しかしながら、図5に示す凸曲面研削装置によれば、ワークの計測に際して、ワーク測定手段22の移動が手動であり、装置の全自動化が達成されていないこと、ワークW1をプローブ22aに対向させるために移動する距離が長いことが問題になっている。   However, according to the convex curved surface grinding apparatus shown in FIG. 5, when the workpiece is measured, the movement of the workpiece measuring means 22 is manual, and the full automation of the apparatus is not achieved, and the workpiece W1 is opposed to the probe 22a. The long distance traveled is a problem.

すなわち、昨今のデジタルカメラの高画質化に伴い、R2凸型の非球面形状精度が厳しくなると共に非球面形状計測にかかる時間も増大し、総じて非球面形状を有するレンズ・金型の生産性向上が必要となってきた。生産工程の中で、全行程に占める形状計測の割合は、各社精密加工装置により、1/2〜1/3程度となる。形状加工時間の削減とともに、機上計測時間の削減は、生産効率の向上に寄与することとなる。   In other words, with the recent improvement in image quality of digital cameras, the accuracy of the aspherical shape of the R2 convex type becomes stricter and the time required for measuring the aspherical shape also increases, improving the productivity of lenses and molds that generally have aspherical shapes. Has become necessary. In the production process, the ratio of the shape measurement to the whole process is about 1/2 to 1/3 depending on the precision machining apparatus of each company. Reduction of on-machine measurement time as well as reduction of shape processing time will contribute to improvement of production efficiency.

そこで、この発明は、機上計測が完全自動化され、機上計測時間を短縮でき生産効率の向上に寄与す凸曲面研削装置及び凸曲面研削方法を提供することを課題とする。   Accordingly, an object of the present invention is to provide a convex curved surface grinding apparatus and a convex curved surface grinding method in which the on-machine measurement is completely automated, the on-machine measurement time can be shortened, and the production efficiency is improved.

かかる課題を達成するために、本発明は、第1のテーブルと、第2のテーブルとを有し、該第1のテーブルと該第2のテーブルの両方の移動又はいずれか一方の移動が二次元方向の移動となるように構成され、さらに、前記第1のテーブル上に備えたワーク支持手段と、前記第2のテーブル上に備えた回動テーブルと、該回動テーブル上に備えたツール支持手段とを有し、該ワーク支持手段のワークを支持して回転する回転中心線と、該ツール支持手段のツールを支持して回転する回転中心線とがそれぞれ前記回動テーブルの回転面に平行な同一平面となるように位置され、前記ワークと前記ツールとをそれぞれ回転し、前記第1のテーブルと前記第2のテーブルの両方又はいずれか一方を二次元方向に移動して、前記回動テーブルの回転中心線上にて前記ツールと前記ワークとを点接触して該ツールで該ワークの端面に形成された凸曲面に倣って研削するように構成され、さらに、ワークセンサを備え、前記研削終了後に、前記第1のテーブルと前記第2のテーブルの両方又はいずれか一方を二次元方向に移動して、前記ワークセンサを前記ワークに接触させつつ該ワーク形状に倣って移動させ、前記ワークセンサの検出信号に基づいて前記ワークの研削後寸法を計測するように構成された凸曲面研削装置において、前記ワークセンサは、前記回動テーブル上の、前記ワーク研削時に前記ワークと干渉せず、かつワーク計測時に前記ワークが前記ツールと干渉しない所要位置に備えられ、   In order to achieve such an object, the present invention includes a first table and a second table, and both or both of the movements of the first table and the second table are two. A workpiece supporting means configured to move in a dimensional direction, further provided on the first table, a rotary table provided on the second table, and a tool provided on the rotary table A rotation center line that supports and rotates the work of the work support means, and a rotation center line that supports and rotates the tool of the tool support means on the rotation surface of the rotary table. The workpiece and the tool are respectively rotated so as to be in the same parallel plane, and either or either one of the first table and the second table is moved in a two-dimensional direction, and the rotation is performed. While moving table is rotating The tool and the workpiece are point-contacted on a line, and the tool is configured to grind following the convex curved surface formed on the end surface of the workpiece, further comprising a workpiece sensor, and after the grinding is completed, A detection signal of the work sensor is obtained by moving both or any one of the first table and the second table in a two-dimensional direction and moving the work sensor in contact with the work while following the work shape. In the convex curved surface grinding apparatus configured to measure a post-grinding dimension of the workpiece on the basis of the workpiece, the workpiece sensor does not interfere with the workpiece during the workpiece grinding on the rotating table, and during workpiece measurement. The workpiece is provided at a required position where it does not interfere with the tool,

前記研削終了後に、前記第1のテーブルと前記第2のテーブルの両方又はいずれか一方を二次元方向に移動して、前記ワークセンサを前記ワークの被測定個所に倣って摺動させ、前記ワークセンサの検出信号に基づいて前記ワークの研削後寸法を計測するように制御する制御手段を備えた凸曲面研削装置としたことを特徴とする。   After completion of the grinding, both or either one of the first table and the second table is moved in a two-dimensional direction, and the work sensor is slid along the measurement location of the work, A convex curved surface grinding apparatus provided with a control means for controlling to measure a post-grinding dimension of the workpiece based on a detection signal of a sensor.

本発明によれば、ワークセンサを、回動テーブル上の、ワーク研削時にワークと干渉せず、かつワーク計測時にワークがツールと干渉しない所要位置に備えたので、ワーク計測時のワークの移動距離が従来の約半分の距離になり、これにより移動時間も半分になり、そして、制御部が、研削終了後のワーク寸法計測に際して従来の手動を廃し、完全自動により計測する制御を行うから、機上計測が完全自動化され、機上計測時間を短縮でき生産効率の向上に寄与する。   According to the present invention, since the workpiece sensor is provided at a required position on the rotary table so as not to interfere with the workpiece during grinding of the workpiece and the workpiece does not interfere with the tool during workpiece measurement, the movement distance of the workpiece during workpiece measurement. Is about half the distance of the conventional distance, and the travel time is also halved, and the control unit eliminates the conventional manual when measuring the workpiece dimensions after grinding, and performs control to measure fully automatically. Top measurement is fully automated, reducing on-machine measurement time and contributing to improved production efficiency.

以下、実施の形態について図面を参照して説明する。
〔実施の形態1〕
Hereinafter, embodiments will be described with reference to the drawings.
[Embodiment 1]

図1は、実施の形態1にかかる凸曲面研削装置30の研削開始時の平面図であり、図2は、計測開始時の平面図を示す。   FIG. 1 is a plan view at the start of grinding of the convex curved surface grinding apparatus 30 according to the first embodiment, and FIG. 2 is a plan view at the start of measurement.

まず、研削機能部分の構成について図1を参照して説明する。   First, the configuration of the grinding function portion will be described with reference to FIG.

凸曲面研削装置30は、防振手段を備えた定盤(図示しない)上にZ軸スライドテーブル(第1のテーブル)31とX軸スライドテーブル(第2のテーブル)32とが設けられ、X軸スライドテーブル32には回動テーブル33が設けられ回動テーブル33の回転中心がB軸34となっている。   The convex curved surface grinding apparatus 30 is provided with a Z-axis slide table (first table) 31 and an X-axis slide table (second table) 32 on a surface plate (not shown) provided with vibration isolation means. The shaft slide table 32 is provided with a rotation table 33, and the rotation center of the rotation table 33 is a B axis 34.

Z軸スライドテーブル31上に第1の固定台35が設けられ、この第1の固定台35に軸受36を介してワーク回転軸37が設けられ、このワーク回転軸37が第1のモータ38により回転される構成であり、このワーク回転軸37の先端にワーク支持手段39が設けられた構成である。なお、Z軸スライドテーブル31とX軸スライドテーブル32と回動テーブル33の各駆動源は図示していない。   A first fixed base 35 is provided on the Z-axis slide table 31, and a work rotation shaft 37 is provided on the first fixed base 35 via a bearing 36. The work rotation shaft 37 is driven by a first motor 38. The workpiece is rotated, and a workpiece support means 39 is provided at the tip of the workpiece rotation shaft 37. The drive sources for the Z-axis slide table 31, the X-axis slide table 32, and the rotation table 33 are not shown.

この構成により、ワーク回転軸37は、Z軸方向に沿ったC軸40の回りに例えば矢印41の方向に回転自在であり、かつ、Z軸スライドテーブル31によりZ軸方向にスライド自在であり、軸先端には、詳細を図示していないが、ワークW2を支持するチャック機能を有している。   With this configuration, the work rotation shaft 37 is rotatable around the C axis 40 along the Z axis direction, for example, in the direction of the arrow 41, and is slidable in the Z axis direction by the Z axis slide table 31. Although not shown in detail at the tip of the shaft, it has a chuck function for supporting the workpiece W2.

また、回動テーブル33上に第2の固定台42が設けられ、この第2の固定台42に軸受43を介してツール回転軸44が設けられ、このツール回転軸44が第2の固定台42に設けられた第2のモータ45により回転される構成である。ツール回転軸44の軸心46は、ワーク回転軸37のC軸40と同一の高さに設けられ、回動テーブル33が回動すると、ワーク回転軸37のC軸40を通るX−Z平面内に旋回される。   In addition, a second fixed base 42 is provided on the rotary table 33, and a tool rotation shaft 44 is provided on the second fixed base 42 via a bearing 43. The tool rotation shaft 44 serves as the second fixed base. In this configuration, the second motor 45 is rotated by the second motor 45. The axis 46 of the tool rotation shaft 44 is provided at the same height as the C axis 40 of the workpiece rotation shaft 37, and the XZ plane passing through the C axis 40 of the workpiece rotation shaft 37 when the rotation table 33 rotates. It is turned in.

この構成により、ツール回転軸44は、第2のモータ45により例えば矢印47の方向に回転自在、X軸スライドテーブル32によりX軸方向にスライド自在、回動テーブル33によりワーク回転軸37の軸心を通るX−Z平面内に旋回自在であり、軸先端には、ツール(砥石)T2を支持している。   With this configuration, the tool rotation shaft 44 can be rotated in the direction of the arrow 47 by the second motor 45, for example, can be slid in the X-axis direction by the X-axis slide table 32, and the axis of the workpiece rotation shaft 37 by the rotation table 33. Can be swung in an XZ plane passing through the shaft, and a tool (grinding stone) T2 is supported at the tip of the shaft.

第2の固定台42は、回動テーブル33上に二次元方向に位置調整可能・精密位置決め可能に設けられている(図示しない)。そして、ツールT2の先端面の中心を通るX−Z平面と交差する端縁が回動テーブル33の回転中心のB軸34に一致するように、第2の固定台42が回動テーブル33上に位置決めされ、これにより、ツールT2の先端面の中心を通るX−Z平面と交差する端縁が、回動テーブル33の旋回とX軸スライドテーブル32の移動を行っても、回動テーブル33の回転中心のB軸に常に一致し、このB軸34上にツールT2とワークW2を接触させて研削する。   The second fixed base 42 is provided on the rotary table 33 so that the position can be adjusted in two dimensions and the position can be precisely positioned (not shown). Then, the second fixed base 42 is placed on the rotary table 33 so that the edge intersecting the XZ plane passing through the center of the tip surface of the tool T2 coincides with the B axis 34 of the rotation center of the rotary table 33. Thus, even if the edge intersecting the XZ plane passing through the center of the tip end surface of the tool T2 performs the turning of the turning table 33 and the movement of the X-axis slide table 32, the turning table 33 The tool T2 and the workpiece W2 are brought into contact with the B axis 34 for grinding.

制御手段50は、Z軸スライドテーブル31をZ軸方向に移動するモータ(図示しない)と、第1のモータ38と、X軸スライドテーブル32をX軸方向に移動するモータ(図示しない)と、回動テーブル33を回動するモータ(図示しない)と、第2のモータ45とを、研削プログラムに従って駆動制御してワークW2を研削するように構成されている。   The control means 50 includes a motor (not shown) that moves the Z-axis slide table 31 in the Z-axis direction, a first motor 38, and a motor (not shown) that moves the X-axis slide table 32 in the X-axis direction, A motor (not shown) that rotates the rotation table 33 and a second motor 45 are driven and controlled in accordance with a grinding program to grind the workpiece W2.

次に、研削機能について説明する。   Next, the grinding function will be described.

この凸曲面研削装置30によれば、ワーク回転軸37の先端に備えたワーク支持手段39でワークW2を着脱自在に支持すると共に、ツール回転軸44の先端に備えたツール支持手段48でツールT2を着脱自在に支持する。   According to this convex curved surface grinding apparatus 30, the workpiece W2 is detachably supported by the workpiece support means 39 provided at the tip of the workpiece rotation shaft 37, and the tool T2 is provided by the tool support means 48 provided at the tip of the tool rotation shaft 44. Is detachably supported.

上記構成の凸曲面研削装置30によれば、ワーク回転軸37とツール回転軸44とをそれぞれ回転させ、ワークW2の先端面を、B軸34と一致するツールT2の先端面に当接し、Z軸スライドテーブル31のZ軸スライドとX軸スライドテーブル32のX軸スライドと回動テーブル33の回動とを相対的に動作させる。   According to the convex curved surface grinding apparatus 30 having the above-described configuration, the workpiece rotating shaft 37 and the tool rotating shaft 44 are rotated, the tip surface of the workpiece W2 is brought into contact with the tip surface of the tool T2 coinciding with the B axis 34, and Z The Z-axis slide of the shaft slide table 31, the X-axis slide of the X-axis slide table 32, and the rotation of the rotation table 33 are operated relatively.

そして、この凸曲面研削装置30によれば、図5に示す従来の凸曲面研削装置10と全く同一に、図6(a)→(b)→(c)→(d)→(e)のツール運行行程(逆の行程でも良い)に示すように、ツールT2を、ワークW2の端面に精密仕上げ切削加工された点対偶凸曲面に対して、平面→凹R面→非球面と精密に倣うように連続運行し、その際、ツール回転軸44のX軸に対する傾き角を一定の規則で可変する。   And according to this convex-curved surface grinding apparatus 30, exactly the same as the conventional convex-curved surface grinding apparatus 10 shown in FIG. 5, it is (a)-> (b)-> (c)-> (d)-> (e). As shown in the tool operation process (the reverse process may be used), the tool T2 is precisely copied from a flat surface to a concave R surface to an aspherical surface with respect to a point-to-even convex curved surface that has been precisely finished and cut on the end surface of the workpiece W2. In this case, the inclination angle of the tool rotation shaft 44 with respect to the X axis is varied according to a certain rule.

すなわち、ツールT2の刃の先端角を2分割する分割線の延長線がワークW2の被研磨点における曲率中心を通るように(研削接点における両側の隙間角が等しくなるように)保つこととする。   In other words, the extension line of the dividing line that divides the tip angle of the blade of the tool T2 into two passes through the center of curvature at the polishing point of the workpiece W2 (so that the gap angles on both sides of the grinding contact are equal). .

こうして、凸曲面研削装置30は、ツールT2を、ワークW2の端面に精密切削加工により形成された中央部に凸状非球面を有する凸曲面に倣うように、ワークW2に対して相対的に運行し、該ツールT2でワークW2の点対偶凸曲面を研削する。   Thus, the convex curved surface grinding apparatus 30 operates relative to the workpiece W2 so that the tool T2 follows the convex curved surface having a convex aspheric surface at the center formed by precision cutting on the end surface of the workpiece W2. Then, the point-to-even convex curved surface of the workpiece W2 is ground with the tool T2.

続いて、実施の形態の要部である計測機能部分の構成について図1〜図3を参照して説明する。   Next, the configuration of the measurement function part that is the main part of the embodiment will be described with reference to FIGS.

この凸曲面研削装置30は、ワーク研削後のワーク計測を行うために使用するワークセンサ49について、従来のX軸スライドテーブルの側面位置への取り付けから回動テーブル上への取り付けに変更していることに特徴がある。   In this convex curved surface grinding apparatus 30, the work sensor 49 used for measuring the workpiece after grinding the workpiece is changed from mounting on the side surface position of the conventional X-axis slide table to mounting on the rotary table. There is a special feature.

この実施の形態では、ワークセンサ49は、回動テーブル33上の、ワーク研削時にワークW2と干渉せず、かつワーク計測時にワークW2がツールT2と干渉しない所要位置に備えられている。   In this embodiment, the workpiece sensor 49 is provided at a required position on the rotary table 33 so as not to interfere with the workpiece W2 when the workpiece is ground and does not interfere with the tool T2 when measuring the workpiece.

これは、ワーク研削時におけるワークW2のツールT2に対する相対的変動エリアを避けて、ワークセンサ49を回動テーブル33上へ取り付けるのでは不十分であり、ワーク計測時におけるワークW2のワークセンサ49に対する相対的変動エリアがツールT2との干渉を避けるように、ワークセンサ49を回動テーブル33上へ取り付ける必要があるからである。   For this reason, it is not sufficient to avoid the relative fluctuation area of the workpiece W2 with respect to the tool T2 during workpiece grinding and to mount the workpiece sensor 49 on the rotary table 33. The workpiece W2 relative to the workpiece sensor 49 during workpiece measurement is insufficient. This is because the work sensor 49 needs to be mounted on the rotary table 33 so that the relative variation area avoids interference with the tool T2.

この実施の形態では、ワーク研削時にワークW2と干渉せず、かつワーク計測時にワークW2がツールT2と干渉しない構成としたことに加えて、さらに、研削終了後に回動テーブル33を回動させる必要がない最良の配置として、図1に示す配置としている。   In this embodiment, in addition to the configuration in which the workpiece W2 does not interfere with the workpiece T2 during workpiece grinding and the workpiece W2 does not interfere with the tool T2 during workpiece measurement, the rotation table 33 needs to be rotated after the grinding is completed. The best arrangement without any problem is the arrangement shown in FIG.

説明すると、この実施の形態では、ツールT2の刃先角が90°なので、研削終了時のツール回転軸44の軸心46とX軸方向との交差角が45°になるから(図1参照)、ワークセンサ49のプローブ49aの先端を回動テーブル33のB軸34を通るX軸方向の線に合わせて、B軸34からZ軸方向に寸法cだけ離間して、該ワークセンサ49が該回動テーブル33上に備えられている。   For example, in this embodiment, since the cutting edge angle of the tool T2 is 90 °, the intersection angle between the axis 46 of the tool rotation shaft 44 and the X-axis direction at the end of grinding is 45 ° (see FIG. 1). The tip of the probe 49a of the work sensor 49 is aligned with the line in the X-axis direction passing through the B-axis 34 of the rotary table 33, and the work sensor 49 is separated from the B-axis 34 by a dimension c in the Z-axis direction. It is provided on a rotating table 33.

ワークセンサ49のB軸34からZ軸方向に離間した寸法cは、図7に示す従来の場合に比べ、約半分の距離となる(c≒1/2・b)。これにより、研削終了後にワークW2の研削後寸法の計測を開始するまでの時間を短縮できる。   The dimension c of the work sensor 49 separated from the B-axis 34 in the Z-axis direction is approximately half the distance (c≈1 / 2 · b) compared to the conventional case shown in FIG. Thereby, the time until the measurement of the post-grind dimension of the workpiece W2 after the end of grinding can be shortened.

すなわち、制御手段50は、研削終了後に、Z軸スライドテーブル31とX軸スライドテーブル32の移動を制御して、ワークセンサ49のプローブ49aの先端をワークW2に接触させつつ該ワーク形状に倣って移動させる。このとき、プローブ49aの接触圧力を検出して、該接触圧力が一定となるように、ツールT2をワークW2の研削加工された点対偶凸曲面に対して精密に倣わせる。   That is, the control means 50 controls the movement of the Z-axis slide table 31 and the X-axis slide table 32 after finishing the grinding so as to follow the workpiece shape while bringing the tip of the probe 49a of the workpiece sensor 49 into contact with the workpiece W2. Move. At this time, the contact pressure of the probe 49a is detected, and the tool T2 is precisely copied with respect to the point-to-even convex curved surface of the workpiece W2 so that the contact pressure becomes constant.

制御手段50は、Z軸スライドテーブル31をZ軸方向に移動するモータ(図示しない)と、X軸スライドテーブル32をX軸方向に移動するモータ(図示しない)とを、計測プログラムに従って駆動制御してワークセンサ49の検出信号に基づいてワーク計測を行うように構成されている。   The control means 50 drives and controls a motor (not shown) that moves the Z-axis slide table 31 in the Z-axis direction and a motor (not shown) that moves the X-axis slide table 32 in the X-axis direction according to a measurement program. The workpiece is measured based on the detection signal of the workpiece sensor 49.

図3(a)〜(d)は、ワークセンサ49のプローブ49aの先端をワークW2に接触して該ワーク形状に倣って移動する運行させる運行行程を示す。   FIGS. 3A to 3D show an operation process in which the tip of the probe 49a of the work sensor 49 is brought into contact with the work W2 to move in accordance with the work shape.

図3(a)では、ワークW2が、ツールT2の刃先に点接触した状態で研磨終了した状態(鎖線で示す位置)より、寸法dだけ移動して、測定を開始する一端をブローブ49aの正面に寸法eだけ離間して停止した状態を示す。   In FIG. 3A, the workpiece W2 is moved by the dimension d from the state where the polishing is completed in a state where the workpiece W2 is in point contact with the cutting edge of the tool T2 (position indicated by the chain line), and one end where measurement is started is the front of the probe 49a. Fig. 6 shows a state in which it is stopped after being separated by a dimension e.

図3(b)では、ワークW2が、プローブ49aに対して寸法eだけ接近移動して接触した状態を示す。この状態よりワークW2の測定を開始する。   FIG. 3B shows a state in which the workpiece W2 is moved close to the probe 49a by the dimension e and is in contact therewith. Measurement of the workpiece W2 is started from this state.

図3(c)では、ワークW2の中央の凸頂点にプローブ49aが到達した状態を示す。   FIG. 3C shows a state where the probe 49a has reached the convex vertex at the center of the workpiece W2.

図3(d)では、ワークW2が、プローブ49aの計測終端に到達した状態を示す。   FIG. 3D shows a state where the work W2 has reached the measurement end of the probe 49a.

なお、図8(a)〜(e)に示すように、反対方向の運行でも良い。   In addition, as shown to Fig.8 (a)-(e), the operation | movement of an opposite direction may be sufficient.

図3(a)〜(d)に示すように、ワークW2とプローブ49aとツールT2の3者間の位置関係から、図1に示すように、ワーク研削時にワークW2と干渉せず、かつワーク計測時にワークW2がツールT2と干渉せず、さらに、ツールT2の刃先角の角度二等分線がワーク支持手段39のC軸40と一致した状態の時に、プローブ49aの先端を回動テーブル33のB軸を通り、ワーク支持手段39のC軸40に対して直角方向(X軸方向)に延びる線に一致させると、研削終了後に回動テーブル33を回動させることなく、ワークW2をX軸方向に移動して計測開始することができ、移動距離が短いことと、従来とは異なり完全自動計測としたことから、計測時間を大幅に短縮することができる。   As shown in FIGS. 3A to 3D, from the positional relationship among the workpiece W2, probe 49a and tool T2, the workpiece W2 does not interfere with the workpiece W2 during workpiece grinding as shown in FIG. When the workpiece W2 does not interfere with the tool T2 during measurement and the angle bisector of the edge angle of the tool T2 coincides with the C-axis 40 of the workpiece support means 39, the tip of the probe 49a is moved to the rotary table 33. When the workpiece W2 is aligned with a line extending in the direction perpendicular to the C axis 40 of the workpiece support means 39 (X axis direction), the workpiece W2 is moved to the X position without rotating the rotation table 33 after the grinding. Measurement can be started by moving in the axial direction, and the measurement time can be greatly shortened because of the short movement distance and the completely automatic measurement unlike the conventional method.

制御手段50は、ワークセンサ49の検出信号に基づいて該ワークW2の研削後寸法・形状を計測する。この計測では、ワークの研削後の目標値と計測寸法との偏差を算出する。そして、ワークW2の削り過ぎは、補正が効かないので、計測寸法の方が大きい方に偏差を生じるようにして研削し、偏差が許容値を超えていて、計測寸法の方が大きいときは再度補正研削を行う。また、偏差を算出することにより、Z軸スライドテーブル31とX軸スライドテーブル32の移動量に補正を加え、偏差を可能な限り縮小する。   The control means 50 measures the size and shape of the workpiece W2 after grinding based on the detection signal of the workpiece sensor 49. In this measurement, the deviation between the target value after grinding the workpiece and the measurement dimension is calculated. And if the workpiece W2 is excessively shaved, the correction will not work, so grinding is performed so that a deviation is caused in the larger measurement dimension. If the deviation exceeds the allowable value and the measurement dimension is larger, the grinding is performed again. Perform correction grinding. Further, by calculating the deviation, the movement amount of the Z-axis slide table 31 and the X-axis slide table 32 is corrected, and the deviation is reduced as much as possible.

この実施の形態によれば、ワークセンサを、回動テーブル上の、ワーク研削時にワークと干渉せず、かつワーク計測時にワークがツールと干渉しない所要位置に備えたので、ワーク計測時のワークの移動距離が従来の約半分の距離になり、これにより移動時間も半分になり、そして、制御部が、研削終了後のワーク寸法計測に際して従来の手動を廃し、完全自動により計測する制御を行うから、機上計測時間を約半分に短縮できて、生産効率の向上に寄与する。
〔実施の形態2〕
According to this embodiment, since the workpiece sensor is provided at a required position on the rotating table so that it does not interfere with the workpiece during workpiece grinding and does not interfere with the tool during workpiece measurement. Because the movement distance is about half of the conventional distance, the movement time is also halved, and the control unit performs the control to completely measure automatically, eliminating the conventional manual when measuring the workpiece dimensions after grinding. The on-machine measurement time can be shortened to about half, contributing to the improvement of production efficiency.
[Embodiment 2]

図4は、実施の形態2にかかる凸曲面研削装置30Aの研削開始時の平面図である。
この実施の形態2では、ツールT3の刃先角が60°であることが、実施の形態1では、ツールT2の刃先角が90°であることと相違している。従って、実施の形態2において、ツールT3以外の構成は、実施の形態1の場合と同一であるので、図1と同一の符号を付して、構成・動作・効果の説明を省略する。
FIG. 4 is a plan view of the convex curved surface grinding apparatus 30A according to the second embodiment at the start of grinding.
In the second embodiment, the cutting edge angle of the tool T3 is 60 °, and in the first embodiment, the cutting edge angle of the tool T2 is 90 °. Accordingly, in the second embodiment, since the configuration other than the tool T3 is the same as that in the first embodiment, the same reference numerals as those in FIG. 1 are used, and the description of the configuration, operation, and effect is omitted.

この実施の形態2では、ツールT3の刃先角が60°なので、研削終了時のツール回転軸44の軸心46とX軸方向との交差角が60°になるから(図3参照)、ワークセンサ49の回動テーブル33上への配置を、図1と同一としてある。   In the second embodiment, since the edge angle of the tool T3 is 60 °, the intersection angle between the axis 46 of the tool rotation shaft 44 and the X-axis direction at the end of grinding is 60 ° (see FIG. 3). The arrangement of the sensor 49 on the rotation table 33 is the same as in FIG.

すなわち、この実施の形態2においても、ワークセンサ49を、ワーク研削時にワークW3と干渉せず、かつワーク計測時にワークW3がツールT3と干渉せず、さらに、ツールT3の刃先角の角度二等分線がワーク支持手段39のC軸40と一致した状態の時に、プローブ49aの先端を回動テーブル33のB軸を通り、ワーク支持手段39のC軸40に対して直角方向(X軸方向)に延びる線に一致させている。これによって、研削終了後に回動テーブル33を回動させることなく、ワークW3をX軸方向に移動して計測開始することができ、移動距離が短いことと、従来とは異なり完全自動計測としたことから、計測時間を大幅に短縮することができる。   That is, also in the second embodiment, the workpiece sensor 49 does not interfere with the workpiece W3 at the time of workpiece grinding, and the workpiece W3 does not interfere with the tool T3 at the time of workpiece measurement. When the segment line coincides with the C-axis 40 of the work support means 39, the tip of the probe 49a passes through the B-axis of the rotary table 33 and is perpendicular to the C-axis 40 of the work support means 39 (X-axis direction). ). As a result, measurement can be started by moving the workpiece W3 in the X-axis direction without rotating the rotation table 33 after the grinding is completed, and the movement distance is short and, unlike conventional methods, completely automatic measurement is performed. Therefore, the measurement time can be greatly shortened.

本発明は、上記一実施の形態に限られるものではなく、その趣旨と技術思想の範囲を逸脱しない範囲でさらに種々の変形が可能である。
(1)上記の実施の形態では、レンズ成形金型をワークとして非球面が平面に連続する点対偶凸曲面の研削・計測について説明したが、本発明は、レンズ等の他のワークの端面の点対偶凸曲面を研削する点対偶凸曲面の研削にも適用される。
(2)また、ワーク回転軸によるワークの支持構造やツール回転軸によるツールの支持構造について、上記の実施の形態に示す構造に限定されるものではない。
(3)特に、実施の形態1では、第1のテーブル31をZ軸スライドテーブルとし、第2のテーブル32をX軸スライドテーブルとして、ワークW2とツールT2とが相対的に二次元移動自在とした構成を示したが、第1のテーブル31と第2のテーブル32の何れか一方を固定テーブルとし、他方をX−Z軸スライドテーブルとして、ワークW2とツールT2とが相対的に二次元移動自在である構成としても良い。
(4)上記の実施の形態では、ワークセンサ49を、研磨終了時に、回動テーブル33の回転中心のB軸を通り、かつワーク支持手段39の回転中心線40に対して直角方向に延びる線にプローブ49aの先端を一致させかつセンサ中心線をワーク支持手段39の回転中心線40に平行となるように備えた構成としたが、研磨終了時ではなく、計測開始時としてもよい。すなわち、研磨終了時とする場合は、実施の形態で説明したように、研磨終了後に回動テーブル33を回転することなく計測開始できる。これに対して、研磨終了時ではなく、計測開始時とした場合とは、研磨終了後に回動テーブル33を僅かな所定角度回転することにより、センサ中心線をワーク支持手段39の回転中心線40に平行となるようにする構成であり、このときの回動テーブル33の回転は、ワークの計測位置への移動時間中に行わせることができる。また、位置関係は、制御手段に数値入力できるので、ワーク支持手段39の回転中心線40に対して直角方向に延びる線にプローブ49aの先端を一致させることは必要ではない。
The present invention is not limited to the one embodiment described above, and various modifications can be made without departing from the spirit and scope of the technical idea.
(1) In the above embodiment, the grinding / measurement of the point-to-even convex curved surface in which the aspherical surface is continuous with a plane is described using the lens molding die as a workpiece, but the present invention is applied to the end surface of another workpiece such as a lens. It is also applied to the grinding of point-even even curved surfaces that grind point-even even curved surfaces.
(2) Further, the work support structure by the work rotation axis and the tool support structure by the tool rotation axis are not limited to the structures shown in the above embodiments.
(3) In particular, in the first embodiment, the first table 31 is a Z-axis slide table, the second table 32 is an X-axis slide table, and the workpiece W2 and the tool T2 are relatively two-dimensionally movable. However, either the first table 31 or the second table 32 is a fixed table and the other is an X-Z axis slide table, and the workpiece W2 and the tool T2 are relatively two-dimensionally moved. It is good also as a structure which is free.
(4) In the above embodiment, the workpiece sensor 49 is passed through the B axis at the rotation center of the rotary table 33 and extends in a direction perpendicular to the rotation center line 40 of the workpiece support means 39 at the end of polishing. The tip of the probe 49a is made to coincide with the sensor center line so that the sensor center line is parallel to the rotation center line 40 of the work support means 39. That is, when the polishing is finished, as described in the embodiment, the measurement can be started without rotating the rotating table 33 after the polishing is finished. On the other hand, when the measurement is started, not at the end of polishing, the rotation center line 40 of the workpiece support means 39 is moved to the sensor center line by rotating the rotary table 33 by a slight predetermined angle after the polishing is completed. The rotation table 33 at this time can be rotated during the movement time of the workpiece to the measurement position. Further, since the positional relationship can be numerically input to the control means, it is not necessary to make the tip of the probe 49a coincide with a line extending in a direction perpendicular to the rotation center line 40 of the work support means 39.

本発明の実施の形態1に係る凸曲面研削装置の研削開始時の平面図The top view at the time of the grinding start of the convex curved surface grinding apparatus which concerns on Embodiment 1 of this invention 図1の凸曲面研削装置の計測開始時の平面図Plan view at the start of measurement of the convex curved surface grinding apparatus of FIG. 図1の凸曲面研削装置の計測行程を示す要部の拡大平面図The enlarged plan view of the principal part which shows the measurement process of the convex curve grinding apparatus of FIG. 本発明の実施の形態2に係る凸曲面研削装置の研削開始時の平面図The top view at the time of the grinding start of the convex curved surface grinding apparatus which concerns on Embodiment 2 of this invention 従来例に係る凸曲面研削装置の研削開始時の平面図Plan view at the start of grinding of the convex curved surface grinding apparatus according to the conventional example 図5の凸曲面研削装置の研削行程を示す要部の拡大平面図The enlarged plan view of the principal part which shows the grinding process of the convex curve grinding apparatus of FIG. 図5の凸曲面研削装置の計測開始時の平面図Plan view at the start of measurement of the convex curved surface grinding apparatus of FIG. 図5の凸曲面研削装置の計測行程を示す要部の拡大平面図The enlarged plan view of the principal part which shows the measurement process of the convex curve grinding apparatus of FIG.

符号の説明Explanation of symbols

30…凸曲面研削装置
31…Z軸スライドテーブル(第1のテーブル)
32…X軸スライドテーブル(第2のテーブル)
33…回動テーブル
37…ワーク回転軸
40…C軸
39…ワーク支持手段
W2,W3…ワーク
T2,T3…ツール
44…ツール回転軸
46…軸心
48…ツール支持手段
49…ワークセンサ
50…制御手段
30 ... Convex curved surface grinding device 31 ... Z-axis slide table (first table)
32 ... X-axis slide table (second table)
33 ... Rotary table 37 ... Work rotation axis 40 ... C axis 39 ... Work support means W2, W3 ... Work T2, T3 ... Tool 44 ... Tool rotation axis 46 ... Center axis 48 ... Tool support means 49 ... Work sensor 50 ... Control means

Claims (3)

第1のテーブルと、第2のテーブルとを有し、該第1のテーブルと該第2のテーブルの両方の移動又はいずれか一方の移動が二次元方向の移動となるように構成され、
さらに、前記第1のテーブル上に備えたワーク支持手段と、前記第2のテーブル上に備えた回動テーブルと、該回動テーブル上に備えたツール支持手段とを有し、該ワーク支持手段のワークを支持して回転する回転中心線と、該ツール支持手段のツールを支持して回転する回転中心線とがそれぞれ前記回動テーブルの回転面に平行な同一平面となるように位置され、
前記ワークと前記ツールとをそれぞれ回転し、前記第1のテーブルと前記第2のテーブルの両方又はいずれか一方を二次元方向に移動して、前記回動テーブルの回転中心線上にて前記ツールと前記ワークとを点接触して該ツールで該ワークの端面に形成された凸曲面に倣って研削するように構成され、
さらに、ワークセンサを備え、前記研削終了後に、前記第1のテーブルと前記第2のテーブルの両方又はいずれか一方を二次元方向に移動して、前記ワークセンサを前記ワークに接触させつつ該ワーク形状に倣って移動させ、前記ワークセンサの検出信号に基づいて前記ワークの研削後寸法を計測するように構成された凸曲面研削装置において、
前記ワークセンサは、前記回動テーブル上の、前記ワーク研削時に前記ワークと干渉せず、かつワーク計測時に前記ワークが前記ツールと干渉しない所要位置に備えられ、
前記研削終了後に、前記第1のテーブルと前記第2のテーブルの両方又はいずれか一方を二次元方向に移動して、前記ワークセンサを前記ワークの被測定個所に倣って摺動させ、前記ワークセンサの検出信号に基づいて前記ワークの研削後寸法を計測するように制御する制御手段を備えたことを特徴とする凸曲面研削装置。
It has a first table and a second table, and is configured such that the movement of both the first table and the second table or the movement of either one is a two-dimensional movement,
Furthermore, it has a work support means provided on the first table, a rotary table provided on the second table, and a tool support means provided on the rotary table, the work support means The rotation center line that rotates while supporting the workpiece and the rotation center line that rotates while supporting the tool of the tool support means are positioned so as to be in the same plane parallel to the rotation surface of the rotating table, respectively.
The workpiece and the tool are respectively rotated, and either or both of the first table and the second table are moved in a two-dimensional direction, and the tool and the tool are rotated on the rotation center line of the rotating table. The workpiece is configured to be point-contacted and ground to follow the convex curved surface formed on the end surface of the workpiece with the tool,
Furthermore, a work sensor is provided, and after finishing the grinding, both or one of the first table and the second table is moved in a two-dimensional direction, and the work sensor is brought into contact with the work while the work sensor is in contact with the work. In the convex curved surface grinding device configured to move following the shape and measure the post-grinding dimension of the workpiece based on the detection signal of the workpiece sensor,
The work sensor is provided at a required position on the rotating table so as not to interfere with the work at the time of grinding the work and at which the work does not interfere with the tool at the time of workpiece measurement.
After completion of the grinding, both or either one of the first table and the second table is moved in a two-dimensional direction, and the work sensor is slid along the measurement location of the work, 2. A convex curved surface grinding apparatus comprising control means for controlling to measure a post-grinding dimension of the workpiece based on a detection signal of a sensor.
前記ワークセンサを、前記計測開始時に、前記回動テーブルの回転中心を通り、かつプローブの先端をセンサ中心線を前記ワーク支持手段の回転中心線に平行となるように備えたことを特徴とする請求項1に記載の凸曲面研削装置。   The work sensor is provided with a sensor center line passing through the rotation center of the rotating table and the sensor center line parallel to the rotation center line of the work support means at the start of the measurement. The convex curved surface grinding apparatus according to claim 1. ワーク支持手段とツール支持手段とを、ワークを支持して回転する回転中心線とツールを支持して回転する回転中心線とがそれぞれ回動テーブルの回転面に平行な同一平面となるようにして、前記回動テーブルの回転中心線上に点接触するように位置させ、前記ワークと前記ツールとをそれぞれ回転し、前記ワーク支持手段を備える第1のテーブルと前記回動テーブルを備える第2のテーブルの両方の移動又はいずれか一方の移動を二次元方向の移動とし、前記ツールで前記ワークの端面に形成された凸曲面に倣って研削し、前記研削終了後は、ワークセンサと前記ワークとを一軸線上に離間対向させた状態から接触させ、前記ワークセンサの検出信号に基づいて前記ワークの研削後寸法を計測する凸曲面研削方法において、
前記ワークセンサを前記回動テーブル上の、前記ワーク研削時に前記ワークと干渉せず、かつワーク計測時に前記ワークが前記ツールと干渉しない所要位置に配し、
前記研削終了時に、前記第1のテーブルと前記第2のテーブルの両方又はいずれか一方を二次元方向に移動して、前記ワークセンサを前記ワークの被測定個所に倣って摺動させ、前記ワークセンサの検出信号に基づいて前記ワークの研削後寸法を計測することを特徴とする凸曲面研削方法。
The work support means and the tool support means are arranged such that the rotation center line that rotates while supporting the work and the rotation center line that rotates while supporting the tool are on the same plane parallel to the rotation surface of the rotary table. The first table provided with the work support means and the second table provided with the rotary table are positioned so as to be in point contact with the rotation center line of the rotary table, and rotate the work and the tool, respectively. Both of these movements or one of the movements is a two-dimensional movement, and the tool is ground to follow the convex curved surface formed on the end face of the work.After the grinding, the work sensor and the work are In the convex curved surface grinding method for making contact from a state of being opposed to and spaced apart on one axis, and measuring a post-grinding dimension of the workpiece based on a detection signal of the workpiece sensor,
The work sensor is arranged on a required position on the rotating table so as not to interfere with the work at the time of grinding the work and at which the work does not interfere with the tool at the time of workpiece measurement.
At the end of the grinding, both or one of the first table and the second table is moved in a two-dimensional direction, and the work sensor is slid along the measured portion of the work, A convex curved surface grinding method, comprising: measuring a post-grinding dimension of the workpiece based on a detection signal of a sensor.
JP2007181900A 2007-07-11 2007-07-11 Convex surface grinder and convex surface grinding method Pending JP2009018367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181900A JP2009018367A (en) 2007-07-11 2007-07-11 Convex surface grinder and convex surface grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007181900A JP2009018367A (en) 2007-07-11 2007-07-11 Convex surface grinder and convex surface grinding method

Publications (1)

Publication Number Publication Date
JP2009018367A true JP2009018367A (en) 2009-01-29

Family

ID=40358456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181900A Pending JP2009018367A (en) 2007-07-11 2007-07-11 Convex surface grinder and convex surface grinding method

Country Status (1)

Country Link
JP (1) JP2009018367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8554502B2 (en) 2010-03-31 2013-10-08 Fanuc Corporation Method for calculating probe mounting position in on-machine measuring device
CN103506955A (en) * 2013-09-12 2014-01-15 上海交通大学 Inner spherical surface ring precise grinding on-line detecting device and automatic inner spherical surface ring precise grinding on-line detecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8554502B2 (en) 2010-03-31 2013-10-08 Fanuc Corporation Method for calculating probe mounting position in on-machine measuring device
CN103506955A (en) * 2013-09-12 2014-01-15 上海交通大学 Inner spherical surface ring precise grinding on-line detecting device and automatic inner spherical surface ring precise grinding on-line detecting method

Similar Documents

Publication Publication Date Title
JP4441823B2 (en) Truing method and chamfering device for chamfering grindstone
JP5213442B2 (en) Raster cutting technology for ophthalmic lenses
US20110009031A1 (en) Method and device for machining workpieces
JPH0822497B2 (en) Method and apparatus for making prescription eyeglass lenses
JP2009142979A (en) Truing tool of grinding wheel and its manufacturing method, truing device using the same, method of manufacturing grinding wheel and wafer edge grinding device
JP6252270B2 (en) Truing method for grinding wheel of grinding machine and grinding machine
CN103639900B (en) A kind of processing method of high-precision special-shaped emery wheel
US6733369B1 (en) Method and apparatus for polishing or lapping an aspherical surface of a work piece
JPH07299746A (en) Aspherical processing device
KR20030084749A (en) Machining error correction mathod adapted for numerically controlled machine tool and grinding machine using the same
JP2009184066A (en) Method of machining concave fresnel lens shape member, and concave fresnel lens shape member
JP2602293B2 (en) Processing method and processing apparatus for aspherical object
JP4576255B2 (en) Tool whetstone shape creation method
JP2007118100A (en) Method and apparatus for working curved surface symmetric with respect to rotation axis
JP2004174665A (en) Curved surface machining method and curved surface machining device
KR101720302B1 (en) Apparatus and method for polishing edge of panel
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
JP2009018367A (en) Convex surface grinder and convex surface grinding method
JP3880474B2 (en) Mold processing method
JP2003039282A (en) Free-form surface working device and free-form surface working method
JP2008238285A (en) Processing device and processing method
JP5296509B2 (en) Grinding method and grinding apparatus
KR102050766B1 (en) Apparatus for grinding
JP2009090414A (en) Spherical surface grinding method for lens