JP2009016575A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2009016575A
JP2009016575A JP2007176665A JP2007176665A JP2009016575A JP 2009016575 A JP2009016575 A JP 2009016575A JP 2007176665 A JP2007176665 A JP 2007176665A JP 2007176665 A JP2007176665 A JP 2007176665A JP 2009016575 A JP2009016575 A JP 2009016575A
Authority
JP
Japan
Prior art keywords
wiring
copper
insulating film
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007176665A
Other languages
Japanese (ja)
Other versions
JP5213013B2 (en
Inventor
Nobuhide Maeda
展秀 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CONSORTIUM ADVANCED SEMICONDUCTOR MATERIALS & RELATED TECHNOLOGIES
CONSORTIUM FOR ADVANCED SEMICONDUCTOR MATERIALS &RELATED TECHNOLOGIES
Consortium for Advanced Semiconductor Materials and Related Technologies
Original Assignee
CONSORTIUM ADVANCED SEMICONDUCTOR MATERIALS & RELATED TECHNOLOGIES
CONSORTIUM FOR ADVANCED SEMICONDUCTOR MATERIALS &RELATED TECHNOLOGIES
Consortium for Advanced Semiconductor Materials and Related Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CONSORTIUM ADVANCED SEMICONDUCTOR MATERIALS & RELATED TECHNOLOGIES, CONSORTIUM FOR ADVANCED SEMICONDUCTOR MATERIALS &RELATED TECHNOLOGIES, Consortium for Advanced Semiconductor Materials and Related Technologies filed Critical CONSORTIUM ADVANCED SEMICONDUCTOR MATERIALS & RELATED TECHNOLOGIES
Priority to JP2007176665A priority Critical patent/JP5213013B2/en
Publication of JP2009016575A publication Critical patent/JP2009016575A/en
Application granted granted Critical
Publication of JP5213013B2 publication Critical patent/JP5213013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device in a highly insulating copper wiring structure. <P>SOLUTION: In the semiconductor device having a damascene wiring structure, the wiring layer of the semiconductor device has wiring copper and an insulation film between wires. The insulation film between the wires is composed of a lamination structure using a plurality of insulation films having different etching rates. At least one insulation film is composed of resin having copper diffusion resistance. The plurality of insulation films are composed of a combination where compression stress operates on a conductor at a via section. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は半導体装置に関する。特に、銅拡散耐性を持つ有機樹脂を配線層に有するダマシン配線構造の半導体装置に関する。   The present invention relates to a semiconductor device. In particular, the present invention relates to a semiconductor device having a damascene wiring structure having an organic resin having copper diffusion resistance in a wiring layer.

大規模集積回路(LSI)は、近年、益々、集積度、動作速度が向上している。そして、集積度の向上に伴って、集積回路を構成するトランジスタ等の半導体素子は小型化されている。この小型化によって、半導体素子の動作速度は向上している。そして、配線による遅延時間が大規模集積回路の動作速度を律速するようになっている。この配線による遅延時間は、配線抵抗と配線容量とに依存する。従って、配線抵抗と配線容量との低減が求められている。   In recent years, large-scale integrated circuits (LSIs) have been increasingly improved in integration degree and operation speed. As the degree of integration increases, semiconductor elements such as transistors constituting an integrated circuit are downsized. With this miniaturization, the operation speed of the semiconductor element is improved. The delay time due to the wiring determines the operating speed of the large scale integrated circuit. The delay time due to this wiring depends on the wiring resistance and the wiring capacitance. Therefore, reduction of wiring resistance and wiring capacity is required.

配線抵抗の低抵抗化は、配線材料をAlから抵抗率が低いCuに変更することで達成されている。   The reduction of the wiring resistance is achieved by changing the wiring material from Al to Cu having a low resistivity.

しかしながら、Cuは微細配線の絶縁膜中に拡散し易い性質を持つ為、配線銅(Cu)を高抵抗のバリアメタルで防護する必要が有る。   However, since Cu has the property of easily diffusing into the insulating film of the fine wiring, it is necessary to protect the wiring copper (Cu) with a high resistance barrier metal.

ところが、微細化の進行に伴って配線銅(Cu)幅は小さくなり、バリアメタルの膜厚も小さくしなくてはならない。とは言うものの、銅(Cu)の拡散を防いで絶縁信頼性を確保する為には、バリアメタルの膜厚の微細化には限界が有る。すなわち、バリアメタルの膜厚を薄くすると、銅(Cu)の拡散を防止できず、絶縁信頼性が低下する。   However, with the progress of miniaturization, the width of the wiring copper (Cu) is reduced, and the film thickness of the barrier metal must be reduced. Nevertheless, there is a limit to the miniaturization of the thickness of the barrier metal in order to prevent the diffusion of copper (Cu) and ensure the insulation reliability. That is, if the thickness of the barrier metal is reduced, copper (Cu) diffusion cannot be prevented and the insulation reliability is lowered.

このような観点から、絶縁膜自体に銅拡散耐性を持つ低誘電率材料の開発が求められるに至った。そして、銅拡散耐性を持つ低誘電率材料として、様々な有機材料が提案されている。   From this point of view, development of a low dielectric constant material having copper diffusion resistance in the insulating film itself has been required. Various organic materials have been proposed as low dielectric constant materials having copper diffusion resistance.

例えば、Divinylsiloxane-bis-Benzocyclobutene(DVS-BCB)を用いた配線構造のものが報告(非特許文献1)されている。又、ボラジン-シロキサンポリマー材料を使用して微細加工したことが報告(非特許文献2)されている。
M. Tada , et al., 2001Symp. VLSI Technol. Dig. (2001) P13〜14 高分子学会編 (2004) 「マイクロエレクトロニクスにおける高分子材料」P67〜68
For example, a wiring structure using divinylsiloxane-bis-benzocyclobutene (DVS-BCB) has been reported (Non-Patent Document 1). Further, it has been reported that fine processing was performed using a borazine-siloxane polymer material (Non-patent Document 2).
M. Tada, et al., 2001 Symp. VLSI Technol. Dig. (2001) P13-14 The Society of Polymer Science (2004) “Polymer Materials in Microelectronics” P67-68

しかしながら、これまでに提案の材料では、耐熱性が不足して製造プロセスの要求を満たさない、パターン描画を阻害するガスを発生する、化学増幅型レジストを用いるとレジストの感度が低下すると言った問題が残されている。   However, the previously proposed materials do not meet the requirements of the manufacturing process due to insufficient heat resistance, generate gas that hinders pattern drawing, and use of chemically amplified resist reduces the sensitivity of the resist Is left.

従って、本発明が解決しようとする第1の課題は、絶縁性が高い銅配線構造の半導体装置を提供することである。   Accordingly, a first problem to be solved by the present invention is to provide a semiconductor device having a copper wiring structure with high insulation.

本発明が解決しようとする第2の課題は、絶縁信頼性が向上した銅配線構造の半導体装置を提供することである。   A second problem to be solved by the present invention is to provide a semiconductor device having a copper wiring structure with improved insulation reliability.

本発明が解決しようとする第3の課題は、配線抵抗が抑制された銅配線構造の半導体装置を提供することである。   A third problem to be solved by the present invention is to provide a semiconductor device having a copper wiring structure in which wiring resistance is suppressed.

本発明が解決しようとする第4の課題は、応力誘起ボイドの形成が抑制された銅配線構造の半導体装置を提供することである。   A fourth problem to be solved by the present invention is to provide a semiconductor device having a copper wiring structure in which the formation of stress-induced voids is suppressed.

本発明が解決しようとする第5の課題は、塗布型バリア絶縁膜を適用した銅配線構造の半導体装置を提供することである。   A fifth problem to be solved by the present invention is to provide a semiconductor device having a copper wiring structure to which a coating type barrier insulating film is applied.

本発明が解決しようとする第6の課題は、低廉なコストの銅配線構造の半導体装置を提供することである。   A sixth problem to be solved by the present invention is to provide a semiconductor device having a copper wiring structure at a low cost.

前記の課題は、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは、
積層して設けられたものであり、
かつ、前記ビア層の接続銅に対して前記下層配線層側に向けての応力が作用するような絶縁膜材料が選択されて構成された
ことを特徴とする半導体装置によって解決される。
In the semiconductor device having a damascene wiring structure including an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connecting copper insulating film,
It is provided by stacking,
In addition, the invention is solved by a semiconductor device characterized in that an insulating film material is selected such that stress toward the lower wiring layer side acts on the connection copper of the via layer.

例えば、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは、
積層して設けられたものであり、
かつ、(該配線間絶縁膜の熱膨張係数(膜厚方向の熱膨張係数))−(該接続銅用絶縁膜の熱膨張係数(膜厚方向の熱膨張係数))が10〜100ppm/℃であるように選択されて構成されてなる
ことを特徴とする半導体装置によって解決される。
For example, in a semiconductor device having a damascene wiring structure including an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connecting copper insulating film,
It is provided by stacking,
And (thermal expansion coefficient of the inter-wiring insulating film (thermal expansion coefficient in the film thickness direction)) − (thermal expansion coefficient of the insulating film for connecting copper (thermal expansion coefficient in the film thickness direction)) is 10 to 100 ppm / ° C. This is solved by a semiconductor device characterized in that it is selected and configured.

特に、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは、
積層して設けられたものであり、
該配線間絶縁膜は、銅拡散耐性を持つ樹脂で構成され、
かつ、該接続銅用絶縁膜は、前記ビア層の接続銅に対して前記下層配線層側に向けての応力が作用するような絶縁膜材料が選択されて構成された
ことを特徴とする半導体装置によって解決される。
In particular, in a semiconductor device having a damascene wiring structure including an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connecting copper insulating film,
It is provided by stacking,
The inter-wiring insulating film is made of a resin having copper diffusion resistance,
In addition, the connection copper insulating film is configured by selecting an insulating film material that applies a stress toward the lower wiring layer side with respect to the connection copper of the via layer. Solved by the device.

例えば、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは、
積層して設けられたものであり、
該配線間絶縁膜は、銅拡散耐性を持つ樹脂で構成され、
かつ、(該配線間絶縁膜の熱膨張係数(膜厚方向の熱膨張係数))−(該接続銅用絶縁膜の熱膨張係数(膜厚方向の熱膨張係数))が10〜100ppm/℃であるように選択されて構成されてなる
ことを特徴とする半導体装置によって解決される。
For example, in a semiconductor device having a damascene wiring structure including an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connecting copper insulating film,
It is provided by stacking,
The inter-wiring insulating film is made of a resin having copper diffusion resistance,
And (thermal expansion coefficient of the inter-wiring insulating film (thermal expansion coefficient in the film thickness direction)) − (thermal expansion coefficient of the insulating film for connecting copper (thermal expansion coefficient in the film thickness direction)) is 10 to 100 ppm / ° C. This is solved by a semiconductor device characterized in that it is selected and configured.

又、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは積層して設けられ、
前記配線間絶縁膜は銅拡散耐性を持つ樹脂で構成され、
前記接続銅用絶縁膜は前記配線間絶縁膜のエッチングレートとは異なるエッチングレートのもので構成されてなる
ことを特徴とする半導体装置によって解決される。
Further, in a semiconductor device having a damascene wiring structure comprising an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connection copper insulating film are provided by being laminated,
The inter-wiring insulating film is made of a resin having copper diffusion resistance,
The connecting copper insulating film is formed by a semiconductor device having an etching rate different from that of the inter-wiring insulating film.

又、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは、
積層して設けられ、
更に、(該配線間絶縁膜の熱膨張係数(膜厚方向の熱膨張係数))−(該接続銅用絶縁膜の熱膨張係数(膜厚方向の熱膨張係数))が10〜100ppm/℃であるように選択されて構成され、
しかも、前記配線間絶縁膜は銅拡散耐性を持つ樹脂で構成され、
かつ、該接続銅用絶縁膜は該配線間絶縁膜のエッチングレートとは異なるエッチングレートのもので構成されてなる
ことを特徴とする半導体装置によって解決される。
Further, in a semiconductor device having a damascene wiring structure comprising an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connecting copper insulating film,
Provided in layers,
Further, (thermal expansion coefficient of the insulating film between the wirings (thermal expansion coefficient in the film thickness direction)) − (thermal expansion coefficient of the insulating film for connecting copper (thermal expansion coefficient in the film thickness direction)) is 10 to 100 ppm / ° C. Selected and configured to be
Moreover, the inter-wiring insulating film is made of a resin having copper diffusion resistance,
In addition, the semiconductor device is characterized in that the connection copper insulating film is formed with an etching rate different from the etching rate of the inter-wiring insulating film.

中でも、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは積層して設けられたものであり、
前記配線間絶縁膜が銅拡散耐性を持つ樹脂で構成され、
前記接続銅用絶縁膜はSiC,SiCNの群の中から選ばれる少なくとも一つで構成されてなる
ことを特徴とする半導体装置によって解決される。
Among them, in a semiconductor device having a damascene wiring structure including an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connection copper insulating film are provided by being laminated,
The inter-wiring insulating film is made of a resin having copper diffusion resistance,
The connecting copper insulating film is formed of at least one selected from the group consisting of SiC and SiCN, and is solved by a semiconductor device.

特に、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは積層して設けられたものであり、
前記配線間絶縁膜が銅拡散耐性を持つ樹脂で構成され、
前記接続銅用絶縁膜はSiC,SiCNの群の中から選ばれる少なくとも一つで構成され、
前記銅拡散耐性を持つ樹脂は、そのエッチングレートが前記接続銅用絶縁膜のエッチングレートと異なるものであり、かつ、その熱膨張係数(膜厚方向の熱膨張係数)が前記接続銅用絶縁膜の熱膨張係数(膜厚方向の熱膨張係数)より10〜100ppm/℃大きいものである
ことを特徴とする半導体装置によって解決される。
In particular, in a semiconductor device having a damascene wiring structure including an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connection copper insulating film are provided by being laminated,
The inter-wiring insulating film is made of a resin having copper diffusion resistance,
The connection copper insulating film is composed of at least one selected from the group consisting of SiC and SiCN,
The resin having copper diffusion resistance has an etching rate different from that of the connection copper insulating film, and a thermal expansion coefficient (thermal expansion coefficient in the film thickness direction) of the resin for connection copper. This is solved by a semiconductor device characterized in that it is 10 to 100 ppm / ° C. larger than the thermal expansion coefficient (thermal expansion coefficient in the film thickness direction).

又、上記の半導体装置であって、銅拡散耐性を持つ樹脂は、耐熱温度が400℃以上、誘電率が3.0以下のN原子を持つ有機樹脂であることを特徴とする半導体装置によって解決される。中でも、銅拡散耐性を持つ樹脂がポリベンゾオキサゾールであることを特徴とする半導体装置によって解決される。   Further, in the above semiconductor device, the resin having copper diffusion resistance is an organic resin having N atoms having a heat resistant temperature of 400 ° C. or higher and a dielectric constant of 3.0 or lower. Is done. Above all, the problem is solved by a semiconductor device characterized in that the resin having copper diffusion resistance is polybenzoxazole.

又、上記の半導体装置であって、接続銅用絶縁膜がSiC,SiCNの群の中から選ばれる少なくとも一つで構成されてなることを特徴とする半導体装置によって解決される。   In addition, the above-described semiconductor device is solved by the semiconductor device characterized in that the connection copper insulating film is composed of at least one selected from the group of SiC and SiCN.

又、上記の半導体装置であって、銅と絶縁膜との界面にTiが設けられてなることを特徴とする半導体装置によって解決される。   Further, the above semiconductor device is solved by the semiconductor device characterized in that Ti is provided at the interface between copper and the insulating film.

上記のように構成させた本発明の半導体装置は、銅配線構造の絶縁性が高い。しかも、絶縁信頼性が向上した。そして、高抵抗のバリアメタルを設けていないので、配線抵抗が抑制されている。又、応力誘起ボイドの形成が抑制されている。又、塗布型バリア絶縁膜を適用したことから、低廉なコストの半導体装置である。   The semiconductor device of the present invention configured as described above has high insulation of the copper wiring structure. In addition, the insulation reliability has been improved. And since the high resistance barrier metal is not provided, wiring resistance is suppressed. Moreover, the formation of stress-induced voids is suppressed. In addition, since a coating type barrier insulating film is applied, the semiconductor device is inexpensive.

本発明の半導体装置は、上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造の半導体装置である。配線層は複数である。従って、二層に限られず、三層、四層、五層、……の如何を問わない。配線層(上層配線層や下層配線層)は、信号伝達用の配線銅、及び配線銅の周囲に設けられた配線間絶縁膜を具備する。ビア層は、上層配線層の配線銅と下層配線層の配線銅とを電気的に接続する接続銅、及び接続銅の周囲に設けられた接続銅用絶縁膜を具備する。配線間絶縁膜と接続銅用絶縁膜とは積層して設けられたものである。配線間絶縁膜と接続銅用絶縁膜とは、ビア層の接続銅に対して下層配線層側に向けての応力が作用するように絶縁膜材料が選択され、このような組み合わせになる材料で構成される。このような異なる材料としては、例えばエッチングレートが異なる材料が選択されて構成される。或いは、熱膨張係数が異なる材料で構成される。例えば、(上層配線層の配線間絶縁膜の膨張係数(膜厚方向の熱膨張係数))−(ビア層の絶縁膜の膨張係数(膜厚方向の熱膨張係数))が10〜100ppm/℃(好ましくは、20〜80ppm/℃)であるように各々の材料が選択されて各々の絶縁膜が構成される。一般的には、熱膨張係数が異なると言うことは、エッチングレートも異なり、従ってエッチングレート及び熱膨張係数が異なる材料(特に、熱膨張係数が上記のような物性差の材料)が選択される。すなわち、斯くの如きの構成とすることによって、ビア層の接続銅に対して下層配線層側に向けての応力が作用するようになる。配線間絶縁膜は、好ましくは、銅拡散耐性を持つ樹脂で構成される。特に、耐熱温度が400℃以上(好ましくは、450℃以上。)、誘電率が3.0以下(好ましくは、2.7以下。そして、現実的には1.9以上。)のN原子を持つ銅拡散耐性を持つ有機樹脂で構成される。このような有機樹脂の中でも好ましいものとしてポリベンゾオキサゾール(Polybenzoxazole:PBO)が挙げられる。接続銅用絶縁膜としては、特に好ましいものとしてSiC,SiCNが挙げられる。更に、好ましくは、銅と絶縁膜との界面にTiが設けられる。   The semiconductor device of the present invention is a semiconductor device having a damascene wiring structure including an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer. There are a plurality of wiring layers. Therefore, it is not limited to two layers, and may be three layers, four layers, five layers, and so on. The wiring layer (upper wiring layer and lower wiring layer) includes wiring copper for signal transmission and an inter-wiring insulating film provided around the wiring copper. The via layer includes connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for connection copper provided around the connection copper. The inter-wiring insulating film and the connecting copper insulating film are provided by being laminated. The inter-wiring insulating film and the connecting copper insulating film are materials that are selected in such a way that the insulating film material is selected so that stress is applied to the connecting copper of the via layer toward the lower wiring layer side. Composed. For example, materials having different etching rates are selected as the different materials. Or it is comprised with the material from which a thermal expansion coefficient differs. For example, (expansion coefficient of insulating film between wirings in upper wiring layer (thermal expansion coefficient in film thickness direction)) − (expansion coefficient of insulating film in via layer (thermal expansion coefficient in film thickness direction)) is 10 to 100 ppm / ° C. Each material is selected so as to be (preferably 20 to 80 ppm / ° C.) to form each insulating film. In general, the fact that the coefficient of thermal expansion is different means that the etching rate is also different, and therefore materials having different etching rates and thermal expansion coefficients are selected (particularly, materials having different physical properties as described above). . That is, by adopting such a configuration, a stress toward the lower wiring layer side acts on the connection copper of the via layer. The inter-wiring insulating film is preferably made of a resin having copper diffusion resistance. In particular, N atoms having a heat resistant temperature of 400 ° C. or higher (preferably 450 ° C. or higher) and a dielectric constant of 3.0 or lower (preferably 2.7 or lower, and practically 1.9 or higher) are used. Consists of organic resin with copper diffusion resistance. Among these organic resins, polybenzoxazole (PBO) is preferable. As the insulating film for connecting copper, SiC and SiCN are particularly preferable. Furthermore, Ti is preferably provided at the interface between copper and the insulating film.

本発明の一つの大きな特徴は、銅拡散耐性を持つ有機樹脂系絶縁膜を用いることによって、銅拡散に対するバリア層を無くしたことである。これは、有機樹脂系材料を含む様々な絶縁膜を評価している過程において、図1に示されるTDDB(time-dependent dielectric breakdown)試験による銅拡散評価結果の通り、ポリベンゾオキサゾール等の有機樹脂は銅拡散耐性を持っていることを見出したことに基づくものである。有機樹脂系絶縁材料は或る程度の銅拡散耐性を期待できる。例えば、PBOやBCB(PolyBenzocyclobuten)等の有機樹脂系絶縁材料は銅拡散耐性を期待できる。しかしながら、中でも、PBOは、耐熱性にも優れていることが判った。更に、誘電率についても、ポリイミドよりも優れていることが判った。かつ、これまで絶縁材料として用いられて来たSiCやSiCNに比べると、微細加工性に優れていることも判った。従って、配線層における配線間絶縁膜としてPBOを用いることで、高抵抗のバリアメタルを用いずとも済むようになり、配線抵抗低減の効果が得られ、又、高誘電率のバリア絶縁膜を用いずとも済み、実行誘電率低減の効果が得られる。   One major feature of the present invention is that a barrier layer against copper diffusion is eliminated by using an organic resin insulating film having copper diffusion resistance. This is because, in the process of evaluating various insulating films containing organic resin materials, an organic resin such as polybenzoxazole as shown in the copper diffusion evaluation result by the TDDB (time-dependent dielectric breakdown) test shown in FIG. Is based on the finding that it has copper diffusion resistance. The organic resin insulating material can be expected to have a certain degree of copper diffusion resistance. For example, an organic resin insulating material such as PBO or BCB (PolyBenzocyclobuten) can be expected to have copper diffusion resistance. However, among them, PBO was found to be excellent in heat resistance. Furthermore, the dielectric constant was also found to be superior to polyimide. In addition, it has also been found that the fine workability is superior to SiC and SiCN that have been used as insulating materials. Therefore, by using PBO as an inter-wiring insulating film in the wiring layer, it becomes unnecessary to use a high-resistance barrier metal, and an effect of reducing the wiring resistance can be obtained, and a high dielectric constant barrier insulating film is used. The effect of reducing the effective dielectric constant can be obtained.

本発明の特徴および利点を明確にすべく、添付図面を参照しながら、本発明の実施の形態を以下に詳述する。   In order to clarify the features and advantages of the present invention, embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

図2は、本発明を銅/低誘電率絶縁膜ダマシン配線構造に適用した第1の実施形態を示す断面図である。図2中、1は下地SiO膜、2はSiC(又はSiCN)からなるバリア絶縁膜、3はPBOからなる低誘電率の配線間絶縁膜、4は下層配線銅(Cu)、5はPBO膜3の表面に形成されたSiC(又はSiCN)からなるキャップ膜、6は下層配線銅4及びキャップ膜5(PBO膜3)の表面に設けられたSiC(又はSiCN)からなるバリア絶縁膜、7はPBOからなる低誘電率の配線間絶縁膜、8は上層配線銅(Cu)、9は下層配線銅4と上層配線銅8とを電気的に接続する接続銅、10はPBO膜7の表面に形成されたSiC(又はSiCN)からなるキャップ膜、11はSiC(又はSiCN)からなるバリア絶縁膜、12はSiOからなる保護膜である。尚、図2から判る通り、下層配線層は、PBO配線間絶縁膜3と下層配線銅4とキャップ膜5とからなる。但し、キャップ膜5が無い場合もある。上層配線層は、PBO配線間絶縁膜7と上層配線銅8とキャップ膜10とからなる。但し、キャップ膜10が無い場合もある。ビア層は、バリア絶縁膜6と接続銅9とからなる。   FIG. 2 is a sectional view showing a first embodiment in which the present invention is applied to a copper / low dielectric constant insulating film damascene wiring structure. In FIG. 2, 1 is a base SiO film, 2 is a barrier insulating film made of SiC (or SiCN), 3 is a low dielectric constant inter-wiring insulating film made of PBO, 4 is a lower wiring copper (Cu), and 5 is a PBO film. 3 is a cap film made of SiC (or SiCN) formed on the surface of 3, 6 is a barrier insulating film made of SiC (or SiCN) provided on the surface of the lower wiring copper 4 and the cap film 5 (PBO film 3), 7 Is a low dielectric constant inter-wiring insulating film made of PBO, 8 is an upper wiring copper (Cu), 9 is a connection copper for electrically connecting the lower wiring copper 4 and the upper wiring copper 8, and 10 is the surface of the PBO film 7 A cap film made of SiC (or SiCN), 11 is a barrier insulating film made of SiC (or SiCN), and 12 is a protective film made of SiO. As can be seen from FIG. 2, the lower wiring layer is composed of an insulating film 3 between PBO wirings, a lower wiring copper 4 and a cap film 5. However, the cap film 5 may not be provided. The upper wiring layer includes an inter-PBO wiring insulating film 7, an upper wiring copper 8, and a cap film 10. However, the cap film 10 may not be provided. The via layer is made of a barrier insulating film 6 and connection copper 9.

そして、図2からも判る通り、銅拡散耐性を有する絶縁膜材料(PBO)を用いたことから、銅拡散防止金属層が設けられて無い。すなわち、例えばTa等の高抵抗の銅拡散防止金属層が下層配線銅4と接続銅9との境界に存在しない為、ビア層における低抵抗化を格段に向上させることが出来る。これは、従来にあっては、ビア底部、即ち、下層配線銅4の表面に設けた銅拡散防止金属(例えば、Ta)層が配線銅を分断していたのであるが、本発明によれば、こうした問題が解決される。   As can be seen from FIG. 2, since the insulating film material (PBO) having copper diffusion resistance is used, the copper diffusion preventing metal layer is not provided. That is, since a high resistance copper diffusion preventing metal layer such as Ta does not exist at the boundary between the lower wiring copper 4 and the connection copper 9, the resistance reduction in the via layer can be remarkably improved. This is because, conventionally, a copper diffusion preventing metal (for example, Ta) layer provided on the bottom of the via, that is, on the surface of the lower wiring copper 4 divides the wiring copper. These problems are solved.

更に、熱膨張係数が異なる複数の絶縁材料、即ち、PBOとSiC(SiCN)とを用いたことで、各々の絶縁材料の熱膨張係数の違いにより生じる内部応力を効果的に利用できる。尚、PBO膜の熱膨張係数(膜厚方向の熱膨張係数)は86ppm/℃であり、SiC膜の熱膨張係数(膜厚方向の熱膨張係数)は1〜10ppm/℃であり、SiCN膜の熱膨張係数は1〜10ppm/℃である。すなわち、上記のような絶縁材料の組み合わせによれば、配線層(下層配線銅4)の銅原子がビア底で下向きに押し付けられる方向の応力を受けるようになる。因みに、ビア層におけるバリア絶縁膜6としてSiCを、上層配線層における配線間絶縁膜7としてPBOを用いた積層構造(ハイブリッド構造)の場合、配線層(下層配線銅4)の銅原子がビア底で下向きに50MPa以上の力で押し付けられる。尚、図3にストレス誘起ボイドの発生し易い構造を示す。図3の第一配線層M1と第二配線層M2に幅が5μmの配線、ビア層に直径130nmのビアを設けた多層配線構造のビア底における応力のシミュレーション結果を示す。何れの絶縁膜もがSiOCの同種膜の構造のものでは、下向きの応力が0〜数MPaであるのに対して、配線層の絶縁膜がPBO、かつ、ビア層の絶縁膜がSiCのハイブリッド構造のものでは、下向きの応力が150MPa以上と約2桁以上大きな応力となっている。従って、断線が発生し難い信頼性の高い配線構造となっていることが判る。又、配線層の絶縁膜材料とビア層の絶縁膜材料とにエッチングレートが互いに異なる材料を用いたハイブリッド構造を採用したので、同種膜を使用するシングルダマシンやデュアルダマシン製造方法に比べて工程数が低減できる。   Furthermore, by using a plurality of insulating materials having different thermal expansion coefficients, that is, PBO and SiC (SiCN), it is possible to effectively use the internal stress generated by the difference in the thermal expansion coefficients of the respective insulating materials. The thermal expansion coefficient (thermal expansion coefficient in the film thickness direction) of the PBO film is 86 ppm / ° C., and the thermal expansion coefficient (thermal expansion coefficient in the film thickness direction) of the SiC film is 1 to 10 ppm / ° C. The thermal expansion coefficient is 1-10 ppm / ° C. That is, according to the combination of insulating materials as described above, the copper atoms in the wiring layer (lower wiring copper 4) are subjected to stress in a direction in which the copper atoms are pressed downward at the via bottom. Incidentally, in the case of a laminated structure (hybrid structure) using SiC as the barrier insulating film 6 in the via layer and PBO as the inter-wiring insulating film 7 in the upper wiring layer, the copper atoms in the wiring layer (lower wiring copper 4) are transferred to the bottom of the via. And pressed downward with a force of 50 MPa or more. FIG. 3 shows a structure in which stress-induced voids are easily generated. FIG. 5 shows a simulation result of stress at the via bottom of a multilayer wiring structure in which a wiring having a width of 5 μm is provided in the first wiring layer M1 and the second wiring layer M2 in FIG. 3 and a via having a diameter of 130 nm is provided in the via layer. In the case where both insulating films have the same type of SiOC structure, the downward stress is 0 to several MPa, whereas the insulating film of the wiring layer is PBO and the insulating film of the via layer is a hybrid of SiC. In the structure, the downward stress is 150 MPa or more, which is about two orders of magnitude greater. Therefore, it can be seen that the wiring structure has a high reliability and hardly causes disconnection. In addition, a hybrid structure using materials with different etching rates for the insulating material of the wiring layer and the insulating material of the via layer has been adopted, so the number of processes compared to single damascene and dual damascene manufacturing methods using the same type of film. Can be reduced.

しかも、SiCやSiCN等の銅拡散防止絶縁材料は高誘電率なのに対し、配線間絶縁膜にPBO等の有機樹脂を用いた場合には、それだけ低誘電率なものであるから、配線の実効誘電率低減の効果が得られる。   In addition, while copper diffusion prevention insulating materials such as SiC and SiCN have a high dielectric constant, when an organic resin such as PBO is used for the inter-wiring insulating film, it has a low dielectric constant. The effect of rate reduction is obtained.

図4は本発明の配線構造を構成する工程図を示すものである。尚、本工程における製造条件は、通常のダマシン配線構造を形成する場合の条件を用いることが出来、工程的にも、かつ、設備的にも、新たな経済的な負担が増えることはない。そして、製造工程は、絶縁膜材料が違うのみであるから、以下では、簡単な説明に留める。   FIG. 4 is a process diagram for forming the wiring structure of the present invention. In addition, the manufacturing conditions in this process can use the conditions in the case of forming a normal damascene wiring structure, and a new economic burden does not increase in terms of process and equipment. Since the manufacturing process is different only in the insulating film material, a simple description will be given below.

図4(a)は、下層配線層(下層配線銅4とPBO配線間絶縁膜3とキャップ膜5)の上にSiC膜(バリア絶縁膜)6がCVDにより設けられ、そしてフォトエッチング技術によりビア加工が施され、次いでPBO溶液が塗布されてPBO配線間絶縁膜7が設けられた段階を示すものである。   FIG. 4A shows a SiC film (barrier insulating film) 6 formed by CVD on a lower wiring layer (lower wiring copper 4, PBO inter-wiring insulating film 3 and cap film 5), and via etching by photoetching technology. This shows a stage in which the PBO solution is applied and then the PBO inter-wiring insulating film 7 is provided.

この後、図4(b)に示される通り、SiC膜(キャップ膜)10がCVDにより設けられ、そしてフォトエッチング技術によりSiC膜10に対して配線溝用の窓加工が施される。   Thereafter, as shown in FIG. 4B, a SiC film (cap film) 10 is provided by CVD, and a window process for wiring grooves is performed on the SiC film 10 by a photoetching technique.

そして、図4(c)に示される通り、窓が形成されたキャップ膜10をハードマスクとしてPBO配線間絶縁膜7を除去し、更にバリア絶縁膜6をハードマスクとしてビア(孔)に充填されていたPBOを除去する。   Then, as shown in FIG. 4C, the PBO wiring insulating film 7 is removed using the cap film 10 with the window formed as a hard mask, and the via (hole) is filled using the barrier insulating film 6 as a hard mask. Remove the PBO.

次いで、図4(d)に示される通り、銅のシード膜を表面に設けた後、湿式メッキにより銅メッキを施し、下層配線銅4に密着させて接続銅9をビア(孔)に充填し、引き続いて上層配線銅8を設ける。   Next, as shown in FIG. 4D, after a copper seed film is provided on the surface, copper plating is performed by wet plating, and the contact copper 9 is filled in vias (holes) by being in close contact with the lower wiring copper 4. Subsequently, upper wiring copper 8 is provided.

この後、図4(e)に示される通り、CMPを行ない、表面を平坦にする。   Thereafter, as shown in FIG. 4E, CMP is performed to flatten the surface.

そして、上記のようにして得られた配線層において、ビア層での応力は下向きで150MPa以上と計算され、上層配線層の銅原子はビア層側に引き寄せられる(押し付けられる)方向の応力を受ける為、断線が発生し難い。因みに、このことが図5に示される。   In the wiring layer obtained as described above, the stress in the via layer is calculated to be 150 MPa or more in the downward direction, and the copper atoms in the upper wiring layer receive a stress in the direction of being attracted (pressed) to the via layer side. Therefore, disconnection hardly occurs. Incidentally, this is shown in FIG.

尚、ビア層部分に発生する圧縮応力は、絶縁膜に使用する材料の熱膨張係数の違い等による内部応力に寄るものであり、ビア層に生ずる下向きの応力が50MPa以上であれば、応力起因ボイドを抑制でき、断線が発生し難い。   In addition, the compressive stress generated in the via layer portion depends on the internal stress due to the difference in the thermal expansion coefficient of the material used for the insulating film. If the downward stress generated in the via layer is 50 MPa or more, it is caused by the stress. Voids can be suppressed and disconnection hardly occurs.

更に、図6に配線間TDDBの評価結果を示す。本発明の配線構造はTDDB10年寿命を確保しており、絶縁信頼性も高いことが判る。   Further, FIG. 6 shows the evaluation result of the inter-wiring TDDB. It can be seen that the wiring structure of the present invention has a 10-year life of TDDB and high insulation reliability.

図7は、本発明になる第2の実施形態を示す半導体装置の概略断面図である。   FIG. 7 is a schematic sectional view of a semiconductor device showing a second embodiment according to the present invention.

本実施形態にあっては、銅膜と絶縁膜との間にTi層21を薄く設けたものであり、その他の点については前記実施形態のものと基本的に同じくするので、詳細な説明を省略する。   In the present embodiment, the Ti layer 21 is thinly provided between the copper film and the insulating film, and the other points are basically the same as those of the above-described embodiment. Omitted.

すなわち、Ti層を設けることによって、配線としての高い信頼性を保持できるようになる。   That is, by providing the Ti layer, high reliability as a wiring can be maintained.

これは、ビア配線の部分では、使用する材料の熱膨張係数の違い等によるビア部の銅と絶縁材料との間で剥離を生じ、導通信頼性を損ない兼ねない。従って、絶縁膜との密着性を向上させておくことは、絶縁膜材料の選択幅を広げるのみならず、製造歩留向上や品質面でも好ましいことである。   This is because, in the via wiring portion, peeling occurs between the copper in the via portion and the insulating material due to a difference in the thermal expansion coefficient of the material to be used, and the conduction reliability may be impaired. Therefore, improving the adhesion to the insulating film is preferable not only for widening the selection range of the insulating film material but also for improving the production yield and quality.

そこで、発明者による様々な実験の結果、図8に示される如く、銅のシード膜成膜前に、チタンによるライニング処理を行なうと、絶縁膜側壁と銅との密着性が向上することが見出された。このTi層は、厚さが数原子層分でも効果が有り、〜2nmも有れば十分である。そして、現在多用されている銅に対して抵抗値の高いバリアメタル膜であるTa/TaNの10〜30nmに比較しても、配線形成の微細化動向に有利であることは勿論、低抵抗化の面でも有利である。更に、この製法も、従来のTa/TaNのバリア膜形成工程を利用し、材料をTaでなく、Tiとしてそのまま使用でき、Ti層を設けたことによる電気抵抗値の変化は性能に影響を与える程でも無い。その結果、工程中のトラブルもなく、高歩留でハイブリッドの配線工程を形成することが出来た。   Therefore, as a result of various experiments by the inventor, as shown in FIG. 8, it is seen that if the lining treatment with titanium is performed before the copper seed film is formed, the adhesion between the insulating film side wall and copper is improved. It was issued. This Ti layer is effective even if it has a thickness of several atomic layers, and it is sufficient if it has ˜2 nm. And even compared to Ta / TaN, which is a barrier metal film having a high resistance value with respect to copper, which is widely used at present, it is advantageous in the trend of miniaturization of wiring formation, of course, low resistance. This is also advantageous. Furthermore, this manufacturing method also uses the conventional Ta / TaN barrier film forming process, and the material can be used as Ti instead of Ta, and the change in the electric resistance value due to the provision of the Ti layer affects the performance. Not so much. As a result, it was possible to form a hybrid wiring process with a high yield without any trouble during the process.

TDDB試験による銅拡散評価結果Copper diffusion evaluation result by TDDB test 本発明になる半導体装置の概略断面図Schematic sectional view of a semiconductor device according to the present invention ビア底における応力を示すグラフGraph showing stress at via bottom 本発明になる半導体装置の製造工程図Manufacturing process diagram of semiconductor device according to the present invention バリアメタル付SiOC積層膜とバリアメタル無PBO/SiC積層膜との応力起因ボイド耐性を説明するグラフGraph explaining stress-induced void resistance between a barrier metal-attached SiOC laminated film and a barrier metal-free PBO / SiC laminated film 配線間TDDBの評価結果Evaluation result of inter-wiring TDDB 本発明の第2実施形態になる半導体装置の概略断面図Schematic sectional view of a semiconductor device according to a second embodiment of the present invention. 本発明の第2実施形態になる半導体装置の応力起因ボイド耐性向上を示すグラフThe graph which shows the stress-induced void tolerance improvement of the semiconductor device which becomes 2nd Embodiment of this invention

符号の説明Explanation of symbols

2 バリア絶縁膜(SiC,SiCN)
3 配線間絶縁膜(PBO)
4 下層配線銅(Cu)
5 キャップ膜(SiC,SiCN)
6 バリア絶縁膜(SiC,SiCN)
7 配線間絶縁膜(PBO)
8 上層配線銅(Cu)
9 接続銅

特許出願人 次世代半導体材料技術研究組合
代 理 人 宇 高 克 己
2 Barrier insulation film (SiC, SiCN)
3 Inter-wiring insulation film (PBO)
4 Lower layer wiring copper (Cu)
5 Cap film (SiC, SiCN)
6 Barrier insulating film (SiC, SiCN)
7 Inter-wiring insulation film (PBO)
8 Upper wiring copper (Cu)
9 Connection copper

Patent applicant Next-generation semiconductor material technology research association
Representative Katsumi Udaka

Claims (7)

上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは、
積層して設けられたものであり、
かつ、前記ビア層の接続銅に対して前記下層配線層側に向けての応力が作用するような絶縁膜材料が選択されて構成された
ことを特徴とする半導体装置。
In a semiconductor device having a damascene wiring structure comprising an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connecting copper insulating film,
It is provided by stacking,
In addition, a semiconductor device characterized in that an insulating film material is selected such that stress toward the lower wiring layer side acts on the connection copper of the via layer.
配線間絶縁膜が銅拡散耐性を持つ樹脂で構成されてなる
ことを特徴とする請求項1の半導体装置。
2. The semiconductor device according to claim 1, wherein the inter-wiring insulating film is made of a resin having copper diffusion resistance.
上層配線層、下層配線層、及び前記上層配線層と前記下層配線層との間に設けられたビア層を具備するダマシン配線構造を有する半導体装置において、
前記半導体装置の配線層は、配線銅および配線間絶縁膜を具備し、
前記半導体装置のビア層は、前記上層配線層の配線銅と前記下層配線層の配線銅とを電気的に接続する接続銅および該接続銅用絶縁膜を具備してなり、
前記配線間絶縁膜と前記接続銅用絶縁膜とは積層して設けられ、
前記配線間絶縁膜は銅拡散耐性を持つ樹脂で構成され、
前記接続銅用絶縁膜は前記配線間絶縁膜のエッチングレートとは異なるエッチングレートのもので構成されてなる
ことを特徴とする半導体装置。
In a semiconductor device having a damascene wiring structure comprising an upper wiring layer, a lower wiring layer, and a via layer provided between the upper wiring layer and the lower wiring layer,
The wiring layer of the semiconductor device comprises wiring copper and an inter-wiring insulating film,
The via layer of the semiconductor device comprises a connection copper for electrically connecting the wiring copper of the upper wiring layer and the wiring copper of the lower wiring layer, and an insulating film for the connection copper,
The inter-wiring insulating film and the connection copper insulating film are provided by being laminated,
The inter-wiring insulating film is made of a resin having copper diffusion resistance,
The semiconductor device according to claim 1, wherein the connection copper insulating film has an etching rate different from an etching rate of the inter-wiring insulating film.
銅拡散耐性を持つ樹脂は、耐熱温度が400℃以上、誘電率が3.0以下のN原子を持つ有機樹脂である
ことを特徴とする請求項2又は請求項3の半導体装置。
4. The semiconductor device according to claim 2, wherein the resin having copper diffusion resistance is an organic resin having N atoms having a heat resistant temperature of 400 ° C. or higher and a dielectric constant of 3.0 or lower.
銅拡散耐性を持つ樹脂がポリベンゾオキサゾールである
ことを特徴とする請求項2〜請求項4いずれかの半導体装置。
5. The semiconductor device according to claim 2, wherein the resin having copper diffusion resistance is polybenzoxazole.
接続銅用絶縁膜がSiC,SiCNの群の中から選ばれる少なくとも一つで構成されてなる
ことを特徴とする請求項1〜請求項5いずれかの半導体装置。
6. The semiconductor device according to claim 1, wherein the connecting copper insulating film comprises at least one selected from the group consisting of SiC and SiCN.
銅と絶縁膜との界面にTiが設けられてなる
ことを特徴とする請求項1〜請求項6いずれかの半導体装置。
7. The semiconductor device according to claim 1, wherein Ti is provided at an interface between copper and an insulating film.
JP2007176665A 2007-07-04 2007-07-04 Semiconductor device Expired - Fee Related JP5213013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007176665A JP5213013B2 (en) 2007-07-04 2007-07-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007176665A JP5213013B2 (en) 2007-07-04 2007-07-04 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2009016575A true JP2009016575A (en) 2009-01-22
JP5213013B2 JP5213013B2 (en) 2013-06-19

Family

ID=40357124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007176665A Expired - Fee Related JP5213013B2 (en) 2007-07-04 2007-07-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5213013B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530362A (en) * 2009-06-19 2012-11-29 アイメック Reduction of cracks at the metal / organic dielectric interface
JP2015167180A (en) * 2014-03-04 2015-09-24 大日本印刷株式会社 Multilayer wiring structural body
JP2015167179A (en) * 2014-03-04 2015-09-24 大日本印刷株式会社 Multilayer wiring structural body

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150519A (en) * 1998-08-31 2000-05-30 Fujitsu Ltd Manufacture of semiconductor device
JP2003338541A (en) * 2002-05-20 2003-11-28 Fujitsu Ltd Semiconductor device
JP2004146669A (en) * 2002-08-28 2004-05-20 Fujitsu Ltd Method for manufacturing semiconductor device
JP2005093688A (en) * 2003-09-17 2005-04-07 Jsr Corp Semiconductor device and manufacturing method therefor
JP2006229207A (en) * 2005-01-21 2006-08-31 Toshiba Corp Method of manufacturing semiconductor device, and semiconductor device
JP2007005679A (en) * 2005-06-27 2007-01-11 Consortium For Advanced Semiconductor Materials & Related Technologies Semiconductor device and manufacturing method thereof
JP2007005438A (en) * 2005-06-22 2007-01-11 Toshiba Corp Manufacturing method of semiconductor device
JP2007035705A (en) * 2005-07-22 2007-02-08 Jsr Corp Surface hydrophobing method, surface hydrophobing composite, and semiconductor device and its manufacturing method
JP2008166726A (en) * 2006-12-06 2008-07-17 Toshiba Corp Semiconductor device and method of manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150519A (en) * 1998-08-31 2000-05-30 Fujitsu Ltd Manufacture of semiconductor device
JP2003338541A (en) * 2002-05-20 2003-11-28 Fujitsu Ltd Semiconductor device
JP2004146669A (en) * 2002-08-28 2004-05-20 Fujitsu Ltd Method for manufacturing semiconductor device
JP2005093688A (en) * 2003-09-17 2005-04-07 Jsr Corp Semiconductor device and manufacturing method therefor
JP2006229207A (en) * 2005-01-21 2006-08-31 Toshiba Corp Method of manufacturing semiconductor device, and semiconductor device
JP2007005438A (en) * 2005-06-22 2007-01-11 Toshiba Corp Manufacturing method of semiconductor device
JP2007005679A (en) * 2005-06-27 2007-01-11 Consortium For Advanced Semiconductor Materials & Related Technologies Semiconductor device and manufacturing method thereof
JP2007035705A (en) * 2005-07-22 2007-02-08 Jsr Corp Surface hydrophobing method, surface hydrophobing composite, and semiconductor device and its manufacturing method
JP2008166726A (en) * 2006-12-06 2008-07-17 Toshiba Corp Semiconductor device and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530362A (en) * 2009-06-19 2012-11-29 アイメック Reduction of cracks at the metal / organic dielectric interface
JP2015167180A (en) * 2014-03-04 2015-09-24 大日本印刷株式会社 Multilayer wiring structural body
JP2015167179A (en) * 2014-03-04 2015-09-24 大日本印刷株式会社 Multilayer wiring structural body

Also Published As

Publication number Publication date
JP5213013B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP7452605B2 (en) Multilayer wiring structure and its manufacturing method
JP4819501B2 (en) Wiring structure and manufacturing method thereof
CN100369247C (en) Improved HDP-based ILD capping layer
JP2004282000A (en) Semiconductor device
JP2006216746A (en) Semiconductor device
JP5400355B2 (en) Semiconductor device
JP2007019258A (en) Semiconductor device
JP2005085939A (en) Semiconductor device and its manufacturing method
JP5213013B2 (en) Semiconductor device
KR101096101B1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2004221498A (en) Semiconductor device and method for manufacturing the same
KR100782202B1 (en) Semiconductor device and manufacturing method thereof
JP2005142351A (en) Semiconductor device and its manufacturing method
JP4525534B2 (en) Manufacturing method of semiconductor device
JP4302505B2 (en) Semiconductor device
JP2007294967A (en) Interconnecting structure of longer lifetime, and manufacturing method therefor
US7763521B2 (en) Metal wiring and method for forming the same
US20060180934A1 (en) Wiring structures for semiconductor devices
JPWO2005024935A1 (en) Semiconductor device
JP4206740B2 (en) Semiconductor device
JP2010003894A (en) Method for manufacturing semiconductor device, and the semiconductor device
JP4263053B2 (en) Manufacturing method of semiconductor device
JP2005175196A (en) Semiconductor device and process for producing semiconductor
US20180197819A1 (en) Interconnect structure and fabricating method thereof
JPWO2006126536A1 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

R150 Certificate of patent or registration of utility model

Ref document number: 5213013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees