JP2009010060A - Light emitting diode and method of manufacturing the same - Google Patents

Light emitting diode and method of manufacturing the same Download PDF

Info

Publication number
JP2009010060A
JP2009010060A JP2007168355A JP2007168355A JP2009010060A JP 2009010060 A JP2009010060 A JP 2009010060A JP 2007168355 A JP2007168355 A JP 2007168355A JP 2007168355 A JP2007168355 A JP 2007168355A JP 2009010060 A JP2009010060 A JP 2009010060A
Authority
JP
Japan
Prior art keywords
light emitting
type epitaxy
layer
epitaxy layer
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007168355A
Other languages
Japanese (ja)
Inventor
Mai-Chih Liu
劉▲ばい▼之
Wei-Tai Cheng
鄭為太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Touchtek Corp
Original Assignee
Touchtek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Touchtek Corp filed Critical Touchtek Corp
Priority to JP2007168355A priority Critical patent/JP2009010060A/en
Publication of JP2009010060A publication Critical patent/JP2009010060A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode for enhancing the light emitting efficiency, and to provide a method of manufacturing the same. <P>SOLUTION: A buffer layer, a first type epitaxy layer, a light emitting layer, and a second type epitaxy layer are provided on the substrate of the light emitting diode based on the order. The surface of the second type epitaxy layer is subjected to roughening treatment to form a roughened surface. The roughening treatment covers the surface of the second type epitaxy layer with spheres having equivalent particle size and then removes the spheres by dry etching. A plurality of periodically arranged recesses are formed in that second type epitaxy layer, and the light beam which is totally reflected and can not exit it is further reflected by the recesses. The light beam is emitted outside the light emitting diode after totally reflected once or several times because of the irregularly changing light beam running direction, so that the best light beam emitting efficiency can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発光ダイオード及びその製造方法に関するものであり、特に、発光効率を高める発光ダイオード及びその製造方法を提供するものである。 The present invention relates to a light emitting diode and a method for manufacturing the same, and more particularly, to provide a light emitting diode that increases luminous efficiency and a method for manufacturing the same.

発光ダイオードと伝統的な電球を比較すると、発行ダイオードは絶対的な優勢を保っており、例えば、体積が小さく、寿命が長く、低電圧/電流駆動、破裂し難い、発光時に目立たない、水銀を含まない(汚染問題がない)、発光効率が良好(電気節約)等の特性を持っており、また、近年来の発光ダイオードは、その発光効率が絶え間なき向上を続けており、よって、発光ダイオードは、ある領域において徐々に、日光燈や白熱電球に代替されるものとなった。例えば、高速反応が必要なスキャナーのライト源、液晶ディスプレイのバックライト源やフロントライト源、自動車の速度メーターボードの照明、交通標識灯、及び一般の照明装置等である。 Compared with light-emitting diodes and traditional light bulbs, emitting diodes maintain absolute dominance, such as small volume, long life, low voltage / current drive, hard to burst, inconspicuous when emitting light, mercury It does not contain (no contamination problem), has a good luminous efficiency (electricity saving), etc., and the light emitting diodes in recent years have continued to improve their luminous efficiency, so the light emitting diode Have gradually been replaced by sunlight and incandescent bulbs in certain areas. For example, a light source for a scanner that requires a high-speed reaction, a backlight source or a front light source for a liquid crystal display, an automobile speedometer board illumination, a traffic light, and a general illumination device.

また、窒素を含むIII-V族化合物は、ワイドバンドギャップの材料である故、その発光波長は、紫外光から赤色光を全て含み、ほとんど全可視光の波長を含んでいると言ってもよい。よって、窒化ガリウムを含む化合物半導体を使った、例えば、窒化ガリウム(GaN)、窒化アルミガリウム(GaAlN)、窒化インジウムガリウム(GaInN)等のような発光ダイオード部品は、各種発光モジュール内に幅広く応用されている。 Moreover, since the III-V group compound containing nitrogen is a material having a wide band gap, it can be said that the emission wavelength includes all red light from ultraviolet light, and almost all visible light wavelengths are included. . Therefore, for example, light emitting diode components such as gallium nitride (GaN), aluminum gallium nitride (GaAlN), and indium gallium nitride (GaInN) using compound semiconductors containing gallium nitride are widely applied in various light emitting modules. ing.

公知の発光ダイオードの上層表面は平面状であり、それに対応する基材底面は、相互に平行面である。よって、中央挟み込み層に位置する発光層が発光した時、一部の光線は部品の外部に射出されるが、他の大部分の光線は完全に反射されてしまう故、光線の射出効果はよくない結果となる。これは、半導体材料が外部空気に対して言えば、高屈折材料であるからで、光線の射出角度が一つの臨界角より大きい場合、全反射が発生する。全反射された光線は、発光ダイオードの対称となる両辺が平行する平面である故、永遠に外部に射出されることがなく、光線の射出効率が不良であるばかりでなく、全反射光が発光ダイオード内部において熱エネルギーを発生させる為、発光ダイオード全体の温度が上昇、商品の信頼性要求に不利となる。 The upper layer surface of the known light emitting diode is planar, and the corresponding substrate bottom surfaces are parallel to each other. Therefore, when the light emitting layer located in the center sandwiching layer emits light, some light rays are emitted to the outside of the component, but most other light rays are completely reflected, so the light emission effect is good. No results. This is because the semiconductor material is a highly refractive material with respect to the outside air, and therefore, when the light emission angle is larger than one critical angle, total reflection occurs. Since the totally reflected light is a plane where both sides of the light-emitting diode are symmetrical, the light is not emitted forever, and the light emission efficiency is not only poor, but also the total reflected light is emitted. Since heat energy is generated inside the diode, the temperature of the entire light emitting diode rises, which is disadvantageous for the reliability requirement of the product.

図1には、公知の発光ダイオード1の構造見取図を示す。該基材11上には、順序に基づいて緩衝層12、第一型エピタキシー層13、発光層14、及び第二型エピタキシー層15を設け、第二型エピタキシー層15表面には電極16を備え、該基材11底面は電極17に当たり、該基材11と第二型エピタキシー層15の表面はどちらも、平面状、且つ相互に平行している。該発光層14は、全面的に発光するもので、このような全面的発光面の光源は、無限に多い点光源Pにより構成されている。 FIG. 1 shows a structural sketch of a known light-emitting diode 1. A buffer layer 12, a first type epitaxy layer 13, a light emitting layer 14, and a second type epitaxy layer 15 are provided on the substrate 11 based on the order, and an electrode 16 is provided on the surface of the second type epitaxy layer 15. The bottom surface of the substrate 11 hits the electrode 17, and the surfaces of the substrate 11 and the second-type epitaxy layer 15 are both planar and parallel to each other. The light emitting layer 14 emits light entirely, and the light source of such a light emitting surface is composed of an infinitely large number of point light sources P.

図2及び図3は、単一点光源Pを範例として説明したものであり、それは、点光源Pが光線P1、P2を部品外部に射出しており、射出光線P3、P4のような射出光線P1、P2以外の光線は、全反射の関係から、部品外部に射出されることがない。よって、点光源Pの部品上層表面における光線有効射出範囲は、即ち、図中の141に示した範囲であり、この光線射出範囲141は、上層表面の局部区域であるだけで、商品全体の発光効率は良好な結果が得られなくなる。 2 and 3 illustrate a single point light source P as an example, where the point light source P emits light rays P1 and P2 to the outside of the component, and the emitted light rays P1 such as the emitted light rays P3 and P4. , Rays other than P2 are not emitted outside the component due to the total reflection. Therefore, the effective light emission range of the point light source P on the surface of the upper part of the component is the range indicated by 141 in the figure. This light emission range 141 is only a local area on the surface of the upper layer, and the light emission of the entire product. Efficiency will not give good results.

上記の問題点に鑑み、本発明は、全反射して射出不可能な光線を更に反射させ、不規則な変化をする光線走行方向によって、光線は、一回もしくは数回全反射した後に、発光ダイオード外部に射出する故、最良の光線射出効率を得ることができる発光ダイオードである。 In view of the above problems, the present invention further reflects a light beam that is totally reflected and cannot be emitted, and the light beam is emitted after being reflected once or several times depending on the light traveling direction that changes irregularly. Since it emits to the outside of the diode, it is a light emitting diode that can obtain the best light emission efficiency.

上述の目的を達成する為に、本発明中の発光ダイオードの基材上には、順序に基づいて緩衝層、第一型エピタキシー層、発光層、及び第二型エピタキシー層を設け、該第二型エピタキシー層表面は、粗化処理を施して粗化表面を形成し、該粗化処理は、粒径の大きさが同等の球体を第二型エピタキシー層の表面に敷いた後、ドライエッチングによって球体を除去するものであり、その第二型エピタキシー層には、複数の周期性配列を持つ凹槽を形成し、該凹槽が、全反射して射出不可能な光線を更に反射させることにより、発光効率を向上させる。 In order to achieve the above object, a buffer layer, a first type epitaxy layer, a light emitting layer, and a second type epitaxy layer are provided on the substrate of the light emitting diode according to the present invention based on the order. The surface of the type epitaxy layer is subjected to a roughening treatment to form a roughened surface. The roughening treatment is performed by laying spheres having the same particle size on the surface of the second type epitaxy layer and then performing dry etching. In the second type epitaxy layer, a concave tank having a plurality of periodic arrays is formed in the second type epitaxy layer, and the concave tank further reflects light rays that are totally reflected and cannot be emitted. , Improve luminous efficiency.

以上説明したように、本発明の発光ダイオード及びその製造方法は、全反射して射出不可能な光線を更に反射させ、不規則な変化をする光線走行方向によって、光線は、一回もしくは数回全反射した後、発光ダイオード外部に射出する故、最良の光線射出効率を得ることができることを特徴とする。 As described above, the light emitting diode of the present invention and the method for manufacturing the same further reflect the light that cannot be emitted after being totally reflected, and the light can be emitted once or several times depending on the light traveling direction that changes irregularly. Since the light is emitted from the light emitting diode after being totally reflected, the best light emission efficiency can be obtained.

本発明の「発光ダイオード及びその製造方法」は、図4に示すとおりである。該発光ダイオード2の製造方法は、最低一つの基板を含んでおり、該基板上には緩衝層を形成し、順序に基づいて緩衝層上方に、第一型エピタキシー層、発光層、及び第二型エピタキシー層を設ける。該第二型エピタキシー層上は、粗化処理を施して粗化表面を形成する。 The “light emitting diode and manufacturing method thereof” of the present invention are as shown in FIG. The manufacturing method of the light emitting diode 2 includes at least one substrate, a buffer layer is formed on the substrate, and a first type epitaxy layer, a light emitting layer, and a second layer are formed above the buffer layer based on the order. A type epitaxy layer is provided. A roughening process is performed on the second type epitaxy layer to form a roughened surface.

また、作製する発光ダイオードの構造は、図5に示すとおりであり、それは、一つの基板21、一つの緩衝層22、一つの第一型エピタキシー層23、一つの発光層24、一つの第二型エピタキシー層25を含むものである。該基材21上には緩衝層22を設け、該緩衝層22は基材21上に設け、第一型エピタキシー層23は緩衝層22上方に設け、該発光層24は第一型エピタキシー層23上方に設け、該第二型エピタキシー層25は発光層24上方に設ける。該第一型エピタキシー層23、該発光層24、該第二型エピタキシー層25の材質は、III-V族化合物半導体材料で、例えば、窒化ガリウム(GaN)、リン化ガリウム(GaP)もしくはガリウムヒ素リン(GaASP)であり、また、第一型エピタキシー層23と第二型エピタキシー層25は、相反しており、例えば第一型エピタキシー層23がn型エピタキシー層であるなら、該第二型エピタキシー層25はp型エピタキシー層であり、第一型エピタキシー層23がp型エピタキシー層である場合は、該第二型エピタキシー層25はn型エピタキシー層となる。その内の該第二型エピタキシー層25表面には、粗化表面26を備える。 Further, the structure of the light emitting diode to be manufactured is as shown in FIG. 5, which is one substrate 21, one buffer layer 22, one first type epitaxy layer 23, one light emitting layer 24, one second layer. A type epitaxy layer 25 is included. A buffer layer 22 is provided on the base material 21, the buffer layer 22 is provided on the base material 21, a first type epitaxy layer 23 is provided above the buffer layer 22, and the light emitting layer 24 is a first type epitaxy layer 23. The second type epitaxy layer 25 is provided above the light emitting layer 24. The material of the first type epitaxy layer 23, the light emitting layer 24, and the second type epitaxy layer 25 is a group III-V compound semiconductor material such as gallium nitride (GaN), gallium phosphide (GaP), or gallium arsenide. The first-type epitaxy layer 23 and the second-type epitaxy layer 25 are in conflict with each other. For example, if the first-type epitaxy layer 23 is an n-type epitaxy layer, the second-type epitaxy The layer 25 is a p-type epitaxy layer, and when the first-type epitaxy layer 23 is a p-type epitaxy layer, the second-type epitaxy layer 25 becomes an n-type epitaxy layer. A roughened surface 26 is provided on the surface of the second type epitaxy layer 25 among them.

二つの電極231、251はそれぞれ、第一型エピタキシー層23と第二型エピタキシー層25の表面に設けられる。 The two electrodes 231 and 251 are provided on the surfaces of the first type epitaxy layer 23 and the second type epitaxy layer 25, respectively.

その内、該粗化処理は、図6に示すとおりであり、次のステップを含む。 Among them, the roughening process is as shown in FIG. 6 and includes the following steps.

粒径大きさが同等の球体を用いて行い、その球体の粒径大きさは、第二型エピタキシー層の材質の違いによって、その大きさを調節する。 The spheres having the same particle size are used, and the particle size of the spheres is adjusted depending on the material of the second type epitaxy layer.

球体31を第二型エピタキシー層25の表面に敷いた図は、図7(A)に示すとおりである。各球体31は、周期性をもって第二型エピタキシー層25表面に配列設置し、二つの球体31間には、同等の間隔を持たせる。 A view in which the sphere 31 is laid on the surface of the second type epitaxy layer 25 is as shown in FIG. The spheres 31 are arranged on the surface of the second-type epitaxy layer 25 with periodicity, and the two spheres 31 have an equal interval.

第二型エピタキシー層25表面には、ドライエッチング(プラズマエッチングでもよい)を施し、図7(B)に示すとおりであるが、各球体31間はエッチングにより凹槽252を形成、その凹槽252の深さは5μmより小さくする。当然、第二型エピタキシー層の材質の違いによって凹槽の深さを調節し、図に示すとおり、各凹槽252は弧状であり、二つの凹槽252間の波間隔は、1μmから2μmの間とする。   The surface of the second-type epitaxy layer 25 is dry-etched (or plasma-etched), as shown in FIG. 7B. A concave tank 252 is formed between the spheres 31 by etching. The depth of is less than 5 μm. Naturally, the depth of the concave tank is adjusted depending on the material of the second-type epitaxy layer, and as shown in the figure, each concave tank 252 is arc-shaped, and the wave interval between the two concave tanks 252 is 1 μm to 2 μm. Between.

図7(C)に示すとおり、第二型エピタキシー層25表面の球体31を除去し、洗浄によって第二型エピタキシー層25表面の球体31を除去する。   As shown in FIG. 7C, the sphere 31 on the surface of the second type epitaxy layer 25 is removed, and the sphere 31 on the surface of the second type epitaxy layer 25 is removed by washing.

最後に、図7(C)に示すとおり、粗化表面26を完成させる。該粗化表面26は、周期性をもった配列で、第二型エピタキシー層25表面にへこみのある凹槽252を備えている。 Finally, as shown in FIG. 7C, the roughened surface 26 is completed. The roughened surface 26 is provided with a concave tank 252 having a dent in the surface of the second type epitaxy layer 25 in an array having periodicity.

更に、図10に示したのは、複数球体を第二型エピタキシー層表面に配列させた写真であり、また、図11は、一部拡大した写真で、各球体の大きさは約1.5-2 umであり、周期性をもって第二型エピタキシー層表面に配列し、並びに、約2分以内のエッチングを行い、複数の深さ約1-3umの凹槽を形成し、それは図12及び図13に示すとおりである。 Further, FIG. 10 shows a photograph in which a plurality of spheres are arranged on the surface of the second type epitaxy layer, and FIG. 11 is a partially enlarged photograph. The size of each sphere is about 1.5-2. um, arranged on the surface of the second-type epitaxy layer with periodicity, and etched within about 2 minutes to form a plurality of recessed tanks with a depth of about 1-3 um, which are shown in FIGS. It is shown.

具体的な実際例を図8に示す。これは、単一の点光源Pを範例として説明しているが、それは、点光源Pの射出光線P1、P2が部品外部に至ったものであり、射出光線P1、P2以外の光線において、もともと全反射していた射出光線P3、P4は、この図面中では直接射出されており、図中においても示したとおり、全反射した射出光線P5は、四回の全反射を経た後、発光ダイオード外部に射出されており、よって、明らかに、光線射出効果を向上させている。本発明の発光ダイオードにおいて、全反射された光線は、数回の全反射後、発光ダイオードの外部に射出される故、発光ダイオード上層表面について言えば、図9に示すとおり、点光源Pの射出光が有効となる射出範囲241は、発光ダイオード上層表面全体にまで拡大され、全体として、発光ダイオードの発光効率を明らかに高めることとなる。 A specific actual example is shown in FIG. This is explained by taking a single point light source P as an example, but it is that the light rays P1 and P2 of the point light source P reach the outside of the part, and in the light rays other than the light rays P1 and P2, originally, The emitted light rays P3 and P4 that have been totally reflected are directly emitted in this drawing, and as shown in the figure, the reflected light rays P5 that have undergone total reflection are subjected to four total reflections and then to the outside of the light emitting diode. Therefore, the light emission effect is clearly improved. In the light emitting diode of the present invention, the totally reflected light beam is emitted to the outside of the light emitting diode after being subjected to several total reflections. Therefore, regarding the upper layer surface of the light emitting diode, as shown in FIG. The emission range 241 in which light is effective is expanded to the entire surface of the upper layer of the light emitting diode, and as a whole, the light emission efficiency of the light emitting diode is clearly increased.

上述したとおり、本発明は、良好な実施が可能な発光ダイオード及びその製造方法を提供するものであり、ここに法に基づいて発明特許の申請を行う。しかし、以上の実施例の説明及び図面に示したのは、本発明の良好な実施例であり、本発明を制限するものではない。よって、本発明の構造、装置、特徴等近似するもの或いは同等のものは全て、本発明の特許申請目的及び特許申請範囲内に含まれるものとする。 As described above, the present invention provides a light-emitting diode that can be satisfactorily implemented and a method for manufacturing the same, and an invention patent is filed based on the law. However, what has been shown in the above description of the embodiments and the drawings is a preferred embodiment of the present invention and does not limit the present invention. Accordingly, all approximate or equivalent structures, devices, features, etc. of the present invention shall be included in the patent application purpose and patent application scope of the present invention.

公知の発光ダイオードの構造に関する側面図Side view of known light emitting diode structure 公知の発光層と光線射出効果図Known luminescent layer and light emission effect diagram 公知の光線射出効果に関する立体図Three-dimensional view of the known light emission effect 本発明の発光ダイオード製造方法のステップに関するフローチャートThe flowchart regarding the step of the light emitting diode manufacturing method of this invention. 本発明の発光ダイオードの構造に関する断面図Sectional drawing regarding the structure of the light-emitting diode of the present invention 本発明の粗化処理のステップに関するフローチャートThe flowchart regarding the step of the roughening process of this invention 本発明の粗化処理構造に関する見取図Sketch of roughening structure of the present invention 本発明の粗化処理構造に関する見取図Sketch of roughening structure of the present invention 本発明の粗化処理構造に関する見取図Sketch of roughening structure of the present invention 本発明の発光層と光線射出効果図Light emitting layer and light emission effect diagram of the present invention 本発明の光線射出効果に関する立体図Three-dimensional view of the light emission effect of the present invention 本発明の球体を第二型エピタキシー層表面に敷いた場合の写真Photograph when the sphere of the present invention is laid on the surface of the second type epitaxy layer 本発明の球体を第二型エピタキシー層表面に敷いた場合の写真Photograph when the sphere of the present invention is laid on the surface of the second type epitaxy layer 本発明のエッチング後に形成した凹槽の写真Photograph of concave tank formed after etching of the present invention 本発明のエッチング後に形成した凹槽の写真Photograph of concave tank formed after etching of the present invention

符号の説明Explanation of symbols

1 発光ダイオード
11 基材
12 緩衝層
13 第一型エピタキシー層
14 発光層
141 光線射出範囲
15 第二型エピタキシー層
16 電極
17 電極
2 発光ダイオード
21 基材
22 緩衝層
23 第一型エピタキシー層
231 電極
24 発光層
241 射出範囲
25 第二型エピタキシー層
251 電極
252 凹槽
26 粗化表面
31 球体
DESCRIPTION OF SYMBOLS 1 Light emitting diode 11 Base material 12 Buffer layer 13 1st type epitaxy layer 14 Light emitting layer 141 Light emission range 15 2nd type epitaxy layer 16 Electrode 17 Electrode 2 Light emitting diode 21 Base material 22 Buffer layer 23 1st type epitaxy layer 231 Electrode 24 Light emitting layer 241 Emission range 25 Second type epitaxy layer 251 Electrode 252 Concave tank 26 Roughened surface 31 Sphere

Claims (6)

発光ダイオードは、一つの基材と、該基材上に設けた一つの緩衝層と、緩衝層上方に設けた一つの第一型エピタキシー層と、第一型エピタキシー層上方に設けた一つの発光層と、発光層上方に設け、粗化表面を備えた第二型エピタキシー層とを最低含むことを特徴とする発光ダイオード。 The light emitting diode includes one base material, one buffer layer provided on the base material, one first type epitaxy layer provided above the buffer layer, and one light emission provided above the first type epitaxy layer. A light emitting diode comprising at least a layer and a second type epitaxy layer provided above the light emitting layer and having a roughened surface. 前記粗化表面は、周期性をもたせて配列し、第二型エピタキシー層表面をへこませた凹槽を備え、該凹槽の深さは、5μmより小さく、二つの凹槽の波間隔は、1μmから2μm間であることを特徴とする請求項1記載の発光ダイオード。 The roughened surface is arranged with periodicity and includes a concave tank in which the surface of the second type epitaxy layer is recessed, the depth of the concave tank is smaller than 5 μm, and the wave interval between the two concave tanks is The light emitting diode according to claim 1, wherein the light emitting diode is between 1 μm and 2 μm. 前記粗化表面は、粗化処理を施して形成され、該粗化処理には、粒径大きさが同等の球体を用い、球体を第二型エピタキシー層の表面に並べて敷き、ドライエッチングを施し、第二型エピタキシー層表面の球体を除去し、粗化表面を完成させるステップを含むことを特徴とする請求項1記載の発光ダイオード。 The roughened surface is formed by performing a roughening treatment. For the roughening treatment, spheres having the same particle size are used, the spheres are arranged on the surface of the second type epitaxy layer, and dry etching is performed. The light emitting diode according to claim 1, further comprising the step of removing spheres on the surface of the second type epitaxy layer to complete a roughened surface. 発光ダイオードの製造方法には、一つの基材を用い、該基材上に緩衝層を形成し、該緩衝層上に第一型エピタキシー層を形成し、該第一型エピタキシー層上に発光層を形成し、該発光層上に第二型エピタキシー層を形成し、該第二型エピタキシー層上は、粗化処理によって粗化表面を形成するステップを含んでおり、その内の該粗化処理は、粒径大きさが同等の球体を用い、球体を第二型エピタキシー層の表面に並べて敷き、ドライエッチングを施し、第二型エピタキシー層表面の球体を除去し、粗化表面を完成させるステップを含むことを特徴とする発光ダイオードの製造方法。 In a method for manufacturing a light emitting diode, a single substrate is used, a buffer layer is formed on the substrate, a first type epitaxy layer is formed on the buffer layer, and a light emitting layer is formed on the first type epitaxy layer. A second type epitaxy layer is formed on the light emitting layer, and a roughened surface is formed on the second type epitaxy layer by a roughening process. Is a step of using spheres of the same particle size and laying the spheres side by side on the surface of the second type epitaxy layer, performing dry etching, removing the spheres on the surface of the second type epitaxy layer, and completing the roughened surface. The manufacturing method of the light emitting diode characterized by the above-mentioned. 前記球体は、洗浄によって第二型エピタキシー層表面から除去することを特徴とする請求項4記載の発光ダイオードの製造方法。 5. The method of manufacturing a light emitting diode according to claim 4, wherein the sphere is removed from the surface of the second type epitaxy layer by cleaning. 前記球体の粒径大きさは、第二型エピタキシー層の材質の違いによってその大きさを調節することを特徴とする請求項4記載の発光ダイオードの製造方法。 5. The method of manufacturing a light emitting diode according to claim 4, wherein the particle size of the sphere is adjusted according to a difference in material of the second type epitaxy layer.
JP2007168355A 2007-06-27 2007-06-27 Light emitting diode and method of manufacturing the same Pending JP2009010060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007168355A JP2009010060A (en) 2007-06-27 2007-06-27 Light emitting diode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007168355A JP2009010060A (en) 2007-06-27 2007-06-27 Light emitting diode and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009010060A true JP2009010060A (en) 2009-01-15

Family

ID=40324887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007168355A Pending JP2009010060A (en) 2007-06-27 2007-06-27 Light emitting diode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009010060A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141169A1 (en) * 2011-04-15 2012-10-18 三菱化学株式会社 Nitride light-emitting diode element and method for producing same
CN111293202A (en) * 2018-12-06 2020-06-16 新世纪光电股份有限公司 Light emitting diode and method for manufacturing the same
CN111725375A (en) * 2019-03-22 2020-09-29 新世纪光电股份有限公司 Red light-emitting diode and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174191A (en) * 2001-06-25 2003-06-20 Toshiba Corp Semiconductor light-emitting device and manufacturing method thereof
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
JP2006222288A (en) * 2005-02-10 2006-08-24 Toshiba Corp White led and manufacturing method therefor
JP2007019318A (en) * 2005-07-08 2007-01-25 Sumitomo Chemical Co Ltd Semiconductor light emitting element, method for manufacturing substrate therefor, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003174191A (en) * 2001-06-25 2003-06-20 Toshiba Corp Semiconductor light-emitting device and manufacturing method thereof
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
JP2005354020A (en) * 2004-05-10 2005-12-22 Univ Meijo Semiconductor light-emitting device manufacturing method and semiconductor light-emitting device
JP2006222288A (en) * 2005-02-10 2006-08-24 Toshiba Corp White led and manufacturing method therefor
JP2007019318A (en) * 2005-07-08 2007-01-25 Sumitomo Chemical Co Ltd Semiconductor light emitting element, method for manufacturing substrate therefor, and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141169A1 (en) * 2011-04-15 2012-10-18 三菱化学株式会社 Nitride light-emitting diode element and method for producing same
JP2012231122A (en) * 2011-04-15 2012-11-22 Mitsubishi Chemicals Corp Nitride-based light emitting diode element, and method of manufacturing the same
US9257595B2 (en) 2011-04-15 2016-02-09 Mitsubishi Chemical Corporation Nitride light-emitting diode element and method of manufacturing same
CN111293202A (en) * 2018-12-06 2020-06-16 新世纪光电股份有限公司 Light emitting diode and method for manufacturing the same
CN111725375A (en) * 2019-03-22 2020-09-29 新世纪光电股份有限公司 Red light-emitting diode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8614458B2 (en) Patterned substrate for light emitting diode and light emitting diode employing the same
JP6359632B2 (en) Light emitting device package
JP6286026B2 (en) Light emitting diode components
CN104638078A (en) Light emitting diode and manufacturing method for same
JP2007036186A (en) Light emitting diode structure
KR20100011406A (en) Light emitting diode and method for manufacturing the same
US7812361B2 (en) Light emitting diode
US10008634B2 (en) Thin-film flip-chip light emitting diode having roughening surface and method for manufacturing the same
TWI449214B (en) Semiconductor light emitting device
US9041045B2 (en) Transparent LED wafer module and method for manufacturing same
JP7130130B2 (en) Micro light-emitting diode chip, manufacturing method thereof, and display device
JP2009010060A (en) Light emitting diode and method of manufacturing the same
CN103441198A (en) LED high-brightness upside-down mounting chip and manufacture method thereof
US20130130417A1 (en) Manufacturing method of a light-emitting device
KR102474695B1 (en) Light emitting device
TWI656660B (en) Semiconductor light emitting device
CN102130249B (en) Super-luminance light-emitting diode and manufacturing method thereof
JP2010186873A (en) White light emitting device and manufacturing method for the same
KR102373677B1 (en) Light emittng device
US20120091434A1 (en) Vertical light-emitting device
US20090159916A1 (en) Light source with reflective pattern structure
US9048351B2 (en) LED die, method for manufacturing the LED die and automobile lamp having the LED die
KR100881175B1 (en) Light emitting diode having unevenness and method for manufacturing the same
KR100910091B1 (en) Light emitting diode and method of manufacturing the same
TW200840087A (en) Making method for AlGaInP LED

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110328